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Abstract. Rivers are rich in biodiversity and act as ecological corridors for plant and animal species. With climate change

and increasing anthropogenic water demand, more frequent and prolonged periods of drying in river systems are expected,

endangering biodiversity and river ecosystems. However, understanding and predicting the hydrological mechanisms that con-

trol periodic drying and rewetting in rivers is challenging due to a lack of studies and hydrological observations, particularly

in non-perennial rivers. Within the framework of the Horizon 2020 DRYvER (Drying River Networks and Climate Change)5

project, a hydrological modelling study of flow intermittence in rivers is being carried out in 3 European catchments (Spain,

Finland, France) characterized by different climate, geology and anthropogenic use. The objective of this study is to represent

the spatio-temporal dynamics of flow intermittence at the reach level in meso-scaled
::::::::
mesoscale

:
river networks (between 120

km2
:
and 350 km

:

2). The daily and spatially distributed flow condition (flowing or dry) is predicted using the J2000 distributed

hydrological model coupled with a Random Forest classification model. Observed flow condition data from different sources10

(water level measurements, photo traps, water temperature measurements, citizen science applications) are used to build the

predictive model. This study aims to evaluate the impact of the observed flow condition dataset (sample size, spatial and tem-

poral representativity) on the performance of the predictive model. Results show that the hybrid modelling approach developed

in this study allows to accurately predict the spatio-temporal patterns of drying in the 3 catchments
:
,
::::
with

:
a
::::::::::

Sensitivity
::::::
criteria

:::::
above

:::
0.9

::
for

:::
the

:::::::::
prediction

::
of

:::
dry

:::::
events

::
in
:::
the

:::::::
Finnish

:::
and

::::::
French

::::
case

::::::
studies,

::::
and

::::
0.65

::
for

:::
the

:::::::
Spanish

::::
case

::::
study. This study15

shows the value of combining different
:::
data

:
sources of observed flow condition data to reduce the uncertainty in predicting

flow intermittence.

1 Introduction

River systems are an essential link in terrestrial biodiversity. They are home
::::::
habitat to many animal and plant species within the

riverbed and in the riparian zone (Leigh and Datry, 2017). They also serve as ecological corridors by providing a connection20

between upstream and downstream for mobile species and by transporting nutrients and sediments necessary for the survival
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of species located downstream (Deiner et al., 2016). These ecological corridors can be disrupted when river beds dryup.
::
In

::::::::
particular,

:::::::::
ecologists

::::::
assume

::::
that

::::::::::
intermittent

:::::
rivers

:::
are

::::::::::
biodiversity

::::::
hotspot

::::::
thanks

::
to

:::
the

:::::::::
succession

::
of

::::::::
different

::::
flow

::::::
phases

::::
(e.g.

:::::::
flowing,

::::::
isolated

::::::
pools,

::::
dry)

:::::
which

::::::::
promotes

::::::
species

:::::::
richness

::::::::::::::::
(Datry et al., 2014).

:

By impacting the hydrological cycle and increasing the risk of drought (Gudmundsson and Seneviratne, 2016; Tramblay25

et al., 2021), climate change threatens river biodiversity (Bond et al., 2008). Prolonged drying and shifting of river sections

from perennial to intermittent flow can endanger ecosystems and
::::
limit

:
the access to water resources useful to our society

(Steward et al., 2012; De Girolamo et al., 2017; Tonkin et al., 2019).

:::
The

::::
term

::::::::::
intermittent

:::::
rivers

:::::
refers

::
to
:::
all

:::::
rivers

::::
with

:
a
::::::::::::
non-perennial

::::
flow.

:::::
This

:::::::
includes

:::::::::
ephemeral

:::::
rivers

::::
with

::::
short

:::::::
periods

::
of

::::
flow

::
in

:::::
direct

:::::::
response

::
to

:::::::
rainfall

::
or

::::
snow

::::
melt

::::::
events,

:::::
rivers

:::::
with

:::::::
seasonal

::::
flow,

::::
and

:::::
nearly

::::::::
perennial

:::::
rivers

::::
with

:::::::::
infrequent30

::::::
periods

::
of

::::::
drying

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Buttle et al., 2012; Snelder et al., 2013; Shanafield et al., 2021)

:
.
::
In

::::
this

:::::
study,

:::
the

::::
term

:::::
"flow

::::::::::::
intermittence"

:::
will

::::
refer

::
to
:::
the

:::::::::
alternation

::::::::
between

::::::
flowing

::::::
phases

:::
and

::::::
phases

::::
with

:::::::::
interrupted

::::
flow

::::::::::
(completely

::::
dry

:::::::
riverbed

::
or

:::::::::::
disconnected

::::::
pools).

:

Although they represent a large proportion of terrestrial rivers (Messager et al., 2021), intermittent rivers are still poorly

known (Acuña et al., 2014; Meerveld et al., 2020; Fovet et al., 2021) and their study in hydrology is relatively recent. Modelling35

the hydrological functioning of drying river networks (DRNs) can help understanding the impact of drying on ecosystems and

to predict the evolution of the drying spells and possible tipping points in flow regimes under climate projections.

Studies have already looked at modelling intermittent rivers with a physical hydrological model (Jaeger et al., 2014; Tzoraki

et al., 2016; Llanos-Paez et al., 2023). One major difficulty in modelling flow intermittence is that hydrological models have

difficulties to simulate no
::::
zero flows (Shanafield et al., 2021). First there is a numerical challenge: the flow routing scheme40

implemented in the models to propagate the streamflow across the river networks cannot represent sudden transitions from wet

to dry. Second, the origins of intermittent rivers
:::::::::::
intermittence are multiple (disconnection between the river and the water table,

drying up following a long period without precipitation, infiltration from the river bed into a fault or a karstic subsoil, drying

up following anthropic withdrawals, etc.) (Datry et al., 2016) and sometimes very local. Representing all these processes in the

models is thus complex and requires a large amount of data. A more common modelling approach to model intermittent rivers45

is the use of artificial neural networks (ANN) (Daliakopoulos and Tsanis, 2016; Beaufort et al., 2019) and random forest (RF)

(González-Ferreras and Barquín, 2017; Beaufort et al., 2019; Belemtougri, 2022; Jaeger et al., 2023) models. These models are

easier to implement, do not require a priori knowledge of the origins of drying, and showed
::::
show good performances to predict

the spatial distribution of flow regimes (perennial or intermittent) in the river networks. The covariates used to predict the

rivers flow regimes
::::
river

::::
flow

::::::
regime are usually the streams

:::::
stream physical characteristics (width, length, slope, geological50

context, etc) and climatic
:
.)

:::
and

:::::::
climate variables such as precipitation, temperature and evapotranspiration. The prediction of

::::::::
Predicting

:
the spatial and temporal dynamics of drying in intermittent river systems , requires providing the RF models with

additional covariates on the spatialized hydrological conditions along the river systems at a significantly
:::::::::
sufficiently

:
fine time

step and fine spatial resolution. This can be achieved using spatially distributed hydrological models at a daily or smaller time

step.55
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Another a challenge in the study of intermittent river networks is to collect observed data of flow intermittence to train or

validate the models. Studies of river intermittency
:::::::::::
intermittence on a large scale mainly use gauging station data (Belemtougri,

2022; Messager et al., 2021; Tramblay et al., 2021; Beaufort et al., 2019; Reynolds et al., 2015). Gauging station data are easy

to retrieve and analyse and have the advantage of providing data at a regular time step over long periods. But the stations are

mainly located on rivers with perennial flow (Eng et al., 2016; Meerveld et al., 2020) and their spatial distribution is not dense60

enough do
::
to understand the flow intermittence patterns along river networks. On the contrary, studies focusing on smaller

catchments use data from field campaigns (Jaeger et al., 2023; Llanos-Paez et al., 2023; Sefton et al., 2019), which allow the

collection of data at regular time steps with a denser network of observations. But field campaigns can be costly and time

consuming, and usually cover short periods of time (several weeks or month), with a risk of over-representing drying events

when the campaign is focused on the summer season.65

The objective of the study is to present a hybrid modelling approach to simulate spatio-temporal patterns of drying in the

river networks. To do so, we developed a flow intermittence model by coupling a distributed hydrological model (JAMS-J2000)

with a Random Forest classification model. The models are applied in 3 European DRNs from the DRYvER project (Datry

et al., 2021) located in Spain, France and Finland to evaluate the ability of the models to predict the drying patterns in contrasted

climate, hydrological, geological and anthropogenic contexts.70

In this study, we developed a flow intermittence model by coupling a distributed hydrological model (JAMS-J2000) with

a Random Forest classification model to simulate spatio-temporal patterns of drying in the river networks. The models are

applied in 3 European DRNs located in Spain, France and Finland to evaluate the ability of the models to predict the drying

patterns in contrasted climate, hydrological, geological and anthropogenic contexts.

This study also investigates the different types of observed flow state data available to drive the RF model (gauging stations,75

field campaigns, crowdsourced data, remote sensing, expertise), their ability to represent the actual drying patterns in the DRNs,

and how they can be combined to improve the modelling of flow intermittence.

