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Abstract. Random and spatial Cross-Validation (CV) methods are commonly used to evaluate machine learning-based spatial

prediction models, and the obtained performance values are often interpreted as map accuracy estimates. However, the ap-

propriateness of such approaches is currently the subject of controversy. For the common case where no probability sample

for validation purposes is available, in Milà et al. (2022) we proposed the Nearest Neighbour Distance Matching (NNDM)

Leave-One-Out (LOO) CV method. This method produces a distribution of geographical Nearest Neighbour Distances (NND)5

between test and train locations during CV that matches the distribution of NND between prediction and training locations.

Hence, it creates predictive conditions during CV that are comparable to what is required when predicting a defined area. Al-

though NNDM LOO CV produced largely reliable map accuracy estimates in our analysis, as a LOO-based method, it cannot

be applied to large datasets found in many studies.

Here, we propose a novel k-fold CV strategy for map accuracy estimation inspired by the concepts of NNDM LOO CV: the10

k-fold NNDM (kNNDM) CV. The kNNDM algorithm tries to find a k-fold configuration such that the Empirical Cumulative

Distribution Function (ECDF) of NND between test and train locations during CV is matched to the ECDF of NND between

prediction and training locations.

We tested kNNDM CV in a simulation study with different sampling distributions and compared it to other CV methods

including NNDM LOO CV. We found that kNNDM CV performed similarly to NNDM LOO CV and produced reasonably15

reliable map accuracy estimates across sampling patterns with strong reductions in computation time for large sample sizes.

Furthermore, we found a positive linear association between the quality of the match of the two ECDFs in kNNDM and the

reliability of the map accuracy estimates.

kNNDM provided the advantages of our original NNDM LOO CV strategy while bypassing its sample size limitations.

1 Introduction20

Spatial predictive modeling using machine learning methods is commonly used in ecology and environmental sciences to

predict variables sampled at a limited set of locations to new, unobserved locations (see e.g. van den Hoogen et al., 2019;

Sabatini et al., 2022; Moreno-Martínez et al., 2018; Hengl et al., 2017, for global studies). A key step in the spatial prediction
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workflow is the map accuracy assessment, i.e. the process whereby the quality of a prediction of a spatially-indexed variable

in a finite and defined geographical area (e.g. a set of pixels forming a continuous surface) is estimated (Stehman et al.,25

2021; Wadoux et al., 2021). Although map accuracy assessment should ideally be done via design-based inference based on

probability sampling (Wadoux et al., 2021), this is frequently not possible due to limited access to certain areas or expensive

sampling methods (Martin et al., 2012). Instead, Cross-Validation (CV) methods are commonly used to estimate the map

accuracy. Previous studies, however, showed significant differences in map accuracy estimates depending on the type of CV

being used, which initiated discussions on the appropriateness of these strategies (Wadoux et al., 2021; Meyer and Pebesma,30

2022; Milà et al., 2022; Roberts et al., 2017; Ploton et al., 2020). Since CV is also typically used during model selection

::::::::::
development

:
(i.e during hyperparameter tuning (Schratz et al., 2019) and feature selection (Meyer et al., 2019)), reliable

estimates of map accuracy are crucial to develop suitable prediction models.

Traditional CV methods that ignore the spatial structure of the data such as Leave-One-Out (LOO) or random k-fold CV

(Hastie et al., 2009) have been found to provide reliable estimates of map accuracy when samples are randomly distributed35

within the entire prediction area, but not when they are clustered (Milà et al., 2022; Wadoux et al., 2021) or only covering

parts of the prediction area (Meyer and Pebesma, 2021). As an alternative, spatial CV methods such as block CV (Wenger and

Olden, 2012; Valavi et al., 2019; Roberts et al., 2017) or buffered-LOO CV (Telford and Birks, 2009; Le Rest et al., 2014;

Brenning, 2022) are often used. Spatial CV methods are designed for geographical model transferability assessment, i.e. to test

the ability of the model to make predictions for new geographic entities far away from the sampling areas, by designing a CV40

where independence between train and test data is sought (Roberts et al., 2017). Such strategies, however, have been found to

overestimate the map error
:::::::::::
underestimate

::::
map

::::::::
accuracy

:
when reference data are regularly or randomly distributed within the

:::::
entire prediction area. In some cases, this has been even reported for clustered samples (Wadoux et al., 2021) when used for

spatial interpolation (Milà et al., 2022)
:::::::::::::::::::::::::::::::
(Wadoux et al., 2021; Milà et al., 2022). Recent proposals of methods for map accuracy

estimation include sampling-intensity weighted CV, as well as model-based geostatistical approaches (de Bruin et al., 2022).45

However, the results of de Bruin et al. (2022) showed that these two methods are not universal solutions and, depending on the

sampling design, showed considerable over- or underestimation of the true map accuracy.

