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Abstract. The joint probability of precipitation and soil moisture is here investigated over Europe 7 

with the goal to extrapolated meaningful insights on the potential joint use of these variables for 8 

the detection of agricultural droughts within a probabilistic modeling framework. The use of 9 

copulas is explored as a parametric approach often used in hydrological studies for the analysis of 10 

bivariate distributions. The analysis is performed for the period 1996-2020 on the ERA5 11 

precipitation and LISFLOOD soil moisture datasets, both available as part of the Copernicus 12 

European Drought Observatory. The results show an overall good correlation between the 13 

empirical frequency series derived from the two datasets (Kendall’s  = 0.42±0.1), but also clear 14 

spatial patterns in the tail-dependence derived with both non-parametric and parametric 15 

approaches. About half of the domain shows symmetric tail-dependences, well reproduced by the 16 

Student-t copula, whereas the rest of the domain is almost equally split between low and high tail-17 

dependences (modeled with the Gumbel family of copulas). These spatial patterns are reasonably 18 

reproduced by a random forest classifier, suggesting that this outcome is not driven by chance. 19 

This study stresses how a joint use of precipitation and soil moisture for agriculture drought 20 

characterization may be more beneficial in areas with strong low tail-dependence, such as southern 21 

France, northern UK, northern Germany, and Denmark in this study, and how this behavior should 22 

be carefully considered in drought studies.23 
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1. Introduction 24 

Agricultural drought, defined as a condition of unusually high precipitation shortages and/or soil 25 

water deficits causing adverse effects on crop yields and production (Panu and Sharma, 2002), is 26 

probably the most recognized of the four main drought types (Wilhite and Glantz, 1985) due to 27 

the more direct and easier to understand impacts (Mishra and Singh, 2010). The scientific literature 28 

on agricultural drought has produced a very large number of indices (WMO and GWP, 2016), with 29 

the aim of reproducing the temporal dynamic and the effects of crop water deficit through a 30 

combination of climatic observations, hydrological modeling, and remote sensing data (Zargar et 31 

al., 2011).  32 

The difficulty in capturing the multi-facet nature of agricultural drought events across the 33 

world with a single index (Sivakumar et al., 2011) is confirmed by the absence of consensus in the 34 

scientific literature on the most reliable agricultural drought index. However, despite the large 35 

range of available indices, some common characteristics can be identified, such as the focus on 36 

some proxy variables of plant water availability – through soil moisture (Dutra et al., 2008), actual 37 

evapotranspiration (Anderson et al., 2011) or basic meteorological information (Vicente-Serrano 38 

et al., 2010) – and the need to account for deviations from long-term conditions. 39 

Meteorological drought indicators computed on appropriate aggregation time scales 40 

(McKee et al., 1993; Vicente-Serrano et al., 2010) have demonstrated a good capability to 41 

represent agricultural drought conditions in several case studies (e.g., Bachmair et al., 2018; 42 

Mohammed et al., 2022; Tian et al., 2018). They have been successfully integrated in a number of 43 

operational drought monitoring systems, thanks to their minimal input data requirements and ease 44 

of use. Among those indices, the Standardized Precipitation Index (SPI, McKee et al., 1993) 45 

computed on short- to medium-aggregation periods (i.e., SPI -3 and -6) is often adopted as a 46 

suitable proxy variable for agricultural droughts (WMO, 2012). 47 

As highlighted by Sheffield and Wood (2007), simplified indices for drought monitoring, 48 

such as the Palmer Drought Severity index (PDSI; Palmer, 1965) or the previously mentioned 49 

meteorological indicators, have been slowly integrated with indices directly based on modeled soil 50 

moisture data, thanks to the increasing availability worldwide of physically-based hydrological 51 

models. Soil moisture percentile, or similarly standardized quantities, are often used for this scope 52 

(Mo and Lettenmeier, 2013; Xia et al., 2014). The ever-growing records of remote sensing-based 53 
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estimates of soil moisture are becoming an additional data source to support the development of 54 

dedicated soil moisture drought indices (Cammalleri et al., 2017; Carrão et al., 2016).  55 

In the context of agricultural drought, an overall good agreement between SPI and soil 56 

moisture indices has been demonstrated over a large range of agricultural practices, crop types and 57 

climatic conditions. Halwatura et al. (2017) showed how SPI-3 represents a good approximation 58 

of modeled soil moisture over three different climatic regions in eastern Australia. Sims et al. 59 

