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Abstract. Atmospheric methane (CH4) concentrations are rising which is expected to lead to a corresponding increase in

its global seasonal cycle amplitude (SCA), the difference between its seasonal maximum and minimum values. The reaction

between CH4 and its main sink, OH, is dependent on the amount of CH4 and OH in the atmosphere. The concentration of OH

varies seasonally and due to the increasing burden of CH4 in the atmosphere, it is expected that the SCA of CH4 will increase

due increased removal of CH4 through reaction with OH in the atmosphere. Spatially-varying changes in the SCA could5

indicate long-term persistent variations in the seasonal sources and sinks but such SCA changes have not been investigated.

Here we use surface ask measurements and a 3-D chemical transport model (TOMCAT) to diagnose changes in the SCA

of atmospheric CH4 between 1995-2020 and attribute the changes regionally to contributions from different sectors. We nd

that the observed SCA decreased by 4 ppb (7.6%) in the northern high latitudes (NHL, 60◦N-90◦N), whilst globally the SCA

increased by 2.5 ppb (6.5%) during this time period. TOMCAT reproduces the change in the SCA at observation sites across10

the globe. Therefore, we use it to attribute regions which are contributing to the changes in the NHL SCA, which shows an

unexpected change in the SCA that differs to the rest of the world. We nd that well-mixed background CH4, likely from

emissions originating in, and transported from, more southerly latitudes has the largest impact on the decreasing SCA in the

NHL (56.5% of total contribution to NHL). In addition to the background CH4, recent emissions from Canada, the Middle

East and Europe contribute 16.9%, 12.1% and 8.4%, respectively, to the total change in the SCA in the NHL. The remaining15

contributions are due to changes in emissions and transport from other regions. The three largest regional contributions are

driven by increases in summer emissions from the Boreal Plains in Canada, decreases in winter emissions across Europe, and

a combination of increases in summer emissions and decreases in winter emissions over the Arabian Peninsula and Caspian

Sea in the Middle East. These results highlight that changes in the observed seasonal cycle can be an indicator of changing

emission regimes in local and non-local regions, particularly in the NHL where the change is counter-intuitive.20
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Copyright statement.

1 Introduction

Methane (CH4) is the second most important anthropogenic greenhouse gas in the atmosphere after carbon dioxide (CO2)

and anthropogenic emissions have contributed an extra 23% to the radiative forcing in the troposphere since 1750 (Saunois

et al., 2020). Global observations by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research25

Laboratories (ESRL) show that concentrations of atmospheric CH4 have risen since the 1980s, with a short hiatus in the

growth between 1999 and 2006. Our understanding of the drivers of the global trends of CH4 remains incomplete (Nisbet

et al., 2016, 2019; Dlugokencky et al., 2021). Long-term trends of CH4 are monitored through surface ask observations by

NOAA ESRL and have been studied extensively. Long-term variations in the seasonal cycle of CH4 have not been analysed

in detail since a study by Dlugokencky et al. (1997), although several studies have briey discussed its seasonal cycle (e.g.30

Pickett-Heaps et al. (2011); Bergamaschi et al. (2018); Patra et al. (2011); Parker et al. (2020)).

CH4 has a mixture of natural and anthropogenic sources and chemical sinks which lead to a strong seasonal cycle in the

atmosphere. Figure 1 shows the mean seasonal cycle across NOAA observation sites (Table 1) in the northern and southern

hemispheres, where concentrations are at a minimum in summer and peak in winter or early spring, depending on location.

The atmospheric CH4 seasonal cycle is driven by the seasonal variations of sources such as wetlands, rice paddies and biomass35

burning, the chemical loss of CH4 in the atmosphere, and the transport of CH4. The main sources which drive the CH4 cycle

are dependent on climatological and meteorological conditions. Emissions from wetlands and rice paddies vary seasonally

with changes in temperature, precipitation and soil moisture. Biomass burning emissions in the tropics and boreal regions

also vary seasonally (Dlugokencky et al., 1997). It is thought that anthropogenic emissions play a smaller role in the seasonal

cycle of CH4 (e.g. Meirink et al. (2008); Wilson et al. (2021)) but few studies have investigated the long-term inuence of40

anthropogenic emissions on the observed seasonal cycle. For example, anthropogenic emissions might increase in winter due

to increased gas extraction (Nisbet et al., 2019). The sinks of CH4 also play a large role in the seasonal cycle. The main sink

of CH4 is the hydroxyl radical (OH) which is photochemically produced, which results in the local abundance of OH varying

seasonally due to the availability of UV radiation. Finally, transport of CH4 in the atmosphere through advection, convection

and global circulation transporting air to the poles also inuences the seasonal cycle.45

Many studies have assessed how well wetland models and chemical transport models reproduce the observed CH4 seasonal

cycle, the timing of the seasonal maximum and seasonal minimum, or what might be driving the seasonal cycle on a regional

scale (Patra et al., 2011; Bergamaschi et al., 2018; Parker et al., 2020). These studies did not explore how the seasonal cycle

amplitude (SCA) has changed over time on a global scale. The SCA is dened as the difference between the annual maximum

and the annual minimum concentration at a particular location. Changes in the seasonality of emissions will be reected in50

the seasonal cycle amplitude of CH4 and will ultimately impact the annual growth rate. However, changes in loss rates and

transport add extra complexity to assessing changes in the seasonal cycle. Studying the SCA could give us a better insight

into changes in the CH4 budget. In this study we regionally attribute the change in SCA of CH4 between 1995-2020 using the
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Figure 1. The monthly mean CH4 mixing ratio (ppb) across northern hemisphere (NH) and southern hemisphere (SH) at 22 NOAA surface

sites between 1995-2022 (see Table 1). SCDmax
and SCDmin

represent the seasonal cycle maximum and minimum, respectively.

TOMCAT chemical transport model (Chippereld, 2006) and surface observations from NOAA ESRL (Dlugokencky et al.,

2021).55

Note that throughout this text we are referring to concentrations when we use "CH4" alone. In Sect. 2 we describe the

observations used, the modelling methodology and the SCA analysis. In Sect. 3 and Sect. 4 we present our results and discuss

our ndings.

2 Methods

2.1 Atmospheric Methane Measurements60

We assimilate and analyse the long-term surface ask measurements provided by NOAA ESRL. The air samples are collected

approximately weekly or biweekly and CH4 is measured using gas chromatography with ame ionization detection or by cavity

ring-down spectroscopy methods (Dlugokencky et al., 2021). The NOAA observation network provides measurements across

the globe, but there is a disproportionate number of sites in the northern hemisphere compared with the southern hemisphere,

see Fig. 2. There is also a lack of regular observations in some tropical regions, where there are large and uncertain CH465

emissions.
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We assimilate NOAA surface observations in INVICAT, the inverse model of TOMCAT, in order to get optimised estimates

of CH4 uxes to use in the TOMCAT forward model. We used observations from 80 NOAA surface observation sites and

assimilated them at the correct model time step. Full details of the assimilation can be found in Sect. 2.3. In the SCA analysis

we used a subset of these observations. We calculated the monthly mean CH4 at 22 NOAA surface sites which were selected70

if they contained observations for the entire period 1995-2020 and were not strongly inuenced by local sources (McNorton

et al., 2018). A list of the sites and their site codes are in Table 1 and their locations are shown by the blue dots in Fig. 2. We also

evaluate the model performance using observations from the Center for Global Environmental Research Earth System Division,

National Institute for Environmental Studies, Japan (NIES, Tohjima et al. (2002); Sasakawa et al. (2010)) and the Advanced

Global Atmospheric Gases Experiment (AGAGE, Prinn et al. (2018)) which have not been assimilated, see Supplement Fig.75

S1. The sites from NIES are in Siberia and East Asia and the site from AGAGE is situated in Ireland, their locations are shown

as the red dots in Fig. 2. The independent observations do not cover the whole study period but we have maximised the time

period available from each data set by selecting a period with the most regular observations. The NIES observations in Siberia

are from 2009-2015, the remaining NIES observations are from 1997-2015 and the AGAGE observations are from 1996-2020.

