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Abstract. The impact of climate change on power demand and power generation has become increasingly 

significant. Changes in temperature, relative humidity, and other climate variables affect cooling and heating 

demand for households and industries and, therefore, power generation. Accurately predicting power generation   15 

is crucial for energy system planning and management. It is also crucial to understand the evolution of power 

generation to estimate the amount of CO2 emissions released into the atmosphere, allowing stakeholders to make 

informed plans to reduce emissions and to adapt to the impacts of climate change. Artificial intelligence 

techniques have been used to investigate energy demand-side responses to external factors at various scales in 

recent years. However, few have explored the impact of climate and weather variability on power demand. This 20 

study proposes a data-driven approach to model daily power demand provided by the Carbon Monitor Power 

project by combining climate variables and human activity indices as predictive features. Our investigation spans 

the years 2020 to 2022 and focuses on eight countries or groups of countries selected to represent different 

climates and economies, accounting for over 70 % of global power consumption. These countries include 

Australia, Brazil, China, the European Union (EU), India, Russia, South Africa, and the United States. We 25 

assessed various machine-learning regressors to simulate daily power demand at the national scale. For countries 

within the EU, we extended the analysis to one group of countries. We evaluated the models based on key 

evaluating metrics: coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and Median Absolute Error (MedAE). We also used the models to identify the most influential 

variables that impact power demand and apprehend their relationship with it. Our findings provide insight into 30 

variations in important predictive features among countries, along with the role played by distinct climate 
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variables and indicators of the level of economic activity, such as weekends and working days, vacations and 

holidays, and the influence of COVID-19. 

1 Introduction 

Climate significantly impacts power demand (Lucon et al., 2014; Isaac and van Vuuren, 2009), as the changes in 35 

temperature, relative humidity, and precipitation patterns affect the cooling and heating demand of households 

and industries (Mukherjee et al., 2019). Globally, climate change is expected to increase total power demand 

under low latitudes and decrease under temperate and high latitudes because of warmer winters (Van Ruijven et 

al., 2019). However, there remain large uncertainties in how climate change will affect power demand 

(Deroubaix et al., 2021; Romitti and Sue Wing, 2022; Yalew et al., 2020) due to complexities associated with 40 

understanding the precise effects of different variables on power demand, whether they are climatic or 

socioeconomic. Improving comprehension of the complex interactions between these variables and power 

demand becomes crucial for accurately predicting and managing power sytems across different timescales. 

Accurate predictions of power demand and power generation can help energy providers to optimize generation 

and transmission, reduce costs, and improve the reliability of power supply at the seasonal scale. This becomes 45 

even more critical in the context of climate change, which has already begun to impact power demand and caused 

power outages in various parts of the world due to high cooling demand associated with exceptional heatwaves 

and other extreme climate events (Ahmad, 2021; Burillo et al., 2018). Finally, going one step further, 

understanding the impact of climate change on the power sector is essential for managing CO2 emissions from the 

power sector, as it is closely related to the development of strategies for reducing greenhouse gas emissions and 50 

adapting to changes in energy consumption patterns (Jiang et al., 2020).  

Studies have started addressing the aforementioned question from both power generation and demand 

perspectives. Examining the weather sensitivity of the power sector from a generation perspective can provide 

valuable insights for addressing these issues. In particular, several studies showed that increasing renewable 

generation capacity led to reduced baseload generation from fossil energy (Bloomfield et al., 2016, Silva et al., 55 

2018), contributing positively to decarbonization. For example, increasing wind power generation in the UK 

reduced coal, gas, or nuclear power generation (Bloomfield et al., 2016). However, transition to renewables also 

increases the exposure of the power systems to climate variability (Craig et al., 2018, Elliston et al., 2013, Silva 

et al., 2018). 
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Other studies present approaches to identify meteorological, socioeconomic, and technical drivers for power 60 

demand and sectoral power production (Bloomfield et al., 2020, Toktarova et al., 2019). Such approaches provide 

improved means to quantify the impacts of climate change on the power system and are adaptable to different 

geographical locations. In addition, some studies focus on the development of databases that can be used for 

investigating the climate sensitivity of the power sector and the impacts of climate change, such as the C3S 

Energy database developed by Dubus et al. (2021), which provides power demand and power supply data for 65 

Europe. 

Electricity demand modeling often uses multi-linear models to integrate various influencing factors (Bloomfield 

et al., 2016 and 2020, Delort Ylla et al., 2023, Tantet et al., 2019, Toktarova et al., 2019). While such multi-linear 

models may appear more intuitive and simpler than machine learning models, they do not necessarily imply 

easier implementation and may require significant manual parameter tuning. Furthermore, machine learning 70 

models and semiparametric additive approaches, such as General Additive Models (GAM), are already widely 

used in the load forecasting community (Dordonnat et al., 2016, Fan and Hyndman, 2012, Nedellec et al., 2014, 

Obst et al., 2021, Pierrot and Goude, 2011) and have demonstrated superior forecasting capabilities compared to 

multilinear models (Hong et al., 2016). 

While artificial intelligence techniques use has grown to investigate energy demand-side responses at various 75 

spatial and temporal scales (Antonopoulos et al., 2020), literature on the impact of climate and weather variability 

on power demand using these methods is still limited. Previous studies have primarily been developed for 

specific regions or countries (Mohammadiziazi and Bilec, 2020; Hiruta et al., 2022a; Hiruta et al., 2022b; 

Gurriaran et al., 2022a; Gurriaran et al., 2022b). Until recently, there was no comprehensive worldwide dataset 

for daily power dynamics across multiple countries. This knowledge gap has been filled with the introduction of 80 

the Carbon Monitor Power data (Zhu et al., 2023), which provides daily estimates of power demand at the 

national level for about forty countries, along with detailed sources of supply. In this study, we use this newly 

available dataset to develop a machine-learning approach for modeling daily power demand by combining 

climate variables and human activity indices, considering the impact of climate through cooling and heating 

demand proxies. In addition, we consider human activity indices, such as working days, weekends, and holidays, 85 

as well as the level of stringency of COVID-19 measures, which play a crucial role in determining power demand 

as they reflect the level of economic activity (Antoniadis et al., 2022; Hiruta et al., 2022b).  