(2002) found high correlation between short-term precipitation deficit and soil moisture variations 60 

in North Carolina, while Ji and Peters (2003) highlighted the high correlation between SPI-3 and 61 

vegetation growth over croplands and grasslands in the U.S. Great Plains. Wang et al. (2015) 62 

observed a good matching between soil moisture dynamics and SPI at the scale of 1-3 months 63 

when testing various indices over China. In Europe, Manning et al. (2018) highlighted how 64 

precipitation is the main driver of soil moisture droughts for a set of both dry and wet sites.    65 

In spite of the above-mentioned consistencies, the index selected to characterize drought 66 

conditions over a certain study region will inevitably affect the outcome of the drought analysis, 67 

as highlighted by Quiring and Papakryiakou (2003) in testing different indices over the Canadian 68 

prairies. These Authors suggest that a variety of drought indices should always be tested to 69 

determine the most appropriate one for each specific application. It follows that the synergy 70 

between multiple indices can be exploited by the use of multivariate indicators (Hao and Singh, 71 

2015), a family of approaches that encompasses a variety of merging strategies, including 72 

combined cascading indices (Cammalleri et al., 2021a; Rembold et al., 2019), composite and 73 

integrated approaches (Brown et al., 2008; Svoboda et al., 2002), and joint probability functions 74 

(Bateni et al., 2018; Hao and AghaKouchak, 2013; Kanthavel et al., 2022). 75 

The latter class of approaches, in particular, aims at capturing the complex statistical 76 

interdependence among different drought-related variables (Hao and Singh, 2015), and it has seen 77 

a growing relevance in many hydrological applications thanks to the introduction of copula 78 

functions and their ability to model a wide range of dependence structures (Nelsen, 2006; Salvadori 79 

et al., 2007; Joe, 2015). In the field of drought indices, the approach proposed by Kao and 80 

Govindaraju (2010) for the computation of the Joint Deficit Index (JDI) has been applied to a 81 

variety of drought-related quantities over different regions, often including precipitation and soil 82 

moisture (i.e., Dash et al., 2019; Kwon et al., 2019). 83 
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Studies on the marginal distribution of either precipitation or soil moisture have somewhat 84 

converged on adopting the Gamma distribution for precipitation and the Beta distribution for soil 85 

moisture. The use of the Gamma family for the implementation of the SPI at different accumulation 86 

periods has been a standard practice in many applications (e.g., Mo and Lyon, 2015; Yuan and 87 

Wood, 2013). While other distributions have also proven to be reliable, such as the exponentiated 88 

Weibull (Pieper et al., 2020) and the Person Type III (Ribeiro and Pires, 2016), the Gamma is still 89 

the most adopted one. Over Europe, Stagge et al. (2015) demonstrated how the Gamma 90 

outperformed the other tested distributions across all accumulation periods and regions.  91 

A more limited number of applications based on soil moisture data are available in the 92 

literature compared to SPI. The use of the Beta distribution for soil moisture data has been 93 

introduced as early as the late 70s, with the pioneer study of Ravelo and Decker (1979), following 94 

the consideration that soil moisture is a double-bounded quantity, ranging between residual and 95 

saturation. Sheffield et al. (2004) successfully applied this standardization for drought analyses 96 

over the US, while the same distribution has been adopted by Cammalleri et al. (2016) on modeled 97 

data over Europe. Most recently, the Beta distribution was also used to characterize the frequency 98 

of global satellite soil moisture data (Sadri et al., 2020). 99 

Conversely, no standard approaches have been identified for the application of copulas to 100 

model the bivariate joint distribution of precipitation and soil moisture, mainly due to the large 101 

variety of probabilistic structures than may be observed between these two quantities. Common 102 

fitting strategies rely on the application of various copula families to identify the best fitting for 103 

each specific site (e.g., Hao and AghaKouchak, 2013), or are based on an a-priori selection of a 104 

copula family following empirical evidence (e.g., Dixit and Jayakumar, 2021). 105 

A comprehensive study on the joint probabilistic dynamic of these two quantities, and on 106 

their bivariate distribution, is currently lacking in the scientific literature of multivariate drought 107 

modeling. Hence, the main goal of this study is to fill this gap, by investigating the mutual 108 

relationship between precipitation (cumulated over 3 months, as for SPI-3) and soil moisture 109 

datasets as available over Europe as part of the European Drought Observatory of the Copernicus 110 