2.2 Tagged Transport Simulations80

TOMCAT is a three-dimensional (3D) atmospheric chemical transport model which has been used in a number of studies to

model CH4 and other chemical species in the atmosphere (e.g. Chippereld (2006); Parker et al. (2018); Wilson et al. (2021)).

We use TOMCAT to investigate changes in the SCA of CH4 between 1995 and 2020, including the impact of changes in

emissions and transport. The globe was divided into 18 different regions, shown in Fig. 2, in order to attribute the changes in

the SCA from particular regions. The regions were selected based on the magnitude and type of emission in the distribution used85

in TOMCAT. The northern oceans, Greenland, Iceland and Svalbard have been grouped together (North Oceans and Arctic,

NOA), as were the southern oceans and Antarctica (SOA). Northern land regions have been split into Canada (CAN), Europe

(EUR) and Russia (RUS) due to their emissions types and geographical location. The emissions from these regions include

anthropogenic emissions such as those from oil and gas industries, livestock and other agriculture, but also include natural

emissions such as those from wetlands and biomass burning. In the northern mid-latitudes regions such as North America90

(NAM), Middle East (ME) and China & Japan (CHJA) are dominated by large anthropogenic emissions. Africa has been split

into three regions because of the inuence of central Africa in the CH4 budget, with recent studies highlighting the large role

tropical wetlands play in the recent global growth (Lunt et al., 2021; Feng et al., 2022). Similarly, Brazil has been split into

three regions due to the local emission sectors and different responses to seasonal changes in meteorology (Wilson et al., 2021;

Basso et al., 2021). The North Brazil (NBRA) emissions are mostly driven by wetlands, whereas East Brazil (EBRA) is more95

susceptible to biomass burning in the arc of deforestation, a region of regular and intense anthropogenic burning. The South

Brazil (SBRA) emissions are driven by a mixture of both wetlands and biomass burning. The rest of South America has been

grouped as Non-Amazon South America. Emissions from the South East Asia region (SEA) is from a mixture of rice paddies,

biomass burning and other anthropogenic emissions, whilst Australia (AUS) is mostly driven by anthropogenic emissions, such

as those from coal mines. The names given to each region are given in Table 2.100
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Figure 2. A map showing the 18 different regions selected for the tagged tracers, 22 NOAA surface observation site locations (blue) and the

independent observations site locations (red). The observation sites shown are the ones used to calculate SCA from 1995-2020.

Emissions from each region were simulated separately in the model and could be summed to represent global CH4. This is

possible due to the linearity of the TOMCAT model transport (Wilson et al., 2016) and ofine (non-interactive) loss rates. In

reality, the loss of CH4 is not linear because the abundance of CH4 impacts its rate of loss due to its impact on OH abundance,

but this is a small effect relative to the large CH4 abundance.

TOMCAT was run at a 5.6◦ × 5.6◦ horizontal resolution with 60 vertical levels up to 0.1 hPa, between 1983 and 2020 for105

each regional tagged tracer, a background tracer and a total CH4 tracer. The background tracer contains CH4 from the regional

tracers once the CH4 from each region has become well-mixed. Each regional tagged tracer was set to be reallocated into

the background tracer using an exponential 9-month decay rate. Typical timescales for horizontal transport in the troposphere

from the mid latitudes to the poles is approximately 1-2 months and interhemispheric transport is approximately 1 year (Jacob,

1999). The 9-month decay rate was selected in order to maximise the opportunity for CH4 to undergo long-range transport110

from emission locations to surface sites, whilst minimising the effect of well-mixed atmospheric CH4 on the results. The

background tracer allows us to reduce the spin-up time required in the model to reach steady state. Without the background

allocation concentrations would continue to increase because it takes approximately 20 years for the CH4 to reach steady state

in the model. The background tracer also allows us to regionally attribute changes in the SCA whilst accounting for well-mixed

CH4.115
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The study period begins in 1995 to allow the tracers to become well-mixed in the preceding 12 years. This model simulation

is called TOM_regional and uses surface uxes derived from a TOMCAT-based atmospheric inversion described in Sect.

2.3. The meteorology was driven by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalyses

(Hersbach et al., 2020) and the OH elds for the troposphere and stratosphere were based on those within the TransCom CH4

study (Patra et al., 2011). The OH elds were originally taken from Spivakovsky et al. (2000) and scaled downwards by 8%120

in accordance with Huijnen et al. (2010) in order to match the observed methyl chloroform concentrations in the atmosphere

(Patra et al., 2011). The stratospheric loss rates for Cl and O(1D) varied annually and were taken from a previous full chemistry

TOMCAT simulation (Monks et al., 2017). The soil sink was taken from the MeMo model which varied each year between

1990 to 2009, the 1990 values were annually repeated from 1983-1990 and similarly, the 2009 values were repeated annually

from 2009-2020 (Murguia-Flores et al., 2018).125

We carried out two sensitivity experiments to investigate the impact of the choice of the exponential lifetime used to allocate

well-mixed CH4 into the background tracer, and if it inuences the background tracer’s contribution to the change in the SCA.

Decay rates of 1 and 12 months were selected to show the impact of a short and long decay timescales on the background

and regional contributions of the change in the SCA. The simulations are labelled TOM_one for the 1-month decay rate and

TOM_twelve for the 12-month rate. The results of the sensitivity experiments can be found in Sect. 3.5.130

The TOM_regional simulation quanties the impact regional emissions have on the SCA of CH4 elsewhere under annually

varying transport processes. In order to investigate the role that those transport processes alone play in the change in SCA of

CH4, we also carried out a separate regional tagged tracer simulation using annually-repeating emissions for the same time

period. Using annually-repeating values removes the inuence of changing emissions, allowing us to investigate changes to the

transport undergone by emissions from each region over time. The surface emissions for each month of the year were averaged135

between 1983-2020. These emissions were repeated annually using the same model set-up as TOM_regional and the same

analysis of SCA was repeated for 1995-2020. This constant emissions simulation is labelled TOM_transport. A summary of

the TOMCAT simulations can be found in Table 3.

2.3 Fluxes from Atmospheric Inversions

The surface uxes for the tagged tracer simulations were derived using the TOMCAT-based inverse model, INVICAT (Wilson140

et al., 2014). INVICAT has been used in a number of studies to constrain emissions of various species, including CH4 (Gloor

et al., 2018; Wilson et al., 2021). It uses a 4D-Var variational method based on that used in Numerical Weather Prediction, with

full details on the methods used in INVICAT given in Wilson et al. (2014). The inverse method aims to minimise the value of a

cost function, in a least-squares sense. The cost function combines an error-weighted sum of the differences between the model

and observations and the uncertainty-weighted sum of changes to the a priori ux estimate (Wilson et al., 2021). The input145

for INVICAT includes an a priori mean ux value for each grid cell and an error covariance matrix containing the covariances

between the ux uncertainties. The output is an a posteriori mean grid cell ux and error covariance matrix. The a priori and a

posteriori uxes will hence be referred to as prior uxes and posterior uxes, respectively.