Building on our earlier work on Qatar and Japan (Gurriaran et al. 2022a, 2022b), the present study aims to 

develop data-driven models that simulate daily power demand for a large number of countries with contrasted 

climates based on the Carbon Monitor Power demand dataset, and a comprehensive set of daily climate variables 90 
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and human activity indices. Additionally, the study aims to infer the most important variables for each country or 

region and discuss differences that may arise between the countries. The data we used include total daily power 

production at a national or regional scale from 15 February 2019 to 15 October 2022, climate variables, and 

human activity indices to develop models at a national or regional scale. Our study assumes that daily power 

production is equal to power demand, as transmission losses are assumed to be negligible. The dataset is divided 95 

into a learning set and a test set. Different machine-learning regressors are trained on the learning set to develop 

the models for power demand prediction. The performance of the models is assessed using the test set through 

error metrics, the evaluation of overfitting, and an analysis of the model’s residuals. 

Our models have a multifaceted goal that includes separating climate factors that drive power demand variations, 

conducting cross-country comparative analysis of these factors, understanding the relationship between power 100 

and climate extremes, and developing predictive models for various applications. Our research aims to 

comprehensively understand the intricate interplay between climate and power demand by isolating specific 

climatic elements that influence energy consumption and comparing global variations. The main goal is to 

provide predictive models that can be used for different timeframes. This will help improve decision-making in 

energy management for short-term grid optimization, seasonal resource planning, and long-term strategies that 105 

align with changing climate scenarios. These models could be applied in various contexts. They could be used to 

define new responsive power production modules coupled with weather forecast models to enable operational 

production forecasting. They could also benefit the domain of air quality monitoring; for example, the models 

could be integrated into data assimilation systems of atmospheric composition, such as the global Copernicus 

Atmosphere Monitoring Service (CAMS) and regional models, which require interactive emissions fields with 110 

weather and human activity variations. Furthermore, our models may be used for adapting power systems to 

climate extremes. Finally, they may be incorporated into longer-term climate scenarios assuming that the short-

term climate response of power production will remain unchanged. Some of our models can even integrate 

hypotheses relative to changes in consumption habits.  

We present models for eight countries or groups of countries. Those countries represent diverse climates, 115 

economies, and populations worldwide: Australia, Brazil, China, the European Union (including the United 

Kingdom, referred to as EU27 & UK), India, Russia, South Africa, and the United States. Those countries are all 

significant in terms of population, GDP, power production, and CO2 emissions. Together they represent about 50 

% of the world’s total population, 67 % of the global GDP, and 80 % of total power generation in 2021 (IEA, 

2021). For the sake of presentation, we present the results for EU27 & UK in the main text as an illustration. The 120 

results for other countries are provided in the Supplementary Materials (Sect. 2).  
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Figure 1. Methodological flowchart of this study: CMP-SIM approach. 
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2 Data 

This section describes the input data used to develop the regional or national models simulating power demand: 125 

the Carbon Monitor Power – Simulators (CMP-SIM v1.0). Regional power demand refers here to the power 

demand of EU27 & UK. All the data are at a national or regional level and at a daily timescale. The data were 

pre-processed to a format suitable for the machine learning approach. We used 32 months of input data from 15 

February 2020 to 15 October 2022.  

Predictive Features 

 
Variable 

Name 
Unit Description 

Country/Regi

on 
Source 

Climate 

Variable 

T2M °C 
Average daily surface air temperature 

at 2m 

All ERA5 

T2Mmax °C 
Maximum daily surface air 

temperature at 2m 

T2Mmin °C 
Minimum daily surface air 

temperature at 2m 

Td °C 
Average daily dew point temperature 

at 2m 

RH % Average daily relative humidity 

Surface 

Pressure 
Pa 

Average daily pressure of the 

atmosphere on the surface of the land 

U m.s-1 
Average wind speed and direction at 

10m 

TP m Average daily total precipitation 

SSRD J.m-2 Surface solar radiation downward 

STRD J.m-2 Surface thermal radiation downward 

Human 

Activities 

Indices 

DOW - 
Day of week – categorical variable 

from 0 to 6 
All 

Python 

repository 

Holidays - Categorical variable 0 or 1 All but EU 
Manually 

collected 

Workplace % 
Changes of workplace occupancy 

compared to a baseline 

All but China 

and EU 

Google 

Communi

ty 

Mobility 

Reports 

Covid - COVID-19 stringency index All 

Mathieu 

et al., 

2020 
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TOY - Numerical day of year 
China and 

EU 
- 

GDP % Quarterly GDP growth rate Only China 

China 

Bureau of 

Statistic 

 

Target Feature 

 
Variable 

Name 
Unit Description 

Country/Regi

on 
Source 

Power Data 
Total 

Demand 
GWh 

Total daily power demand in the 

region considered 
All 

Carbon 

Monitor - 

Power 

Table 1. Input and output dataset for this study 130 

2.1 Predictive features 

The predictive features used to build models predicting power demand, including climate variables and human 

activity indices (Table 1), are described in the following. 

Climate Variables: The climate variables include temperature (daily average, max, and min), dew point 

temperature, surface pressure, relative humidity, wind, precipitation, and solar radiation. These variables are 135 

known to impact power demand, as they affect the energy consumption patterns of households and industries. 

The climate variables are obtained from the ERA5 reanalysis at a daily timescale (Muñoz Sabater, 2019). All the 

climate variables were weighted by population density (CIESIN) to give more importance to climate over densely 

populated areas, as these regions are accountable for a significant proportion of power demand. 