Emergency Management Service (EDO, https://edo.jrc.ec.europa.eu). 111 

A large set of copulas is tested for this purpose across the entire European domain, to 112 

identify an optimal modeling of the dependence especially in proximity of the tails (given its major 113 

role in extreme detection). The spatial distribution of the results is analyzed to infer evidence of 114 
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common patterns and behavior, which may support future operational applications based on 115 

similar parametric approaches. 116 

 117 

2. Materials and Methods 118 

2.1 Precipitation and soil moisture datasets 119 

The study focuses on Europe and makes use of the dataset of indicators available over the region 120 

as part of EDO. Precipitation data accumulated over consecutive 3-month periods are used here, 121 

as the quantity at the base of the SPI-3 index. Hourly total precipitation maps from the ECMWF 122 

ERA5 global atmospheric reanalysis model (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-123 

reanalysis-v5) are collected through the Copernicus Climate Change Service (C3S, 124 

https://climate.copernicus.eu/) and cumulated at monthly updates (no missing values are present 125 

in the reanalysis dataset). This dataset has proven to be quite reliable over Europe for drought 126 

analyses (e.g., Cammalleri et al., 2021b; van der Wiel et al., 2022), as it is currently employed in 127 

near-real time as part of the operational tools of EDO.  128 

Soil moisture records over the entire European domain are derived from the simulations of 129 

the LISFLOOD distributed hydrological rainfall–runoff model (de Roo et al., 2000). LISFLOOD 130 

runs in near-real time as part of the European Flood Awareness System (Thielen et al., 2009), and 131 

it provides daily soil moisture maps for the root zone at a spatial resolution of 5-km. Daily modeled 132 

data are averaged at monthly scale and converted into a Soil Moisture Index (SMI) as in 133 

Seneviratne et al. (2010). The model is calibrated and validated over an extensive network of river 134 

discharge stations following the procedure described in Arnal et al. (2019), and it has been 135 

successfully tested for drought analyses over Europe as part of EDO for the computation of the 136 

Soil Moisture Anomaly (SMA) index (Cammalleri et al., 2015). 137 

In this study, data collected on the most recent 25 years (1996-2020) are used as a common 138 

period. This period is chosen to minimize the effects of non-stationarity in precipitation records 139 

and to avoid the inclusion of early LISFLOOD records that are affected by a lower number of 140 

ground meteorological stations in the forcing (Thieming et al., 2022). The 300 maps (12 months × 141 

25 years) for the two datasets are then spatially interpolated on a common Lambert azimuthal 142 

equal-area (LAEA) projection on a regular grid of 5-km using the nearest neighbor algorithm. This 143 

is done to preserve the high-resolution information of the soil moisture and by considering the 144 

smooth spatial dynamics of precipitation accumulated over 3 months.  145 
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2.2 Copula families 146 

The introduction of copulas in multivariate probability modeling has provided to hydrologists a 147 

flexible tool to reproduce the joint probability of multiple dependent variables characterized by a 148 

variety of marginal distributions (De Michele and Salvadori, 2003; Salvadori and De Michele, 149 

2004). 150 

 Limiting the focus on bivariate variables, the joint probability distribution, F, of two 151 

random variables (X1 and X2) can be expressed, thanks to the Sklar’s theorem, as: 152 

         (1) 153 

where F1 and F2 are the marginal distribution of X1 and X2, respectively, and C is the copula 154 

function (Salvadori et al., 2007).  155 

 A large variety of parametric formulations has been introduced in the literature to explicitly 156 

link the marginal to the joint distributions, with some of the most common copula families used in 157 

hydrology belonging to the Elliptical and Archimedean copulas (Chen and Guo, 2019). Two non-158 

parametric measures of dependence play a major role in parametric copula inference. The Kendall 159 

rank correlation coefficient () is commonly used as a measure of overall ordinal association, while 160 

the so-called Tail-Dependence (TD, Salvadori et al., 2007) is used to estimate the asymptotical 161 

degree of dependence in the upper and lower extremes (upper tail-dependence, U, and lower tail-162 

dependence, L, respectively). The non-parametric values of both TDs can be evaluated following 163 

the method proposed by Schmidt and Stadtmueller (2006).  164 

In this study, the parametric bivariate probability of precipitation and soil moisture is 165 

assessed using the R package “VineCopula” (Aas et al., 2009; Dissman et al., 2013). The Akaike 166 