6



The inverse model simulations were run at a 5.6◦× 5.6◦ horizontal resolution with 60 vertical levels up to 0.1 hPa and a time

step of 30 min. The meteorology was taken from ECMWF’s ERA5 reanalyses (Hersbach et al., 2020). An inversion was carried150

out separately for each year and completed 40 minimisation iterations. The 40 iterations were sufcient for the cost function

and its gradient norm to be judged as converged, based on both being smaller than 1% of their initial value. The inversion for

each year was run for 14 months, until February the following year, in order to better constrain the uxes in the nal months

of each year. The nal 2 months of each are discarded from the results. Each inversion overlapped with the following one by

2 months to give the transport of uxes time to reach measurement sites. The overlapping months were initialised using 3-D155

elds provided from the correct date in the previous year so the total CH4 burden was conserved across each year.

The 4D-Var-simulated CH4 mixing ratios were linearly interpolated to the correct longitude, latitude and altitude of each

surface observation used in the inversion at the nearest model time step. The surface observations were given uncorrelated

errors of 3 ppb plus a representation error. The representation error was estimated as the mean difference across eight grid cells

around the cell which contained the observation. The prior emissions were taken from various inventories. The anthropogenic160

emissions were taken from EDGARv5 (Crippa et al., 2021), excluding rice paddies and res. The biomass burning emissions

were taken from GFEDv4.1s (Randerson et al., 2017). The WetCHARTS model (Bloom et al., 2017) in a median set-up was

used for the wetland uxes. The median set-up uses the median scaling factor and temperature response from the WetCHARTS

suite and the Global Lakes and Wetlands Database distribution of wetlands. The wetland uxes were then masked to remove

emissions which overlap with rice emissions and then scaled back up to 180 Tg to match the top-down mean value from the165

Global Methane Budget (Saunois et al., 2020). The rice and termite emissions were taken from the Transcom intercomparison

project (Patra et al., 2011). The termite emissions were scaled to match the total quoted in Saunois et al. (2020). The geological

emissions were from Etiope et al. (2019) and the ocean emissions are taken from Weber et al. (2019). The prior emissions are

given cell uncertainties of 250% of the prior ux value but also include 500 km spatial correlations with a Gaussian distribution

for all uxes. Fossil fuel uxes have temporal correlations based on an exponential distribution with a time scale of 9 months.170

The tropospheric and stratospheric loss rates are the same as those used in the TOMCAT tagged tracer simulations (Sect. 2.2).

2.4 Data Processing and Analysis

The monthly mean model output from TOMCAT was interpolated horizontally and vertically to the 22 surface observation

sites (Table 1) from NOAA’s ESRL (Dlugokencky et al., 2021) to check model performance and in order to investigate the

regional contribution to the change in SCA at these sites. Following methods used by Lin et al. (2020) for CO2, the seasonal175

cycle amplitude (SCA) of CH4 and the regional contribution to the SCA was analysed.

To calculate the SCA, we isolate the mean annual cycle observed in CH4 by taking the interpolated model output at each

surface observation site and then smooth and detrend the time series using the CCGCRV curve-tting routine, developed

by Thoning et al. (1989). CCGCRV approximates the seasonal cycle and long-term trend variation by tting a polynomial

equation combined with a harmonic function (Pickers and Manning, 2015). The short-term and long-term cut off values can180

be selected and we chose 80-day and 667-day cut offs, respectively Dlugokencky et al. (1994). These parameters have been

used in previous studies (Dlugokencky et al., 1994; Parker et al., 2018). The SCA for the observations and the modelled total
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tracer was calculated by taking the difference between the annual maximum (SCDmax) and annual minimum (SCDmin) of the

detrended curve:

SCA= SCDmax −SCDmin (1)185

where Dmax and Dmin are the days of the annual CH4 cycle maximum and minimum. For each tagged regional tracer, i, a

pseudo SCA (SCA′) was calculated where the pseudo maximum (SC′

i,Dmax
) or minimum (SC′

i,Dmin
) is the point of its annual

cycle corresponding to Dmax and Dmin. The pseudo seasonal cycle amplitude was calculated as:

SCA
′

i = SC
′

i,Dmax
−SC

′

i,Dmin
(2)

The pseudo SCA was dened to account for the difference in timing of the local Dmax and Dmin of the individual tracers and190

observed CH4 at the observation sites. The total change in SCA over the study period,∆SCA (ppb), was derived by calculating

the linear trend (kSCA) in the SCA and multiplying it by the number of years in the study (nyear, 25 years):

∆SCA= kSCA ×nyear (3)

Once the SCA and ∆SCA were calculated the surface sites were then grouped into ve latitude bands for further analysis.

These groups are Northern High Latitudes (NHL, 60◦N-90◦N), Northern Mid Latitudes (NML, 30◦N-60◦N), Northern Trop-195

ics (NTr, 0◦-30◦N), Southern Tropics (STr, 0◦-30◦S) and Southern High Latitudes (SHL 60◦S-90◦S). There are no surface

observations from the Southern Mid Latitudes (SML, 30◦S-60◦S) so we do not analyse the SCA in this latitude band.

The main sink of CH4 is through reaction with OH and the rate of removal is dependent on temperature and the amount

of CH4 and OH in the atmosphere (Dlugokencky et al., 1997). The atmospheric burden of CH4 has been increasing and it

is expected that the SCA of CH4 would increase due to more CH4 being removed by OH in the atmosphere, assuming that200

OH concentrations remain relatively constant during this time. To account for the impact of OH on ∆SCA we calculated the

amount of CH4 lost by OH across the whole atmosphere in each month of the study period:

LCH4
=mCH4

(1− e
−k[OH]∆t) (4)

k = 2.45× 10−12
e
(−1775/T ) (5)

Where LCH4
is the amount of CH4 lost (kg) in each model grid box through the reaction with OH in one month and mCH4

205

is the mass of CH4 in kg in each grid box. The variable k is the reaction rate constant (in cm3molecules−1s−1, Equation 5

where T is temperature in Kelvin), [OH] is the amount of OH (molecules cm−3) and ∆t is number of seconds in one month.
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LCH4
was converted to ppb and a mean monthly loss was calculated for the northern and southern hemisphere, across all the

vertical model levels over the study period. The loss was then smoothed and detrended using the CCGCRV curve tting routine

and ∆SCA was calculated using the same method described above. It is not realistic to account for the contribution to ∆SCA210

from loss by OH at individual surface sites because this would not capture the seasonal cycle of OH in the mid-troposphere,

where the majority of CH4 loss by OH occurs. This makes it difcult to relate the seasonal changes in CH4 due to loss by OH

at particular sites, hence why we have calculated LCH4
as a mean across the northern and southern hemispheres.

3 Results

3.1 Observed∆SCA215

The observed ∆SCA was calculated at the 22 observations sites. We nd that the global mean SCA at available sites is

increasing but there are different regional trends, for example in the NHL the observed ∆SCA decreased at all sites between

1995-2020 (Fig. 3). The observed global mean value of∆SCA was 2.5 ppb, corresponding to an increase of the SCA by 6.5%.

The reaction between CH4 and OH is dependent on the amount of CH4 available in the atmosphere. The combination of the

increasing CH4 burden in the atmosphere and the photochemically-driven seasonal variation of OH results in more CH4 being220

removed from the atmosphere during the time of maximum OH. Therefore, an increase in the global mean SCA is expected due

to the increasing atmospheric burden of CH4. However, when we look at the ∆SCA latitudinally, there are large differences

in the NHL compared to the rest of the world. The mean observed ∆SCA in the NHL was -4.0 ppb, which represents a 7.6%

decrease between 1995 and 2020, and in the Non-NHL region the mean observed value of ∆SCA was 4 ppb, which is an

increase of 11.5% for the study period. The reasons for this widespread contrasting behaviour in the NHL compared to the rest225

of the world is investigated in more detail in the forthcoming sections.