2 Method
:::::::
Material

::::
and

::::::::
methods

2.1 Study area and data

2.1.1 Focal DRNs80

This study focuses on 3 meso-scale DRNs located in Spain, France and Finland (Table 1, Fig. 1) that are part of the DRYvER

project on drying rivers and climate change (Datry et al., 2021). The 3 catchments have similar
:::::
surface

:
areas ranging between

200 and 350 km2 and are characterized by different climates and flow intermittence patterns.

The Genal catchment, located in South of
:::::::
southern Spain, is characterized by a dry and warm climate and scarce natural

vegetation. Long periods of drying are observed in the smaller reaches. The main Genal river is known to be perennial except85

in the downstream part of the catchment where the Genal river dries up in the summer season due to water abstraction for

irrigation.
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On the opposite, the Lepsämänjoki catchment in Finland is characterized by a wetter and colder climate. Flow intermittence

is only observed in the smallest reaches but seems to have intensified in recent years due to climate change.

The Albarine in France is characterized by a more temperate climate. Flow intermittence is particularly observed in the90

upstream and downstream parts of the catchment. Drying is mainly due to the seepage of the Albarine river in the soil at

geological discontinuities.

Name Country Area Outlet lat. Outlet lon. Range of elevations
:::::
Mean

::::::::::
temperature

:::::
Mean

::::::::::
Precipitation

[km2] [°] [°] [m.a.s.l] [
::
°C] [

:::
mm]

Albarine France 354 45.906 5.234 212 - 1497
::::
10.0

::::
1439

:

Genal Spain 343 36.318 -5.312 3 - 1718
::::
15.9

:::
743

:

Lepsämänjoki Finland 208 60.238 24.984 8 - 145
:::
5.6

:::
899

:

Table 1. characteristics
:::::::::::
Characteristics

:
of the studied catchments.

:::::
Mean

::::::
annual

::::::::::
precipitation

:::
and

::::::::::
temperature

:::
are

:::::::
computed

:::::
from

:::
the

::::::::
ERA5-land

::::::::
reanalysis

::
for

:::
the

:::::
period

:::::::::
1991-2020.

Figure 1. a) Location of the 3 studied DRNs. b,c,d) River networks and elevations of the Albarine, Genal, and Lepsämänjoki DRNs.

2.1.2 Spatial data

Topography, soil types, landuse
:::
land

::::
use and hydrogeology information is needed for

:
as
:::::

input
:::

to the spatially distributed

hydrological modelling
:::::
model. The following data sources were used:95

– Topography: EU-DEM v1.1 (Copernicus, 2016) with a 25 m resolution for the Albarine DRN, the Andalucía DEM

(Portal Ambiental de Andalucía. 2010) with a 10 m resolution for the Genal DRN, and the 10 m DEM Finland (National

Land Survey of Finland1) for the Lepsämänjoki DRN.

1
::::::::::::::::::::::::::::::::::::::::::::::::::
https://asiointi.maanmittauslaitos.fi/karttapaikka/tiedostopalvelu/korkeusmalli

4



– Soil: Soil classes were used from the European Soil Database v2.0 (European Commission; Panagos et al. (2012)).

Physical parameters were also used from the European Soil Database v2.0 (field capacity, saturated water content, depth100

to rock). In the Genal DRN (Spain) texture and bulk density data was used from soil profiles (Llorente et al., 2018) for

the calculation of parameters using pedotransfer functions (Ad-Hoc-AG, 2005; Baxter, 2007).

– Land use: Corine Land Cover (CLC) 2012, Version 2020-20u1 Level 3 (44 classes) was used (Copernicus Land Mon-

itoring Service 2020) to establish the LULC classes. Parameters , such as albedo, crop coefficients, LAI, root depth,

and impervious fraction area, were adapted to local conditions from different sources (Allen et al., 1998; Krause, 2001;105

Kralisch and Krause, 2006; Neitsch et al., 2011; Faroux et al., 2013)(Allen et al. 1998, Krause 2001; Krause et al. 2006;

Ludwig and Bremicker 2006; Neitsch et al. 2011, Faroux et al. 2013).

– Hydrogeology: IHME1500 – International Hydrogeological Map of Europe (aquifer and lithology layers)(Duscher et al.,

2015) was used to establish the classes for all DRNs.

2.1.3 Climate data110

The ERA5-land reanalysis (Muñoz-Sabater et al., 2021) was used to as climate forcing data for the hydrological modelling.

The following hourly ERA5-land climate variables were used to compute the reference evapotranspiration using the Penman-

Monteith equation (Allen et al., 1998): 2 m air temperature (°C), 2 m dew point temperature (°C), 2 m relative humidity (%),

10 m u and v wind speed components (m/s, incoming solar radiation (W/m2
::
m2), incoming thermal radiation (W/m2

::
m2), and

surface pressure (Pa). Hourly ERA5-land precipitation, air temperature and computed reference evapotranspiration were then115

aggregated at
:::
the daily time step to be used as climate forcing data in the hydrological model.

2.1.4 Flow state and and discharge data

In order to validate the modelsability of simulating ’
::::::

ability
:::
to

:::::::
simulate

:
flow intermittence at the reach level multiple data

sources of flow observations were used:

– hydrological
:::::::::::
Hydrological stations: (i) discharge daily time series from gauging stations (http://leutra.geogr.uni-jena.de/DRYvER).120

The streams are considered as dry if the measured discharge is equal to 0 m3
::
m3/s, and flowing otherwise. (ii)

:::
the ONDE

network (Observatoire National des Etiages, https://onde.eaufrance.fr): this French network of hydrological stations was

specifically developed to monitor intermittent rivers and gives a monthly qualitative information about the state of flow

(visible flow, non-visible flow, dry).

– crowdsourced
:::::::::::
Crowdsourced

:
data from smartphone applications: DRYRivERS (https://www.dryver.eu/app) and Crowd-125

Water (https://crowdwater.ch/en/data/).

– measurements
::::::::::::
Measurements from field campaigns for the DRYvER project : phototraps installed along the river net-

works took daily pictures from 2018-11-07 to 2022-04-30 in the Albarine DRN and from 2021-06-17 to 2021-09-26 in

the Lepsämänjoki DRN.
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– observations
::::::::::
Observations

:
on Google Earth images: the state of flow of the reaches was observed on the images for130

several dates between 2010 and 2022. The observation with Google Earth images was only possible in the Genal DRN

which has a scarce vegetation.

– expertise
:::::::
Expertise

:
of local DRYvER project partners : some members of the DRYvER project have been studying these

DRNs for several years and have a deep understanding or their hydrological behaviours. Their expertise was used to

identify reaches characterised by a perennial flow. Reaches
:::::
Those

:::::::
reaches are assumed to be flowing every day during135

the field campaign period.

These data sources are available either as disconnected points in time and space (Fig. 2), recurrent observations at the sampling

sites or time series of daily data over periods ranging from a few months to several years.

::
As

::
a

::::
result

:::
of

::::::::
acquiring

:::
data

:::::
from

:::::::
multiple

:::::::
sources,

::::
there

::::
may

::
be

::::::
several

::::
flow

:::::
state

::::::::::
observations

::
on

:::
the

:::::
same

:::
day

::
in

:::
the

:::::
same

:::::
reach.

:::
By

::::::::
grouping

:::
the

::::
data

::
by

:::::
reach

::::
and

:::
by

::::
date,

:::
we

:::::::
observe

::::
that

::::
there

::
is
:::::::::::
simultaneity

::
in

::::
only

::::::
0.26%

::
of

:::::
cases

:::
on

:::::::
average140

::
for

:::
the

::
3
::::::::::
catchments

:::::::::
(Albarine:

::
83

:::::
cases

::
of

:::::::::::
simultaneity

::::
over

::::::
28852

::::
total

:::::
cases,

::::::
Genal:

:::
16

:::::
cases

::::
over

:::::
7146,

:::::::::::::
Lepsämänjoki:

::
12

:::::
cases

::::
over

::::::
6307).

::::
The

:::::
small

:::::::
amount

::
of

:::::
data

::::::::
observed

::
on

::::
the

::::
same

::::
day

:::
on

:::
the

:::::
same

::::::
stretch

:::
of

::::
river

::::
can

::
be

:::::::::
explained

::
by

:::
the

:::::::::::::
complementary

::::::
nature

::
of

:::
the

::::::::
different

:::::::
sources,

:::::
which

:::::
each

:::::
focus

::
on

::::::::
different

:::::
areas

:::
and

:::::::
periods.

:::
Of

:::
the

::::
111

::::
cases

:::
of

::::::::::
simultaneity,

:::
the

::::::::
different

::::::
sources

::::
give

:::
the

::::
same

:::::
state

::
of

::::
flow

::
in

::::
88%

::
of

:::::
cases.

:
In case there are several flow state observations

on the same day in a reach, only one observation is kept to train the RF model. First a filter is applied to prioritize data145

from direct observations (e.g. ONDE stations, crowdsourced data, phototraps, Google Earth) and remove data from indirect

measurements (gauging stations). If after this selection, there are still more than one observation per reach and per day, only

one observation with the predominantly observed flow state is (flowing or dry) is kept.

