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Abstract. The joint probability of precipitation and soil moisture is here investigated over Europe 7 

with the goal to extrapolate meaningful insights on the potential joint use of these variables for the 8 

detection of agricultural droughts within a multivariate probabilistic modeling framework. The use 9 

of copulas is explored, being the framework often used in hydrological studies for the analysis of 10 

bivariate distributions. The analysis is performed for the period 1996-2020 on the empirical 11 

frequencies derived from ERA5 precipitation and LISFLOOD soil moisture datasets, both 12 

available as part of the Copernicus European Drought Observatory. The results show an overall 13 

good correlation between the two standardized series (Kendall’s � = 0.42±0.1), but also clear 14 

spatial patterns in the tail-dependence derived with both non-parametric and parametric 15 

approaches. About half of the domain shows symmetric tail-dependence, well reproduced by the 16 
Student-t copula; whereas the rest of the domain is almost equally split between low and high tail-17 

dependences (both modeled with the Gumbel family of copulas). These spatial patterns are 18 

reasonably reproduced by a random forest classifier, suggesting that this outcome is not driven by 19 

chance. This study stresses how a joint use of standardized precipitation and soil moisture for 20 

agriculture drought characterization may be beneficial in areas with strong low tail-dependence, 21 
and how this behavior should be carefully considered in multivariate drought studies.22 
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1. Introduction 23 

Agricultural drought, defined as a condition of unusually high precipitation shortages and/or soil 24 

water deficits causing adverse effects on crop yields and production (Panu and Sharma, 2002), is 25 

probably the most recognized of the four main drought types or phases (Wilhite and Glantz, 1985). 26 

This is mainly due to the more direct and easier to understand impacts compared to the other types 27 

of droughts (Mishra and Singh, 2010). The scientific literature on agricultural drought provides a 28 

large variety of indices (WMO and GWP, 2016), with the aim of reproducing the temporal 29 

dynamics of crop water deficit through a combination of climatic observations, hydrological 30 

modeling, and remote sensing data (Zargar et al., 2011).  31 

The difficulty in capturing the multi-facet nature of agricultural drought events across the 32 

world with a single approach (Sivakumar et al., 2011) is confirmed by the absence of consensus 33 

in the scientific literature on the most reliable agricultural drought index. Despite the large range 34 

of available indices, some common characteristics can be identified, such as the focus on some 35 

proxy variables of plant water availability – through soil moisture (Dutra et al., 2008), actual 36 

evapotranspiration (Anderson et al., 2011) or basic meteorological information (Vicente-Serrano 37 

et al., 2010) – and the need to account for deviations from long-term conditions (i.e., use of 38 

standardized anomalies). 39 

Meteorological drought indicators computed on appropriate aggregation time scales 40 

(McKee et al., 1993; Vicente-Serrano et al., 2010) have demonstrated a good capability to 41 

represent agricultural drought conditions in several case studies (e.g., Bachmair et al., 2018; 42 

Mohammed et al., 2022; Tian et al., 2018). They have been successfully integrated in a number of 43 

operational drought monitoring systems, thanks to their minimal input data requirement and ease 44 

of use. Among those indices, the Standardized Precipitation Index (SPI, McKee et al., 1993) 45 

computed on short-to-medium aggregation periods (i.e., SPI-3 and -6) is often adopted as a suitable 46 

proxy variable for agricultural droughts (WMO, 2012). 47 

As highlighted by Sheffield and Wood (2007), simplified indices for drought monitoring, 48 

such as the Palmer Drought Severity index (PDSI; Palmer, 1965) or the previously mentioned 49 

meteorological indicators, have been slowly integrated with indices directly based on modeled soil 50 

moisture data. This transition is fostered by the increasing availability worldwide of process-based 51 

hydrological models. Soil moisture percentile, or similarly standardized quantities, are often used 52 

for this scope (Mo and Lettenmeier, 2013; Xia et al., 2014). The ever-growing records of remote 53 
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sensing-based estimates of soil moisture are becoming an additional data source to support the 54 

development of dedicated soil moisture-based drought indices (Cammalleri et al., 2017; Carrão et 55 

al., 2016).  56 

In the context of agricultural drought, an overall good agreement between SPI and soil 57 

moisture indices has been demonstrated over a large range of agricultural practices, crop types and 58 

climatic conditions. Halwatura et al. (2017) showed how SPI-3 represents a good approximation 59 

of modeled soil moisture over three different climatic regions in eastern Australia. Sims et al. 60 