The distribution of ∆SCA at sites in Non-NHL regions is quite variable. For example at NWR, AZR and GMI ∆SCA is

large and positive but other sites such as MHD, IZR and SMO have negative ∆SCA values. The sites with the largest positive

∆SCA (e.g. NWR, BMW and AZR, GMI and WLG) are most likely inuenced by outow from the USA and Asia. The sites

with large positive∆SCA and negative∆SCA in the Non-NHL regions do not have a strong regional or local pattern in∆SCA,230

unlike in the NHL. All four sites in the NHL display contrasting behaviour and have a negative∆SCA compared to the rest of

the world therefore; the NHL will be the main focus of our analysis.

BRW, ALT and ZEP have a∆SCA which ranges from -4 ppb to -5 ppb. The SCA at these sites are variable but have a strong

decreasing trend. ICE has a smaller ∆SCA (-0.05) ppb compared the other three sites in the NHL. There is a large decrease

in the SCA during the rst 4 years of the study and then the SCA value steadily uctuates between ∼30 and ∼40 ppb. This235

results in no trend in the SCA for the rest of the study period leading resulting in a smaller negative ∆SCA compared to the

other sites (See Supplement Fig. S2).

The Non-NHL regions had a mean observed ∆SCA of 4 ppb. The three SHL sites sample well-mixed air and are less

inuenced by local sources. The concentrations at regional sites near to emissions are all affected in different ways, whereas

at the sites in Antarctica the effect is smoothed out by the time air reaches the South Pole region. The 3 sites in Antarctica are240
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Figure 3.Map showing∆SCA (ppb) at the 22 selected observation sites.

exposed to well-mixed air and have the same mean increase of 4 ppb, highlighting that the observed ∆SCA in NHL is very

different to the global observed ∆SCA. This implies that the Arctic is responding differently to the global increase in CH4

concentrations than the rest of the world and therefore we focus on investigating the decreasing SCA in the NHL.

3.2 Model Evaluation

The observed CH4 SCA is simulated well by TOMCATwith the surface uxes from INVICAT in the TOM_regional simulation245

(Fig. 4a). There is a strong linear relationship between the modelled and observed SCA with a mean bias of 0.93 ± 0.09 ppb.

However, the model struggles to capture the SCA at Mount Waliguan (WLG) in China. This is likely due to the fact that it has

the highest altitude out of all the sites and the reasonably coarse model grid cell will not capture the local topography. The model

simulation was also compared with sites that were not assimilated in INVICAT, although there are limited observations with

only 6 sites situated in the Northern Tropics and Northern Mid Latitudes. Due to these sites only having regular observations250

over a short time period, the comparison only covers the periods 1997-2015 and 2009-2015 (see Supplement). The model

captures the SCA well at these independent sites, apart from Cape Ochi-ishi (COI) where the model has a weaker seasonal

cycle, particularly during the seasonal cycle minimum. COI is situated near swamps, grazing lands and two cities, so it is

possible that the model does not fully capture the complexity of the local sources well. There are large error bars (1σ) for

the Siberian sites in both the modelled and observed SCA. This is due to the SCA being quite variable over the short time255

period available. However, the model still compares well with the observed SCA at these sites, with a mean overestimation of

16 ppb which is well within the 1σ error. Full results of the independent analysis can be found in the Supplement, Fig. S1.
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Figure 4. Comparison between simulated and observed (a) CH4 SCA (ppb) and (b) CH4 ∆SCA (ppb). The SCA shown is the mean SCA

between 1995-2020 and ∆SCA is the change in SCA for the same period. The dashed black line represents the 1:1 line and the red line

represents the least squares regression line. The error bars denote ±1σ, which represents the interannual variability between 1995-2020.

The model captures the mean SCA when compared with NOAA observation sites well but there are larger differences with the

independent sites, which is due, in part, to larger variability in the SCA over a shorter time period.

The model also captures ∆SCA well when compared with observations, including the negative ∆SCA and contrasting260

behaviour in the NHL shown by observations (Fig. 4b). As a result, we can use TOMCAT to inform us on what might be driving

this signicantly different behaviour in the NHL. There is a good correlation (r=0.51) between the model and observations and

they almost always match within the 1σ uncertainty of observations, with some outliers. At ALT, TOMCAT shows a∆SCA of

1.7 ppb and this is due to TOMCAT underestimating the SCA when compared with observations, particularly at the beginning

of the study period. At BRW the model has a much stronger negative ∆SCA when compared with the observations and this is265

due to the model overestimating the SCA at the beginning of the study period. Despite the under- and over-estimations at these

two sites (ALT and BRW) in the NHL, the mean value of ∆SCA in TOMCAT is -6.38 ppb in the NHL, which shows a larger

negative trend in the SCA than the observed mean ∆SCA value of -4 ppb. This is mostly due to the This is mostly due to the

overestimation of the magnitude of the simulated∆SCA at BRW. At WLG the model overestimates∆SCA, again this is likely

due to the model representation at this site. The time series of the SCA and its trend at each NOAA site can be found in the270

Supplement. The model performs better at the NOAA sites partly because these sites are used to provide optimised uxes in our

model and because ∆SCA was calculated over a long time period of 25 years. The independent site at Mace Head (GC-MD)

also performs because ∆SCA is calculated over a period of 18 years. The independent sites in Siberia do not perform as well
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compared to GC-MD and the NOAA sites because of the large variability in the SCA over the relatively short time period

(6 years) of observations. Despite some differences between the model and observations in the NHL and Non-NHL regions,275

the model still captures the change in the SCA across the globe, almost all within 1σ uncertainty of the observations. We are

condent that the transport in the model is sufcient. Therefore, we can use TOMCAT to regionally attribute the changes in

the SCA in the NHL.

3.3 The Role of OH

We use the TOM_regional simulation to determine the inuence the increasing abundance of CH4 in the atmosphere has on its280

removal by OH and the seasonal cycle. In the TOM_regional simulation we use OH elds which vary month to month but do

not vary from year to year due to uncertainty in the annual variability. Some studies nd a declining trend in OH from 2004

(Rigby et al., 2017; Turner et al., 2017) but Zhao et al. (2019) found an increasing trend in OH between 2000 and 2010. In

contrast some studies only nd small annual variability in OH (Patra et al., 2021; Naus et al., 2021). These studies contain large

uncertainties and do not cover the full period of our study so a year to year variability in OH was not included our TOMCAT285

simulations.

We nd, using TOMCAT, in the northern hemisphere the ∆SCA due to OH loss is +1.0 ppb, and +1.1 ppb in the southern

hemisphere. From this, we would expect the observation sites to show a∆SCA of∼1 ppb in the absence of any other changes,

and any deviations from that are due to changes in transport and/or emissions. These results inform our expectation that the

SCA is expected to increase with the increasing atmospheric burden of CH4 due to more CH4 being removed by OH.290

3.4 Regional Contribution to∆SCA in Northern High Latitudes

We now assess what is driving the decreasing SCA in the NHL by analysing the regional contributions at NHL sites in the

TOM_regional simulation. Figure 5 shows the contribution of the background and tagged regions as a mean across all sites

in each latitude band. The background tracer shows the largest contribution to negative ∆SCA in the NHL (-9.93 ppb, Fig.

5a). The background tracer represents CH4 that is well-mixed in the atmosphere, likely from emissions from distant regions.295

The largest regional contributors to the negative ∆SCA in the NHL include Canada (-2.97 ppb), Middle East (-2.13 ppb) and

Europe (-1.48 ppb), shown in Fig. 5b. The China & Japan region has the largest positive inuence on NHL ∆SCA (3.94 ppb).