In our past work, we argued that the design of a CV method to provide a reliable estimate for map accuracy should be

prediction-oriented, i.e. predictive conditions created during CV should resemble the conditions found when the trained model

is applied to the prediction area (Milà et al., 2022; Meyer and Pebesma, 2022; Ludwig et al., 2023). Following this idea, in50

Milà et al. (2022) we considered predictive conditions in terms of geographical distances, and proposed the Nearest Neighbour

Distance Matching (NNDM) LOO CV method, a prediction-oriented CV method based on spatial point patterns concepts (Milà

et al., 2022). Briefly, NNDM aims to match the Empirical Cumulative Distribution Function (ECDF) of Nearest Neighbour

Distances (NND) between test and train locations in the CVprocess, to the ECDF of NND between prediction and training

locations found during prediction.55

In Milà et al. (2022) we showed that when simple
:::::::
standard

:
LOO CV is used for randomly distributed reference data

within the prediction area, the distribution of NND between test and training locations during CV is similar to the distri-

bution of NND between prediction and training locations (see Meyer and Pebesma (2022) for similar results for random k-fold
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CV)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(see Meyer and Pebesma, 2022, for similar results for random k-fold CV). In the case of clustered sampling designs, NND

during
::::
LOO

:
CV were generally much shorter than prediction NND which led to significant error underestimation when60

validated with random CV (see also Ludwig et al., 2023). For regular samples, NND during LOO CV were found to be slightly

longer than during prediction leading to slight error overestimation (Milà et al., 2022). With the newly developed NNDM

LOO CV, we could produce comparable NND distributions regardless of the sampling design
:
in

:::::
most

::::::::
sampling

::::::
designs

:
and

provide more reliable estimates of map accuracy
:::
that

::::
can

::
be

::::
used

::::::
during

:::::
model

:::::::::::
development

::
or

::
to

:::::::
indicate

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::
predictions.65

Even though our proposed method showed promising results across different sampling designs, prediction areas, and land-

scape autocorrelation ranges (Milà et al., 2022), the fact that it is a LOO-based CV method hinders its broader application

given its high computational cost in medium and large datasets. To overcome this limitation, our aim is to extend the idea of

NNDM LOO CV to a k-fold NNDM CV, hereafter kNNDM, that can be applied to larger datasets commonly found in ecology

and the environmental sciences. The paper70

::::
This

:::::
article

:
is organised as follows: after presenting our algorithm in section 2, in section 3 we reproduce the simulation

study included in Milà et al. (2022) to assess the performance of kNNDM and explore how it compares to the original NNDM

LOO CV as well as to
:::
and

::::::
runtime

:::
of

:::::::
kNNDM

:::::::::
compared

::
to

:
other CV methods .

::::::::
including

::::::
NNDM

:::::
LOO.

:::
In

:::
this

::::::::::
simulation,

::
we

::::
also

:::::::
explore

::
the

::::::::
influence

::
of

:::
the

:::::::
number

::
of

:::::
folds

:
k
::::
and

:::
the

::::::::::
relationship

:::::::
between

:::
the

::::::
quality

::
of

:::
the

:::::
match

::::
and

:::
the

::::::
quality

::
of

::
the

:::::::::
estimation

:::
of

:::
the

::::
map

::::::::
accuracy.

:::
As

::::::::::::
supplementary

::::::::
material,

::
we

:::::::
provide

::
a

::::::
second

:::::::::
simulation

:::::
study

:::::
which

:::
we

::::
also

::::::
briefly75

:::::::
describe

::
in

::::::
section

::
3. Finally, section 4 discusses the strengths and limitations of our method and suggests future lines of work.

2 Algorithm description

The algorithmic objective of kNNDM is the same as in the original NNDM LOO approach: to match the ECDF of the NND

between test and training locations during CV, to the ECDF of NND between prediction and training locations found during

prediction. While in the original NNDM LOO approach we focused on matching NND ECDF up to the range of the residual80

spatial autocorrelation of the variable being modelled (Milà et al., 2022), here we match all the ECDF to avoid the complexity

and possible pitfalls of semivariogram estimation (e.g. trend, anisotropy, sampling size and spacing, preferential sampling;

see Webster and Oliver (2007) for an overview). We define distances as Euclidean for projected coordinates and spherical for

geographical coordinates.

In kNNDM, the definitions of the different NND ECDF remain the same as in the original NNDM LOO algorithm, where85

j is the index for training points and i is the index for prediction points (see detailed definitions with equations in Milà et al.

(2022)):

– Ĝj(r) is the NND ECDF between test and train locations during LOO CV and expresses the proportion of training points

that have another training point at a distance equal or lower than r.

– Ĝij(r) is the NND ECDF between prediction and training locations and expresses the proportion of prediction points90

that have a sampling point at a distance equal or lower than r.
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– Ĝ∗
j (r,L) is the NND ECDF between test and train locations during a CV defined in L and expresses the proportion

of test points that have a training point at a distance equal or lower than r during a given CV strategy. Note that L=

{l1, l2, . . . , lnj} is a list of sets lj containing the indices of the samples to fit the model to when holding out observation

j during CV. Note that since in kNNDM we leave out data points in folds rather than one by one, lj will be the exactly95

the same for all samples belonging to the same fold.

Another important component of our approach is how to measure the quality of the match between Ĝ∗
j (r,L) and Ĝij(r)

given a fold configuration. We do that by using the Wasserstein statistic (Dowd, 2020; Vaserstein, 1969), which compares the

distribution of two samples by calculating the integral of the absolute value differences between the two ECDFs. In our case,

we define W as the integral over the geographical distances r of the absolute value differences between Ĝ∗
j (r,L) and Ĝij(r):100

W =

∫
|Ĝ∗

j (r,L)− Ĝij(r)|dr

Figure 1. Top row: prediction points (regular grid) and simulated training points with different spatial distributions (bold). Bottom row: NND

ECDF between training locations found during LOO CV (Ĝj(r), blue) and NND ECDF between prediction and training locations (Ĝij(r),

black) corresponding to each of the sampling distributions in the top row. The shaded yellow area corresponds to the W statistic, whose value

is printed in the plots.
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Small values of W indicate that the two ECDFs are similar, while W will be larger if they differ. To illustrate this point, we

show the calculation of the W statistic between Ĝj(r) (ECDF of NND during LOO CV) and Ĝij(r) (ECDF of NND during

prediction) for different sampling patterns (Figure 1). As shown in Milà et al. (2022), when samples are randomly-distributed

::::::::
randomly

:::::::::
distributed

:
within the prediction area, Ĝj(r) resembles Ĝij(r) (since Ĝj(r)≈ F̂j(r) under complete spatial ran-105

domness, see Baddeley et al. (2015)) and therefore the value of W is small. However, in presence of clustered samples, LOO

CV NND are shorter than prediction NND, and thus Ĝj(r) > Ĝij(r), resulting in a large W value. The opposite occurs when

training samples follow a regular sampling pattern, also leading to a larger W statistic compared to random sampling.