Information Criterion (AIC, Stoica and Selen, 2004) is used to select, for each spatial cell, the best 167 

fitting copula among the wide range of families available. The main properties of some relevant 168 

copulas are reported in Table 1, as they will be useful to interpret the successive results. 169 

In particular, from the data in Table 1 it is important to highlight how the BB7 copula is a 170 

combination of the Joe and Clayton, of which it inherits the tail-dependences, and how the TD 171 

behavior of a copula can be inverted (i.e., the upper tail-dependence can become the lower and 172 

vice versa) by simply considering the reciprocal marginals (commonly known as rotated forms, 173 

identified by the suffix 180). 174 

 175 

 176 
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Table 1. Main copulas analyzed in this study and their coefficients for the upper and lower tail-177 

dependences (L and U, respectively). 178 

Copula L U 

Gaussian 0 0 

Student-t 

  

Gumbel 0 
 

Clayton 
 

0 

Joe 0 
 

BB7 
  

 179 

Even if a copula is selected as the optimal based on the AIC, this does not necessarily 180 

exclude that other copulas may perform similarly. For this reason, we introduced a further test 181 

based on the relative likelihood criterion (Burnham and Anderson, 2002), , 182 

to establish the likelihood that an AIC value of a given copula (AICi) is statistically significantly 183 

different that the minimum value (AICmin) obtained for the optimal solution. 184 

2.3 Random forest classification of selected copulas 185 

The interpretation of the selected copula functions may help highlighting the transferability of the 186 

observed results over different contexts. For this reason, the observed spatial distribution is 187 

analyzed through a random forest classifier (Breiman, 2001), in order to find evidences of 188 

reproducible patterns beyond simple chance. 189 

As input features we consider a set of commonly available variables, such as: ground 190 

elevation, annual average temperature, annual total precipitation, precipitation seasonality (ratio 191 

between total precipitation in warm and cold months), annual average Normalized Difference 192 

Vegetation Index (NDVI), annual average soil moisture, and soil type. As hyperparameters for the 193 

random forest, we tuned the number of trees (ntree) and the number of features randomly sampled 194 

at each split (mtry) using the “randomForest” R package (Breiman, 2001).  195 
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3. Results 196 

A preliminary analysis of the degree of correlation between the monthly empirical frequencies of 197 

3-month precipitation and soil moisture is tested on the full timeseries of each grid cell using the 198 

non-parametric Kendall rank correlation coefficient (also known as Kendall’s ), as depicted in 199 

Fig. 1 for the entire European domain. 200 

 201 

Fig. 1. Spatial distribution of the Kendall’s  between monthly empirical frequencies of 3-month 202 

precipitation and soil moisture. Roughly, values lower than 0.1 are not statistically significant at p 203 

= 0.05 (two-tails). 204 

 205 

 The results reported in Fig. 1 confirms the expected direct relation between the two 206 

quantities, with a relatively homogeneous distribution of medium/high correlation  values 207 

between 0.3 and 0.5 ( = 0.42±0.1). Limited regions with low (and sometime even slightly 208 

negative)  values are sporadically observed, mostly concentrated over the Alps, Iceland and the 209 

coldest regions of the Scandinavia peninsula. Correlations over these regions are likely affected 210 
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by the presence of snow coverage during extended periods of the year. Overall, the observed 211 

values cannot be considered statistically significant (at p = 0.05) only for less than 2% of the 212 

domain. 213 

 The analysis of the non-parametric tail-dependence values is summarized in the plot 214 

depicted in Fig. 2, where the cumulative frequency of the difference between the empirical L and 215 

U values is reported. Symmetric behaviors in Fig. 2 can be identified by setting a maximum value 216 

for |L - U|. To identify this threshold, non-parametric TDs were re-computed on shuffled time 217 

series (to artificially reconstruct conditions of null tail-dependencies), and the |L - U| value 218 

corresponding to a cumulative frequency of 90% of the grid cells after the shuffling was detected 219 

as threshold, corresponding to 0.1. 220 

The plot in Fig. 2 highlights how the majority (about 50%) of the grid cells can be 221 

considered characterized by a symmetric behavior in the tail-dependence (|L - U| < 0.1), whereas 222 

the rest of the grid cells are almost equally split between a predominance of the Upper Tail-223 

Dependence (UTD, corresponding to negative differences) or a predominance of Lower Tail-224 