(2002) found high correlation between short-term precipitation deficit and soil moisture variations 61 

in North Carolina, while Ji and Peters (2003) highlighted the high correlation between SPI-3 and 62 

vegetation growth over croplands and grasslands in the U.S. Great Plains. Wang et al. (2015) 63 

observed a good matching between soil moisture dynamics and SPI at the scale of 1-3 months 64 

when testing various indices over China. In Europe, Manning et al. (2018) highlighted how 65 

precipitation is the main driver of soil moisture droughts for a set of both dry and wet sites.    66 

In spite of the above-mentioned consistencies, the outcome of any drought analysis is 67 

inevitably affected by the index selected to characterize drought conditions over a certain study 68 

region, as also highlighted by Quiring and Papakryiakou (2003) in testing different indices over 69 

the Canadian prairies. These authors suggest that a variety of drought indices should always be 70 

tested to determine the most appropriate one for a given application. It follows that the synergy 71 

between multiple indices can be exploited by the use of multivariate indicators (Hao and Singh, 72 

2015), a family of approaches that encompasses a variety of merging strategies, including 73 

combined cascading indices (Cammalleri et al., 2021a; Rembold et al., 2019), composite and 74 

integrated approaches (Brown et al., 2008; Svoboda et al., 2002), and joint probability functions 75 

(Bateni et al., 2018; Hao and AghaKouchak, 2013; Kanthavel et al., 2022). 76 

The latter category, in particular, aims at capturing the complex statistical dependence 77 

among different drought-related variables (Hao and Singh, 2015), and it has seen a growing 78 

relevance in many hydrological applications thanks to the introduction of copula functions and 79 

their ability to model a wide range of dependence structures (Nelsen, 2006; Salvadori et al., 2007; 80 

Joe, 2015). In the field of drought indices, the approach proposed by Kao and Govindaraju (2010) 81 

for the computation of the Joint Deficit Index (JDI) has been applied to a variety of drought-related 82 

quantities over different regions, often including precipitation and soil moisture (i.e., Dash et al., 83 

2019; Kwon et al., 2019). 84 
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A key feature in using joint probability is the possibility to characterize the so-called tail-85 

dependence (TD), namely the asymptotical dependence of the extremes (Frahm et al., 2005). While 86 

TD has received large attention in the scientific literature of hydrological extremes (e.g., 87 

Aghakouchak et al., 2010; Poulin et al., 2007; Serinaldi, 2008), its use is largely unexploited in  88 

studies focusing on combined drought indices.   89 

Studies on the marginal distribution of either precipitation or soil moisture usually adopt 90 

the Gamma distribution for precipitation and the Beta distribution for soil moisture. The use of the 91 

Gamma family for the implementation of the SPI at different accumulation periods has become a 92 

standard practice in many applications (e.g., Mo and Lyon, 2015; Yuan and Wood, 2013). While 93 

other distributions have also proven to be reliable, such as the exponentiated Weibull (Pieper et 94 

al., 2020) and the Person Type III (Ribeiro and Pires, 2016), fitting the Gamma is still the most 95 

adopted approach. Over Europe, Stagge et al. (2015) demonstrated how the Gamma outperformed 96 

the other tested distributions across all accumulation periods and regions.  97 

A more limited number of applications based on soil moisture data are available in the 98 

scientific literature compared to SPI. The use of the Beta distribution for soil moisture data has 99 

been introduced as early as the late ‘70s, with the pioneer study of Ravelo and Decker (1979), 100 

following the consideration that soil moisture is a double-bounded quantity, ranging between 101 

residual and saturation. Sheffield et al. (2004) successfully applied this standardization for drought 102 

analyses over the US, while the same distribution has been adopted by Cammalleri et al. (2016) 103 

on modeled data over Europe. Most recently, the Beta distribution was also used to characterize 104 

the frequency of global satellite soil moisture data (Sadri et al., 2020). 105 

Conversely, no standard approaches have been identified for the application of copulas to 106 

model the bivariate joint distribution of precipitation and soil moisture, mainly due to the large 107 

variety of probabilistic structures than may be observed between these two quantities. Common 108 

fitting strategies rely on the application of various copula families to identify the optimal for each 109 

specific site (e.g., Hao and AghaKouchak, 2013), or are based on an a-priori selection of a copula 110 

family following empirical evidence (e.g., Dixit and Jayakumar, 2021). Independently from the 111 

selection strategy, the adopted copula implicitly assumes an underling TD behavior, which 112 

influence on extreme detection should be properly accounted. 113 

A comprehensive study on the joint probabilistic dynamics of precipitation and soil 114 

moisture is currently lacking in the scientific literature of multivariate drought modeling. Hence, 115 
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the main goal of this study is to fill this gap, by investigating the mutual relationship between the 116 

empirical frequencies of precipitation (cumulated over 3 months, as for SPI-3) and soil moisture 117 

datasets as available over Europe as part of the European Drought Observatory of the Copernicus 118 