A detailed analysis of the flow state observations and their ability to represent the drying in the river networks is presented

in the Results section (Table 5 and Fig. 5).150

a) b) c)

gauging stations

ONDE stations

field campaign

expertiseGoogle Earth

crowdsourced data

Figure 2. Observed state of flow data in the a) Albarine, b) Genal, c) Lepsämänjoki DRNs.
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2.2 Flow intermittence model

In order to simulate flow intermittence, a spatially distributed process-oriented hydrological model (JAMS-J2000) was im-

plemented on mesoscaled
::
the

::
3

:::::::::
mesoscale DRNs (detailed description of the model in Section 2.2.1). Once calibrated and

validated, the JAMS-J2000 hydrological model enables to simulate daily streamflow time series in each reach of the river

network.155

Then, the deterministic hydrological model was coupled with a stochastic model, using the model outputs and physical

information to train a Random Forest (RF) classification model with some flow-state observations. The outputs of the RF

model enables to predict the daily flow state (flowing or dry) in each reach of the DRN, and thus predict the spatio-temporal

patterns of flow intermittence.

The modeling method to simulate flow intermittence is summarized in Figure 3 and is described in detail in the following160

sections.

Climate data
(P, T, ET0)

Geophysical data
(DEM, LULC, soil, geology)

Observed discharge
calibration

Observed flow state
model training

Daily hydrological 
variables at reach level 

(Q, baseflow)

Hydrological 
model JAMS-J2000

Random Forest 
classification model

flowing

dry

ti ti+1 ti+2

Daily flow state at reach level

Figure 3. Modelling approach to simulate flow intermittence in river networks by coupling a distributed hydrological model to a Random

Forest classification model
:
.
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2.2.1 JAMS-J2000 hydrological model

The process-oriented JAMS-J2000 hydrological model (Kralisch and Krause, 2006) is used to simulate spatially distributed

hydrological variables in the DRNs. The catchment represented in JAMS-J2000 is discretized in Hydrological Response Units

(HRU)
:
. From climate forcing data, JAMS-J2000 simulates evapotranspiration, snow processes, soil water balance and ground-165

water processes at the HRU level and computes lateral flow routing to account for surface, sub-surface, and groundwater flow

from hillslopes into the stream and along stream segments until the outlet of the river network (Figure 4).

The J2000 river networks were generated from the flow directions and flow accumulations computed from the DEMs.

Observed river networks were used to validate the generated river networks and make sure that the J2000 river networks

corresponds to the observed river networks (see
:::
Fig.

:::
S1,

:::
S2,

:::
and

:::
S3

::
in

:
supplementary material).170

Some modifications from the standard J2000 hydrological model were made for this study using the evapotranspiration

module from Branger et al. (2016) to compute potential evapotranspiration using the reference evapotranspiration and spatially

distributed crop coefficients. Besides, the adapted J2000 snow module
::::::
adapted by Gouttevin et al. (2017) was used.

Daily hydro-meteorological variables such as spatially distributed discharges and groundwater contributions, as well as

evapotranspiration, snowmelt, soil saturation and groundwater saturation at the catchment scale are simulated with the JAMS/J2000175

model from 01/10/2005 to 30/04/2022.

Figure 4. Schematic representation of the hydrological processes modeled in JAMS-J2000 at the HRU and reach level according to Krause

(2001), Figure adapted from Watson et al. (2020)
:
.
::::
DPS:

:::::::::
Depression

::::::
Storage,

:::::
MPS:

:::::
Middle

::::
Pore

::::::
Storage,

::::
LPS:

:::::
Large

::::
Pore

:::::
storage
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2.2.2 Calibration of JAMS-J2000 model

This section only describes
::::::::
describes

::::
only

:
the general aspects of the method used to calibrate the JAMS-J2000 model. A full

description of the calibration method as well as parameter values for each DRN are presented in the supplementary material

::::
(Tab.

:::
S1

:::
and

:::
S2).180

Calibration of the JAMS-J2000 parameters was performed on larger catchments (1500 to 3700 km2) corresponding to the

intermediate-scale basins studied in the DRYvER project (to bridge the gap between the DRN scale and the continental scale).

First, for the Albarine and Lepsämänjoki catchments, 4 lumped parameters for snow processes were calibrated to optimize

the simulated snow cover area
::::::::::::::
(Hall et al., 2007). Then, 15 lumped parameters and 4 distributed parameters were calibrated

in order to optimize the simulated discharges at the gauging stations. The Kling-Gupta-Efficiency (Gupta et al., 2009) was185

used to assess model performance, as well as different evaluation criteria focusing on low flows, such as the 10th percentile of

the discharge
::::
were

::::
used

::
to

::::::
assess

:::::
model

:::::::::::
performance. The calibration and validation periods for the 3 DRNs are presentented

in Table 2.
:::
For

:::
the

::::::
Genal

:::::::::
catchment,

:::
the

:::::::::
discharge

::::
data

::::::::
measured

::
at

:::
the

::::::::
Jubrique

:::::::
gauging

::::::
station

::::::::
indicated

:::::::
potential

::::::
errors

:::::::
between

::::
2004

::::
and

:::::
2012,

:::
this

::::::
period

:::
was

::::::::
therefore

:::
not

:::::
taken

:::
into

:::::::
account

::
in

:::
the

:::::::::
calibration

::::
and

::::::::
validation

::
of

:::
the

::::::
model.

:

DRN Initialization period Calibration period Validation period

Albarine 1990-1995 1995-2009 2009-2020

Genal 1998-2001 2001-2004 2012-2018

Lepsämänjoki 2000-2005 2005-2014 2014-2020
Table 2. Calibration and validation periods. Hydrological years start on the 1st of October and end on the 30th of September.

Table 3 shows the performance of the JAMS-J2000 model to simulate the discharges
::::::::
discharge at the locations of the gauging190

stations in the 3 DRNs. KGE values for the calibration and validation periods show that the discharges are
::::::::
discharge

::
is well

simulated by the hydrological model. The comparison between the simulated and observed 10th percentile of discharge also

shows that JAMS-J2000 gives good results for low flows. In the Albarine DRN, the Saint-Denis-en-Bugey station is located in

the downstream part of the river, which is intermittent due to the seepage of the Albarine river in the aquifer. This explains the

poorer results on this station as the seepage of the Albarine river is not represented in JAMS-J2000 model.
:::::
More

:::::
details

:::
on

:::
the195

::::::::
validation

::
of

:::
the

:::::::::::
JAMS-J2000

:::::
model

:::
on

:::
low

:::::
flows

:::
are

::::::::
available

::
in

:::
the

::::::::::::
supplementary

::::::::
material.
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DRN Gauging stations KGE calib. / valid. Q10sim calib. / valid. [m3/s] Q10obs calib. / valid. [m3/s]

Albarine Saint-Rambert-en-Bugey 0.76 / 0.79 0.94 / 0.50 0.74 / 0.51

Saint-Denis-en-Bugey 0.55 / 0.69 0.86 / 0.45 0 / 0

Genal Jubrique 0.75 / 0.76 0.01 / 0.02 0.11 / 0.05

Lepsämänjoki Lepsämänjoki 0.74 / 0.81 0.56 / 0.40 0.56 / 0.33
Table 3. Validation of the JAMS-J2000 model. KGE values for the calibration and validation periods, and comparison between simulated

and observed 10th percentile of discharge during the calibration and validation periods.

::::
Once

:::::::::
calibrated,

:::
the

:::::::::::
JAMS-J2000

:::::
model

::
is

::::
used

::
to

:::::::
simulate

::::
daily

::::::::::::::::::
hydro-meteorological

::::::::
variables

::::
such

::
as

:::::::
spatially

:::::::::
distributed

::::::::
discharge

:::
and

:::::::::::
groundwater

::::::::::
contribution,

::
as

::::
well

::
as

::::::::::::::::
evapotranspiration,

:::::::::
snowmelt,

:::
soil

:::::::::
saturation

:::
and

::::::::::
groundwater

:::::::::
saturation

::
at

::
the

:::::::::
catchment

:::::
scale

::::
from

::::::::::
01/10/2005

::
to

:::::::::
30/04/2022

::
in
:::
the

::
3
::::::
DRNs.