Human Activity Indices: Human activity data (Fig. 2), such as working days, holidays, and school vacations, also 140 

play a crucial role in determining power demand, as they reflect the level of activity influencing the power 

demand. These indices are obtained from publicly available datasets. 

The effect of working days and weekends on power demand is accounted for with the numerical variable DOW 

(Day Of Week), where the value zero corresponds to Monday, one to Tuesday, and so forth, with six representing 

Sunday. To account for the effect of holidays, we introduce the variable “Holiday”, which takes the value of one 145 

if the day is a holiday and zero otherwise. 

Because our data cover the COVID-19 period, we accounted for the impacts of COVID-19-related measures on 

power demand using the COVID stringency index. We used the COVID stringency index, which aggregates 

information from various policy sources, including the Oxford COVID-19 Government Response Tracker (Hale 

et al., 2021) and the ACAPS COVID-19 Government Measures Dataset (ACAPS COVID-19). The COVID 150 
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stringency index is a composite measure comprising nine response indicators, such as school closures, workplace 

closures, and travel bans. The values of these indicators are rescaled on a scale of 0 to 100, where 100 represents 

the strictest level of response. The COVID stringency index is available for 207 countries (Mathieu et al., 2020).  

Additionally, we used data from the Google Community Mobility Reports to account for the effect of vacations 

on power demand. Google developed these reports to track the effects of COVID-19 on the frequency of various 155 

types of locations and was available from 15 February 2020 to 15 October 2022 (Google LLC., 2020). These 

reports are constructed by analyzing location data from users who have opted into Location History for their 

Google account, and the data are aggregated to preserve users’ anonymity. The reports indicate how visits and 

length of stay in these different location categories have changed over time compared to a baseline period before 

the COVID-19 pandemic from 3 January 2020 to 6 February 2020. Specifically, we used the "workplaces" 160 

metric, which reflects the change in the percentage of people present at their workplaces compared to the baseline 

reference period. To remove the effects of weekends and holidays in the workplace metric, we applied a running 

mean on a 7-day basis and replaced the values of the holiday days to match the value of the previous day. This 

was done because the effects of weekends and holidays are already represented by the variables "DOW" and 

"holidays," respectively. However, the Google Community Mobility Reports data are unavailable for China and 165 

the EU (Table 1). Thus, we employed an alternative variable, namely “Time of the Year” (TOY), to reflect the 

level of economic activity in the two countries. This variable is defined as the numerical day of the year, ranging 

from one on January 1st to 365 or 366 on December 31st. TOY is an alternative to Google Mobility data because 

it can serve as a proxy for economic activity by allowing the possible seasonal variation of power demand 

throughout the year to be linked to a specific period within that year.  170 

Finally, given the significant reliance of China’s power demand on its industrial sector, it is imperative to 

consider economic indicators that reflect changes in industrial activity. We hypothesized a strong relationship 

between GDP and industrial activity and assumed that the fluctuations in GDP could be used as a proxy for 

changes in industrial activity. Consequently, we added quarterly GDP as a predictive feature for China. 

In total, 15 predictive features were used to simulate daily power demand. However, the exact number and 175 

combination of predictive features used to simulate power demand vary depending on the availability of human 

activity data for a particular country and the use of GDP. 

 2.2 Target features 

The target feature of this study, i.e., the data we aim to simulate, are the total daily power demand at the regional 

or national scale (Fig. 2). This feature is calculated from the publicly available Carbon Monitor - Power dataset 180 
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(Zhu et al., 2023; Liu et al., 2020a; Liu et al., 2020b). This dataset includes daily historical data on electricity 

generation from 37 countries since January 2019. It gives the electricity generated by different energy sources: 

fossil (coal, gas, and oil), renewable (solar, wind, hydro, and others including biomass, geothermal, etc.), and 

nuclear. We obtain the total daily power demand by summing the daily power generation of each source under 

the assumption that demand is equal to generation. One outlier was detected for India (19 April 2020) and 185 

removed from the dataset. 

 

 

Figure 2.  Evolution of human activity predictive feature from COVID stringency index for EU27 & UK 

and power demand over the studied period. The shaded area represents the learning periods, and the 190 

blank area the test periods. 

3 Model Development 

This section describes the approach we developed for establishing national or regional models simulating daily 

power demand from the predictive features described in Sect. 2.1 (Fig. 1). The models have been coded in Python 

version 3.6.12. Our approach follows machine-learning procedures (Raschka, 2018; Raschka and Mirjalili, 2019), 195 

including the formation of learning and test subsets, random search with cross-validation, regressor training on 

the learning set and performance evaluation with error metrics on the test set, model interpretation with model 

agnostic interpretability methods (ALE plots and permutation feature importance), and validation curve analysis 

to detect potential overfitting or underfitting. Previous studies have applied similar approaches to various 

countries. For example, in Japan, Hiruta et al. (2022a) used a machine-learning approach to derive temperature 200 

response functions at an hourly timescale. In previous works, we have developed data-driven models for long-

term predictions in specific regions, namely Qatar (Gurriaran et al., 2022a) and Japan (Gurriaran et al., 2022b). 

The approach developed for Japan was more detailed and tailored to the country. It included a separate model for 



10 

 

carbon intensity and was conducted on the Japanese regional scale. The approach presented in this study is more 

generic and can be applied to any country or region worldwide so long as daily data are available.  205 

3.1 Partitioning of input data into learning and test subsets 

We followed a consistent procedure for each country or region, as illustrated in Fig. 1. The first step is to divide 

the input dataset into learning and test subsets. This is a necessary step to examine the robustness of the results; 

machine-learning regressors will be trained on the learning set, and the performances of the models will be 

evaluated on the test set. The entire dataset is divided into blocks of one-week size. Then, all these blocks are 210 

shuffled randomly. Once the shuffling is done, 25 % of the data are assigned to the testing subset and 75 % to the 

learning subset (Fig. 2). This ratio is common for partitioning the dataset into learning and test subsets (Raschka, 

2020; Raschka and Mirjalili, 2022). This process ensures that both subsets are representative of the whole dataset 

and that the results obtained are robust and reliable.  