The objective of the kNNDM algorithm (Figure 2) is to find a k-fold configuration such that W measuring the match

between Ĝ∗
j (r,L) and Ĝij(r) is minimised. The first step is to test whether the training points are clustered with respect to the110

prediction points; to do that we compute Ĝj(r) and Ĝij(r), and then test the null hypothesis Gj(r)≤Gij(r) vs. the alternative

Gj(r)>Gij(r) with a one-sided Kolmogorov–Smirnov (KS) two-sample test (Conover, 1999). If the null hypothesis is not

rejected, the algorithm returns a random k-fold CV since it is the appropriate option for random and regular samples (Meyer

and Pebesma, 2022; Wadoux et al., 2021; de Bruin et al., 2022). If, however, the null hypothesis is rejected (p-value < 0.05),

we proceed to cluster the training points based on their coordinates into a range of qi ∈Q clusters, where Q is defined as an115

integer sequence of length 100 ranging between k and N (the total number of training points) equally-spaced in the logarithmic

scale and back-transformed, to try configurations with a small number of clusters more intensively. Currently, hierarchical and

k-means clustering methods are implemented.

Next, for every configuration where q > k, we merge the resulting q clusters into the final k folds along the first principal

component of the training points’ coordinates to prevent contiguous clusters in space to be in the same fold. Briefly, we compute120

the first principal component of the training points’ coordinates to capture the direction with the most spatial variability, project

the q cluster centroids into that first component and order them according to it, and finally merge q into k folds by giving

different fold levels to contiguous clusters in that dimension. Large clusters with a proportion greater than 1/k of the training

data are not merged to keep fold balance. Once this procedure is completed, we compute Ĝ∗
j (r,L) and W

::
W for each fold

configuration candidate and select the one with the smallest W, i.e. the one that provides the best match between Ĝ∗
j (r,L) and125

Gij(r)::::::
Ĝij(r).

As an illustration of how kNNDM works in cases where samples are clustered within the prediction area, Figure 3 shows

a 2-fold kNNDM CV configuration for different number of clusters q, their respective NND ECDF functions, and the W

statistic between Ĝ∗
j (r,L) and Gij(r) :::::

Ĝij(r):assessing the match. A low number of clusters leads to a strong partition of the

geographical space and long NND between test and train points during CV, which are actually longer than NND encountered130

when predicting from the
::
all

:
reference data. As the number of clusters increases, Ĝ∗

j (r,L) gets closer to Ĝj(r), i.e. the NND

ECDF encountered during LOO CV. In this example, the kNNDM algorithm would select the configuration with q = 21 since

it minimises the W statistic, i.e. provides the best match.

As practical considerations, in our implementation we have provided the possibility, as an alternative to the prediction points

input, of supplying a polygon defining the prediction area, from which prediction points are sampled internally. Moreover, we135

have included a balancing parameter for the maximum single fold size allowed that discards non-compliant fold candidates.
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Figure 2. Workflow of the kNNDM algorithm.

Regarding computational performance, our algorithm benefits from using projected coordinates since fast nearest neighbour-

hood searches in the Euclidean space can be done using the FNN package (Beygelzimer et al., 2022). Finally, when using

kNNDM we recommend computing accuracy statistics such as coefficient of determination (R2), the Root Mean Square Error

(RMSE), or the Mean Absolute Error (MAE) in the stacked out-of-sample predictions rather than performing an average of the140

statistics computed in each of the folds, since the resulting folds can be unbalanced and Ĝ∗
j (r,L) is constructed using all CV

folds simultaneously
::::::::::::::::
(Meyer et al., 2023).

3 Simulation studies

3.1 Algorithm performance for map accuracy estimation

To investigate the performance of kNNDM CV and how it compares to the original NNDM LOO CV, we used the same145

simulation as in our previous work (see Milà et al. (2022) for a complete description). Briefly, we generated a virtual response

surface, i.e. a spatially-indexed continuous variable between 0 and 1, using a selection of WorldClim bioclimatic variables for

the Iberian peninsula (Figure 4A) and the virtualSpecies R package (Leroy et al., 2015). Next, we simulated training
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Figure 3. Top row: kNNDM with k=2 (red and blue points) for several number of clusters q. Prediction points consist of a regular grid

spanning the whole polygon (not shown)
::::::
spanning

:::
the

:::::
whole

::::::
polygon. Bottom row: NND ECDF between training locations during LOO

CV (Ĝj(r), blue), between test and train locations during kNNDM CV (Ĝ∗
j (r,L), yellow), and between prediction and training locations

(Ĝij(r), black) corresponding to each CV configuration in the top row.

locations with five different distributions and a sample size of 100 (Figure 4B). We performed 100 iterations of the sampling

simulation and, in each of them, we extracted the predictor (bioclimatic variables) and response data at the sampling points’150

locations and fitted Random Forest (RF) regression models, resulting in a total of 500 fitted models.
:::
RF

:::::::::::::
hyperparameters

:::::
were

:::
not

:::::
tuned

::::
and

::::::
default

:::::
values

:::::
were

::::
used

::
in

:::
all

:::::::::
simulations

::
to
:::::::
shorten

::::::::::
computation

:::::
time.