Emergency Management Service (EDO, https://edo.jrc.ec.europa.eu). 119 

A large set of copulas is tested for this purpose across the entire European domain, to 120 

identify an optimal modeling of the dependence especially in proximity of the tails (given its major 121 

role in extreme detection). The spatial distribution of the results is analyzed to infer evidence of 122 

common patterns and behavior, which may support future operational applications based on 123 

similar parametric approaches. 124 

125 

2. Materials and Methods 126 

2.1 Precipitation and soil moisture datasets 127 

The study focuses on Europe and makes use of the dataset of indicators available over the region 128 

as part of EDO. Precipitation data accumulated over consecutive 3-month periods are used here, 129 

as the quantity at the base of the SPI-3 index. Hourly total precipitation maps from the ECMWF 130 

ERA5 global atmospheric reanalysis model (https://www.ecmwf.int/en/forecasts/dataset/ecmwf-131 

reanalysis-v5) are collected through the Copernicus Climate Change Service (C3S, 132 

https://climate.copernicus.eu/) and cumulated at monthly updates (no missing values are present 133 

in the reanalysis dataset). This dataset has proven to be quite reliable over Europe for drought 134 

analyses (e.g., Cammalleri et al., 2021b; van der Wiel et al., 2022), as it is currently employed in 135 

near-real time as part of the operational tools of EDO. Empirical frequencies of 3-month 136 

precipitation are derived from the rainfall records, in order to obtain a non-parametric calculation 137 

of the standardized anomaly, SPI-3, without the possible artifact introduced by the fitting of a 138 

theoretical distribution (i.e., Gamma distribution) (see Soľáková et al., 2014). From here on, we 139 

will refer to this dataset as standardized precipitation. 140 

Soil moisture records over the entire European domain are derived from the simulations of 141 

the LISFLOOD distributed hydrological rainfall–runoff model (de Roo et al., 2000). LISFLOOD 142 

runs in near-real time as part of the European Flood Awareness System (Thielen et al., 2009), and 143 

it provides daily soil moisture maps for the root zone at a spatial resolution of 5-km. Daily modeled 144 

data are averaged at monthly scale and converted into a Soil Moisture Index (SMI) as in 145 

Seneviratne et al. (2010). The model is calibrated and validated over an extensive network of river 146 
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 A large variety of parametric formulations has been introduced in the literature to explicitly 177 

link the marginal distributions to the joint probability, with some of the most common copula 178 

families used in hydrology belonging to the Elliptical and Archimedean copulas (Chen and Guo, 179 

2019). Two measures of dependence play a major role in parametric copula inference. The Kendall 180 

rank correlation coefficient (�) is commonly used as a non-parametric measure of overall ordinal 181 

association, while the so-called Tail-Dependence (TD) coefficients (Salvadori et al., 2007) are 182 

used to estimate the asymptotical degree of dependence in the upper and lower extremes (upper 183 

tail-dependence, �U, and lower tail-dependence, �L, respectively). The estimation of TD non-184 

parametrically is not an easy task, as highlighted by Serinaldi et al. (2015), as it aims at assessing 185 

an asymptotic behavior from a finite sample. Several formulations are proposed in the scientific 186 

literature (see Frahm et al., 2005), and the method proposed by Schmidt and Stadtmueller (2006) 187 

is here used to obtain non-parametric estimates of both TD coefficients. 188 

In this study, the parametric bivariate probability of standardized precipitation and soil 189 

moisture is assessed by using the R package “VineCopula” (Aas et al., 2009; Dissman et al., 2013). 190 

The Akaike Information Criterion (AIC, Stoica and Selen, 2004) is used to select, for each spatial 191 

grid cell, the best fitting copula among the wide range of families available in the package. The 192 

main properties of some relevant copulas are reported in Table 1, as they will be useful to interpret 193 

the successive results. 194 

In particular, from the data in Table 1 it is important to highlight how the BB7 copula is a 195 

combination of Joe and Clayton copulas, of which it inherits the tail-dependences, and how the 196 

