GPROF V7 and beyond: Assessment of
current and potential future versions of
the GPROF passive microwave
precipitation retrievals against ground
radar measurements over the continental
US and the Pacific Ocean

Response to reviewers



1 Response to reviewer 1

We thank the reviewer for investing their time to read our manuscript and provide con-
structive feedback to improve it. The principal changes that we have implemented based
on comments from both reviewers are the following:

1. We repeated our analysis excluding all precipitation classified as frozen by MRMS,
i.e., excluding not only snow but also hail. Significant effects of excluding hail were
only observed in the SW region and we have updated the manuscript accordingly.

2. We have added a short section that analyzes the impact of excluding both frozen
precipitation as well as precipitation of snow-covered and mountain surfaces and
the behavior of the different retrievals over those surfaces.

3. We have revised all references to the a priori database and the MRMS validation
data to make the distinction of the two clearer.

Finally, we have also updated that precision-recall curves to show the precision over the
recall instead of the recall over the precision, which is the more common way to present
these curves. During this, we also realized that the PR curves previously included samples
over ocean, which we have now excluded. This lead to a minor change in the relative
skill of the GPROF-NN HR retrieval.

In what follows, line and figure numbers are given with respect to the revised manuscript.

1.1 Specific comments

Reviewer comment 1

Abstract, Line 12-13: What does “retrieval reproduces the principal precipitation char-
acteristics of each region” mean? Can you please elaborate?

Author response:

What we were referring to here were the different regional seasonal and diurnal cycles
of precipitation, which were reliably reproduced by the GPROF retrievals. We have
reformulated the sentence in the revised manuscript to make this clear.

Changes in manuscript:



Changes starting in line 13:

Although biases of up to 25 % are observed over sub reglons of the CONUS and the
tropical Pacific, the retrieval :

of-each—regionreliably reproduces each region’s diurnal and seasonal precipitation

Reviewer comment 2

Abstract, Linel6-18: I appreciate that authors are providing this significant finding here
at the abstract, however, can you please be more specific about the time resolution of
this comparison? Meaning at what time resolution GPROF NN 1D is improving mean
absolute error, corr etc.?

Author response:

All retrieval errors are computed with respect to instantaneous precipitation estimates
at 5km resolution. We have added this information to the sentence in question in the
revised version of the manuscript.

Changes in manuscript:

Changes starting in line 18:

GPROF-NN 1D, the most basic neural network implementation of GPROF, improves
the mean-squared error, mean absolute error, correlation and symmetric mean ab-
solute percentage error of instantaneous precipitation estimates by about twenty
percent for GPROF GMI while the effective resolution is improved to 31 km over
land and 15 km over oceans.

Reviewer comment 3

Line 58-60: This is a very confusing sentence. Can you please reword it?

Author response:

We agree with the reviewer that the sentence is badly worded. We have reformulated it
in the revised version of the manuscript.

Changes in manuscript

Changes starting in line 58:

This study compares the-GPROF retrievals to independent preecipitation—estimates
and—the—error—validation data derived from ground-based precipitation radars. In



this case, differences between a priori database and validation—data—wil-thustead
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‘ ‘ se—the validation
data constitute a second source of errors that will increase the total retrieval error.

These two sources of error are fundamentally different and reducing their impact

requires different approaches. Therefore, quantifying the extent to which these
sources contribute to the total retrieval error is essential to guide future efforts to

improve GPM PMW retrievals.

Reviewer comment 4

Line 64: Can you please reword this question, something along the lines: “to what extent
a priori database errors contribute to GPROF overall retrieval errors?”

Author response:

We have reworded the question in the revised version of the manuscript.

Changes in manuscript

Changes starting in line 66:

To-what-extent-eontribute-What is the contribution of errors in the a priori database
to GPROF-retrieval-errorsthe GPROF retrieval error?

Reviewer comment 5

Line 65: I think it would be better to remove “even” from this question“... GPM PMW

observations even when compared to ...”

Author response:

We have removed even in the revised version of the manuscript.

Changes in manuscript

Changes starting in line 67:

Can the GPROF-NN retrievals improve precipitation estimates of the GPM PMW
observations even—when compared to independent measurements?



Reviewer comment 6

Line 90: Authors mention that rain gauge corrected MRMS data are used. Can authors
please be more specific which database they have used? Because the way it has been
presented is slightly confusing. Gauge corrected MRMS precipitation magnitudes are
accumulations. However, radar only MRMS data provides precipitation rates at 2 min
temporal intervals. Did the authors conduct their own gauge correction to the radar only
MRMS product?

Author response:

The MRMS estimates that are used in the study are instantaneous, gauge-corrected
radar QPEs. This is a special product that is produced specifically for GPM ground
validation. It uses gauge correction factors derived from hourly gauge-corrected and
radar-only accumulations to correct instantaneous radar QPE’s.