3.2. Random search with cross-validation and evaluating metrics 215 

We evaluate four machine-learning regressors: Random Forest (RF) (Breiman, 2001), Gradient Boosting (GB) 

(Fisher, 1958; Chen and Guestrin, 2016; Ke et al., 2017), Multivariate Adaptive Regressions Splines (MARS) 

(Friedman, 1991), and Generalized Additive Model (GAM) (Hastie and Tibshirani, 1990). RF and GB are two 

ensemble learning methods. RF combines multiple decision trees to make more accurate predictions. Each 

decision tree is trained on a random subset of the training data to reduce the risk of overfitting. When making a 220 

prediction, RF takes the average prediction of all the decision trees in the ensemble. GB combines weak learners 

to form a stronger predictor. Each weak learner is trained sequentially to minimize the errors of the previous 

weak learners. This process is repeated until the error is minimized or a specified number of weak learners is 

reached. The final prediction is made by combining the predictions of all the weak learners. MARS and GAM are 

two interpreted machine-learning methods for regression analysis. MARS uses a sum of piecewise linear 225 

regressions to model non-linear relationships, while GAM uses a sum of smooth functions such as splines. For 

GAM, we specified an equation for each country using the backward feature selection process (Wood, 2017). The 

model was executed using all the predictive features; then, we gradually eliminated all non-significant features 

until the model’s stability was achieved according to a Fisher test. The allocation of a specific number of splines 

to each feature was accomplished using an integer value approximately ⅓ higher than the degree of freedom 230 

estimated by the GAM regressor during the initial run. 
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All regressors are trained on the learning set, and their hyperparameters are optimized through a random-search 

process with 5-fold cross-validation on the same subset. The cross-validation process involves partitioning the 

learning data into multiple subsets (here 5) and uses each subset in turn as a validation set to assess the model’s 

performance. The final evaluation of the model is done on the test set. The hyperparameters are the settings of the 235 

regressors that need to be specified before the training phase. They are specific to the type of regressor used and 

cannot be learned from the data. Optimizing the values of the hyperparameters is important as they can impact 

the accuracy and performance of the models. Grid search and random search are two common techniques to tune 

hyperparameters. Grid search exhaustively searches through all possible combinations of hyperparameters, while 

random search randomly samples hyperparameters from a specified distribution. In a random search, the number 240 

of combinations tried is controlled by a pre-determined number of iterations (n_iter). The high computational cost 

of grid search led us to choose random search to explore the hyperparameter space for RF, GB, and MARS. 

Limiting the number of iterations to 200 considerably reduced the computation time while giving satisfying 

results. For GAM, we optimize only two hyperparameters. The description of the hyperparameters optimized 

through the random search process can be found in the supplementary materials (Sect. 1).  245 

We calculated various error metrics to evaluate the performance of the models on the test set. These include the 

coefficient of determination (R2), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Median 

Absolute Error (MedAE). The objective is to maximize R2 and minimize the values of MAE, RMSE, and 

MedAE. 

3.3. Interpretation of the models with permutation feature importance and ALE plots 250 

Permutation feature importance and ALE plots are two methods that allow the interpretation of non-directly 

interpreted machine learning models such as RF and GB regressors. We use the permutation feature importance 

to classify the predictive feature by order of importance and the ALE plot to understand the relationship between 

the predictive features and the target feature. For consistency in our results, we also apply this method to GAM 

and MARS regressors even though they are interpreted machine learning models. 255 

Permutation feature importance enables a relative classification of features within the models, identifying the 

most significant predictive features to explain power demand for a particular country. We calculate a permutation 

score for each predictive feature with the four machine-learning regressors tested. This score is determined by 

randomly shuffling the feature and measuring the reduction in model accuracy that results. The feature is shuffled 

five times; then, an average score is calculated. 260 
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ALE plots enable interpreting the relationship between the target feature (power demand) and one particular 

predictive feature (Apley and Zhu, 2020). They represent the influence of the predictive feature on the target 

feature when the other predictive features are held constant. ALE plots are used to identify the non-linearities 

between the target feature and predictive features. In this study, ALE plots were calculated for all predictive 

features included in the model that achieved the best evaluation metrics. This calculation involves dividing the 265 

range of the feature into intervals, calculating the average power demand for each interval, determining the 

differences in prediction between adjacent intervals, and integrating to estimate the individual influence of a 

feature.  

3.4. Model validation: validation curves, quantile-quantile diagrams, autocorrelation, and seasonal 

decomposition 270 

Validation curves are commonly used to detect overfitting or underfitting problems. Overfitting happens when a 

model is too complex and fitted to the training data to the point that the model cannot be generalized to other 

data. In this case, the model performs well on the train sets but poorly on the validation set. Two validation 

curves are calculated, one for the train set and one for the validation set to detect overfitting. Those curves show 

how the model’s performance (here measured with R2) changes for both subsets as a particular hyperparameter 275 

value of the model is varied. If the model performs much better on the train set than on the test set or the two 

curves diverge above a certain hyperparameter value, it indicates overfitting issues. In this study, we also used the 

validation curves to verify that the correct hyperparameter values were selected during the random search 

process. Underfitting is detected when the performances of the model are poor on both subsets. The validation 

curves for all countries considered can be found in Supplementary Materials (Sect. S2). 280 

Assumptions underpinning statistical methodologies are critical for ensuring the validity of analyses. One of our 

methodological assumptions is the normality of the residuals obtained from power demand calculations using our 

statistical models.  To verify this assumption, we constructed quantile-quantile (QQ) plots for the residuals 

obtained from the four regressors (Chambers, 1983). These plots display the quantiles of a dataset as a function of 

the corresponding theoretical quantiles of a normal distribution. If the points on the QQ plot align closely with 285 

the diagonal, it indicates that the residuals follow a normal distribution, supporting the suitability of our 

methodology for accurately simulating power demand from the given data. 