Dependence (LTD, positive differences). 225 

 226 

 227 

Fig. 2. Analysis of the frequency of the empirical tail-dependences. The plot shows the cumulative 228 

frequency distribution of the differences between the empirical L and U values computed 229 

according to Schmidt and Stadtmueller (2006). The domain with a roughly symmetric behavior 230 

(|L - U| < 0.1) is highlighted by the grey box area. 231 
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  232 

The results reported in Fig. 2 were used to divide the entire domain in three categories 233 

(symmetric, LTD and UTD) as depicted in Fig. 3. This map shows evidence of some coherent 234 

spatial patters, such as the predominance of LTD in southern France, southern Italy, northern 235 

Germany and Denmark, and western Ukraine (among others), and a clustering of UTD in Poland, 236 

Czech Republic, southern Scandinavia, and Greece. The symmetric condition seems overall more 237 

spread across the entire domain, also thanks to the higher frequency, with a slightly predominance 238 

over northern Europe (i.e., northern Scandinavian peninsula and Iceland). 239 

 240 

 241 

Fig. 3. Spatial distribution of the three categories derived from the differences in the empirical tail-242 

dependencies.  243 

  244 
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Given the results observed in terms of tail-dependence, is it useful to focus on the capability 245 

to reproduce such patterns instead of finding the single copula that can perform reasonably well 246 

over the entire domain. Indeed, the search for the optimal copula based on the minimum AIC 247 

returns the BB7 as the optimal solution in about 80% of the domain (not shown). This result is 248 

thanks to the flexibility of its formulation (derived as a combination of two purely asymmetric 249 

functions), which allows reproducing both symmetric and asymmetric tail-dependencies 250 

depending on the values assumed by the two parameters. However, the fact that a single flexible 251 

copula works well over a large range of conditions may hide the key spatial patterns observed in 252 

TD, which can be highlighted instead by adopting a limited number of more common copulas 253 

specialized in reproducing specific behaviors. 254 

 By limiting the search to a subset of copula functions, comprising only purely symmetric 255 

or purely asymmetric tail behaviors, more interesting results are obtained, as summarized by the 256 

frequency plot in Fig. 4. The grid cells where symmetric tail behavior copulas are selected as 257 

optimal are about 55% of the domain (see Fig. 4b), with a predominance of Student-t copula but 258 

also with a non-negligible fraction of cells (23%) where the Gaussian (symmetric and without tail-259 

dependences) is chosen (see Fig. 4a). The remaining grid cells are almost equally split between 260 

upper and lower tail-dependences, with Gumbel (and its rotated counterpart, Gumbel 180) as the 261 

most selected among the asymmetric options. 262 

 263 

 264 

Fig. 4. Frequency of the optimal copulas based on the minimum AIC. The barplot in panel a) 265 

shows the frequency for each copula, whereas the box in panel b) reports a synthetic description 266 

of the subdivision of the entire domain among the 4 most frequent copulas.    267 

 268 
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 The spatial distribution of these optimal copulas (Fig. 5) confirms most of the patterns 269 

observed in Fig. 3, as a further confirmation that a rather limited range of simple copula functions 270 

is able to capture the overall dynamics of dependence between precipitation and soil moisture over 271 

the entire European domain. Despite the observed spatial clusters in the obtained optimal copulas, 272 

the overall patterns observed in Fig. 5 are still rather noisy and may be difficult to interpret. This 273 

erratic behavior can be partially explained by the fact that different copulas may perform quite 274 

similarly over some grid cells, hence the AIC of the optimal copula (AICmin) may not differ 275 

significantly from the AIC of other functions. 276 

 277 

Fig. 5. Spatial distribution of the optimal copulas obtained by minimizing the AIC. The symmetric 278 

tail behavior class includes both Gaussian and Student-t copulas.  279 

 280 

To further investigate this hypothesis, we evaluated the possibility to replace the optimal 281 

copulas with either a Student-t or a Gumbel (direct and rotated) over the entire domain. The 282 
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Gaussian copula was excluded from this analysis under the assumption that the no tail-dependence 283 

of the Gaussian can be adequately reproduced by the Student-t with a small enough tail-284 

dependence. The plots in Fig. 6 reports the relative likelihood for the Student-t (panel a) and 285 