Each fitted RF model was used to predict the response in the whole
::::
entire

:
prediction area, from which the true map accuracy

was calculated (RMSE, MAE and R2). Additionally, we used the following CV methods: 1) random 10-fold CV, 2) spatial

10-fold CV via k-means clustering (Brenning, 2012), 3) the original NNDM LOO CV and 4) 10-fold kNNDM CV. In contrast155

to the original simulation in Milà et al. (2022), here we matched all distances in the prediction area during NNDM rather than

up to a certain range estimated from the data. In order to interpret results, we subtracted the true map accuracy metrics from

each of the CV estimates to assess their performance (Figure 5).

kNNDM CV yielded reliable error estimates across all sampling patterns we considered, which were similar and in some

cases even more accurate than those estimated via NNDM LOO CV (Figure 5). Variability of the differences was larger in160

kNNDM than in NNDM LOO CV for strongly clustered samples. Random 10-fold CV produced reliable estimates under

random sampling patterns but failed for clustered data. The spatial 10-fold CV overestimated the mapping error except for the

RMSE in the strong clustering scenario
:::
and

:::
had

:::
the

::::::
largest

:::::::::
variability.
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Figure 4. Simulation workflow
:::

Data
::::
used

::
in

::
the

::::::::
simulation: A) bioclimatic covariates and response (all linearly stretched to [0,1] for visual-

ization purposes); and B) example of one iteration of the sample simulation. Figure reproduced as in Milà et al. (2022).

3.2 Relationship between the quality of the match and the
::::::
quality

::
of

:::
the

:
map accuracy

:::::::
estimate

In order to investigate the relationship between the quality of the match in kNNDM and the quality of the map accuracy metrics,165

we performed a second simulation using the same response and predictors and 100 iterations of our first simulation (section

3.1). However, in this second simulation, we 1) added two more extreme clustered sample configurations to extend the range

of possible W values, 2) only used kNNDM CV, 3) did not check for clustering as a first step in kNNDM, i.e. we applied

the clustering approach to all samples regardless of their distribution, and 4) we kept all candidate fold configurations qi ∈Q

considered within kNNDM and their respective values of the W statistic, rather than just the one yielding the lowest W. We170

used all of these candidate CV splits to calculate CV map accuracy statistics, and computed the absolute value difference with

respect to the true value of the map accuracy statistic. We then plotted these absolute value differences against the corresponding

W statistic and fitted a linear regression to summarise the trend (Figure 6).

The relationship between the absolute value differences between CV and true map accuracy statistics (Figure 6) and W

showed that, for all three statistics considered, a poor match between Ĝ∗
j (r,L) and Ĝij(r) indicated by a greater W statistic175

led to a poor estimation of the true map accuracy, while the true map accuracy could be better estimated for well-matching

distances
::::::::
functions. This positive association was linear for all three statistics with at least 60% explained variance.
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Figure 5. Differences between cross-validated and true RMSE, R2, and MAE by sampling distribution and CV method for the simulated

virtual response variable.

3.3
:::::::

Influence
:::
of

:::
the

:::::::
number

::
of

:::::
folds

:::
The

::::::
choice

::
of

::
k

:::
can

::::::::
influence

::
the

:::::::::::
performance

::
of

::::::::
kNNDM

::
to

:
a
::::::
certain

:::::
extent

:::::
since

::
it

::::::
dictates

:::
the

:::::::::
maximum

::::::::
clustering

:::
that

::::
can

::
be

::::::::
achieved.

:::
To

:::::::::
investigate

:::
the

:::::::
influence

:::
of

::
k,

:::
we

:::::::
repeated

:::
the

::::::::
workflow

::::::::
described

::
in

:::::::
section

:::
3.1

:::
but

::::
only

::::::::
employed

::::::::
kNNDM180

:::
CV

:::::
using

::
an

::::
even

::::::
integer

::::::::
sequence

:::::::::::::::
k ∈ [2,4,6, ...20].

::
In

::::
each

::
of

:::
the

::::
100

::::::::
iterations,

:::
we

:::::::::
calculated

:::
the

::::
true

:::
and

::::::::
estimated

:::::
error

::::::
metrics,

:::
as

::::
well

::
as

:::
the

::::::
quality

::
of

:::
the

::::::
match

:::::::
between

:::
the

:::::
ECDF

:::
of

:::::
NND

:::::::
between

:::
CV

:::::
folds

:::::::::
(Ĝ∗

j (r,L)) :::
and

:::
the

::::::
ECDF

::
of

:::::
NND

:::::::
between

::::::::
prediction

:::::
points

::::
and

::::::
sample

:::::
points

:::::::
(Ĝij(r))::

as
:::::::::
measured

::
by

:::
the

::::::::::
Wasserstein

::::::
statistic

::::
(W).

:::::
With

:::
the

:::::::
resulting

::::::::
statistics,
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Figure 6. Relationship
:
in
::::::

10-fold
:::::::
kNNDM

:
between the absolute value difference between the CV and true map accuracy statistics (y-axis)

and W statistic (x-axis) from the second simulation study for the RMSE (left), R2 (centre), and MAE (right) statistics. Colour represents the

data point density. The black line shows the linear regression fit. The R2 values of the regression models are 0.66, 0.6 and 0.73 for the RMSE,

R2, and MAE, respectively.