TD behavior of a copula can be inverted (i.e., the upper tail-dependence can become the lower and 197 

vice versa) by simply considering the reciprocal marginals (commonly known as rotated forms, 198 

identified by the suffix 180). Information from both non-parametric and parametric approaches are 199 

here jointly used to discriminate between different TD behaviors.   200 

201 

202 

Table 1. Main copulas analyzed in this study and their upper and lower tail-dependence 203 

coefficients (�L and �U, respectively). 204 

Copula �L �U

Gaussian 0 0 
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timeseries of each grid cell using the Kendall’s �, as depicted in Fig. 1 for the entire European 225 

domain. 226 

227 

Fig. 1. Spatial distribution of the Kendall’s � between monthly standardized 3-month precipitation 228 

and soil moisture. Roughly, values lower than 0.1 are not statistically significant at p = 0.05 (two-229 

tails). 230 

231 

 The results reported in Fig. 1 confirms the expected direct relation between the two 232 

variables, with a relatively homogeneous distribution of medium/high (between 0.3 and 0.5) �233 

values (� = 0.42±0.1). Limited regions with low (and sometimes even slightly negative) � values 234 

are sporadically observed, mostly over the Alps, Iceland and the coldest regions of the Scandinavia 235 

peninsula. Low correlations over these regions are likely related to the presence of snow coverage 236 

during extended periods of the year. Overall, the observed ��values cannot be considered 237 

statistically significant (at p = 0.05) only for less than 2% of the domain. 238 
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 The analysis of the non-parametric tail-dependence values is summarized in the plot 239 

depicted in Fig. 2, where the cumulative frequency of the difference between the empirical �L and 240 

�U values is reported. The range of TD values in Fig. 2 for which it is possible to exclude significant 241 

asymmetry in the tail dependence coefficients is identified by setting a maximum value for |�L - 242 

�U|. To define this threshold, the non-parametric TD coefficients were re-computed on shuffled 243 

time series (to artificially reconstruct conditions of null dependence), and the |�L - �U| value 244 

corresponding to a cumulative frequency of 90% of the grid cells after the shuffling was detected 245 

as threshold, corresponding to a value of 0.1. This value can be seen as a lower limit to identify 246 

symmetric dependence.  247 

The plot in Fig. 2 highlights how the majority (about 50%) of the grid cells can be 248 

considered characterized by a symmetric behavior in the tail-dependence coefficients according to 249 

the above mentioned criterion (|�L - �U| < 0.1), whereas the rest of the grid cells are almost equally 250 

split between a predominance of the Upper Tail-Dependence (UTD, corresponding to negative 251 

differences) or a predominance of Lower Tail-Dependence (LTD, positive differences). 252 

253 

254 

Fig. 2. Analysis of the frequency of the empirical tail-dependence coefficients. The plot shows the 255 

cumulative frequency distribution of the differences between the empirical �L and �U values 256 

computed according to Schmidt and Stadtmueller (2006). The domain with a roughly symmetric 257 

behavior (|�L - �U| < 0.1) is highlighted by the grey box area. 258 

259 
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The results reported in Fig. 2 were used to divide the entire domain in three categories 260 

(symmetric, LTD and UTD) as depicted in Fig. 3. This map shows evidence of some coherent 261 

spatial patterns, such as the predominance of LTD in southern France, southern Italy, northern 262 

Germany and Denmark, and western Ukraine (among others), and a clustering of UTD in Poland, 263 

Czechia, southern Scandinavia, and Greece. The symmetric condition seems overall more spread 264 

across the entire domain, also thanks to the higher frequency, with a slightly predominance over 265 

northern Europe (i.e., northern Scandinavian peninsula and Iceland). 266 

267 

268 

Fig. 3. Spatial distribution of the three categories derived from the differences in the empirical tail-269 

dependence coefficients.  270 

271 

Given the results of the tail-dependence assessment, it is useful to focus the copula 272 

parametric analysis on the capability to reproduce such patterns instead of finding the single copula 273 
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that can perform reasonably well over the entire domain. Indeed, the search for the optimal copula 274 

based on the minimum AIC returns the BB7 as the optimal one in about 80% of the domain (not 275 

shown). This result is a consequence of the BB7 flexibility (being derived from a combination of 276 

two purely asymmetric functions), which allows reproducing both symmetric and asymmetric tail-277 

dependence coefficients according to the values assumed by the two parameters. However, the fact 278 

that a single flexible copula works well over a large range of conditions may hide the key spatial 279 