2.2.3 Random Forest classification model200

The results
:::::
Results

:
of the JAMS-J2000 hydrological models are used to train

::
as

:::::
input

::::
data

::
to

:
a Machine Learning model to

predict the flow intermittence at the reach level. The Random Forest (RF) classification and regression model (Breiman, 2001)

is used to predict the daily state of flow (dry or flowing) at the reach level. The RF model uses 20 covariates (based on Beaufort

et al. (2019) ) (Table 4):

– reach
:::::
Reach physical characteristics: drainage area, slope, type of landuse

::::
land

:::
use, type of soil, hydro-geological

:::::::::::::
hydrogeological205

class around the reaches);
:
,

– daily
::::
Daily

:
hydro-meteorological variables aggregated at the catchment scale: incoming liquid water, temperature and

actual evapotranspiration during the 10, 20 and 30 previous days as well as soil and groundwater saturation; ,
:

– spatially
:::::::
Spatially

:
distributed hydrological variables simulated with JAMS-J2000: discharge and groundwater contribu-

tion (at t0, and average during
:::::::
averaged

::::
over the 10 previous days).210

10



Abbreviation Description Spatial / temporal

distribution

Data source

drained_area Drainage area of the reach reach / uniform

:::::::
constant

Albarine: EU-DEM v1.1

Genal: Andalucia DEM

Vantaanjoki : DEM Finland

slope Slope of the reach reach / uniform

:::::::
constant

Albarine: EU-DEM v1.1

Genal: Andalucia DEM

Vantaanjoki : DEM Finland

landuse Majority landuse class of HRUs crossed by

the reach

reach / uniform

:::::::
constant

Corine Land Cover 2012

soil Majority soil class of HRUs crossed by the

reach

reach / uniform

:::::::
constant

European Soil Database v2.0

hgeo Majority hydro-geological class of HRUs

crossed by the reach

reach / uniform

:::::::
constant

IHME1500

R10, R20, R30 Sum of incoming liquid water (rainfall +

snowmelt) during the 10, 20 and 30 previ-

ous days

catchment / daily simulated with JAMS-J2000

T10, T20, T30 Mean air temperature during the 10, 20 and

30 previous day

catchment / daily ERA5-land

ET10, ET20, ET30 Sum of actual evapotranspiration during

the 10, 20 and 30 previous days

catchment / daily simulated with JAMS-J2000

SoilSat Mean saturation of the soil reservoirs catchment / daily simulated with JAMS-J2000

GwSat Mean saturation of the groundwater reser-

voirs

catchment / daily simulated with JAMS-J2000

Q River discharge reach / daily simulated with JAMS-J2000

Q10 Mean river discharge during
:::
over

:
the 10

previous days

reach / daily simulated with JAMS-J2000

GW Groundwater contribution to the river dis-

charge

reach / daily simulated with JAMS-J2000

GW10 Mean groundwater contribution to the river

discharge during the 10 previous days

reach / daily simulated with JAMS-J2000

Table 4. List of the covariates used in the RF model to predict the spatially distributed daily state of flow.

The RF models were implemented and calculated using the R package “ranger” (Wright et al., 2020).
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For each DRN, the RF models are trained using flow state observations, and then used to extrapolate spatially and temporally

the daily state of flow in each reach during the simulation period (01/10/2005 - 30/04/2022). To use the most of the observed

flow state data (Section 2.1.4), the RF model is trained with all available data.

During the training phase of a RF model, a subset of variables is randomly selected at the node’s splitting point in each215

random forest tree (Breiman, 2001). In this study, the RF is trained 20 times in order to take into account this structural

uncertainty.

The ability of the RF model to represent flow intermittence is evaluated with two efficiency criterias: the probability of

prediction of dry events(POD)and the false alarm ratio of dry events
:::
four

:::::::::
efficiency

::::::
criteria:

:::::::::
Sensitivity

::::::::::
(probability

::
of

::::::::
correctly

:::::::
detecting

::::::
drying

:::::::
events),

::::::::::
Specificity

::::::::::
(probability

::
of

::::::::
correctly

::::::::
detecting

:::::::
flowing

:::::::
events),

::::::::
Accuracy

::::::::::
(probability

:::
of

::::::::
correctly220

::::::::
simulating

::::
the

::::
flow

:::::::::
condition),

::::
and

:::::
False

::::::
Alarm

:::::
Ratio

:
(FAR) .

:::::::::
(probability

:::
of

:::::::
wrongly

:::::::::
predicting

::
a
::::::
drying

::::::
event).

::::::
These

::::::
criteria

:::
are

::::::::
calculated

::
as

:::::::
follows:

:

POD
:::::::::
Sensitivity =

a

a+ c

FAR
:::::::::
Specificity =

b

a+ b

d

b+ d
::::

225

Accuracy =
a+ d

a+ b+ c+ d
:::::::::::::::::::::

FAR =
b

a+ b
::::::::::

with a the number of dry observations correctly simulated by the model, b the number of flowing observations that were230

simulated as dry, and c the number of dry observations that were simulated as flowing
:
,
:::
and

:
d
:::
the

:::::::
number

::
of

::::::
flowing

:::::::::::
observations

:::::::
correctly

::::::::
simulated

:::
by

:::
the

:::::
model.

2.3 Sensitivity analysis of the RF model

2.3.1 Sensitivity to the size of the training sample

First, the sensitivity of the RF model to the size of the training sample is tested by randomly selecting 75% of the flow state235

observations to train the RF model for each of the 20 runs. The RF model is then evaluated on the remaining 25%. For the 20

runs, the selection of the 75% of training data is based on a different random draw. This first test aims at evaluating the impact

of using a reduced training dataset on the prediction of flow intermittence. It also aims at evaluating the error of the RF model

on a validation sample.

2.3.2 Sensitivity to the type of flow state observed data240

As presented in Section 2.1.4, the collected flow state observation datasets used to train the RF model are heterogeneous

in terms of spatial and temporal distributions of the observations, and representativity of different types of flow regimes.
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The sensitivity of the RF model to each type of observed data (stations, field campaign, crowdsourced data, Google Earth,

expertise) is evaluated by removing in turn each type of data from the training dataset, and then comparing the RF performances

::::::::::
performance

:
and the predicted flow intermittence patterns. The RF performances are

::::::::::
performance

::
is
:

evaluated on the whole245

dataset of flow state observations in order to compare the performance on the same validation dataset. The objective of this

analysis is to assess the amount of useful information brought by each type of data.

2.3.3 Sensitivity to the geology data

The last test aims at analysing the sensitivity of the RF model to different degrees of accuracy of covariates. Here, we focus

on the study case of the Albarine DRN, in which a main cause of intermittence is the infiltration of the riverbed in moraine250

deposits or
:::
and

:
karstic soils.

The European IHME1500 map used to define the geological classes in the hydrological model (JAMS-J2000 + RF), with a

scale of 1:1500000, shows 3 classes of geology in the Albarine catchment (karst, fine sediments, and coarse sediments). On

the other hand, the French BD Charm-50 map (BRGM, 2020), with a scale of 1:50000, shows 71 different geological classes.

The RF is trained with the geological classes from the BD Charm-50 map to evaluate the impact of the precision of geological255

data in a catchment where flow intermittence is very influenced by the geological context. In this test, the JAMS-J2000 is still

parameterized based on the IHME1500 map, only the input geology classes of the RF are modified.

3 Results

3.1 Observed flow state data analysis

Table 5 shows general statistics on the distribution of the observed flow state between the different datasets and the coverage260

of the river networks. The gauging stations are the main source of observed data in term of number of observations. They give

information on long time periods with regular time step, but the number of station
::::::
stations

:
in the DRN is limited (1 station

in the Genal and Lepsämänjoki DRNs and 5 stations in the Albarine DRN), which means that stations cannot bring useful

information about the spatial patterns of drying in the DRNs. The field campaigns (with expertise) is the second source of

observed data. They cover a shorter time period than the stations (3 months in Lepsämänjoki and 3.5 years in the Albarine),265

but have a better spatial coverage of the river network than the stations. In the Genal DRN, observed data from Google Earth

images show a very good spatial coverage with about 38% of the river network with at least one observation along the period

of available data. It also cover
::::::
covers a long time period (11.5 years) but with only a few observation per reaches

::::::::::
observations

:::
per

::::
reach

:
(between 1 and 8 observations per reach). Crowdsourced data only represent a very small fraction of the whole data

(0.6 to 2.8%) but have a good spatial coverage, with around 14% of the Albarine and Genal river networks covered.270
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DRN Data type Period of available data Number of

observations

Number of

reaches with

observations

Length of

river network

[%]

Albarine

Stations 2005-10-01 to 2021-12-01 10681 5 1.2

Crowdsourced 2019-06-26 to 2022-04-23 299 56 14.7

Field campaign 2018-11-07 to 2022-04-30 5184 9 2.4

Expertise 2018-11-07 to 2022-04-30 12688 10 1.9

All 2005-10-01 to 2022-04-30 28852 61 15.7

Genal

Stations 2005-10-01 to 2021-10-19 5845 1 0.3

Crowdsourced 2021-05-20 to 2022-02-12 88 28 14

Google Earth 2010-10-08 to 2022-04-01 319 98 38.2

Expertise 2021-03-28 to 2022-01-21 894 3 1.0

All 2005-10-01 to 2022-04-01 7146 119 47.7

Lepsämänjoki

Stations 2005-10-01 to 2020-05-26 4761 1 0.1

Crowdsourced 2021-06-18 to 2021-11-02 28 19 6.2

Field campaign 2021-06-17 to 2021-09-26 807 8 2.6

Expertise 2021-06-17 to 2021-09-26 711 7 1.6

All 2005-10-01 to 2021-11-02 6307 23 7.3
Table 5. Flow observations in the studied DRNs (from 2005-10-01 to 2022-04-30)

Observed data have different distribution
::::::::::
distributions in time and space in the DRNs (Fig. 5a). For the three DRNs, there

are observed data on the different classes of reaches (classified according to their drainage area), but there is more available

data in the class of reaches with the largest drainage area. This is due to the gauging stations data that are located along the

main river and which represent the largest share of the data. The Albarine basin is the only one to have a full seasonal coverage

on the different types of reaches. Reaches with small drainage areas in the Genal and Lepsämänjoki DRNs have observed data275

mainly between June and September, and have missing data during the other months of the year (especially December and

January). This shows that the collection of observed data on flow intermittence tends to be focused on the dry season and that

there is almost no information on the state of flow of
::
for small river sections during winter.