::
we

::::::
plotted

:::
the

::::::::::
distribution

:::
of

:::
the

:::::::::
differences

:::::::
between

:::
the

::::::::
estimated

::::
and

::::
true

::::::
RMSE,

::::::
MAE,

:::
and

:::
R2

::
as

::::
well

:::
as

:::
the

::
W

:::::::
statistic

::
for

::::
each

:::::::
number

::
of

::
k

::::::
(Figure

:::
7).185

:::
Our

::::::
results

::::::::
indicated

::::
that

:
a
::::::
larger

::::::
number

:::
of

::::
folds

:::::::
resulted

:::
in

:::::
better

:::::::
matches

:::
for

:::::::
regular

:::
and

:::::::
random

:::::::
samples

:::
but

::::::
worse

::
for

:::::::
strongly

::::::::
clustered

:::::::
designs.

::::::
While

:::
for

::::::
regular

:::
and

:::::::
random

:::::::
samples

:::
this

:::::::::
translated

:::
into

:::::::::::
increasingly

:::::::
accurate

::::
map

::::::::
accuracy

:::::::
estimates

:::
for

:::::
larger

:::::::
number

::
of

:::::
folds,

::
for

::::::::
clustered

::::
data,

:::
the

:::::::
number

::
of

::::
folds

::::
with

:::
the

:::::::
smallest

::
W,

:::
i.e

:::::
k = 2

:::
was

:::::
overly

::::::::::
pessimistic

:::
and

::::
k=4

::
or

:
6
::::
had

:::::::
actually

:
a
:::::
better

:::::::::::
performance.

:

3.4 Run-time analysis190

Since our goal was to propose a computationally feasible alternative to NNDM
::::
LOO

:::
CV

:
for large datasets, we performed

a run-time analysis to quantify the speed gains of kNNDM CV compared to NNDM LOO CV. We separately quantified the

time spent on 1) finding the optimal CV split (i.e., running the kNNDM algorithm
::::::
NNDM

:::::
LOO

::::
and

:::::::
kNNDM

:::::::::
algorithms), 2)

repetitively fitting the model according to the CV configuration, and 3) the total run-time, i.e. the sum of 1 and 2. We did that

using the same simulation framework as in section 3.1 but with 50 different sample sizes, ranging from 100 to 4000 training195

points. We only used the strongly clustered and the random sampling designs for computational reasons. We used a maximum

of 4000 training points, since the computational time exceeded one week per run for NNDM LOO CV. The analysis was carried

out using a high-performance computation cluster utilizing up to 1.5 GB of RAM for each run using the Intel® Xeon® Gold

6140 CPU.
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Figure 7.
:::
CV

::::
error

:::::::
estimates

::
for

:::::::
kNNDM

:::
CV

::::
with

::::::
different

:::::::
numbers

::
of

:
k
::::
(first

::::
three

:::::
rows).

:::
The

::::::::
respective

::
W

::::::
statistic

:
is
:::::
shown

::
in
:::
the

:::::
fourth

:::
row.

The run-time analysis showed large speed gains of kNNDM CV compared to NNDM LOO CV under all tested sample200

designs (Figure 8). For the random sampling design, the kNNDM algorithm was especially fast due to the prior test for

clustering in the training data. This test returns a simple random k-fold CV when no clustering is detected, which is much

faster than running the entire kNNDM algorithm (see section 2). Only in four cases the test did not return a random CV, and in

those five
:::
four

:
cases the computational times were longer (red outliers in Figure 8). The NNDM LOO algorithm

::::::
NNDM

:::::
LOO was slower compared to the kNNDM algorithm

:::::::
kNNDM when the training data were randomly distributed,205

and much slower when they were clustered (Figure 8). Furthermore, the computational time of NNDM LOO CV increased

exponentially with increasing sample size. This pattern arises from both the architecture of the NNDM LOO CV algorithm

(Figure 8 left column), and from the difference between of LOO CV and k-fold CV in terms of model fitting, since NNDM
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Figure 8. Differences in computational time
::::::::
(log-scaled)

:
between

:::::
10-fold

:
kNNDM CV (red) and NNDM LOO CV (blue) for two different

sample designs (rows).Please note that the y-axis is log-scaled.

LOO CV requires training k =N models while the number of models trained during k-fold CV is usually much smaller, in

this case k = 10 (Figure 8 middle column).210

3.5
:::::::::

Additional
:::::::::
simulation

::
To

:::
test

:::
the

:::::::::
robustness

::
of

:::
our

::::::
results,

:::
we

:::::
tested

:::
the

::::::::::
performance

::
of

::::::::
kNNDM

:::
CV

::
in

:
a
::::::
second

:::::::::
simulation

:::::
using

:
a
:::::::::
real-world

::::::
dataset

::::::::
described

::
in

:::::
detail

:::
the

:::::::::
supporting

:::::::
methods

:::
and

::::
used

:::
in

::
the

:::::
study

:::
by

:::::::::::::::::
de Bruin et al. (2022)

:
.
::::::
Briefly,

:::
we

::::::::
modelled

::::::::::::
above-ground

:::::::
biomass

::
in

::::::
Europe

:::::
using

:::::::
different

::::::::
sampling

::::::::::
distributions

:::::::
ranging

::::
from

::::::
regular

:::
to

:::::::
strongly

:::::::
clustered

:::::::
(Figure

:::
S1).