patterns observed in the TD analysis. These patterns may be better reproduced by adopting a 280 

limited number of more specialized copulas. 281 

 By limiting the search to a subset of copula functions, comprising only purely symmetric 282 

or purely asymmetric tail behaviors, more interesting results are obtained, as summarized by the 283 

frequency plot in Fig. 4. The grid cells where symmetric tail behavior copulas are selected as 284 

optimal are about 55% of the domain (see Fig. 4b), with a predominance of Student-t copula but 285 

also with a non-negligible fraction of cells (23%) where the Gaussian (symmetric and without tail-286 

dependence) is chosen (see Fig. 4a). The remaining grid cells are almost equally split between 287 

upper and lower tail-dependence, with Gumbel (and its rotated counterpart, Gumbel 180) as the 288 

most selected among the asymmetric options. 289 

290 

291 

Fig. 4. Frequency of the optimal copulas based on the minimum AIC. The barplot in panel a) 292 

shows the frequency of each copula, while the box in panel b) reports a compact description of the 293 

subdivision of the entire domain among the 4 most frequent copulas.    294 

295 

 The spatial distribution of these optimal copulas (Fig. 5) mostly agree with the patterns 296 

observed in Fig. 3, supporting the findings on the spatial distribution of TD coefficients. In 297 
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addition, this result further confirms that a rather limited range of simple copula functions is able 298 

to capture the overall dynamics of dependence between precipitation and soil moisture over the 299 

entire European domain. Despite the observed spatial clusters in the obtained optimal copulas, the 300 

overall patterns observed in Fig. 5 are still rather noisy and may be difficult to interpret. This erratic 301 

behavior can be partially explained by the fact that different copulas may perform quite similarly 302 

over some grid cells, hence the AIC of the optimal copula (AICmin) may not differ significantly 303 

from the AIC of other functions. 304 

305 

Fig. 5. Spatial distribution of the optimal copulas obtained by minimizing the AIC. The symmetric 306 

tail behavior class includes both Gaussian and Student-t copulas.  307 

308 

To further investigate this hypothesis, we evaluated the possibility to replace the optimal 309 

copulas with either a Student-t or a Gumbel (direct and rotated) over the entire domain. The 310 

Gaussian copula was excluded from this analysis under the assumption that the no tail-dependence 311 
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of the Gaussian can be adequately reproduced by the Student-t with a small enough tail-312 

dependence. The plots in Fig. 6 reports the relative likelihood for the Student-t (panel a) and 313 

Gumbel families (panel b) compared to the locally selected optimal copulas. Low values of this 314 

metric correspond to conditions where the optimal copula cannot be replaced by the alternative 315 

function (being either the Student-t or the Gumbel). 316 

317 

318 

Fig. 6. Frequency analysis of the relative likelihood computed between the optimal AIC (AICmin) 319 

and: a) Student-t (AICt), or b) Gumbel (AICg) families. The grid cells where either the Student-t 320 

or the Gumbel was already the optimal solution were excluded from the respective frequency 321 

analysis. 322 

323 

The results in Fig. 6 show that, if we assume a relative likelihood of 0.1 as a threshold to 324 

detect a statistically significant difference, the Student-t cannot reasonably replace the local 325 

optimal copula in about 18% of the entire domain (Fig. 6a), whereas this fraction is about 17% for 326 

the Gumbel family (Fig. 6b). It emerges that the Gumbel family is the optimal one in almost the 327 

totality (about 99%) of the grid cells where the Student-t is not a suitable replacement of the local 328 

optimal, whereas almost only symmetric copulas (63% Student-t and 34% Gaussian) are the 329 

optimal functions where the Gumbel family is not a suitable replacement. Overall, these results 330 

suggest that the selection of the optimal copula is “univocal” (i.e., cannot be reasonably replaced 331 

by another function) in about 35% (18+17) of the domain, whereas either the Student-t or the 332 

Gumbel families can be adopted in the remain fraction of the domain with similar performances 333 

in terms of AIC (and no clear TD behavior). This analysis also confirms the assumption that all 334 

the areas where the Gaussian was chosen as optimal copula can be satisfactory modeled by using 335 

the Student-t (i.e. without a statistically significant increase in AIC). 336 
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337 

338 

Fig. 7. Spatial distribution of the grid cells where the selection of the optimal copula is “univocal” 339 

according to the relative likelihood criterion. 340 

341 

The “univocal” areas derived from the previous analysis are mapped in Fig. 7, highlighting 342 

some of the more consistent spatial clusters already observed in both Figs. 3 and 5, as well as a 343 

large fraction of cells in northern Europe where a “univocal” optimal copula cannot be selected. 344 