Figure 5 b shows the
:::
also

::::::
shows

:
a
:
seasonal distribution of the dry

:::::::
no-flow observations along the river network

:::::::
networks.

There is a clear spatio-temporal distribution of the dry
::::::
no-flow

:
observations in Lepsämänjoki DRN, with most of the dry-280

ing events occurring in June and July in reaches with the smallest drainage area. Drying events gradually decrease with the

size of the reaches drainage area, and the main river is perennial. However, drying events seems to be over-represented dur-

ing the summer season, because in the smallest reaches, 100% of the observations are dry, whereas it is know that in this

catchments
::::::::
catchment, not all small reaches dry up, and they do not dry for more than a few weeks. In the Genal DRN, the peak

of the drying season seems to be between June and September, but drying events are also observed in early spring and autumn.285
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Most of the dry events are observed in the small reaches but a few dry events are also observed in the downstream part of the

Genal river due to water abstraction of irrigation (around 4% of the observations in June and July). Drying events are observed

later in the season - from August to October - in the Albarine DRN and are localized in small reaches but also in the main river

due to the seepage of the Albarine river in the soil (around 30% of dry observations in the Albarine between July and August).

The smallest reaches (with a drainage area lower than the 25th percentile
:
)
:
only show flowing observation, which shows that290

dry
::::::
no-flow

:
observations may be lacking in these reaches.
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Figure 5. Distribution in space and time of flow state data. The size of the dots indicates the percentage of total available data per month and

per class of drainage area, and the color the percentage of dry observations per month and class of drainage area.

3.2 Prediction of flow intermittence

This section presents the results of the simulation of flow intermittence with the JAMS-J2000+RF modelling.

Figure 6 shows an example of the state of flow prediction in one reach of the Albarine DRN. The comparison between

::::::::
Comparin

:
the observed state of flow and the discharges

:::::::
discharge

:
simulated with the JAMS-J2000 model show

:::::
shows

:
that the295

hydrological model alone is not sufficient
::
to reproduce the periods with no flow. The transition from a flowing to a dry state

cannot be easily inferred from the simulated flows alone since there are periods when the simulated discharge is relatively high

::::
(e.g.

::
in

:::
late

::::::
2020) while the phototrap indicates a dry state whereas on other periods, the simulated discharge is low while

the phototrap indicates a flowing state
::::
(e.g.

:::
late

:::::::
summer

:::::
2019). However, the flow state predicted by the RF model is in good

agreement with the observed flow states, which shows the which shows the usefulness of the coupling between the spatialized300

hydrological JAMS-J2000 model and the RF model.
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Figure 6. Daily state of flow predicted by the RF model (red) in the reach 2443600 in the Albarine DRN compared to the discharge simulated

by JAMS-J2000 model (black) and the observed state of flow collected from a phototrap (orange: dry, purple: flowing).

In order to estimate more accurately the ability of
::
To

:::::::
enhance

:::
the

::::::::
precision

::
of

::::::::
evaluating

:
the coupled JAMS-J2000+RF model

to represent intermittency in whole
::::
flow

:::::::::::
intermittence

:::::
across

:::
the

:::::
entire river systems, the model was trained and tested with two

different configurations: RF model is trained
:::::::::
underwent

::::::
training

::::
and

::::::
testing

:::::
using

:::
two

::::::
distinct

:::::::::::::
configurations:

:::::::::::
configuration

::
0

:::::::
involved

:::::::
training

:::
the

:::
RF

::::::
model with 100% of the observed data(configuration 0) and trained again

:
,
:::::
while

:::::::::::
configuration

::
1305

:::::::
involved

:::::::
training

:::
the

:::
RF

:::::
model

:
with 75% of the observed data and then validated

::::::::
validating

::
its

:::::::::::
performance on the remaining

25%(configuration 1). The POD and FAR value .
::::

The
::::::::::
Sensitivity,

:::::::::
Specificity,

:::::::::
Accuracy,

::::
and

::::
FAR

::::::
values obtained with the

reduced training sample are an indicator
::::::::::::
(configuration

::
1)

:::
are

:::::::::
indicators of the RF model error to extrapolate the prediction

of the state of flow on reaches and dates that are nor
::
not

:
represented in the training dataset. With the configuration 0, the

model perfectly reproduces the observed drying and flowing events in the three DRNs (POD = 100% and FAR
::::::::
Sensitivity

::::
and310

:::::::::
Specificity = 0%

:
1), whereas the performance of the RF model is decreased with the configuration 1 (Fig. 7). The Albarine and

Lepsämänjoki DRNs only show a slight decrease of the performance,
:
: the model still correctly predicts more than 90% of the

dry
::::::
no-flow

:
observations and has a FAR around 5%. The Genal DRN is more impacted by the removal of some of the observed

data, the median POD
:::::
mean

:::::::::
Sensitivity drops to 65% and the median

::::
mean

:
FAR is 19%. The

:::::::::
Specificity

::
is

:::::
above

::::
0.99

:::
for

:::
the

:
3
::::::::::
catchments,

:::::
which

::::::
means

::::
that

:::
the

:::
RF

:::::
model

:::::::
predicts

:::::::
flowing

:::::
events

::::::
almost

::::::::
perfectly

::::
with

:::::::::::
configuration

::
1.

::::::::
Accuracy

::
is

::::
also315

::::
very

::::
close

::
to

::
1

::
(>

:::::
0.98),

:::
this

::
is

:::
due

::
to
:::
the

::::
fact

:::
that

:::::::
flowing

:::::
events

:::
are

:::::
much

::::
more

::::::::::
represented

::::
than

::::::
drying

:::::
events

::
in

:::
the

::::::::
observed

::::::
dataset,

::
so

:::::::::
prediction

:::::
errors

:::
for

:::
dry

::::::
events

:::
are

::::::::
negligible

::::::::
compared

::::
with

:::
the

:::::::::::
near-perfect

:::::::::
predictions

::
of

:::::::
flowing

::::::
events.

:::::
These results show that there is a high confidence of the prediction of

::
in the general dynamics of drying in the Albarine

and Lepsämänjoki DRNs, and that the uncertainty is higher
:::
but

::::::
higher

::::::::::
uncertainty for the Genal DRN

:::
(see

:::::::::
discussion

:::
in

::::::
Section

::::
4.2).320

The results presented in the next sections of this study were obtained with the configuration 0.
:::
next

:::::::
sections

::::::
present

::::::
firstly

::::
flow

:::::::::::
intermittence

::::::::
modelling

::::::
results

:::::::
obtained

::::
with

:::::::::::
configuration

::
0
::
in

:::::::
Sections

:::
3.3

:::
and

:::
3.4

::::
and

:::::::
secondly

:::
the

::::::::::
uncertainty

::::::
related

::
to

:::
the

:::::
input

::::
data

::::
(size

:::
of

:::
the

:::::::
training

::::::
sample

::::
with

::::::::::::
configuration

::
1,

::::
type

:::
of

::::
flow

::::
state

::::::::
observed

:::::
data,

:::
and

::::::::
geology

::::
data)

:::
in

::::::
Section

::::
3.5.

:
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Figure 7. Performance of the RF model to predict dry events when the RF model is trained with 100
::
75% (configuration 0)

:
of
:::::::
observed

::::
data

and with 75
::::
tested

::
on

:::
the

::::::::
remaining

::
25% (configuration 1)of the observed data. Upper panel POD: probability

:::
Bars

::::
show

:::
the

::::
mean

:::::
value

:::
and

::::
error

:::
bars

:::::
show

::
the

:::::
range

:
of detection, lower panel

::::
values

::
of

:::
for

:::
the

:::
RF

:::::
model

:::::::::
20-members

::::
with

::::::::::
configuration

::
1.
:
FAR: False alarm

ratio
:::::
Alarm

::::
Ratio.

3.3 Simulated spatial and seasonal patterns of flow intermittence325

Regarding the spatial pattern of flow intermittence, the model simulates more drying in the small tributaries for the three DRNs

(Fig. 8). For the Albarine and Genal DRNs, the flow intermittence of the main river in the downstream part of the catchment,

due to seepage for the Albarine and water abstraction for irrigation in Genal, is well reproduced by the model. Simulated

spatial patterns of drying have been validated by local experts who confirmed that they are consistent with their observations

(see supplementary material
:::
Fig.

:::
S13

::::
and

:::
S14).330

Figure 9 shows the mean interannual variations of the fraction of dry river network through the year. It shows that the drying

is limited to end of May until end of August in the Lepsämänjoki DRN, and than the mean annual maximum of drying usually

does not exceed 9% of the river network. In the Albarine DRN, the mean annual maximum of drying occurs in early September

with between 24 and 27% of dry river network. More than 10% of the river network is continuously dry between July and the

end of September. The model predicts some flow intermittence throughout the year (between 1 and 4% of dry river network335

during the winter season). In the Genal DRN, the river network can dry up to 78-80% in August, and more than 50% of the

river network is dry from June to mid-September. The fraction of dry river network in Genal during the winter season stays

relatively high (between 6 and 26%), but the lack of observed data over this period makes the results particularly uncertain.