Assessing the temporal structure of the residuals of a model is another way to evaluate the validity of a time-

series model. Autocorrelation plots represent the correlation between a time-series and its delayed version. We 

constructed autocorrelation plots for the residuals of our four power demand regression models to identify any 290 
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remaining temporal structures that the models may not have captured. To ensure the inclusion of weekly 

information, we chose a maximum time lag of 14 days for our analysis. If the autocorrelation values decrease 

rapidly as the lag increases, it suggests that our models have fully explained the temporal information. 

Conversely, if the autocorrelation values remain high at larger lags, some relevant temporal information may not 

have been captured.  295 

Finally, we used time-series seasonal decomposition to assess the performances of our models at different time 

scales. Seasonal decomposition is a statistical technique that decomposes a time-series into different components: 

trend, seasonality, and residuals (Hyndman and Athanasopoulos, 2018). The trend component represents the 

long-term trend of the data, and the seasonality component captures the periodicity in the data (i.e., weekly, 

seasonal, or annual cycles). The residuals component is the random variations in the data that cannot be explained 300 

by the seasonal decomposition method. For this study, we used a simple decomposition method based on moving 

average with an additive model: 𝑃𝐷𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝑅𝑡 , where 𝑃𝐷𝑡  is the power demand time-series, 𝑇𝑡  is the 

“trend” component, 𝑆𝑡 is the “seasonality” (here weekly) component, and 𝑅𝑡  is the residual component.  𝑇𝑡  is 

estimated using a convolutional filter and then subtracted from 𝑃𝐷𝑡 . 𝑆𝑡 is obtained by averaging the de-trended 

series for each period. In this study, we did this analysis with a seven-day period to capture the weekly 305 

seasonality. This seasonal decomposition method was applied to the four time-series obtained with our models 

and to the original power demand time-series to serve as a point of comparison. 

4 Results: Output of the models 

This section presents the main outputs of our machine-learning approach with a focus on EU27 & UK: the 

performance of the different models tested, the permutation feature importance, and the ALE plots. The results 310 

for other countries can be found in the Supplementary Materials (Sect. 2). 

Scatter plots show the modeled vs. observed power demand, with corresponding error metrics displayed on each 

subplot (Fig. 3). In the case of the EU27 & UK, all regressors perform similarly in evaluating metrics. R2 Table 2 

provides a summary of the evaluation metrics for all countries. 
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 315 

Figure 3. Comparison of machine-learning regressors performance for EU27 & UK. Predicted power 

demand plotted against observed power demand for the four machine-learning regressors tested: (a) RF, 

(b) GB, (c) MARS, and (d) GAM. The red dashed line represents the 1:1 line of perfect agreement between 

predictions and observations.  

 320 

Comparing the results of all countries, the models perform best in predicting power demand for Russia, with an 

R2 of 0.98. In contrast, they exhibit the poorest performance for China, with an R2 always under 0.8 (Table 2). 
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The results presented in Table 2 do not reveal a single best regressor that consistently outperforms others across 

all countries. 

 325 

  

 
 

Australia Brazil China 
EU27 & 

UK 
India Russia 

South 

Africa 

United 

States 

Random 

Forest 

R2 0.80 0.87 0.75 0.92 0.85 0.96 0.81 0.89 

MAE 12.7 41.5 893.4 201.6 106.9 53.5 13.7 306.2 

RMSE 16.7 59.8 1161.9 258.7 149.1 72.0 18.7 394.1 

MedAE 10.2 29.1 732.1 178.7 76.3 38.6 10.8 250.5 

Gradient 

Boosting 

R2 0.84 0.93 0.77 0.93 0.83 0.98 0.77 0.91 

MAE 10.9 33.6 872.5 177.2 112.2 44.6 15.0 280.1 

RMSE 14.6 42.4 1128.6 236.9 159.3 58.7 20.6 361.4 

MedAE 8.4 28.4 666.3 135.8 78.5 35.5 11.7 216.9 

MARS 

R2 0.83 0.92 0.78 0.94 0.80 0.97 0.83 0.90 

MAE 11.5 36.2 810.3 163.4 121.8 50.3 13.02 309.2 

RMSE 15.1 46.5 1106.6 225.4 173.2 66.8 17.8 388.0 

MedAE 10.3 28.4 635.9 118.9 80.1 42.3 10.4 248.3 

GAM 

R2 0.81 0.92 0.77 0.93 0.81 0.97 0.83 0.94 

MAE 11.7 37.1 889.8 178.0 127.5 46.9 13.7 22.1 

RMSE 16.2 45.6 1120.1 245.5 171.6 64.1 17.9 292.7 

MedAE 9.0 33.1 753.9 135.6 105.6 34.9 11.4 169.3 

Table 2. Comparison of the performances of the four machine-learning regressors for the countries studied 

with the four metrics: R2, MAE, RMSE, and MedAE.  

Figure 4 shows the five most important predictive features, as determined by the permutation feature importance. 

When focusing only on predictive climate features (pink in Fig. 4), all regressors recognize temperature as a 330 

significant predictor, featuring it within the top five variables. However, the specific temperature-related feature 

that emerges as significant differs among the models (T2M, T2Mmax, T2Mmin, or Td). Furthermore, the 

variable SSRD (solar radiation) consistently appears as a crucial predictor, as it is included within the top five 

predictors for all regressors except MARS. These results underscore the crucial role of climate-related features in 

predicting power demand. On the other hand, the analysis also highlights the relevance of human activity 335 
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features, with DOW, Covid, and TOY (blue in Fig. 4) always among the top five predictors. It is noteworthy that 

the order of the top five predictors varies across different models. 