Despite some positive regional contributions of ∆SCA to the NHL, the ∆SCA in the NHL is still decreasing. This is due to

the negative contribution of well-mixed emissions from the background tracer and large regional negative contributions from

Canada, Europe and the Middle East.300

The TOM_transport simulation represents the contribution of transport to the negative ∆SCA in the NHL and this simula-

tion shows a different regional contribution compared to the TOM_regional simulation (Fig. 5, TOM_transport simulation is

represented by the hatched bars). From this simulation we nd that 33% of the negative ∆SCA in the NHL is due to changes

to transport and this can be split into contributions from the background and regional tracers. The largest contribution from

transport as a fraction of the total contribution of the tracer is from the background tracer which accounts for 23% (-2.32305

ppb). Changes in the transport of emissions from North America and Russia have also contributed to the decrease in the SCA
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Figure 5. The contribution of the (a) background tracer and (b) regional tagged tracers to CH4 ∆SCA (ppb) for 1995-2020 as a mean

across all sites in the latitude band. The blue bars show the NHL and the orange bars are the two Non-NHL latitude bands in the northern

hemisphere. The hatched bars show the contribution from transport (TOM_transport) and the solid colour represents the contribution from

emissions (TOM_regional). Note, (a) and (b) have different scales.

between 1995-2020 in the NHL, however the changes in emissions from these regions contribute to an increase in the SCA.

The change in SCA due to emissions is larger in magnitude than the contribution from transport, resulting in overall increase

in the SCA in the NHL from these regions. The TOM_transport contribution to ∆SCA in NHL from Canada and Europe is

0.24 ppb and 0.77 ppb, respectively, resulting in an increase in the SCA in the NHL due to changes in transport. However,310

changes in emissions result in an overall decrease in the SCA from these regions. This is due to the magnitude of the decrease

in SCA being larger than the contribution from transport. This implies that their contributions to the negative ∆SCA in NHL

are due to changes in emissions. We also assess the effect the size of the regional tracers has on our results by normalising the

regional contribution by area size. We nd the largest contributors to the decreasing SCA in the NHL are still due to changes

in emissions from Canada, Middle East and Europe (see Supplement Fig. S3).315

The TOMCAT simulations (TOM_regional and TOM_transport) show the largest contributions to the decrease in ∆SCA in

the NHL are mostly due to changes in emissions from Canada, Middle East and Europe. To further investigate the changes

in emissions that are driving the negative ∆SCA in the NHL we look at the trends of the regional CH4 concentration (ppb)

contributions from the TOM_regional and TOM_transport simulation as a mean across all sites in the NHL. We refer to these

regional CH4 concentration contributions as the tracer contribution. We also assess the trends of the seasonal emissions from320

each region. Often the trends in both the CH4 contributions and the regional emissions are not statistically signicant due to

their large variability over time. However, we are interested in the direction of these trends in order to determine how emissions

and transport from each region are changing over time and their impact on the seasonal cycle in the NHL. We compare

the seasonal trends of regional tracer contributions (ppb) to the NHL from the TOMCAT_regional and TOMCAT_transport

to further assess the contribution of emissions and transport from individual tracers. If the trend in the TOMCAT_transport325
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Figure 6. (a) Canada’s seasonal mean CH4 (ppb) contribution to the NHL sites (60N-90N) for TOM_regional (blue) and the TOM-

CAT_transport simulation (red) for 1995-2020. (b) Canada’s seasonal mean emissions (Tg month−1) from the inversion for JJA (blue),

DJF (orange) and the interseasonal range (ISR, black) for 1995-2020.

Figure 7. (a) Europe’s mean CH4 (ppb) contribution to the NHL sites (60N-90N) for the TOMCAT_regional (blue) and the TOM-

CAT_transport simulation (red) for 1995-2020. (b) Europe’s mean emissions (Tg month−1) from the inversion for JJA (blue), DJF (orange)

and the interseasonal range (ISR, black) for 1995-2020.

simulation is comparable to the trend in the TOMCAT_regional simulation we can attribute the change to transport and not

emissions. To assess the change in the seasonal emissions we calculated the inter-seasonal range (ISR, Tg month−1) which

represents the difference between June, July, August (JJA) and December, January, February (DJF) seasonal mean emissions. It
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is important to note that the emission seasonal cycle is out of phase with the concentration seasonal cycle at northern mid- and

high latitudes, so a positive ISR in emissions leads to a decreasing SCA. This is because the CH4 seasonal cycle minimum is330

during the summertime in the NHL, so increasing emissions during this time would raise the minimum value, thereby shrinking

the seasonal cycle. Similarly, shrinking wintertime emissions would bring down the seasonal maximum which occurs at the

same time. This effect is mostly likely in regions near to sites in the NHL. We focus on the three largest regional contributors to

the negative∆SCA in the NHL: Canada, Europe and the Middle East. We also focus on the largest regional positive contributor

of ∆SCA in the NHL, China & Japan, to assess its impact on the decreasing SCA at NHL sites.335

When we look at the regional tracer contributions in the NHL from Canada and Europe we nd stronger trends in the

TOM_regional simulation, compared with no trends shown in the TOM_transport simulation during DJF and JJA seasons (Fig.

6a) and Fig. 7a). This shows that changes in emissions in these regions are driving the decrease in the NHL. This is also shown

by a positive ISR in emissions from Canada and Europe (Fig. 6b and Fig. 7b). The Middle East’s tracer contribution in the

NHL shows no trends in the TOM_transport simulation which means that changes in transport from this region has very little340

impact on the SCA in the NHL (Fig. 8a). As a result, changes in emissions in the Middle East are the mostly driving the

decrease in the SCA in the NHL. This is also shown by a positive ISR in emissions from the Middle East (Fig. 8b). Changes

in emissions are the main contributor to the decrease in the SCA in the NHL from Canada, the Middle East and Europe. China

& Japan contributes the most to increasing the SCA in the NHL, however the overall changes in emissions and transport from

the background tracer and other regions still results in a decreasing SCA. We nd that a cominbation of changes in emissions345

and changes in transport from China & Japan are causing an increase in the SCA in the NHL from this region (Fig. 9). By

comparing the TOM_regional and TOM_transport simulations and the seasonal changes in emissions in these regions, we nd

that changes in emissions are the largest driver in changes in the SCA in the NHL.

Changes in emissions from Canada are mostly driven by increasing JJA emissions and decreasing DJF emissions. The

changes in seasonal emissions lead to a positive ISR (0.02Tg month−1 year−1, pvalue=0.17, Fig. 6b). The trend of the DJF350

tracer contribution in the TOM_regional is decreasing at a faster rate (-0.13 ppb month−1, pvalue = 0.13) than the JJA (-0.11

ppb month−1, pvalue = 0.36), which results in a decrease in the SCA. There is some uncertainty in the trends of both the

emissions and tracer contributions due to their large variability during the study period. The combination of weak trends in

TOM_transport simulation and the positive ISR indicates that changes in DJF and JJA emissions from Canada is the main

contributor to the decreasing SCA in this region.355

The emissions from Europe during JJA are increasing slightly but there is a stronger decrease in the DJF emissions. The

decrease in winter emissions result in a positive ISR (0.02 Tg month−1 year−1, pvalue=0.3, Fig. 7b). The mean CH4 tracer

contribution from Europe to the NHL sites in the TOM_transport simulation shows a small positive trend in DJF and a very

small decreasing trend in JJA (Fig. 7a). This shows that changes in winter transport are contributing to an increase in the SCA

in the NHL. However large variability in the TOM_transport concentrations leads to some uncertainty on how much transport360

is having an impact from this region. The changes in emissions in the TOM_regional simulation contribute more to a decrease

in the SCA. The TOM_regional DJF tracer contributions (-0.13 ppb month−1, pvalue=0.02) from Europe are decreasing at a

faster rate than the JJA tracer contributions (-0.09 ppb month−1, pvalue=0.06), resulting in an decrease in the SCA. The positive
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Figure 8. (a) The Middle East’s mean CH4 (pbb) contribution to the NHL sites (60N-90N) for the TOM_regional simulation (blue) and the

TOM_transport simulation (red) for 1995-2020. (b) The Middle East’s mean emissions (Tg month−1) from the inversion for JJA (blue), DJF

(orange) and the interseasonal range (ISR, black) for 1995-2020.