:

::::::
Results

:::
for

:::
the

::::::
second

:::::::::
simulation

:::::::
broadly

::::::
agreed

::::
with

:::
the

::::
first

::::::::::
simulation,

:::::::
although

:::
we

::::::::
observed

:::::
some

:::::::::
differences

::::::
worth215

:::::::
pointing

:::
out.

::::::
10-fold

::::::::
kNNDM

:::::::
reliably

::::::::
estimated

:::
the

:::
true

::::::
RMSE

::
in

::
all

:::::::
designs

:::::
except

::
in
:::
the

:::::::
strongly

::::::::
clustered,

::::::
where

::::::
similar

::
to

:::::
spatial

:::
CV

::
it

:::::::
resulted

::
in

:::::
overly

::::::::
optimistic

::::::::
estimates

:::::::
(Figure

:::
S2).

::::
The

::::::::::
relationship

:::::::
between

::
the

::::::::
absolute

::::
value

:::::::::
difference

:::::::
between

:::
CV

:::
and

::::
true

::::::
RMSE

::::
was

:::::::
positive

:::
but

::::
only

::::::::
explained

::
a

::::
28%

::::::::
explained

::
of

:::
the

:::::
total

:::::::
variance

::::::
(Figure

::::
S3).

::::::
While

::::
large

::::::::
numbers

::
of

::::
folds

:::::::
resulted

::
in

::
a
:::::
better

:::::
match

:::
as

::::::::
expressed

:::
by

::
W

::::
and

::::
more

::::::::
accurate

::::::
RMSE

::
for

:::::::
regular

:::
and

:::::::
random

::::::
designs

:::::::
(Figure

::::
S4),

::
in

:::::::
strongly

:::::::
clustered

:::::::
designs

:::
the

:::::::
opposite

::::
was

::::::::
observed.

:::
For

:::::
weak

::::::::
clustered

::::::
results,

:::::
k = 4

:::
had

:::
the

::::::
lowest

:::
W

::::::
statistic

::::::::
although220

:::::
RMSE

:::::
were

::::
also

:::
well

:::::::::
estimated

::
for

::::::
larger

:::::
values

::
of

::
k.
:
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4 Discussion

In this work, we propose a new prediction-oriented CV strategy for map accuracy estimation named kNNDM that takes

into account the geographical prediction space of the model. kNNDM extends the ideas of NNDM LOO CV (Milà et al.,

2022) to a k-fold CV strategy that can be used for medium and even large reference datasets to estimate map accuracy
::
in225

::::::
absence

:::
of

:::::::::
probability

::::::::
sampling

::::
test

::::
data. In the simulation study, kNNDM performed similarly to NNDM LOO CV and

produced reasonably reliable map accuracy estimates for all
::::
most sampling patterns. Thus, kNNDM provided the advantages

of our original NNDM LOO strategy while bypassing its sample size limitations.
:::::
Small

:::::::::
differences

:::::::
between

:::::::
NNDM

::::
LOO

::::
and

:::::::
kNNDM

:::
CV

::::
can

::
be

::::::::
attributed

::
to

:::
the

::::::::
different

::::
ways

::
to

::::::
match

::
the

:::::::::::
distributions

::
as

::::
well

::
as

:::
the

::::::::
different

:::::::
hold-out

::::::
sample

::::
size.

:

Similar to other studies (e.g. Wadoux et al., 2021; de Bruin et al., 2022), we observed that random k-fold CV returned230

reliable estimates of map accuracy with randomly-distributed
::::::::
randomly

:::::::::
distributed samples within the prediction area, while

being overly optimistic when samples were clustered. Also in agreement with other studies, we found that spatial CV methods

that do not take into account the geographical prediction space tended to be overly pessimistic even with clustered samples

within the prediction area (Wadoux et al., 2021; de Bruin et al., 2022; Milà et al., 2022), for example as a result of block sizes

that do not match the prediction task. A unique finding of our study that deserves special attention is the linear and positive235

association we found between the W statistic measuring the quality of the match of the NND ECDFs during CV and prediction,

and the quality of the estimation of the map accuracy statistics. In our simulations, the W statistic explained 60% or more of

the absolute value differences between the CV and true map accuracy statistics, and thus further supports
:::
This

::::::::::
association

:::
was

::::::
strong

::
in

:::
our

::::
first

:::::::::
simulation

::::
with

::
a
:::::::
national

:::::
scale,

:::::::::
supporting

:
our suggestion to design CV strategies that try to match

the predictive conditions of the models in terms of geographical NND.
::::
That

::::
said,

:::
this

::::::::::
relationship

::::
was

::::::
weaker

:::
in

:::
the

::::::
second240

:::::::::
simulation,

:::::
where

:::
the

:::::
study

::::
area

:::
had

::
a
:::::::::
continental

:::::
scale.

::::
This

:::::::
suggests

::::
that

:::::
other

::::::
factors

::::
such

::
as

::::::::
distances

::
in

:::
the

::::::
feature

:::::
space

:::
may

::::
also

::::
play

:
a
::::
role

::
in

:::
the

:::::::::::
performance

::
of

:::
CV

::::
map

::::::::
accuracy

::::::::
estimates.

:

:::
Our

::::::::::
experiments

:::::::
showed

::::
that

:::
the

:::::::
number

::
of

::::
folds

::::
can

::::
have

:::
an

::::::
impact

::
on

:::
the

:::::::::::
performance

::
of

:::::::::
kNNDM.

:::
For

::::::::
randomly

::::
and

::::::::::::::::
regularly-distributed

::::::::
samples,

::
k

:::::
needs

::
to

:::
be

::::::::::
sufficiently

::::
large

::::::::
(k ≥ 10)

::
to

:::::::
provide

:::::::
accurate

::::::::
estimates

:::
of

::::
map

::::::::
accuracy.