Gumbel families (panel b) compared to the locally selected optimal copulas. Low values of this 286 

metric correspond to conditions where the optimal copula cannot be replaced by the alternative 287 

function (being either the Student-t or the Gumbel). 288 

 289 

 290 

Fig. 6. Frequency analysis of the relative likelihood computed between the optimal AIC (AICmin) 291 

and: a) Student-t (AICt), or b) Gumbel (AICg) families. The grid cells where either the Student-t 292 

or the Gumbel was already the optimal solution were excluded from the respective frequency 293 

analysis. 294 

  295 

The results in Fig. 6 show that, if we assume a relative likelihood of 0.1 as a threshold to 296 

detect a statistically significant difference, the Student-t cannot reasonably replace the local 297 

optimal copula in about 18% of the entire domain, whereas this fraction is about 17% for the 298 

Gumbel family. It is also possible to observe how the Gumbel family is the optimal copula in 299 

almost the totality (about 99%) of the grid cells where the Student-t is not a suitable replacement 300 

of the local optimal, whereas almost only symmetric copulas (63% Student-t and 34% Gaussian) 301 

are the optimal functions where the Gumbel family is not a suitable replacement. Overall, these 302 

results suggest that the selection of the optimal copula is “univocal” (i.e. cannot be reasonably 303 

replaced by another function) in about 35% (18+17) of the domain, whereas either the Student-t 304 

or the Gumbel families can be adopted in the remain fraction of the domain with similar 305 

performances in terms of AIC. It is worth mentioning how this analysis confirms the assumption 306 
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that all the areas where the Gaussian was chosen as optimal copula can be satisfactory modeled 307 

also by using the Student-t (i.e. without a statistically significant increase in AIC). 308 

 309 

 310 

Fig. 7. Spatial distribution of the grid cells where the selection of the optimal copula is “univocal” 311 

according to the relative likelihood criterion. 312 

 313 

The “univocal” areas derived from the previous analysis are mapped in Fig. 7, highlighting 314 

some of the more consistent spatial clusters already observed in both Figs. 3 and 5, as well as a 315 

large fraction of cells in northern Europe where a “univocal” optimal copula cannot be selected. 316 

These grid cells with “univocal” copula are used as a starting point for the random forest 317 

classification, given the robustness in their signal. 318 

A sample of 25% of the “univocal” grid cells (corresponding to about 8% of the entire 319 

domain) was used to train the random forest, adopting a number of trees (ntree) of 80 and a single 320 
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feature randomly sampled at each split (mtry = 1). The training size and minimum values of 321 

hyperparameters were chosen to reduce the problem of overfitting. Among the possible features, 322 

three variables were selected by analyzing the variable importance plots, as well as the ease of 323 

access: annual average temperature, annual total precipitation, and precipitation seasonality. The 324 

trained classifier was then applied to the testing subset (the remaining 75% of the “univocal” grid 325 

cells) and the outcomes were analyzed by mean of a confusion matrix, which results are 326 

summarized in Table 2. Overall, the obtained classification has a very satisfactory matching with 327 

the test subset, with a general high accuracy (ACC = 0.86) and with all the metrics pointing toward 328 

a significant improving in the performance compared to the reference No-Information-Rate (NIR) 329 

(i.e., small p-values) and a high probability to have correct modeled values compared to simple 330 

chance (i.e., high Cohen’s K).   331 

 332 

Table 2. Summary of the confusion matrix analysis applied to the trained random forest on the 333 

testing subset. 334 

Accuracy (ACC) 0.86 

No-Information-Rate (NIR) 0.50 

p-value (ACC > NIR) < 2.2 × 10-16 

McNemar’s test p-value 3.44 × 10-5 

Cohen’s kappa statistic (K) 0.78 

 335 

https://doi.org/10.5194/egusphere-2023-1318
Preprint. Discussion started: 28 June 2023
c© Author(s) 2023. CC BY 4.0 License.



 

16 

 336 

Fig. 8. Map of the optimal copula as modeled by the trained random forest classifier.  337 