These grid cells with “univocal” copula are used as a starting point for the random forest 345 

classification, given the robustness in their signal, and the agreement in the outcome of both 346 

parametric and non-parametric TD behaviors. 347 

A sample corresponding to 25% of the “univocal” grid cells (about 8% of the entire 348 

domain) was used to train the random forest, adopting a number of trees (ntree) of 80 and a single 349 

feature randomly sampled at each split (mtry = 1). The training size and the minimum values of 350 
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hyperparameters were chosen to reduce the problem of overfitting. Among the possible features, 351 

three variables were selected by analyzing the variable importance plots, as well as the ease of 352 

access: annual average temperature, annual total precipitation, and precipitation seasonality. The 353 

trained classifier was then applied to the testing subset (the remaining 75% of the “univocal” grid 354 

cells) and the outcomes were analyzed by mean of a confusion matrix, which results are 355 

summarized in Table 2. Overall, the obtained classification has a very satisfactory matching with 356 

the test subset, with a general high accuracy (ACC = 0.86) and with all the metrics pointing toward 357 

a significant improving in the performance compared to the reference No-Information-Rate (NIR) 358 

(i.e., small p-values) and a high probability to have correct modeled values compared to simple 359 

chance (i.e., high Cohen’s K).   360 

361 

Table 2. Summary of the confusion matrix analysis applied to the trained random forest on the 362 

testing subset. 363 

Accuracy (ACC) 0.86 

No-Information-Rate (NIR) 0.50 

p-value (ACC > NIR) < 2.2 × 10-16

McNemar’s test p-value 3.44 × 10-5

Cohen’s kappa statistic (K) 0.78 

364 
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365 

Fig. 8. Map of the optimal copula as modeled by the trained random forest classifier.  366 

367 

Finally, the trained classifier was applied to the entire dataset to obtain a classification of 368 

the European domain in term of the expected optimal copula and the corresponding TD behavior. 369 

This map, reported in Fig. 8, shows a strong resemblance to both the empirically-derived map in 370 

Fig. 3 and the optimal AIC fitting in Fig. 5. Beside this overall agreement, some notable 371 

discrepancies can be observed over northern Scandinavia and Iceland, two regions where low 372 

Kendall’s � and a small fraction of “univocal” selected copulas were already identified. 373 

374 

4. Discussion 375 

The overarching goal of the study is to investigate the joint probability of two standardized 376 

variables aiming at capturing agricultural drought conditions, hence the overall agreement between 377 

these two quantities is a fundamental prerequisite. A direct relationship between standardized 3-378 
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month cumulated precipitation and soil moisture is expected, since both SPI-3 and SMA are 379 

similarly-used agricultural drought indices, and this can support the identification of the most 380 

suitable set of copula families (Salvadori et al., 2007; Genest et al., 2007). This direct relationship 381 

is overall confirmed by the positive Kendall’s � values estimated over most of the domain (� = 382 

0.42±0.1). Moderately high correlation values of standardized precipitation and soil moisture were 383 

estimated also in other studies. Kwon et al. (2018) reported Pearson’s r values between 0.4 and 384 

0.6 for 55 stations in South Korea, albeit with seasonal patterns; Gaona et al. (2022) found similar 385 

values over the Ebro basin with both land-surface modeled and satellite soil moisture, and 386 

Sepulcre-Cantó et al. (2012) obtained an average value of r of about 0.6 over nine stations across 387 

Europe. 388 

Sehler et al. (2019) studied the correlation between remote sensing-based precipitation and 389 

soil moisture, finding moderate correlation over southern Europe, and a weak (often not 390 

significant) correlation in central Europe. However, central Europe is close to the upper limit of 391 

the analyzed remote sensing products, which can explain such low performance. Limited 392 

correlation even among different soil moisture products has been observed in northern Europe in 393 

other studies (Almenda-Martín et al., 2022), confirming the difficulty to model soil moisture 394 

dynamics over this region.  395 

The obtained values for the Kendall’s � fall in a somewhat optimal range for the analysis 396 

of the joint probability, since they are statistically significant almost everywhere (i.e., the two 397 

indices are to a certain degree consistent) but not too high to make meaningless any joint use of 398 

the two datasets (i.e., the two indices are too similar and provide the same information). 399 