Changes in manuscript:
Changes starting in line 97:

Tnstantaneous—The principal source of validation measurements for this study are
instantaneous, gauge corrected re(npltatlon estlmates from the NOAA Multi-Radar

Multi-Sensor System (MRMS)aze-tse :
MMM%%EMMH%Mam produced specnﬁcally

for GPM ground validation and are gauge—corrected to match monthly accumu-

lations ‘ . following the approach described
Kirstetter et al. 2012 These estimates are not part of the operational MRMS

rocessing suite but can be obtained from the GPM geround validation data archive

. The processing of the ground-validation data includes a basic filtering

that removes measurements with excessive gauge-correction factors (Kirstetter et al., 2012)
. The data is provided on an approximately 0.01° x 0.01° grid covering GCONUS-

The-the CONUS. For the comparison against the satellite retrievals, the MRMS

data is smoothed usmg a Gaussian average filter with a full- Wldth at half-maximum

(FWHM) of 5km : : ._Following
this, the mapping to the collocatlon rid is performed using nearest- neighbor inter-

polation.

Reviewer comment 7

Line 211-212: Can authors please clearly indicate whether the mountain surfaces are
excluded or included with a correction.

Author response:

We have rewritten this section to clearly state that these pixels are excluded because of
the correction applied to them.



Changes in manuscript

Changes starting in line 226:

Snew-covered-Retrievals over snow-covered and mountaln surfaces are excluded from
the validation - : ‘ ‘
@%

data. In addition to this, the GPROF a priori database for snow—covered surfaces is
derlved from collocatlons with MRMSwhile—for+t or : : S i

while reci itation over mountains
is obtained by scalin the GPM CMB precipitation to account for the orographic

enhancement of precipitation. These two modifications aim to counteract known
weaknesses in-of the GPM CMB reference-data-but-theyretrievals, but would skew

the comparison between GPM, GPM CMB, and MRMS. Furthermere
Similarly, precipitation that is identified as snew-frozen by MRMS is excluded from

the validation. The retrieval of frozen precipitation from both PMW and radar is
particularly challenging due to its uncertain radiometric properties. Because of these
increased uncertainties and the small contribution of frozen precipitation to the total
precipitation in the validation data, the retrieval accuracy for frozen precipitation
should be assessed in a dedicated study.

Reviewer comment 8

Line 228: Can authors please explain how they calculate the bias or what is the definition
of the bias? And at what temporal resolution (I am assuming this is annual but it would
be nice to indicate).

Author response:

We have added the requested information in the revised version of the manuscript.

Changes in manuscript

Changes starting in line 254:

Maps of ¢ iasesannual mean retrieval biases, calculated as the annual

average of the dlfference between retrieved precipitation and the precipitation in the
a priori database or the MRMS validation data, are displayed in Fig. 3.

Reviewer comment 9

Line 239-242: To add to the explanation here (this is through a personal communication
with a MRMS team member): “It is not documented on lowa website, however, in Oct
2020, the gauge correction methodology and associated products are changed.” This
corresponds exactly to the 2021 water year that authors are using in this study.



Author response:

We would like to thank the reviewer for this useful information. We have included it in
the revised version of the manuscript.

Changes in manuscript

Changes starting in line 274:

talexph te ~thischa -6 ias HSS stor-As pointed out
by one of the anonymous reviewers, it is likely that this is due a change in the MRMS

auge correction methodology that occurred around October 2020 (Anonymous Referee 2,12023)

1.1.1 Reviewer comment 10

Line 244: “... it is possible that the bias relative to MRMS is introduced by rain gauge
correction” please include “by” in this sentence to make it clear.

Author response:

We have fixed this in the updated version of the manuscript.

Changes in manuscript:

Changes starting in line 270:

Given that the CMB over land is largely a radar-derived product, it is possible that
the bias relative to MRMS is introduced by the rain gauge correction applied to the
validation data and caused by precipitation properties that may not be resolved by
the radar observations.

Reviewer comment 10

Line 266-268: Can authors please describe why they decide to use mean error, mean-
squared error and mean absolute error all together? What do they explain differently
and why did authors needed all of them together? Moreover, can authors please describe
symmetric mean absolute percentage error in more detail i.e., what does this score mean,
what are the max and min values etc.

Author response:

We have decided to include multiple error metrics in our analysis because our ultimate
alm is to improve precipitation estimates and not just tune them to optimize a single
error metric. Both MSE and MAE are fairly common error metrics and providing them



can provide a reference for other retrievals. However, MSE and, to a lesser extent, MAE
are dominated by heavy precipitation.