 

Figure 4. Permutation feature importances of the five most important predictive features from four 

different machine-learning regressors for EU27 & UK: (a) RF, (b) GB, (c) MARS, and (d) GAM.  340 
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ALE plots were generated for the top five predictive features with the MARS regressor, which performed best for 

EU27 & UK (Fig. 5). The ALE plots confirm the strong impact of temperature-related predictors on power 

demand, with Td, T2Mmax, and T2Mmin being particularly influential. ALE plots for Td demonstrate a positive 

correlation between power demand and heating (when the temperature is decreasing), and ALE plots for 

T2Mmax have a positive correlation for cooling (when the temperature is increasing) requirements. ALE plot for 345 

T2Mmin shows both effects. Examining the ALE plot for DOW (day of the week) reveals that power demand 

holds less significance during weekends than on weekdays. Finally, the ALE plot for TOY shows a decrease in 

power demand at the end and beginning of the year, corresponding to the holiday season. Overall, our findings 

here illustrated for EU27 & UK suggest that both climate and human activity factors are crucial in predicting 

power demand, and a comprehensive approach that considers both these aspects is needed to yield more accurate 350 

results. 



18 

 

 

Figure 5. ALE plots of the effect of the top-five predictive features from MARS for EU27 & UK: (a) 

T2Mmax, (b) T2Mmin, (c) TOY, (d) Td, and (e) DOW, where size represents the number of days in each 

category. Each ALE plot shows the partial dependence of the target feature on a predictive feature while 355 

keeping all other features constant. The x-axis represents the values for each feature, and the y-axis 

represents the corresponding change in the predicted value of the target feature.  
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Figure 6. Weekly seasonal decomposition analysis of the daily power demand data from four different 360 

models (RF, GB, MARS, GAM) as well as the observed data (Obs) for EU27 & UK: (a) Observed and 

modeled daily times series, (b) trend component, (c) weekly component, and (d) residual component. The 

legend in panel d represents the Pearson correlation coefficient between the models’ residues and the 

observations’ residues. The shaded area in the plots represents the maximum daily temperature 

(T2Mmax) in a 7-day running mean.  365 
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The comparison of the modeled decomposed times series and the observed decomposed time-series enable 

assessment of the ability of models to capture the diverse temporal patterns inherent in the data. By decomposing 

the time-series generated by the models and comparing them with observed electricity demand, it becomes 

possible to evaluate the models’ ability to accurately replicate the various temporal patterns evident in the 

observational data. Figure 6 focuses on December 2021 to illustrate the negative impact of the Christmas 370 

holidays on power demand. Electricity demand remains low at the end of the month, possibly due to the high 

temperatures observed during this period. The trend component (Fig. 6b) indicates that all models successfully 

capture the decrease in power demand attributed to the Christmas break. Upon comparing the seasonal 

decomposition of the models with that of the observational data, it demonstrates that GB exhibits the highest 

accuracy in simulating this decrease in power demand. Additionally, our analysis demonstrates that all models 375 

perform well in simulating the weekly component (Fig. 6c). Lastly, our investigation reveals a correlation 

between the residuals of the seasonal decomposition of the models and those of the observations. This finding 

suggests that the models effectively capture short-term temporal patterns in electricity demand, indicating their 

potential to be used for generalization. 
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5 Discussion 380 

5.1 Model inter-comparison in different countries 

 

Figure 7. Taylor diagram for simulated power demand for the eight countries or regions. The colors 

indicate the different regressors tested: green, RF; orange, GB; blue, MARS; purple, GAM. The radial 



22 

 

axis indicates the standard deviation, the angular axis the coefficient of correlation (R), and the dashed 385 

circles the RMSE.  

 

 

To compare the performance of our models against the (test) observation and across the eight countries or 

regions, we constructed Taylor diagrams for each country (Fig. 7). These diagrams provide a comprehensive 390 

visualization of how well the models compare to the reference data for each country in terms of correlation, 

RMSE, and standard deviation (Taylor, 2001). The results from the Taylor diagrams confirm what was observed 

in the previous section with the evaluating metrics (Table 2). Specifically, the performance of each model is 

similar for a given country or region, while it differs across countries. The models exhibit the best correlation 

with observation for Russia (close to 0.99), closely followed by the United States, EU27 & UK, and Brazil, with 395 

a correlation higher or very close to 0.95. For Australia, China, India, and South Africa, the correlation is around 

0.90. Except for India, the models underestimate the standard deviation of daily power demand.  

One of the objectives of our study is to identify the most influential features on power demand for each country 

or region and to investigate whether any similarities exist across the different countries. A comparison of feature 

importance for each country and model (Fig. 8) is conducted to achieve this objective. Our results suggest that 400 

temperature-related features, including T2M, T2Mmax, T2Mmin, and Td, are always the primary climate drivers 

of power demand in all examined countries, indicating their significant influence on power demand across 

different regions. The other climate-related features included in this study do not appear to significantly drive 

power demand, except for SSRD, which slightly influences power demand for some countries in the RF, GB, and 

GAM models.  405 

Regarding human activity predictors, we observed significant variations in their importance across different 

countries and machine-learning regressors. For instance, the DOW feature shows high importance in some 

countries while insignificant in others, similarly for workplaces activity from Google Mobility data. In general, 

the different models found the same features to be the most important, even though the value of the feature 

importance varies across models. Quarterly GDP is a crucial feature for predicting power demand in China. 410 

Without quarterly GDP, the evaluating metrics were poor, leading us to conclude that the models for China were 

unexploitable for generalization. These results highlight the importance of considering economic indicators 

reflecting the importance of the industrial sector’s share in the total power demand, such as quarterly GDP, when 

developing models for power demand forecasting in China. 
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Overall, Fig. 8 provides insights into the key factors influencing power demand across various countries, 415 

highlighting again the crucial role of temperature-related features as a primary driver of power demand. The 

observed variations in the importance of human activity predictors across different countries and machine-

learning regressors suggest the significance of accurately including region-specific characteristics and machine-

learning approaches in predicting power demand. 
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 420 

Figure 8. Permutation feature importance for four different machine-learning regressors: (a) RF, (b) GB, 

(c) MARS, and (d) GAM. The colors represent the different types of predictive features: red for 
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temperature-related features, orange for other climate-related features, blue for covid, and green for 

socioeconomic features. The columns correspond to the countries indicated at the bottom of the figure. 