Overall, the model successfully represents the general spatio-temporal patterns of drying in the 3 contrasted European DRN,

with intense and long periods of drying in the Genal catchment characterized by a dry and warm climate, regular and localized340

drying up due to the geological context in the Albarine catchment, and short and limited in space drying in the Lepsämänjoki

catchment characterized by a more humid climate but mild in summer.
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Figure 8. Predicted average annual number of dry days for each reach of the a) Albarine, b) Genal, c) Lepsämänjoki DRNs.
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Figure 9. Seasonal variability of the fraction river network that gets dry (inter-annual average of the percentage of total number of kilometers

of rivers). For each DRN, the lines represent the ensemble of the 20 runs of the RF model.

3.4 Analysis of the covariates

The ranking of the most important covariates in the RF models reflects the different contexts of flow intermittence in the DRNs.

In the DRNs with more complexe spatial patterns of drying, the RF gives more weight to the variables describing the reaches345

characteristics. For all three DRNs, the drainage area of the reaches and their slopes are the 2 most important variables for the

prediction of the flow state (Fig. 10).

For the Lepsämänjoki DRN, the next most important variables are the mean catchment air temperature during the previous

30 days (T30), the simulated discharge, and simulated groundwater contribution to the discharge (GW10 and GW). These

three variables give information on the hydro-meteorological situation in the catchment, and define the temporal variability of350
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drying. T30 allows seasonal variability to be captured, and makes a distinction between winter low flows, when precipitation

is stored as snow in the basin, and summer low flows, when drying is observed in small streams.

For the Genal DRN, the third and fourth most important covariates are the mean discharge during the 10 previous days and

the current discharge, which shows that the temporal dynamics of drying is mainly controlled by the simulated discharge in the

reaches. The fifth most important variable is the landuse which reflects the more concentrated agricultural areas, with a water355

demand for irrigation, in the downstream part of the basin.

In the Albarine DRN, the most important variables, after the reaches drainage area and slope, are the landuse
:::
land

:::
use

:
and soil

types around the reaches and the current discharge. The four most important variables do not reflect the main cause of drying

in the Albarine, which is the seepage of the river in moraine deposit areas. The classes of geology causing flow intermittence

in the Albarine are not represented in the IHME1500 dataset, which may explains why other spatial characteristics are used in360

the RF model to reproduce the spatial pattern of drying.
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Figure 10. Importance of the covariates in the RF models (mean decrease in impurity (Archer and Kimes, 2008)) for the 3 DRNs. Bars

represent the mean MDI and the error bars the minimum and maximum values of MDI for the 20 runs of the RF model.

3.5 Sensitivity to the input data

3.5.1 Sensitivity to the size of the training sample

Figure 11 shows the impact of the size of the training sample on simulated seasonal pattern of drying in the DRNs. The

RF model is either trained with 100% of the available observed data (configuration 0), or 75% of the observed data (con-365

figuration 1). For the Lepsämänjoki DRN there is no visible impact of reducing the training dataset on the predicted flow

intermittence. In the Albarine and Genal DRNs, the results show that the uncertainty increases particularly during the winter

season, when there are fewer observations.

These results show that the RF model is more sensitive to the representativity of drying in the observed data recorded than

in the amount of data itself. The Lepsämänjoki DRN has fewer observations and a poorer spatial and temporal coverage of the370

observed data than the Genal DRN, but the model is more robust in Lepsämänjoki than in Genal. The higher sensitivity of the

Genal DRN to the training dataset can be explained by the fact that the DRN is more affected by drying, a very large part of
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the river network dries every year, and during long periods (several weeks to several months). It thus needs a larger amount of

observed data to fully capture the seasonal dynamics of drying along the river network.

:::
The

::::::::::
importance

::
of

:::
the

:::::::::
covariates

:::::::
obtained

::::
with

:::::::::::
configuration

::
1
::
is

::::
very

:::::
close

::
to

:::
that

::::::::
obtained

::::
with

:::::::::::
configuration

::
0

:::::::
(Fig.10)375

:::::
which

:::::
shows

::::
that

:::
for

::::
this

:::::
study

:::
the

:::::::::
importance

:::
of

:::
the

::::::::
covariates

::
is
::::
not

::::
very

:::::::
sensitive

::
to
::::

the
:::
size

:::
of

:::
the

:::::::
training

::::::
sample

::::
(see

::::::
Fig.S15

::
in

:::::::::::::
supplementary

::::::::
material).
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Figure 11. Sensitivity of the simulated length of dry river network to the size of the raining sample. Configuration 0 (black): the RF model

is trained with 100% of the observed data. Configuration 1 (grey): the RF model is trained with 75% of the observed data.

3.5.2 Sensitivity to the type of flow state observed data

Figures 12 and 13 show the sensitivity of the model to the type of observed data used to train the RF. The first result is that the

prediction of flow intermittence is very sensitive to the expertise data. Indeed, when this dataset is removed from the training380

sample, the FAR increases (43% for Albarine, 40% for Genal, and 7% for Lepsämänjoki), the drying is more intense during

the summer in Lepsämänjoki (maximum annual of dry fraction of the river network between 6 and 8% without expertise data

versus 8 to 11% with expertise), and the drying is twice more intense and last much longer in the Albarine DRN.

Field campaign data also have a large impact on the prediction of flow intermittence, especially in the Albarine DRN where

the model is only able to predict 50% of the dry days without the field data. The drying is much reduced during the summer and385

there is no drying simulated from November to June. On the opposite, in the Lepsämänjoki DRN, the FAR is increased without

the field campaign data and the drying is very over-estimated. Expertise and field campaign data are the two most impactful

datasets in Albarine and Lepsämänjoki.

In the Genal DRN, the results show that the simulated seasonal pattern of drying is very different without the Google Earth

data, with a lot of drying predicted during the winter season, which can reach unrealistic values (up to 70% of dry river390

network in January) (Fig. 13). In a DRN characterised by high intermittence of flows, and with little field observations, flow

intermittence observation from remote sensing dataset can be very useful to better constrain the RF model.

In the Lepsämänjoki DRN, the removal of the stations
::::::
station data from the training dataset does not impact the prediction

of drying. However, in the Albarine and Genal DRNs some of the stations are located on intermittent reaches and their removal

decreases the POD of drying events
::::::::
sensitivity

::::::
criteria

:
to 61% for the Albarine, and 77% for Genal.395
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Crowdsourced data, which represents at most 1% of all observations collected in the DRNs, have a visible impact on the pre-

diction of dryness, especially during the summer. For the Albarine, the mean annual maximum of dry river network decreases

from 27 to 23% without the crowdsourced data in early September. In the Genal DRN, the uncertainty increases without the

crowdsourced data, for example, in late July - early August, the fraction of dry river network ranges between 78 and 80% when

the RF model is trained with all of the observed data, and ranges between 78 and 85% when the crowdsourced data is removed400

from the training dataset. This shows that, even is they only represent a very small fraction of the observed data, crowdsourced

data, have a significant impact on the prediction of flow intermittence through the spatial information they provide.
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Figure 12. Impact of removing a source of observed data from the training sample on the performance of the RF model(upper panel POD:

probability of detection, lower panel FAR: False alarm ratio).
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Figure 13. Impact of removing a source of observed data from the training sample on the prediction of flow intermittence.

3.5.3 Sensitivity to the geology data
::
in

:::
the

::::::::
Albarine

:::::
DRN

When the BD CHARM-50 geology map is used to define the geology classes in the covariates of the RF model, geology

becomes the most important variable in the RF (versus 11th most important variable with IHME1500) (Fig. 15). The RF model405

also gives more weight to the mean catchment ground water and soil saturation, which shows that the physical processes

causing flow intermittence in the Albarine DRN are better taken into account in the RF model when using more accurate

geological data.

The seasonal pattern of drying is rather similar but with a bit less drying in winter and spring and a bit more drying in

summer and autumn. When looking at the spatial patterns of drying we can see some differences, especially in the upstream410

part
:::
and

::::::::::
downstream

::::
parts

:
of the catchmentwhere there is moraine deposit that is not listed in IHME1500

:
.
:::
We

:::::::
presume

::::
that

:::
this

::
is

:::
due

:::
to

:::::::
moraine

:::::::
deposits,

::::::
which

:::
are

::::::::::
represented

:::::
more

::::::
widely

::
in

:::
the

:::::::::
catchment

::
by

:::
the

::::
BD

:::::::::::
CHARM-50

::::
map. With the

coarser geology map (IHME1500), the RF manages to predict rather accurately the main spatio-temporal patterns of drying,

but the use of more detailed geology map (BD CHARM-50) can help improving the prediction of drying at the reach scale.
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Figure 14. Sensitivity of the prediction of flow intermittence to geological data in the Albarine DRN.
:::
Note

::::
that

::
in

::
b)

:::::
values

:::
can

::::::
locally

:::::
largely

:::::
exceed

:::
the

::::
range

::
of
:
[
:::::
-10,10]

:::::::
difference

:::::::::
represented

::::
here.
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Figure 15. Importance of the covariates (mean decrease in impurity (Archer and Kimes, 2008)) when the RF model is trained with the IHME

(left) and the BD CHARM-50 (right) geology maps. Bars represent the mean MDI and the error bars the minimum and maximum values of

MDI for the 20 runs of the RF model.