The outcome of the tail-dependence analysis is even more interesting, given the role that 400 

such metric plays in the detection of extreme events (and in particular the low-tail for droughts). 401 

The TD investigation is sometimes overlooked in the development of multivariate drought indices, 402 

where previous studies often focused on optimizing the copula to the local data without analyzing 403 

the implicit assumption on the TD, the consistency with the non-parametric TD, and the 404 

implications of the associated dependence. Previous studies on the joint probability of precipitation 405 

and soil moisture are rather scarce, and TD is rarely the focus of such analyses or, at least, limited 406 

to specific areas and/or conditions.  407 

As an example, Manning et al. (2018) performed a very detailed analysis over 11 FluxNet 408 

sites in Europe on the role of precipitation and evapotranspiration on soil moisture drought, based 409 
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on pair copula constructions, but the authors did not provide any indication on which bivariate 410 

copula was the optimal one for each site. Kwon et al. (2018) reported that Frank copula was the 411 

most frequent optimal choice in their study over South Korea. However, some clear spatial patterns 412 

observed in their outcomes were not discussed, with Frank being the selected copula mostly in the 413 

central area of the domain, but with Gumbel and Student-t performing the best in the southern and 414 

eastern coasts, respectively. 415 

Dash et al. (2019) found Frank (among the Archimedean copulas) working the best for 3-416 

month precipitation and soil moisture over an Indian basin; while Hao and AghaKouchak (2013) 417 

highlighted the good performance of Frank and Gumbel in five regions of California, even if 418 

neither Gaussian nor Student-t were considered. In all these applications, no specific 419 

considerations on the TD behaviors were reported, even if a common trend seems to be the good 420 

performance of Frank copula. This is in contrast with our results, where the Frank was very rarely 421 

selected as optimal (less than 1% of the domain). A possible explanation of these results may be 422 

our focus on empirical marginal frequencies rather than theoretical ones, given the well-423 

documented increasing uncertainty in parametric fitting in the tails (Farahmand and 424 

AghaKouchak, 2015; Laimighofer and Laaha, 2022). As a possible confirmation of this 425 

hypothesis, a good performance of Gumbel and Gaussian has been observed over Iran by Bateni 426 

et al. (2018), similarly to our results, when a non-parametric form for SPI and SSI (Standardized 427 

Soil Moisture Index) was used.  428 

The absence of a strict standard procedure to investigate tail-dependence may be another 429 

factor affecting the limited focus on the topic in many studies on multivariate drought indices. 430 

Non-parametric TD has the clear advantage to avoid any alteration of the data due to the fitting 431 

procedure, but the outcomes in this study also show a high degree of spatial noise likely due to the 432 

intrinsic nature of non-parametric analyses, the large uncertainty in non-parametric methods 433 

(Serinaldi et al., 2015), as well as the effects of the limited sample size (for this last issue see also 434 

the illustration 3.18 in Salvadori et al., 2007). The threshold used here to define a symmetric 435 

behavior, based on a random shuffling of the data, seems to successfully overcome the difficulty 436 

to define a self-consistent maximum difference in TD values, but it cannot be seen as a reliable 437 

approach to easily identify TD symmetry without the support of further evidence (e.g., by 438 

theoretical analyses). 439 
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In this regard, the fitting of parametric copula functions returns spatial patterns in TD 440 

coefficients similar to the ones obtained with the non-parametric approach. However, the absence 441 

of “univocal” fittings can be observed for large areas, as well as some contrasting results compared 442 

to the non-parametric TD especially over northern Europe (areas with low correlation). The grid 443 

cells where a given copula clearly outperforms the alternative options is limited to roughly 1/3 of 444 

the domain, further stressing the evidence that clear-cut outcomes are difficult to infer from a 445 

single methodology. Thus, it seems reasonable to state that only a critical concerted analysis of 446 

both parametric and non-parametric TDs can return robust practical indications based on a 447 

converge of evidence.  448 

A clear outcome of our study is the predominance of regions with symmetric tail-449 

dependence coefficients, where the Student-t copula is suitable to reproduce the joint probability 450 

of standardized precipitation and soil moisture. An even split of the remaining domain between 451 

areas with either lower or upper tail-dependence is also observed, where the Gumbel copula (in 452 

either is direct or 180 rotated forms) is proven to be a suitable option. These results are crucial in 453 

defining the role of standardized precipitation and soil moisture datasets in detecting drought 454 

events, and to which extent they can work in synergy in a drought monitoring system. While the 455 

correlation between the two datasets highlights the extent of their overall agreement, which in this 456 