 425 

5.2 Validation and Limits of the Models 

 

Figure 9. (a) Quantile-quantile (QQ) plot displaying the mean and standard deviation (shaded area) of the 

residuals’ quantiles for the four models (RF, GB, MARS, and GAM) across eight European countries 

during the test period.  (b) Autocorrelation plot illustrating the average autocorrelation values across the 430 

eight countries or regions studied for each of the four models with a 14-day maximum lag. The shaded 

area represents the standard deviation across countries. 
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Figure 10. (a) Quantile-quantile (QQ) plot displaying the mean and standard deviation (shaded area) of 

the residuals’ quantiles for all countries across the four models during the test period.  (b) Autocorrelation 435 

plot illustrating the average autocorrelation values across the four models for all countries with a 14-day 

maximum lag. The shaded area represents the standard deviation across countries. 

The analysis of the residuals of the four models provides information on the performance of the models in 

predicting the statistical distribution of power demand. We analyzed the performance of the four models using 

residual quantiles compared to the theoretical Gaussian distribution (Figs. 9a and 10a). This examination is 440 

carried out at a global level encompassing all countries and regions (Fig. 9a) and at a country-specific level for 

each model (Fig. 10a).  This analysis reveals that all models perform similarly, with slight deviations from the 

expected normal distribution within the intermediate quantiles range (between two and minus two) and higher 

deviations observed above this threshold. Therefore, the Gaussian hypothesis is confirmed, except for extreme 

values, for which the dataset contains relatively few observations. Those extreme values are often attributed to 445 

periods of unusual economic activity, such as bank holidays or specific public holidays that are difficult to model 

(Srinivasan et al., 1995; Ziel, 2018). Consequently, our models can underestimate or overestimate very low or 

high power demand, respectively. 

 

The autocorrelation plots of the residuals (Fig. 9b) reveal differences between the models and countries. In 450 

particular, gradient boosting outperforms the other models in this respect, with the lowest autocorrelation values. 

In contrast, MARS shows the highest values. RF and GAM are in between with very similar results.  Some 

countries exhibit superior performances (Fig. 10b). For example, the residual autocorrelation values for Russia 
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decrease with time at a slower pace than for other countries. Despite the differences in autocorrelation values 

between the models and across countries, it is worth noting that all models exhibit a similar trend. Specifically, 455 

the autocorrelations of the residuals are high up to a lag of a few days, as also reported elsewhere. The 

autocorrelations drop beyond a lag of a few days, indicating that our models did not miss any significant temporal 

information. 

Overall, these findings are encouraging and validate our models. Therefore, the models can be used for the 

projection of power demand. However, caution should be exercised when considering extreme values. It is 460 

possible to improve the modeling of such values by using a class of quantile regression models. Various types of 

models have been developed that are specifically designed to address extreme quantiles. One such model is the 

quantile regression forest, which is a generalization of the random forest model (Meinshausen, 2006). Recent 

work by Gnecco et al. (2023) also proposed an approach based on random forest, tailored to extreme quantiles. 

Another example is the additive quantile regression model, which has demonstrated promising results in recent 465 

studies (Fasiolo et al., 2020). Finally, Velthoen et al. (2022) developed similar quantile models but for a gradient 

boosting approach. Such models are consistent with the type of models used in this study and will be applied in 

future studies to improve the accuracy of power demand projections. 

Overall, while the models developed in this study offer valuable insights into predicting power demand, some 

limitations must be considered. Firstly, our study period included the COVID-19 pandemic, which significantly 470 

impacted energy consumption and emissions (Liu et al., 2020b; García et al., 2021; Aruga et al., 2020). While we 

incorporate this variable in our models, the extent of its impact may not have been fully captured. Training the 

regressors on periods not affected by covid might give better results.  

Additionally, the irregularity observed in the modeling process for China is worth noting, as China necessitates 

the inclusion of quarterly GDP to attain good results. Although our approach was largely consistent across 475 

countries, it did not achieve a perfect "one-fits-all" approach. Consequently, while this work established a 

modeling framework applicable to multiple countries, further revisions may be required when extending it to 

countries not encompassed in this study. 

Finally, although all models yielded satisfactory outcomes, each model employed the predictive features in 

distinct ways (Figs. 4 and 9). Certain predictive features did not exhibit the expected behavior (as shown in Fig. 480 

5b, where T2Mmin showed no sensitivity for lower temperatures). Furthermore, the role and impact of the TOY 

variable, which functions as a corrective factor for countries where Google Mobility data are not available, 

remain somewhat ambiguous. While it can account for annually recurring phenomena not elucidated by other 

predictive features, it would require a more extensive dataset spanning several years to refine its precise function. 
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Addressing these limitations through future research can lead to more accurate and robust models for predicting 485 

power demand and related CO2 emissions. 

6 Perspective 

 

Figure 11. Extended methodological flowchart toward CO2 emission projections. 

 490 

The present study aims to establish a modeling approach to simulating national daily power demand from climate 

and human activity features. The proposed approach has the potential to be extended to predict long-term power 
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demand trends under changing climatic conditions and to estimate the corresponding CO2 emissions resulting 

from power generation (Fig. 11). This extension would involve developing separate models for simulating power 

demand and carbon intensity. To achieve this, the target variable would be set as the daily carbon intensity rather 495 

than power demand, resulting in the development of two parallel models: one for daily power demand and 

another for daily carbon intensity. CO2 emissions are calculated by combining the projections from these two 

models. 