ISR is supported by trends in the tracer contributions being statistically signicant which shows that changes in emissions from

this region are driving the decrease in NHL.365

The emissions from the Middle East are increasing in JJA and decreasing in DJF, which results in a positive ISR (0.07 Tg

month−1 year−1, pvalue=0.01, Fig. 8b). The mean CH4 tracer contribution from the Middle East to the NHL sites is decreasing

in both JJA (-0.04 ppb month−1, pvalue=0.3) and DJF (-0.11 ppb month−1, pvalue=0.07) in the TOM_regional simulation (Fig.

8a). The trend in DJF is decreasing faster than the trend in JJA, resulting in a decrease in the SCA. The combination of the

positive trend in the ISR being statistically signicant and the fast decreasing winter concentrations indicates that chnages in370

emissions from this region are the main contributor to he decrease in the SCA in the NHL.

The emissions from China & Japan are decreasing slightly in JJA and increasing in DJF, resulting in a negative ISR (-

0.07 Tg month−1 year−1, pvalue=0.05, Fig. 9b). The mean CH4 tracer contribution from this region to the NHL is increas-

ing in DJF and JJA in the TOM_regional simulation (Fig. 9a). The DJF contribution is increasing at a faster rate (0.15 ppb

month−1, pvalue=0.03) than the JJA contribution (0.07 ppb month−1, pvalue=0.21), resulting in an increase in the SCA. The375

TOM_transport simulation shows a small trend in DJF (0.015 ppb month−1, pvalue=0.32) in the tracer contribution from this

region and no trend in the JJA contribution, showing that transport is also contributing to an increase in the SCA in NHL.

However there is some uncertainty in how much transport is having an impact due to the large variability in the trends in tracer

contribution in the TOM_transport simulation. The TOMCAT simulations and emission trends show that changes in emissions

and DJF transport from China & Japan contributes to an increase in the SCA in the NHL. However, the overall contribution380

from the background tracer and other regional tracers still results in a decrease in the SCA in the NHL.
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Figure 9. (a) shows China & Japan’s mean CH4 (pbb) contribution to the NHL sites (60N-90N) for the TOMCAT_regional (blue) and the

TOMCAT_transport simulation (red) for 1995-2020. (b) shows China & Japan’s mean emissions (Tg month−1) from the inversion for JJA

(blue), DJF (orange) and the interseasonal range (ISR, black) for 1995-2020.

3.5 Sensitivity Experiments

We carried out two sensitivity experiments to examine the impact of shorter and longer decay rates of regional tracers into

the background tracer. These simulations are described in Sect. 2.2. The TOM_twelve simulation showed that changing the

exponential decay rate from 9 months to 12 months did not change the largest contributors to the ∆SCA. This implies that385

after 9 months, CH4 emissions has undergone long-range transport and no longer has a distinguishable emission origin, so has

become well-mixed. Reducing the exponential decay rate to 1 month did, however, have an impact on the nal results. The

TOM_one simulation showed larger regional contributions in the NHL from Canada than the background tracer. The contri-

bution from the background tracer in the TOM_one simulation contains emissions from southern regions because emissions

from these regions will have been moved into the background tracer before they had the chance to reach the NHL. For regions390

close to the NHL sites, such as Canada and Russia, we can see the effect of those emissions before they become well-mixed.

The recent local emissions from Canada are having an impact on the decreasing SCA but the effects of mixing and changes

in transport will reduce this impact. These sensitivity experiments show that the 9-month decay rate into the background is a

good compromise for quantifying well-mixed emissions. It allows us to look at the effect from relatively recent emissions and

also allows enough time for far-away emissions to be transported to the NHL in order to quantify their effect on the ∆SCA.395

More details on the sensitivity study can be found in Appendix A.
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4 Discussion

Using the NOAA surface observations we have shown that globally the SCA of CH4 is increasing but in the NHL it is decreas-

ing. As the atmospheric burden of CH4 is increasing it would be expected that the SCA would show a corresponding increase

due to greater removal of CH4 by OH in the atmosphere. Therefore, the change in the SCA in the NHL is counter-intuitive400

and we explore through TOMCAT simulations what is driving this decreasing SCA. A persistent change in the SCA indicates

a long-term change in the sources, sinks and/or transport of CH4 and the decreasing SCA in the NHL indicates a different

response to the increasing atmospheric CH4 burden compared to the rest of the world.

We use a TOMCAT-based atmospheric inversion which assimilates NOAA surface observations across the globe. There is a

much greater number of sites situated in the northern hemisphere, compared with the southern hemisphere. There are large and405

variable sources of CH4 in central Africa and Brazil but the model is not well constrained over these regions due to the lack of

observations. The large contribution of emissions to the global CH4 budget from central Africa and Brazil has been highlighted

in a number of recent studies (Lunt et al., 2021; Wilson et al., 2021; Feng et al., 2022) so the surface emissions in our study

might not fully capture the magnitude and distribution of emissions from these regions due to the lack of observations.

The TOMCAT tagged tracer simulations perform well when compared with observations (Fig. 4). However, from Fig. 4b it410

is noted that BRW, which is situated in the NHL, is an outlier in the model, compared with other sites. The model does capture

the change in the SCA within the observation uncertainties, but these are large for this site. To test the inuence of BRW on

our results we removed it from our analysis. We nd that Canada is no longer the largest regional contributor to the decrease in

the SCA in the NHL and, in fact, contributes to an increase in the SCA at the other sites (ALT, ICE & ZEP). However, Europe

and the Middle East remain the largest contributors to the decrease in the SCA at ALT, ICE and ZEP (See Supplement Fig.415

S4). The removal of BRW from our analysis shows that local emissions are having the largest impact at this site. This is likely

due to a strong decrease in emissions in DJF and an increase in emissions in JJA in Alaska and western Canada during the

study period (See Supplement Fig. S6b). The seasonal changes in emissions over eastern Canada are different to Alaska and

western Canada and it is likely that a different mechanism is having an effect on the other sites in the NHL. This test shows that

the boundaries of the tagged tracer regions and the proximity of Canada and Europe to the NHL does have an impact on the420

results. For example, if Alaska was grouped into the North America (NAM) region, then NAM could be a large contributor to

the decrease in the SCA due to the changes in emissions over Alaska. However, we include Alaska and Canada as one region

due to their similar biomes and meteorology. Despite some differences between the model and observations (e.g. at ALT and

BRW), TOMCAT does capture the signicantly different behaviour in the NHL compared to the rest of the globe. The change

in SCA in the NHL is consistently lower compared to the rest of the globe, implying that increasing emissions, both local and425

non-local, are impacting the NHL differently.

The main focus of our analysis was in the NHL, however observations Mace Head (MHD) also show a decreasing SCA,

similar to what is observed in the NHL. When we included MHD in our analysis by extending the NHL (NHL_ext, 52N-60N),

we found that its proximity to emission regions had an effect on the regional contribution to ∆SCA in the NHL_ext. Changes

in emissions from Canada and the Middle East, and changes in transport from North America and the Middle East contribute430
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the most to the decrease in the NHL_ext SCA. Europe contributes to an increase in the SCA in the NHL_ext (see Supplement

Fig S5). This is because MHD is strongly inuenced by local trends in emissions in western Europe (see Supplement Fig. 8b).

The seasonal changes in eastern Europe are quite different to western Europe, which are likely to affect the sites north of 60N

differently to MHD.