 338 

Finally, the trained classifier was extended to the entire domain to obtain a classification 339 

of the entire European domain in term of the expected optimal copula and TD behavior. This map, 340 

reported in Fig. 8, bears a strong resemblance to both the empirically-derived map in Fig. 3 and 341 

the optimal AIC fitting in Fig. 5. Beside this overall agreement, some notable discrepancies can 342 

be observed over northern Scandinavia and Iceland, two regions where low Kendall’s  and a small 343 

fraction of “univocal” selected copulas were already identified. 344 

 345 

4. Discussion 346 

The overarching goal of the study is to investigate the joint probability of two variables 347 

aiming at capturing agricultural drought conditions, hence the overall agreement between these 348 

two quantities is a fundamental prerequisite. The expected direct relationship between 3-month 349 
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cumulated precipitation and soil moisture, as both SPI-3 and SMA are similarly-used agricultural 350 

drought indices, can be seen as a first clue for the identification of the most suitable set of copula 351 

families (Salvadori et al., 2007; Genest et al., 2007). This behavior is overall confirmed by the 352 

positive Kendall’s  values observed over most of the domain ( = 0.42±0.1). Moderately high 353 

correlation values were observed between precipitation and soil moisture also in other studies. 354 

Kwon et al. (2018) reporting Pearson’s r values between 0.4 and 0.6 for 55 stations in South Korea, 355 

albeit with seasonal patterns; Gaona et al. (2022) reported similar values over the Ebro basin with 356 

both land-surface modeled and satellite soil moisture, and Sepulcre-Cantó et al. (2012) obtained 357 

an average value of r of about 0.6 over nine stations across Europe. 358 

Sehler et al. (2019) studied the correlation between remote sensing-based precipitation and 359 

soil moisture, finding moderate correlation over southern Europe, and a weak (often not 360 

significant) correlation in central Europe. However, central Europe is close to the upper limit of 361 

the analyzed remote sensing products, which can explain such low performance. Limited 362 

correlation even among different soil moisture products has been observed in northern Europe in 363 

other studies (Almenda-Martín et al., 2022), confirming the difficulty to model the soil moisture 364 

dynamics over this region.  365 

The obtained values for the Kendall’s  fall in a somewhat optimal range for the analysis 366 

of the joint probability, since  values are statistically significant almost everywhere (i.e., 367 

consistency in the produced outcomes) but not too high to make meaningless any joint use of the 368 

two datasets (i.e., too similar products). 369 

Even more interesting is the outcome of the tail-dependence analysis, given the role that 370 

such quantity, and in particular the low-tail, plays in the detection of drought extreme events. The 371 

TD investigation is sometime overlooked in multivariate drought analyses, where previous studies 372 

often focused on optimizing the copula to the local data without analyzing the empirical TD and 373 

the implications for the modeling of drought conditions. Indeed, TD is rarely the focus of extensive 374 

analyses, such as the one reported in this study for the entire Europe, and previous references in 375 

the scientific literature for precipitation and soil moisture are rather scarce. 376 

As an example, Manning et al. (2018) performed a very detailed analysis over 11 FluxNet 377 

sites in Europe on the role of precipitation and evapotranspiration on soil moisture drought, based 378 

on pair copula constructions, but the authors did not provide any indication on which bivariate 379 

copula was the optimal for each site. Kwon et al. (2018) reported that Frank copula was the most 380 
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frequent optimal choice in their study over South Korea, but some clear spatial patterns were also 381 

observed in their outcomes, with Frank being the selected copula mostly in the central area, but 382 

also Gumbel and Student-t performing the best in the southern and eastern coasts, respectively. 383 

Dash et al. (2019) found Frank (among the Archimedean copulas) working the best for 3-384 

month precipitation and soil moisture over an Indian basin, while Hao and AghaKouchak (2013) 385 

highlighted the good performance of Frank and Gumbel in five regions in California, even if 386 

neither Gaussian nor Student-t were considered. In all these applications, no specific 387 

considerations on the observed TD behaviors were reported, even if a common trend seems to be 388 

the good performance of Frank copula, which is in contrast with our results, where the Frank was 389 

very rarely selected as optimal (less than 1% of the domain). A possible explanation of these results 390 

may be our focus on empirical marginal frequencies rather than theoretical ones, given the well-391 

documented increasing uncertainty in parametric fitting in the tails (Farahmand and 392 

AghaKouchak, 2015; Laimighofer and Laaha, 2022). As a possible confirmation of this 393 

hypothesis, a good performance of Gumbel and Gaussian has been observed over Iran by Bateni 394 

et al. (2018), similarly to our results, when a nonparametric form for SPI and SSI (Standardized 395 