To apply this approach, projected climate features obtained from the CMIP6 simulation round, along with 

projected human activity variables such as DOW (Day of the Week) and Holidays, would be necessary. It should 500 

be noted that certain predictive features, such as “workplaces” from the Google Mobility Data, may not be 

subject to projection. By employing the two abovementioned models, projections of power demand, carbon 

intensity, and CO2 emissions can be obtained. Other socioeconomic factors, such as population growth, GDP, and 

environmental policies, can be incorporated to enhance the projection of daily power demand and CO2 emissions 

(Figure 11). By considering the influence of population growth and GDP, the projections of daily power demand 505 

can be scaled accordingly. Carbon intensity projections could be developed based on assumed environmental 

policies aligned with the SSPs (Shared Socioeconomic Pathways) narratives and used to scale the projection of 

daily carbon intensity obtained with the data-based models. A similar approach has already been applied to Qatar 

and Japan with different scenarios in alignment with the SSPs narratives (Gurriaran et al., 2022a; Gurriaran et al., 

2022b).  510 

However, our current models lack the ability to account for the future availability of heating and cooling 

technologies in the different areas under study. To address this significant limitation in projecting long-term 

trends, our strategy is to apply relationships observed in countries currently equipped with such technologies to 

countries lacking them. For example, we can simulate European electricity demand by applying the observed 

electricity-demand-climate relationship in Japan or the US, especially beyond the cooling threshold. By carefully 515 

selecting country combinations, we aim to develop future scenarios that are consistent with the narratives of the 

SSPs. 

The approach presented in this study has the potential to be extended to evaluate the effectiveness of different 

policies and initiatives aimed at reducing CO2 emissions. By considering the influence of changing energy 

demand under future climate change scenarios, it becomes possible to evaluate the effectiveness of these 520 

measures in achieving emission reduction targets. Furthermore, coupling the models developed in this study with 

simple climate models such as ACC2 (Aggregated Carbon cycle, atmospheric chemistry, and climate model, 

Tanaka et al., 2007; Tanaka and O’Neill, 2018) enables quantification of the feedback loop between human 
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activity, CO2 emissions, climate change, power demand changes, CO2 emission changes, and the impact on 

climate (precisely, human activity → CO2 emissions → climate change → human activity). 525 

In conclusion, the models developed in this study provide a valuable tool for analyzing, forecasting and 

understanding power demand patterns and CO2 emissions in the context of climate change across various regions 

worldwide. Applying these models could offer insights into the potential future scenarios and dynamics of power 

demand, enabling policymakers and stakeholders to make informed decisions and shape effective energy policies. 

Code availability 530 

Access to the model's source code, stored in a private Zenodo repository, is available upon request at: 

https://doi.org/10.5281/zenodo.8135971. The model is coded in Python (version 3.6.12). The code is not publicly 

accessible as the primary company associated with the lead author has enforced a strict policy against its public 

distribution. The company's rationale for this decision is to safeguard its competitive advantage and proprietary 

algorithms from potential misuse or unauthorized access. The distribution of the code for non-commercial 535 

research purposes may be considered upon request to the corresponding author, subject to validation by the 

primary company. The reviewers were granted access to the code for evaluation purposes.  

List of Python library necessary: 

• Pyearth 0.1.0 

• Pandas1.1.5 540 

• Matplotlib3.3.2 

• numpy1.19.2 

• sklearn0.0 

• pygam0.8.0 

• PyALE1.1.2 545 

• Statsmodels0.12.2 

Data availability 

Climate data used for this study are available from the global atmospheric reanalysis dataset produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) at 

https://cds.climate.copernicus.eu/cdsapp#!/home. Below is the query necessary to download the data with the 550 

https://cds.climate.copernicus.eu/cdsapp#!/home
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CDS toolbox and the list of the climate data names. This query allows you to access the specific variables you 

need by replacing "VARIABLE_NAME" with the name of the variable you want to download. Energy data are 

available at https://power.carbonmonitor.org (Carbon Monitor – Power). Google Community Mobility Reports 

data are available at https://www.google.com/covid19/mobility/. COVID-19 stringency index data are extracted 

from the Oxford Coronavirus Government Response Tracker (OxCGRT) project and are available at 555 

https://ourworldindata.org/covid-stringency-index.  

 

 

ERA5 climate data names: 10m_u_component_of_wind, 10m_v_component_of_wind, 

2m_dewpoint_temperature, 2m_temperature, relative_humidity, surface_pressure, 560 

surface_solar_radiation_downwards, surface_thermal_radiation_downwards, total_precipitation 

 

import cdstoolbox as ct 

 

@ct.application(title='Download data') 565 

@ct.output.download() 

def download_application(): 

    data = ct.catalogue.retrieve( 

        'reanalysis-era5-land', 

        { 570 

            'variable': 'VARIABLE_NAME', 

            'year': '2022', 

            'month': '01', 

            'day': [ 

                '01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12', 575 

                '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', 

                '25', '26', '27', '28', '29', '30', '31', 

https://power.carbonmonitor.org/
https://www.google.com/covid19/mobility/
https://ourworldindata.org/covid-stringency-index
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            ], 

            'time': [ 

                '00:00', '01:00', '02:00', '03:00', '04:00', '05:00', '06:00', '07:00', '08:00', 580 

                '09:00', '10:00', '11:00', '12:00', '13:00', '14:00', '15:00', '16:00', '17:00', 

                '18:00', '19:00', '20:00', '21:00', '22:00', '23:00', 

            ], 

        } 

    ) 585 

    daily_mean = ct.cube.resample(data, freq='day', dim='time', how='mean') 

    return daily_mean 

To obtain T2Mmax and T2Mmin, replace how='mean', by how='max' and how='min', repectively, in the penultimate line 

of the query 

Supplement  590 

The supplement related to this article is available online at: https://doi.org/10.5281/zenodo.8039225 
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