A relative error such as the mean absolute percentage error (MAPE) is more sensitive
retrieval errors for light precipitation estimates (c.f. Fig. . However, the issue with the
MAPE is that it penalizes overestimation heavier than underestimation. The symmetric
mean absolute percentage error corrects this shortcoming by modifying the MAPE to be
symmetric in its arguments.

We added an appendix to the revised manuscript that motivates our choice of met-
rics, states their formulas, and illustrates the characteristics of MSE, MAE, MAPE, and
SMAPE. The appendix contains the figure shown in Fig. [I.1} which displayes the differ-
ent behavior of the error functions underlying MAE, MSE, MAPE and SMAPE. It also
shows the asymmetry of the MAPE, which motivated our choice of the SMAPE over
MAPE.

Finally, the appendix also contains the figure shown in Fig. which shows the
relative contribution of different precipitation intensities to the final value of the metric.
This figure clearly shows the complementary behavior of MSE, MAE, and SMAPE in
terms of sensitivity to different precipitation intensities.

Changes in manuscript:

1. We have rewritten the paragraph introducing the metrics:

Changes starting in line 297:

The assessed metrics include the mean error (Bias), mean-squared error (MSE),
mean absolute error (MAE), correlation coefficient and the symmetric mean

absolute percentage error (SMAPE}—which-is-defined-as:—

_ 1 |P—PyvRrwms|
SMAPE; (P, Pyvirvs) = S ZPMR,MsZt o_5(|p|+\pl\,1m,[s\)}

Several metrics are used to assess the retrieval accuracy in order ensure

a comprehensive assessment of the quality of each algorithm’s precipitation
estimates. Definitions, basic characteristics and a motivation for the choosin
those metrics is provided in Appendix B.

2. We have added an appendix discussing our choice of error metrics.
Changes starting in line 678:

Ranking the quality of precipitation estimates is a non-trivial problem because
what constitutes a good estimate depends heavily on the downstream application.
from the PMW sensors of the GPM constellation in a way that benefits all
possible downstream applications. To ensure that we are working towards an




actual improvement of these estimates instead of simply tuning the results to

improve a single error metric, we use a selection of error metrics to evaluate
the retrievals.

The quantitative error metrics that we use in this study are listed together with
their formulas and valid range in table LIl The behavior of the error functions
of mean squared error (MSE), mean absolute error (MAE), and symmyetric
mean percentage error (SMAPE) is illustrated in Fig. [[ 1l Since both MSE
and MAE depend on directly on the absolute difference between estimate
and reference value, the largest errors occur in the regions where either the
estimate or the reference precipitation is heavy. This effect is exacerbated by
the quadratic nature of the MSE.

Relative errors such as MAPE and SMAPE increase sensitivity to deviation at
light precipitation rates by normalizing the error. However, since the MAPE
uses only the reference precipitation for normalization it is unsymmetric and
will thus favor estimates that underestimate the reference value, Since this
would bias the evaluation towards retrievals that underestimate precipitation,
we use the SMAPE in this study, which uses a symmetric normalization term.

The MSE, MAE, and SMAPE are evaulated by calculating their sample mean
over all validation samples. Their final values are thus the combined result of
the error function and the joint occurrence of retrieved and reference precipitation
values. To illustrate the different characteristics of the three error metrics,
intensities to the error metrics calculated using all collocations between MRMS
and GPROF V7 in the water years 2021 and 2022. As the three curves show,
the three error metrics have very different contribution profiles across the
spectrum of reference precipitation. While the SMAPE is most sensitive to
errors at light precipitation, the MAE has a fairly flat contribution profile with
a peak at moderate precipitation, and the MSE is dominated by errors at heavy



Table 1.1: Quantitative accuracy metrics used in this study. We use over bar to denote
the sample mean and o the sample standard deviation taken over all valid
measurements.
Name Formula Lower bound | Upper bound | Optimal value
Bias Preprieved = Liyue. =00, oo 0
Mean__ squared _ error || (£ - b 0 e 0
(MSE).
Mean _absolute error || | P - P 0 00 0
(MAE)
Symmetric___mean | (leuered =P 0. 200% 0.
2 etrieve rue
absolute ercentage || calculated onl over
error_with _threshold f || samples with Pryye > ¢t
SMAPE
QM (PRetrievedpretrieved)(P’I‘rue* PTrue) Q,\, l,\, ’1/\‘
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Figure 1.1: Error functions for evaluating precipitation retrievals. Panel (a) shows the
value of the MSE for different combinations of retrieved and reference values.
Panel (b), (c¢), and (d) show the according behavior for the MAE, MAPE,

and SMAPE.
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Figure 1.2: Relative contribution of different precipitation rates to total value of each
error metrics. The three bar plots show the relative contribution from each
corresponding bin the total value of each error statistic. The contributions
were calculated for the GPROV V7 retrieval using all validation samples from
the water years 2020 and 2021.
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