We can use the model to regionally attribute the change in the SCA because it performs well when compared with observa-435

tions. However, it is difcult to disaggregate the contribution of different emission types within these regions. When possible,

we have estimated emission types by looking at emission maps of each of the largest regional contributors and referring to

literature. In addition to regional contributions, the regional tracers were allocated to a background tracer using an exponential

9-month decay rate to represent well-mixed methane that no longer has a distinguishable emission origin. It is not possible to

tell from our simulations what regions are contributing the most to the background tracer.440

We have shown through TOMCAT simulations that well-mixed (background) CH4, likely from emissions from regions

far from the NHL, along with regions in the lower northern latitudes, are having a large inuence on the SCA in the NHL.

Whilst transport from the background tracer is a contributing factor to the decrease in the SCA in the NHL, 83% of all tracer

contributions are due to emissions. Here we discuss the emissions sectors that might be driving these seasonal changes from

the largest regional contributors to the change in the SCA in NHL. These include Canada, Europe, Middle East and China &445

Japan.

Canada has the largest negative contribution to the ∆SCA NHL due to emissions (-2.97 ppb), however we have shown

that this region predominantly affects BRW. An increase in JJA and a decrease in DJF emissions have impacted the CH4

contribution in the NHL, leading to a decrease in the SCA. There are a number of different sources which could contribute

to the changes in emissions in Canada. Anthropgenic sources of CH4 in Canada include oil and gas, livestock and landlls450

and natural sources include wetlands and biomass burning (Scarpelli et al., 2021). Studies investigating the seasonality of the

Hudson Bay Lowlands, the second largest boreal wetland in the world, found the wetland emissions peak in July/August and

decreases signicantly in September-to-November (Pickett-Heaps et al., 2011; Fujita et al., 2018). Fujita et al. (2018) also

found that biogenic sources are the most dominant for the seasonal cycle in this region and that the boreal wetlands are the

main source. They found that fossil fuels and biomass burning are minor contributors to the CH4 concentration seasonal cycle.455

Fossil fuels are often classed as a nonseasonal source but Fujita et al. (2018) nd that they contribute signicantly to the mole

fraction of CH4 in early winter at the Churchill observation site situated on Hudson Bay’s coast. This implies that fossil fuel

emissions have some seasonality in this region, peaking in winter. Lu et al. (2021) report that top-down estimates from satellite

data show a decreasing trend in anthropgenic emissions for 2010-2017. The emissions used in our model show a decrease

annually in September, indicating the wetlands are a large factor in this region’s season cycle. The mean seasonal emissions for460

the study period peak in JJA over western Canada which is an area prone to wildres and emissions are also large around the

Boreal Plains (Environment and Climate Change Canada, 2016). Also the GFED re emissions database (van der Werf et al.,

2017) shows that annual emissions of CH4 from biomass burning have been increasing from 1997-2020 (0.03 Tg year−1,

pvalue=0.01, see Supplement Fig. S10). Despite the emission trends in our results having high p-values, the direction of the

trends follow changes reported by literature. It is likely that wetland and biomass burning emissions are increasing during the465
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summer in Canada, contributing to the negative ∆SCA contribution to the NHL, predominantly at BRW, with some inuence

of decreasing anthropogenic emissions in the winter. The positive trends in emissions are often over wetland and biomass

burning regions during summer and the winter decrease in emissions is strongest in western Canada where there are a few

main cities (See Supplement, Fig. S6b).

The Middle East region has the second largest contribution to the decreasing SCA in the NHL (-2.13 ppb). The trend in470

the ISR of emissions from the Middle East has a pvalue of 0.01 which further implies that emissions are responsible for the

contribution to the negative∆SCA in NHL. Emissions in this region are dominated by anthropogenic emissions such as oil and

gas, agriculture and waste. A recent study has shown that the Middle East is one of the largest contributors to the rise in CH4

emissions between 2000 and 2017 (Stavert et al., 2022). Our emission maps show the largest emissions in JJA, particularly

over the Caspian Sea and the Persian Gulf, which is a region of signicant oil and gas extraction. The seasonality of emissions475

from this region is not well documented so it is not possible to be certain of the change in emissions in this region that is

contributing to the decreasing SCA in the NHL. The emissions used in the model indicate the largest increases in emissions in

JJA and decreases in DJF emissions are in areas known for oil and gas extraction (Supplement, Fig. S7b). From this, it is likely

that anthropogenic emissions are driving the changes in contribution to the decrease in SCA in the NHL from this region.

Europe is the third largest contributor to the decrease in the SCA in the NHL (-1.48 ppb). The TOM_regional JJA and DJF480

trends in the concentration contributions to the NHL from this region are 0.06 ppb year−1 and 0.02 ppb year−1, respectively.

This highlights that it is mostly emissions contributing to the decrease in the SCA in this region. Emissions in Europe include

natural sources such as wetlands, peatlands and wet soils, and anthropogenic emissions such as agriculture, waste and fossil

fuels (Bergamaschi et al., 2018). It is often assumed that wetlands have the strongest seasonality and Bergamaschi et al.

(2018) explained that precipitation is important for southern European wetlands but temperate and boreal wetlands are driven485

by temperature variations. Southern European wetlands could be impacted by a decreasing trend in precipitation shown by

Christidis and Stott (2022), which could result in a decrease in wetland emissions. It is hard to say what emission types are

driving the decrease in winter emissions over Europe due to lack of studies of the seasonality of sources in this region; it is

possible that sources other than wetlands are having an impact. For example, improvements in the efciency of fossil fuel use,

domestic and/or extraction could result in lower CH4 emissions in winter.490

China & Japan is the region which contributes the most to an increase in the SCA in the NHL. The DJF concentration

contribution has a p-value of 0.02 so it is likely that this season is driving this positive contribution. Emissions in China &

Japan are mostly driven by agriculture and waste and fossil fuels (Stavert et al., 2022). Stavert et al. (2022) found that fossil

fuel emissions have increased by 114% in bottom-up estimates and 78% in top-down estimates between 2000 and 2017.

The differences arise due to the emission inventories diverging towards the end of their study period. However, this does495

show that fossil emissions from China have increased signicantly over the last two decades. Approximately 40% of China’s

anthropogenic emissions are from fossil fuels and the remainder is split equally between livestock, rice paddies and waste

(Stavert et al., 2022). Our emissions show the largest emissions are situated in south east China (Supplement, Fig. S9) where

rice paddies, oil and gas, and waste are the main sources of CH4 (Peng et al., 2016). Despite the fact that emissions are generally

increasing in China and causing a large positive contribution to ∆SCA in the NHL, the SCA in the NHL is still decreasing.500
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We nd that Russia does not contribute to the decrease in the SCA in the NHL, despite it being a region that has large natural

and anthropogenic emissions of CH4. The Russian emissions used in the forward simulation are not locally constrained before

2011 but transport from Russia to the NHL sites is short (∼2 weeks) because it is largely zonal (Jacob, 1999). The inversion

and forward simulations represent transport of emissions well which means that the four sites in NHL will be impacted by

Russian emissions throughout the study period, even when the inversion has few sites to constrain the model in this region. Our505

results show that changes in transport from Russia contribute to a small decrease in the SCA with a ∆SCA of -0.6 ppb (See

Fig. 5b). This is a small contribution to the decrease in the SCA in the NHL, which is why we decided to focus on Canada, the

Middle East and Europe as they have the largest contributions to decrease in the SCA in the NHL.

There is some uncertainty in the seasonality of CH4 emissions and how they change over time in Canada, the Middle

East, Europe and China & Japan. The emissions used in TOMCAT were discussed in Section 2.3. Our inversion uses prior510

information from various emission inventories. The prior emissions that predominantly drive the seasonal cycle are wetland

emissions from WetCHARTS model and biomass burning emissions from GFEDv4.1s. These emission estimates have been

evaluated in previous CH4 studies (e.g. Parker et al. (2020) and Liu et al. (2020)). These prior emissions are optimised,

including their seasonality, when the surface observations are assimilated in our inversion. This means that our emissions used

in TOMCAT are optimised seasonally, however it is difcult to disaggregate the emission sectors driving the total emissions’515

seasonal cycle in each region.