4 Discussion415

4.1 Hybrid modelling to predict flow intermittence at the reach scale

The coupling between a spatially distributed model and a random forest model has a number of benefits for predicting

intermittency
:::::::::::
intermittence

:
in river systems. First, the JAMS-J2000 model represents the spatially distributed hydrological

physical processes in the catchments. This enables to simulate several hydrological variables at the HRU and the reach scale,

such as evapotranspiration, soil water content, groundwater level, discharges
::::::::
discharge, that can be used as spatially distributed420
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covariates in the RF model. Second, the JAMS-J2000 represents lateral flow routing between the HRUs and the reaches, and

thus represents the hydrological connectivity which cannot be represented in a RF model. However, the simulation of flow

intermittence with JAMS-J2000 alone is not yet possible. The JAMS-J2000 model has difficulties to simulate periods with no

flow. Even after long periods without precipitation input, the model tends to simulate residual low flows, and the reaches never

completely dry up. There are also a multitude of processes causing the drying of rivers (e.g. interaction between the riverbed425

and the water table, seepage into karst, pumping of water from aquifers and rivers) and it is difficult to represent them all and

accurately in a physical model (Fovet et al., 2021; Shanafield et al., 2021). Despite the JAMS-J2000 model ability of simulating

seepage through the alluvial river bed (Watson et al., 2021), or water abstraction for anthropogenic uses (Branger et al., 2016),

the data needed to parameterize these processes are seldom available and were not available in our case studies (e.g. daily

amounts of water withdrawals and their precise locations). The use of the RF model enables to simulate flow intermittence430

even if the processes causing the drying up are are
::
not

:
known or understood precisely beforehand since it does not require a

representation of physical processes, but links covariates to observed states of flow. In addition, RF models have the advantage

to provide variable importance metrics (Tyralis et al., 2019) which, in our case, allow to better understand the processes leading

to the drying in the DRNs. The coupling of

:::
The

::::::::
question

:::
can

:::
be

:::::
raised

::::::
about

:::
the

::::::::::
contribution

:::
of

:::
the

:::
RF

::::::
model

::::::::
compared

:::
to

::::::::
applying

:
a
::::::::
threshold

:::
on

:::
the

:::::::::
discharge435

::::::::
simulated

::
by

:::
the

:::::::::::
JAMS-J2000

::::::
model

:::::
below

:::::
which

::::::
would

::::::::
determine

::::
zero

:::::
flows.

::::::
Figure

:::
16

:::::
shows

:::
the

::::::::::
distributions

::
of
:::::::::
simulated

::::::::
discharges

:::
for

:
the two types of models

::::
flow

:::::::::
conditions

::::
(flow

:::
or

::::
dry)

::
in

:::::
reach

:::::::
2443600

:::
of

:::
the

:::::::
Albarine

::::::
(same

:::::::
example

:::
as

::
in

:::::
Figure

:::
6).

:::
For

::::::::
simulated

:::::::::
discharges

:::::::
ranging

::::
from

::
0
::
to

::
4

::::
m3/s,

:::::
there

::
is

::
an

::::::::::
intersection

::
of

:::
the

:::::::::::
distributions

::
for

::::::::
observed

:::
dry

::::
and

::::::
flowing

::::::
events.

::::::
Setting

::
a
::::::::
threshold

:::::
would

:::::
mean

:::::::::
truncating

:::
the

::::
tails

::
of

:::::
these

:::::::::::
distributions.

:::
For

::::::::
instance,

::
by

::::::
setting

::
a
::::::::
threshold

::
to

::::::
achieve

::
a

:::::::::
Sensitivity

::
of

::::
98%

:::
on

:::
this

::::::
reach,

:
a
::::
FAR

:::
of

::::
26%

::
is

::::::::
obtained,

::
as

:::
low

:::::::::
discharges

:::
are

:::
all

::::::::
predicted

::
as

:::
dry

::::::
events.

:::
In440

:::::::
contrast,

::::
with

:::
the

:::
RF

::::::
model,

:::
the

::::::::::
intersection

:::
of

:::
the

::::::::::
distributions

::
is
::::
well

:::::::::::
reproduced,

:::
and

::
a

::::
FAR

::
of

:::::
1.7%

::
is

::::::::
achieved

:::
for

:::
the

::::
same

:::::::::
Sensitivity

::::::
(98%).

::::
The

:::::::::
differences

::
in

:::::::::::
distributions

:::::::
between

::::::::
observed

:::
and

::::::::
simulated

::::
flow

:::::::::
conditions

::::
can

::
be

::::::::
explained

:::
by

::
the

::::
fact

::::
that

::::
there

:::
are

::::
few

::::::::
"flowing"

::::::::::
observations

::::::
during

::::::
winter

::::::
periods

::::
with

:::::
high

::::
flows

::
in
::::

this
:::::
reach.

::
It
::
is

::::
also

::::::::::
challenging

::
to

:::::::::
extrapolate

:
a
:::::::::
discharge

::::::::
threshold

::::
value

::::::
across

:::
all

::::::
reaches

::
of

:::
the

::::::::
network.

:::::::
Looking

::
at
:::
the

::::::
spatial

::::::
pattern

:::
of

::::
flow

:::::::::::
intermittence

::
in

:::
the

:::::
DRNs

::::::
(Fig.8)

::
it

::
is

::::
clear

::::
that

:::
the

::::::::
threshold

:::::
value

::::::
should

::
be

:::::::
spatially

:::::::::
distributed

:::
to

:::
take

:::::::
account

::
of

:::::
local

::::::
effects,

:::
but

::::
this445

:::::
raises

::
the

::::::::
question

::
of

::::
how

:::
this

::::::
spatial

::::::::::
distribution

:::::
should

:::
be

::::::::
achieved.

:::
The

:::
use

:::
of

:
a
:::::::::
spatialized

:::::::::::
hydrological

:::::
model

:::::::::
combined

::
to

:
a
:::

RF
::::::

model
:
is therefore very advantageous in order to be able to

simulate flow states at fine time steps and in a spatialized way over the entire river network.
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Figure 16.
:::::::::
Distribution

::
of

:::::::
simulated

::::::::
discharge

:::
with

::::::::::
JAMS-J2000

:::::
model

:::
for

:::::::
observed

:::
and

:::::::
simulated

:::
(RF

:::::
model

::::::::::
20-members

:::::::
ensemble

::::
with

::::::::::
configuration

::
1)

::::::
flowing

::::::::
conditions

::
for

:::::
reach

:::::::
2443600

::
in

::
the

:::::::
Albarine

:::::
DRN

:::::
(same

::::
reach

::
as

::
in

:::::
Fig.6).

::::
The

::::::::
horizontal

::::
black

:::
line

:::::
shows

:::
an

::::::
example

::
of

::
an

::::::
applied

:::::::
threshold

::
to

:::::
predict

::::
flow

:::::::
condition

::::
from

:::
the

:::::::
simulated

::::::::
discharges

:::
(on

:::
the

:::::
figure,

::
the

::::::::
threshold

::::
value

::
is

::
set

::
to

:::::::
correctly

:::::
predict

::::
98%

::
of

::
the

:::::::
observed

:::::
drying

::::::
events).

However, the use of a RF model has several limitations. A first limitation is that the RF model can predict the right state of

flow for the wrong reasons if the causes of drying are not represented in the covariates. For the 3 studied DRNs, drainage area450

is the most important covariate, which is consistent with other studies using RF models to predict flow intermittence (Jaeger

et al., 2023; González-Ferreras and Barquín, 2017; Snelder et al., 2013), but in the Albarine and Genal DRNs we know that

the drying is in fact due to the geology and water abstraction, respectively. The results of the RF model does
::
do

:
not necessarily

provide a better understanding of the origin of drying in river networks if the covariates are not sufficiently precise. Most

importantly, this means that a RF model trained on a specific DRN may not be robust enough to predict flow intermittence in455

another DRN.

One major application of this flow intermittence modelling approach is to simulate the flow states under different climate

change scenarios and predict tipping points in the flow regime of the river sections, such as transitions from a perennial to

an intermittent flow regime. However, the robustness of such a model for extrapolating flow intermittence in climate change

projections is questionable. The RF model is trained with observed data over a relatively short period, with no observed change460

in the flow regime of the reaches and it is known that RF models cannot predict events that has
:::
have

:
never been observed

before (Hengl et al., 2018; Tyralis et al., 2019), which represents a major limitation for predicting the future evolution of

drying spells in the DRNs. While it can be expected that the drying spells of currently intermittent reaches will be prolonged

under climate change scenarios, the ability of the RF model to predict a shift from a perennial to an intermittent flow regime

is not assured. However, the results of this study show that the average annual number of dry days simulated for the reaches465

known to have perennial flow is rarely zero, but can vary between 0 and 3 days per year. This means that in the present period,
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the model simulates completely perennial flow only in a few reaches. This bias in predicting the state of flow in the present

period is a drawback for characterising current drying dynamics in river systems and studying the impact on biodiversity, but

may facilitate the prediction of drying in the context of climate projections as most of the reaches are already considered as

intermittent in the present period.470

4.2 Observed flow state data for the modelling of flow intermittence

The results of the RF model are highly dependent of the training dataset. This study highlights the challenges of obtaining

observed flow state data to train or validate the models. To accurately represent flow intermittence along river networks, the

observed data ideally need to be uniformly distributed both spatially and temporally, which can be difficult to achieve.