study was somewhat uniform across most of the domain (� ranging between 0.3 and 0.5), very 457 

different degrees of tail-consistency can be obtained for similar Kendall’s � if the TDs differ 458 

substantially. Regions with higher LTD will have a higher agreement in the detection of drought 459 

extremes compared to areas with a UTD predominance, hence a low number of false alarm and a 460 

higher signal-to-noise ratio may be expected. 461 

To further explore this behavior, the time series of standardized variables were converted 462 

in binary vectors based on the commonly used standardized drought threshold of -1 (corresponding 463 

to an empirical frequency of 0.16). On these data, the pair-wise binary correlation coefficient, �(-464 

1), was computed separately for the grid cells with LTD and UTD. Results are shown in Fig. 9, 465 

for grid-cells with low (0.1 < � ≤ 0.4, panel a) and high (� > 0.4, panel b) overall correlation, 466 

respectively. They show a net increase in the pairwise binary correlation for the grid cells with 467 

LTD (of about 0.15 in both cases) compared to the cases with UTD, even if the overall correlation 468 

is comparable. This increase in �(-1) translates in a stronger agreement in the detection of extremes 469 

when a low tail-dependence is observed, resulting in a more robust detection of the drought 470 
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conditions thanks to the concurrency of extreme conditions in both drought indices (i.e., 471 

convergence of evidence). 472 

473 

474 
Fig. 9. Frequency distribution of the pairwise binary correlation between standardized 475 

precipitation and soil moisture lower than -1, computed separately for grid cells with UTD (dark 476 

grey lines) and LTD (light grey lines).  Panel a) reports the results for the grid cells with low overall 477 

correlation (0.1 < � ≤ 0.4), while panel b) reports the results for the grid cells with high correlation 478 

(� > 0.4).  479 

480 

Regions such as southern France, northern UK, northern Germany and Denmark (where a 481 

strong LTD is observed, see Fig. 8) are appropriate candidates for a robust assessment of 482 

agricultural drought conditions based on a joint precipitation-soil moisture index, whereas some 483 

regions in central Europe (i.e., Poland, Czechia, Switzerland) may not equally benefit from the use 484 

of a joint index due to the lower importance of LTD. 485 

Overall, the parametric copula fittings confirm most of the non-parametric TD patterns 486 

suggesting that a parametric approach is suitable for an operational implementation of a 487 

precipitation-soil moisture joint drought index over most of Europe. This implies that the proposed 488 

procedure, based on the combination of parametric and non-parametric analyses, can be considered  489 

a reliable tool to provide meaningful insight on the potential application of joint probability as 490 

detector of extreme droughts. 491 

At first glance, it may seem difficult to assign an explanation for the observed spatial 492 

patterns in LTD and UTD. However, the proven possibility to reasonably reconstruct these spatial 493 

patterns with a random forest classifier, starting from only a small sample of robust training data 494 

(less than 10% of the domain) and with commonly available driving features, suggests that the 495 

observed clusters are unlikely to be caused only by chance and that hidden structures may be 496 
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present and may be further explored. This result is encouraging for an extension of the derived 497 

approach to other regions of the world. 498 

499 

5. Summary and Conclusions 500 

The use of combined indices based on copula seems a promising development in the field of 501 

drought detection and monitoring. In this study, we analyzed the joint probability of two variables 502 

commonly used in agricultural drought analyses: the empirical frequencies of 3-month cumulated 503 

precipitation and soil moisture. We focus on the probabilistic characteristics being key for 504 

agricultural drought studies. 505 

The overall agreement in the marginal probability of the two standardized variables 506 

suggests that they are indeed valid candidates for the development of a joint drought index over 507 

the European domain. However, an in-depth analysis of the tail-dependence, derived with both 508 

non-parametric and parametric approaches, shows some clear spatial patterns, which have direct 509 

repercussion on the capability of such data to provide robust and coherent estimates of drought 510 

extremes. In this regard, regions such as southern France, northern UK, northern Germany, and 511 

Denmark may benefit more from the joint use of the two standardized variables thanks to the 512 

observed strong low tail-dependence (i.e., increasing agreement on the left tail extremes). The joint 513 

dependence of standardized precipitation and soil moisture is well reproduced by using three 514 

common copulas (Student-t, Gumbel and 180 rotated Gumbel), with spatial patterns that were 515 

successfully reconstructed with a random forest classification, suggesting the presence of a 516 

structure in the outcomes not related to chance.   517 
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