The three main regions that contribute the most to the decreasing SCA in the NHL (Canada, Europe and Middle East) have

common trends in emissions and tracer contributions to the NHL sites. The trends in regional tracer contributions across the

whole of the NHL at the surface show similar results (See Supplement). In each region the winter emissions are generally

decreasing and summer emissions are increasing over the study period. Similarly the regional DJF tracer contribution to the520

NHL generally decreases at a faster rate than the JJA tracer contribution, resulting in a decrease in the SCA, despite the fact

that emissions from the region are increasing in JJA. This is likely due to a redistribution of emissions over time from each

region, causing it to be transported differently to the NHL. We have shown that changes in well-mixed emissions and changes

in emissions from Canada, Europe and the Middle East are the main contributors to the decreasing SCA in the NHL. The

results show that the CH4 SCA is changing and this should act as motivation to investigate the seasonality of emissions as it525

highlights changes in the CH4 budget.

5 Conclusions

We have used a 3-D chemical transport model, TOMCAT, with emissions derived from surface observations, to investigate

changes in the SCA of CH4. Using TOMCAT we nd that the global mean SCA increased by 1 ppb between 1995-2020 due

to the increase in atmospheric CH4 but this is offset by changes in emissions and transport. The NOAA surface observations530

show that globally the SCA has increased by a mean value of 2.5 ppb (6.5%) but decreased by 4 ppb (7.6%) in the NHL.

The decreasing SCA in the NHL therefore does not follow the global trend and indicates that the seasonal cycle is responding

differently to the global increase in atmospheric CH4.
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Our study focused on what was driving the decrease in the SCA in the NHLs and found that well-mixed methane, allocated

to a modelled background tracer, was the largest contributor. Around 33% of the background tracer’s contribution to the NHL535

could be attributed to changes in transport whilst the remaining contribution is from emissions. The background tracer contains

CH4 that has become well-mixed and no longer has a distinguishable emission origin. Emissions from distant regions are

likely to be main contributors to the background tracer as it is transported to the NHL. The largest regional contributions to the

negative ∆SCA in the NHL are from Canada, Europe and the Middle East. Increases in summer emissions from the Boreal

Plains in Canada, decreases in winter emissions across Europe, and a combination of increases in summer emissions and540

decreases winter in emissions over the Arabian Peninsula and Capsian Sea in the Middle East are the other main contributors

to the decrease in the SCA in the NHL.

The lack of studies that investigate the seasonality of emissions makes it hard to determine the source sector that is driving

the change in emissions in these regions. The changes in the SCA in the NHL and globally indicate a long-term change in

sources of CH4 and highlight the seasonal response to the increasing CH4 burden. More work is needed to investigate the545

seasonality of the sources that are having an impact on the decreasing SCA in the NHL.

Code and data availability. The NOAA data (Dlugokencky et al., 2021) are available from https://doi.org/10.15138/VNCZ-M766 (last ac-

cess: 2nd December 2021). The AGAGE data (Prinn et al., 2018) are available from https://doi.org/10.3334/CDIAC/atg.db1001 (last access:

26th May 2022). The observations for Cape Ochi-ishi can be found at https://doi.org/10.17595/20160901.004 and Hateruma Island can be

found at https://doi.org/10.17595/20160901.003 (last access: 8th November 2021). The Siberian tower observations are available through550

registration at the Global Environmental Database https://db.cger.nies.go.jp/ged/en/ (last accessed: 19th October 2022). The GFED re emis-

sions (van der Werf et al., 2017) can be found at https://www.globalredata.org/. The TOMCAT detrended time series at the 22 observation

sites are available at https://doi.org/10.5281/zenodo.7997653. Readers should contact the lead author to enquire about the use of the TOM-

CAT model.

Appendix A: Sensitivity Testing on Background Tracer555

We carried out a sensitivity experiment on the exponential decay of the CH4 tracer into the background. The results of these

model runs showed that changing the e-folding time (lifetime) from 9 months to 12 months did not have a large impact on the

results. We also set the lifetime to 1 month, this did have an impact on the nal results but 1 month lifetime is too short to

represent well-mixed methane. Find the results of the model simulations in Table A1.

Author contributions. ED, CW, EG and MPC designed the study, ED carried out forward model simulations, inversions were carried about560

by CW, both with input from MPC. AM and RD provided guidance for data analysis. All co-authors contributed to the writing and analysis

of the results.
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Table 1. List of 22 NOAA Sites used in the analysis (Dlugokencky et al., 2021).

Site Name Latitude (◦ North) Longitude (◦ East) Site Code

Alert, Canada 82.45 -62.50 ALT

Ny-Alesund, Svalbard 78.91 11.80 ZEP

Barrow, Alaska, USA 71.32 156.60 BRW

Storhofdi, Vestmannaeyjar, Iceland 63.40 -20.28 ICE

Mace Head, Ireland 53.32 -9.90 MHD

Ulaan Uul, Mongolia 44.45 111.09 UUM

Niwot Ridge, Colorado, USA 40.05 -105.63 NWR

Terceira Island, Azores 38.70 -27.35 AZR

Mt Waligaun, Peoples Republic of China 36.27 100.92 WLG

Tudor Hill, Bermuda 32.26 -64.87 BMW

Izana, Tenerife 28.30 -16.48 IZO

Sand Island, Midway 28.22 -177.37 MID

Mauna Loa, Hawaii, USA 19.53 -155.58 MLO

Cape Kumukahi, Hawaii, USA 19.52 -154.82 KUM

Mariana Islands, Guam 13.39 144.65 GMI

Ragged Point, Barbados 13.17 -59.43 RPB

Mahe Isalnd, Seychelles -4.68 55.53 SEY

Ascension Island, UK -7.97 -14.40 ASC

Tutuila, American Samoa -14.25 -170.56 SMO

Palmer Station, Antarctica -64.92 -64.00 PSA

Sywoa Station, Antarctica -69.00 39.57 SYO

South Pole, Antarctica -89.98 -24.80 SPO
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Table 2. List of 18 regions and their region code for each tracer.

Region Code Region Name

AUS Australasia

CAFR Central Africa

CAN Canada

CHJA China & Japan

EBRA East Brazil

EUR Europe

INBA India & Bangladesh

ME Middle East

NAFR North Africa

NAM North America

NASA Non-Amazon South America

NBRA North Brazil

NOA North Oceans & Arctic

RUS Russia

SAFR South Africa

SBRA South Brazil

SEA South East Asia

SOA South Oceans & Antarctica

Table 3. List of the difference TOMCAT simulations.

TOMCAT Simulation Experiment

TOM_regional Regional tagged tracer simulation

TOM_transport Investigating changes in transport

TOM_one Background sensitivity - One month decay rate

TOM_twelve Background sensitivity - Twelve month decay rate
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Table A1. A table comparing the results ∆SCA (ppb) of TOM_regional, TOM_transport, TOM_twelve and TOM_one simulations.

Tagged Tracers TOM_regional TOM_transport TOM_twelve TOM_one

Total (sum of all tracers) -6.38 -2.09 -6.38 -6.38

Sum of Regions 3.54 0.23 3.43 -2.61

Background -9.93 -2.32 -9.81 -3.74

Canada -2.97 0.24 -2.91 -4.09

Middle East -2.13 -0.22 -2.14 -0.95

Europe -1.48 0.76 -1.5 1.43

Russia 2.71 -0.60 2.67 1.56

North America 2.46 -0.91 2.52 0.52
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