::::
The

::::
same

::::::
finding

::::::
applies

:::
to

::::::
random

::::::
k-fold

:::
CV,

::
to

::::::
which

:::::::
kNNDM

::::::::::
generalises

::
for

:::::::
random

:::
and

:::::::
regular

:::::::
samples.

:::
We

:::::::
attribute

::::
this

::
to245

::
the

::::
fact

::::
that,

:::::
when

:::
the

:::::::
number

::
of

:::::::
clusters

::
is

:::::
small,

:::::::::::
neighbouring

:::::::
samples

::::
can

::
be

:::
put

:::
in

:::
the

::::
same

::::
fold

::::
with

::
a
:::::::::
probability

::::
that

:::::::
increases

::::
with

:::::::
smaller

::
k.

:::
On

:::
the

:::::
other

:::::
hand,

::
for

::::::::
severely

:::::::
clustered

::::::::
samples,

:
a
:::::::
smaller

::::::
number

:::
of

::::
folds

::::
may

:::
be

::::::::
beneficial

::
as

::
k

:::::::::
determines

:::
the

:::::::::
maximum

::::::::
clustering

::::
that

:::
can

::
be

::::::::
achieved

:::::
when

:::
the

:::::::::::
geographical

:::::
space

::
is

:::::::::
partitioned

::
in

::
k
:::::::::
contiguous

:::::::
blocks.

:::
The

:::::::::
suitability

::
of

:
a
:::::::
smaller

::::::
number

::
of

:::::
folds

:::
was

::::::::
indicated

:::
by

:
a
::::::
higher

::::::
quality

::
of

:::
the

:::::
match

::::::
shown

:::
by

:::
the

::::::::::
Wasserstein

:::::::
statistic.

:::::::::
Comparing

:::
the

::::::::
suitability

:::
of

:::::::
different

::::
fold

:::::::::::
configurations

:::
via

:::
the

::::::::::
Wasserstein

:::::::
statistic

:::
can

:::
be

::::
used

:::
for

:::::::
guidance

:::::
when

::::::::
choosing250

::
the

:::::::
number

::
of

:::::
folds.

:::::::::::
Nonetheless,

::
in

::::::::
clustered

::::::
settings

::::::
where

::
W

::::::::
indicates

:::
that

:::
the

::::
best

:::::
match

::
is

::::::::
achieved

::
by

::::::
setting

:
a
::::
very

::::
low

:
k
::::
such

:::
as

:::
k=2

::::
(see

::::::
Figure

:::
7),

:::
we

::::::::::
recommend

:::::
taking

::
a
:::::
larger

::::
fold

::::
size

::::
such

::
as

::
4

::
or

:
5
:::::

since
:::
the

:::::::
amount

::
of

::::
bias

::::::::
expected

::::
with

:::
two

::::
folds

::::
due

::
to

::::
large

:::::
parts

::
of

:::
the

:::::::
training

:::
data

::::
left

:::
out

:
is
::::::::
expected

::
to

:::
be

::::
large

:::::::::::::::::
(Kohavi et al., 1995)

:::
and

::
is
:::::
likely

:::
the

::::::
reason

:::
we

::::::
observe

:::::
better

::::::
results

:::
for

::::
k=4

::
or

:
6
::
in

:::
our

:::::::::::
experiments.

:
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Even though kNNDM overcomes the sample size limitations of NNDM LOO CV, there are still limitations of the approach.255

First, the flexibility of the matching in kNNDM is lower than in NNDM LOO CV, since every observation must be assigned to a

fold. Moreover, it is also possible that the range of NND observed during prediction is different than the range of NND between

training points, which might make the match impossible for some distances. This is especially the case when the prediction

area is different from the training area (i.e. complete model transfer). Because of these reasons, the match between CV and

prediction NND ECDF in kNNDM may not always be possible and an inspection of the NND ECDF like in Figure 1 should260

always be conducted. Similarly, if training data are very clustered within the prediction area
:
as

::
in

:::
the

:::::::
strongly

::::::::
clustered

::::::
design

::
of

:::
the

::::::
second

::::::::
simulation, kNNDM may still fail to offer a CV configuration that matches the predictive conditions. In that case,

we recommend users to allow for a greater maximum fold size, or ask for a lower fold number k, to account for potentially

larger clusters.
:::::::::::
Furthermore,

::
in

:::::
cases

:::::
where

:::
this

::
is
::::
still

:::
not

::::::::
sufficient,

:::
we

::::::::::
recommend

::::::::
restricting

:::
the

:::::::::
prediction

::::
area

::
to

:::
the

::::
area

::
of

::::::::::
applicability

:::
of

:::
the

:::::
model

::::::
(AOA,

:::::::::::::::::::::::
Meyer and Pebesma (2021))

:::
to

::::
limit

:::
the

::::::
effects

::
of

::::::
feature

::::::::::::
extrapolation.