Soil Moisture Index) was used.  396 

The absence of a strict standard procedure to investigate tail-dependence may be another 397 

factor affecting the limited focus on the topic of drought studies. Non-parametric TD has the clear 398 

advantage to avoid any alteration of the data due to the fitting procedure, but the outcomes in this 399 

study also show a high degree of spatial noise likely due to the intrinsic nature of non-parametric 400 

analyses, as well as to the limited sample size which affects the estimates of TD.  For this last issue 401 

see also the illustration 3.18 in Salvadori et al. (2007). The threshold used here to define a 402 

symmetric behavior, based on a random shuffling of the data, seems to successfully overcome the 403 

difficulty to define a self-consistent maximum difference in TDs.   404 

The fitting of parametric copula functions returns more consistent spatial patters in our 405 

study, but evidence on the absence of “univocal” fittings can be observed, as well as some 406 

contrasting results compared to the non-parametric TD especially over northern Europe (areas with 407 

low correlation). The grid cells where a given copula clearly outperforms the alternative options 408 

is limited to roughly 1/3 of the domain, further stressing the evidence that clear-cut outcomes are 409 

difficult to infer. In this regard, it seems reasonable to infer that only a critical concerted analysis 410 
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of both parametric and non-parametric TDs can return robust indications based on a converge of 411 

evidence.  412 

A clear outcome of our study is the predominance of regions with symmetric tail-413 

dependences, where the Student-t copula is suitable to reproduce the joint probability of 414 

precipitation and soil moisture. An even split of the remaining domain between areas with either 415 

lower or upper tail-dependence only is also observed, where the Gumbel copula (in either is direct 416 

or 180 rotated forms) is proven to be a suitable option. These results are crucial in defining the 417 

role of precipitation and soil moisture datasets in detecting drought events, and to which extent 418 

they can work in synergy in a drought monitoring system. In fact, while the correlation between 419 

the two datasets highlights the extent of their overall agreement, which in this study was somewhat 420 

uniform across most of the domain, very different degrees of consistency can be obtained for 421 

similar Kendall’s  if the TDs differ substantially. Regions with high LTD will have a high 422 

agreement in the detection of drought extremes, hence a low number of false alarm and a higher 423 

signal-to-noise ratio is expected.  424 

In this regard, regions such as southern France, northern UK, northern Germany and 425 

Denmark, where a strong LTD is observed, are appropriate candidates for a robust assessment of 426 

agricultural drought conditions based on a joint precipitation-soil moisture index, whereas some 427 

regions in central Europe (i.e., Poland, Czech Republic, Switzerland) may not equally benefit from 428 

the use of a joint index due to the absence of LTD.   429 

Overall, the fact that the copula fittings confirm most of the non-parametric TD patterns 430 

suggests that a parametric approach is suitable for an operational implementation of a 431 

precipitation-soil moisture joint drought index over most of Europe, as well as a tool to provide 432 

meaningful insight on the potentiality of joint probability as detector of extreme droughts. 433 

Even if, at first glance, it may seem difficult to assign a meaningful explanation for the 434 

observed spatial patterns in LTD and UTD, the proven possibility to reasonably reconstruct these 435 

spatial patterns with a random forest classifier, starting from only a small sample of robust training 436 

data (less than 10% of the domain) and with common driving features, suggests that the observed 437 

clusters are unlikely to be caused only by chance and that hidden structures may be present and 438 

further explored. This result is encouraging for an extension of the derived considerations to other 439 

spatial regions of the world. 440 

 441 
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5. Summary and Conclusions 442 

The use of combined indices based on copula seems a promising development in the field of 443 

drought detection and monitoring. In this study, we analyzed the joint probability of two quantities 444 

commonly used to derive drought indices, 3-month cumulated precipitation and soil moisture, with 445 

a special focus on the probabilistic characteristics that are key for their usage in agricultural 446 

drought analyses. 447 

The overall agreement in the marginal probability of the two variables suggests that they 448 

are indeed valid candidates for the development of a joint drought index over the European domain. 449 

However, an in-depth analysis of the tail-dependence, derived with both non-parametric and 450 

parametric approaches, shows some clear spatial patterns, which have direct repercussion on the 451 

capability of such data to provide robust estimates of the extremes. In this regard, regions such as 452 

southern France, northern UK, northern Germany, and Denmark may benefit more from the joint 453 

use of the two variables thanks to the observed strong low tail-dependence. The joint dependence 454 

of precipitation and soil moisture is well reproduced using three commonly-used copulas (Student-455 

t, Gumbel and 180 rotated Gumbel), which spatial patterns were successfully reconstructed with a 456 

random forest classification, suggesting the presence of a structure in the outcomes not related to 457 

chance.   458 
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