Most studies focusing on the catchment scale collect observations from field campaigns (e.g., Llanos-Paez et al., 2023; Jaeger475

et al., 2023; Van Meerveld et al., 2019; Sefton et al., 2019), but such surveys generally do not allow rivers to be monitored over

many years and are usually limited to portions of the river network as they can be very time-consuming.

This study shows the interest of combining different types of data with heterogeneous spatial and temporal patterns in order

to maximise the information on flow condition in the river networks. This is consistent with the results of Gallart et al. (2016)

who showed that combining data from citizen science and aerial photographs afforded more robust information.480

The results obtained in the 3 basins demonstrate the need to adapt the data collection to the context of each DRN. Ideally,

a large amount of homogeneously distributed data along the river network and throughout the year will introduce the least

possible bias into the model, like in the Albarine DRN for instance. However, the case of the Lepsämänjoki DRN shows that

even with a small amount of data concentrated on the summer season, the predicted patterns of drying are consistent with

the observations made by local experts. In contrast, with a similar amount of data, the variability of the prediction of flow485

intermittence in the Genal DRN is higher due to more complex spatio-temporal patterns of drying. To reduce the uncertainty in

the Genal DRN, more years of observed data would be necessary, with data more evenly spread over the year to better capture

the length of dry spells.

The analysis of the Albarine and Lepsämänjoki DRNs shows that data from field campaigns provide essential information

on the spatial and temporal dynamics of drying, making it the most useful type of data for predicting intermittency
::::
flow490

:::::::::::
intermittence in river networks. However, in the Genal DRN, where phototraps were not installed during field campaigns,

remote sensing seems to be a good alternative for collecting data. Although remote sensing data can be used to detect the state

of flow adequately, Gallart et al. (2016) have nevertheless pointed out several limitations: images are available at too low a

frequency to study temporal patterns and dense vegetation near the rivers may prevent the detection of the state of flow.

As shown in the results of this study, citizen science can also be a useful way of obtaining intermittence data and increasing495

the spatial coverage of observations. Several studies have shown the advantages of working with citizens to monitor temporary

streams, especially to obtain observations in streams that would otherwise not be monitored (Turner and Richter, 2011; Buytaert

et al., 2014; Gallart et al., 2016; Kampf et al., 2018). Gallart et al. (2016) and Strobl et al. (2019) studied the accuracy of data

provided by citizen scientists and showed these data give an overall good indication of the hydrological state of the streams.
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Expertise data indicating reaches with perennial flow proved to be crucial in reducing the over-representation of data from500

intermittent reaches in the RF model training data across all three DRNs. However, this raises questions about the value of

such data, which is based on human perception and the error it may contain.
:::::
Expert

:::::::::
elicitation

::
in

:::::::::
hydrology

:::
has

::::::
already

::::::
shown

:::::::
benefits,

::::::::::
particularly

:::::
when

:::::::
tangible

::::
data

:::
are

:::::::
missing

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ye et al., 2008; Warmink et al., 2011; Sebok et al., 2016, 2022).

::::::
These

::::::
studies

::
do

:::::
show

:::::::::
differences

::
in

:::
the

::::::::
individual

::::::::::
perceptions

::
of

:::
the

::::::
experts

:::::::::
consulted,

:::
but

:::
by

::::::::
consulting

::
a

:::::
larger

::::::
number

:::
of

::::::
experts

::
(in

::::
this

:::::
study,

::::
only

::
1

::
or

:
2
:::::::
experts

::::
were

::::::::
consulted

:::
per

:::::::
studied

:::::
DRN)

:::
and

:::
by

:::::::
applying

::::::::
protocols

:::::::
similar

::
to

:::
the

::::
ones

::::::::
proposed

::
in505

::::
these

:::::::
studies,

:::
the

:::::::::
uncertainty

::::::
linked

::
to

::::::::
individual

:::::::::
perception

:::::
could

::
be

::::::::
reduced,

::
or

::
at

::::
least

:::::::::
quantified.

:

The general indications for data collection emerging from this study are to 1) favour a good spatial distribution of the obser-

vations by collecting data reaches with different characteristics (e.g. in terms of drainage area, geology and water abstractions),

2) collect data on intermittent sections as well as on reaches with a permanent flow regime, 3) have time series of observations

covering at least a whole year on a few points of the river network.510

4.3 Delineation of the river networks

Another limitation of the study arises from the delineation of river networks. The delineation needs to be as accurate as possible

to ensure that observations of flow state are assigned to the correct reaches. However, several studies such as Prancevic and Kirchner (2019); Van Meerveld et al. (2019); Godsey and Kirchner (2014)

::::
those

:::
by

:::::::::::::::::::::::::
Prancevic and Kirchner (2019)

:
,
::::::::::::::::::::::
Van Meerveld et al. (2019),

::::
and

::::::::::::::::::::::::
Godsey and Kirchner (2014) have shown that river

networks are dynamic systems: they extend or retract according to landscapes and climatic conditions and can also be discon-515

nected. It is therefore difficult to delineate a fixed reference river network with a density enabling to predict accurately the

spatial variability of drying in the DRNs.

In this study, the density of the delineated river networks was chosen so that all observations could be assigned to a reach,

but the results show that the density of the river network have
:::
has an impact on the simulated patterns of drying in the DRNs.

In the 3 studied DRNs, contradictory states of flow were observed in reaches at the same day indicating that the density of the520

river networks is not high enough to capture very local processes of drying. In contrast, the density of the river network should

not be too high, as it may lead to the representation of reaches with an unrealistically small drained area, for which there is no

observed data available to train the RF model. This situation occurred in the Albarine DRN where the resolution of the river

network had to be increased in order to capture the locations of observed data (see Supplementary material
:::
Fig.

:::
S2), resulting

in some unrealistic prediction of small perennial reaches in the upstream part of the catchment (Fig. 8).525

5 Conclusions and perspectives

The modelling approach, coupling a spatially distributed physical hydrological model (JAMS-J2000) with a random forest

classification model, developed in this study allows to predict the daily state of flow (dry or flowing) at the reach scale along

river networks. The results show that the models allow to successfully predict the main spatio-temporal patterns of drying in 3

contrasted European river networks.530
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This study also discusses the difficulty of collecting flow intermittency
::::::::::
intermittence

:
data to train and validate random

forest models. The results show that the combination of various sources of observed flow state data is essential to form a

training dataset that is representative of the actual spatio-temporal drying patterns in the drying river networks and to reduce

the uncertainty of the prediction of flow intermittence.

In order to improve the modelling of flow intermittence, further improvements could be made to the models and to the535

collection of flow state data to train the RF model. Regarding the modelling approach, a first perspective is to add a third class

of state of flow in the RF model to predict the pools condition (i.e. stagnant water in disconnected pools) which is as important as

the dry or flowing conditions for studying the ecological impact of flow intermittence Datry et al. (2017); Bourke et al. (2023)

::::::::::::::::::::::::::::::::
(Datry et al., 2017; Bourke et al., 2023). Another perspective is to improve the parameterization of the groundwater reservoir

in the JAMS-J2000 models by using observed data of groundwater level to optimize the groundwater parameters and by using a540

more precise geology data to define the geological classes in JAMS-J2000 for the DRNs where flow intermittence is influenced

by geology. Regarding the collection of flow state data, a perspective is to use satellite products to collect flow intermittence

data. Cavallo et al. (2022) showed that Sentinel-2 images can be used to detect flow intermittence along river networks. The

use of satellite products could allow the modelling method to be transposed more easily to other river networks without the

need for extensive field campaigns.545

The hydrological modelling approach presented in this study will be used to project the evolution of flow intermittence in

the river networks under climate change scenarios and provide flow intermittence indices to characterize the spatio-temporal

dynamics of drying in the DRNs in the present and future periods. These indices will then be used to study the impact of drying

on the freshwater ecosystems.
:::
One

::
of

:::
the

:::::::::
challenges

::::
will

::::::::
therefore

::
be

::
to

:::::::
analyse

:::
the

::::::
hybrid

:::::::
model’s

:::::
ability

::
to

::::::::::
extrapolate

:::
the

::::
flow

::::
state

::
of

:::::
river

:::::::
sections

::
in

::
a

:::::
future

:::::::
climate.

:::
In

::::::::
particular,

::
it
::::
will

:::
be

::::::::
necessary

::
to

:::::::
analyse

:::
the

:::::::
model’s

::::::
ability

::
to

::::::::
simulate550

::::::
changes

::
in
:::::
flow

::::::
regime

:::
(for

::::::::
example,

:::
the

::::::::
transition

::::
from

::::::::
perennial

::
to

::::::::::
intermittent

:::::
flow)

::::::
outside

::
its

:::::::
training

::::::
period.

:

Code and data availability. The calibrated JAMS-J2000 hydrological models for the 3 study catchments, the R scripts used to predict flow

intermittence with a Random Forest algorithm, as well as the observed flow state data used in this study an be obtained from the corresponding

author upon request.
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