:
Secondly, both265

kNNDM and NNDM LOO CV algorithms are
::::::::
currently solely based on the geographical space; therefore, if the feature distri-

bution between the training and prediction locations is very different, a feature-based CV strategy might be more appropriate

(Roberts et al., 2017)or predictions should be limited to the area of applicability of the model(Meyer and Pebesma, 2021).
::::
For

:::::::
example,

::::::::::::::::
Wang et al. (2023)

:::::::
recently

::::::::
developed

::
a
:::
CV

:::::::
method

:::
that

::::::::
considers

:::::
both

:::
the

:::::::::
geographic

:::
and

:::::::
feature

:::::
space,

::::::::
although

:
it
::::
does

:::
not

::::::::
consider

:::
the

::::::::
prediction

:::::::
domain

:::
and

:::::::::
predictive

:::::::::
conditions

::
of

:::
the

:::::
model. Thirdly, NNDM-based CV methods do not270

address the small error overestimation for regular samples we found in our simulations here or in Milà et al. (2022), so map

accuracy estimates will tend to be slightly conservative in such cases. Fourthly, NNDM-based methods are purely based on ge-

ographical distances and ignore the location of the training points or the direction of the distances, which can be problematic if

non-stationarity or anisotropy of the errors are present (Brenning, 2022).
::::::
Fifthly,

:::
the

:::
CV

::::
error

::::::::
estimate

:::::::
obtained

::
by

::::::::
kNNDM

::
is

::::
only

:::::::::
reasonable

:
if
:::
the

:::::::::
prediction

::::
area

::::::
doesn’t

::::::
change

:::::
when

:::
the

::::::
model

:
is
:::::::::
deployed.

::
If

:::
the

::::::::
prediction

::::
area

:::::::
changes

:::::::::::
significantly,275

::::::::::
re-evaluation

::::::
might

::
be

::::::::
required.

::::
Also,

:::::
when

:::
the

:::::::::
prediction

::::
area

:
is
::::::::
unknown

:::::
prior

::
to

:::::
model

::::::::
training,

:::::::
kNNDM

::::::
cannot

::
be

:::::
used.

:

Possible future points for investigation regarding kNNDM include a simulation study comparing newly proposed CV-based

map accuracy estimation methods (de Bruin et al., 2022) as well as feature-based CV methods (Roberts et al., 2017) in a

larger variety of scenarios, also including classification problems, 2)
:::::::::::
implementing

::
a
::::::
genetic

:::::::::
algorithm

::::
that

:::::::::
minimizes

:::
the

::
W

:::::::
statistic

::::::
directly

:::
as

:
a
:::::::
function

:::
of

:::
CV

:::::
folds,

:::
3) exploring the extension of kNNDM to feature space, and 3

:
4) investigating280

how kNNDM CV can affect feature selection (Meyer et al., 2019), hyperparameter tuning (Schratz et al., 2019), and model

applicability (Meyer and Pebesma, 2021). A further possible extension to the kNNDM algorithm is the exclusion of training

points during CV, which might help to achieve a better match in strongly clustered designs without the need to increase fold

sizes. Furthermore, it might be beneficial to develop and integrate a one-sided Wasserstein test instead of using the Kolmogorov-

Smirnov two-sample test to test whether the training points are clustered as the first step of the algorithm, since the Wasserstein285

test has a greater power than Kolmogorov-Smirnov’s (Dowd, 2020) and would be also be more consistent with the rest of the

algorithm, which also uses the Wasserstein statistic.

Finally, we would like to emphasize again that both NNDM and kNNDM CV do not replace established strategies to estimate

map accuracy via design based inference (as outlined in Wadoux et al., 2021), which should always be preferred. Here, we
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present a methodology to estimate map accuracy via CV. For the common case that no probability sampleis available, we290

recommend CV via NNDM LOO or kNNDM to estimate map accuracy
::::::::::
Nonetheless,

::::::::::::::::
prediction-oriented

:::
CV

:::::::
methods

:::::
such

::
as

::::::
NNDM

:::::
LOO

::
or

:::::::
kNNDM

::::
CV

:::
that

::::::::
consider

::
the

:::::::::
prediction

:::::::::
objectives

::
of

:::
the

:::::
model

:::
can

:::
be

::::
used

::
to

:::::::::
implement

:
a
::::::::
measure

::
of

::::
map

:::::::
accuracy

::::::
during

:::::
model

:::::::::::
development

:::
or,

::
in

:::::::
absence

::
of

:
a
:::::::::
probability

:::::::
sample,

::
to

:::::::
estimate

:::
the

::::
map

::::::::
accuracy

::
of

:
a
:::::
given

::::::
model.

Code availability. All simulations were carried out in R v 4.2.1 (R Core Team, 2022). The most important packages used include twosamples

(Dowd, 2022) for efficient calculation of the W statistic, doParallel (Corporation and Weston, 2022) for parallelization, tidyverse295

(Wickham et al., 2019) for data manipulation and ggplot2 (Wickham, 2016) for data visualization. We used sf (Pebesma, 2018) for vector

data operations, terra (Hijmans, 2023) for raster data operations and caret (Kuhn, 2022) for model fitting. NNDM LOO as well as the

newly suggested kNNDM algorithms are implemented in the CAST package v 0.7.2 (Meyer et al., 2023). The code to perform the analysis

and generate the figures included in the article is available at https://doi.org/10.6084/m9.figshare.23514135.v1, where the packages and the

versions used for the simulations are listed.300
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Petřík, P., Pillar, V. D., Sandel, B., Schmidt, M., Tang, Z., van Bodegom, P., Vassilev, K., Violle, C., Alvarez-Davila, E., Davidar, P.,

Dolezal, J., Hérault, B., Galán-de Mera, A., Jiménez, J., Kambach, S., Kepfer-Rojas, S., Kreft, H., Lezama, F., Linares-Palomino, R.,370

Monteagudo Mendoza, A., N’Dja, J. K., Phillips, O. L., Rivas-Torres, G., Sklenář, P., Speziale, K., Strohbach, B. J., Vásquez Martínez,
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