
We thank the reviewers for the time taken to review our work and for their valuable comments
and suggestions. In these final author comments, we will address the reviewer and community
comments and point out the changes we have implemented in the revised version of our manuscript.
Our responses are organised in a point-by-point fashion following each comment in italics.

Reviewer 1

The manuscript presents a much-needed methodology for cross-validation of spatial data. In my
opinion, the strongest point is the use of the W statistic to identify the best CV split. However,
there are a few points which I feel should be addressed in the discussion.

The proposed methodology using clustering algorithms seems valid, but how can we know if it provides
the best possible result? An algorithm that optimizes the W statistic directly as a function of the CV
fold indices would be more desirable, instead of relying on the clustering algorithm´s internal metric
as a proxy. As a suggestion for future work, I recommend using a genetic algorithm to assign CV
indices to the data points directly.

We would like to thank professor Gonçalves for his suggestion. Fold assignment via clustering is an
intuitive and straightforward approach, however, we agree that using an advanced optimization pro-
cedure such as a genetic algorithm might be worth testing. In the revised version of the manuscript
we discuss this point as future work, which we will try to take onboard in future versions of the
algorithm.

The W statistic explained 60% of the variability in map accuracy, but would this be consistent across
different datasets? At least one more case study would be needed to verify this.

We agree that a second simulation is helpful to assess if this relationship holds in a different setting.
Therefore, we include an additional simulation using the Above-Ground Biomass example described
in de Bruin et al. (2022) as supplementary material in the revised version of the manuscript.

Reviewer 2

The study proposes a novel cross-validation method for spatial data that aims to deliver more rep-
resentative measurements of spatial map accuracy than commonly-used methods. This is a relevant
concern for GMD readers with the rise in use of machine learning methods for geoscientific mod-
elling. Issues with model evaluation in the spatial setting have been identified in a number of recent
studies. The paper is well-written and contributes a practical solution for a common issue.

In my opinion, the most exciting/innovative idea in this work is the concept of defining the evaluation
method based on the desired data for which he model is intended to return predictions. This would
require researchers to more carefully define the purpose of their models before and during the model
creation process, which should be common practice. In reality, this is often not done, or done in a
‘standard’ way which doesn’t accurately reflect the intended use of the model.

The method presented in this paper is a very practical solution to this, where the desired target dataset
is an input of the evaluation algorithm and therefore researchers are required to clearly consider and
define it. I think this is a significant contribution to model development methodology and should
be more clearly emphasised in the manuscript. The possibilities, benefits and disadvantages of this
concept could also be discussed - for example, when models are used in production, the prediction
area is a moving target; would that require continual re-evaluation?
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We thank reviewer 2 for their comments. As discussed in our previous work (Meyer & Pebesma
2022, Milà et al. 2022), we agree with the reviewer on that defining the objective of the prediction is
a key step to define an appropriate map accuracy estimation method. In the kNNDM manuscript,
we explain this idea in the third paragraph of the introduction and, in the revised version of the
manuscript, we also mention it in the concluding paragraph of the discussion.

If the prediction area differs when the model is used for production, the CV estimate might not
be a suitable proxy for map accuracy anymore. This would require other testing strategies. Re-
evaluation using kNNDM might be one option. We addded a sentence in the discussion section on
that issue.

The paper suggests that kNNDM is, essentially, a computationally-cheaper alternative to the previously-
published method by the authors, NNDM LOO. In the article, the only limitation of leave-one-out
CV methods described is that of computational time. However, to my knowledge, even if computa-
tion is not considered, LOO CV methods may not be the optimum method due to higher variation
in the resulting models (due to the bias-variance tradeoff). Could this explain why kNNDM 10-fold
seems to perform better in the case of strong clusters (Figure 5)? For me, this would be more con-
vincing than the computation speedup comparison, which is relatively trivial given that LOO CV is
the most extreme version of k-fold CV.

We would like to thank the reviewer for pointing out the bias-variance trade-off in LOO vs. k-fold
CV. While in the strong clustered simulations NNDM k-fold CV provides slightly more accurate
RMSE (mean (SD) -0.008 (0.043) for kNNDM vs -0.015 (0.038) for NNDM LOO) and MAE es-
timates (mean (SD) -0.003 (0.031) for kNNDM vs -0.013 (0.026) for NNDM LOO), the difference
between the two methods is small and cannot be detected for the R2. Moreover, dispersion estimates
for NNDM LOO CV were generally smaller as indicated in the parentheses above. We think that
although the two algorithms will tend to provide similar results, differences are expected because
the way to match the distributions is different, i.e. a buffering approach is used for the LOO CV
while clustering is used for kNNDM. In addition to these, as the reviewer points out, the size of
the hold-out data may have an impact on the results as well, with some studies suggesting the
aforementioned bias-variance trade-off (Kohavi et al. 1995, Hastie et al. 2009) while others argue
this will actually depend on the modelling algorithm and its stability (Zhang & Yang 2015).

In the revised version of the manuscript, we now discuss how LOO NNDM CV and kNNDM can
result in different estimates due to the different methodologies as well as the size of the holdout
data in the first paragraph of the discussion.

Following on from this, it seems likely that the value of k would impact the results. Use of 10 folds is
very common; is there theoretical justification for this? It would be useful to see some comparisons
of the results with multiple values of k.

We chose 10 folds since, as the reviewer points out, it is a frequent choice amongst ML practitioners.
However, we agree that k might influence results as it has important implications for Nearest
Neighbour Distances (NNDs), e.g. lower numbers of k can better address severe clustering in the
data (at the cost of resulting in potentially more biased performance estimates). To address this,
in our updated manuscript we have added a new experiment where we investigate the influence of
different numbers of k on the performance and quality of the match of kNNDM.

In Figure 1, it is shown that the W statistic will also be larger if training points are regularly
distributed, as well as when clustered. Does this mean that the null hypothesis might be rejected for
regularly distributed datapoints? Does this explain why NNDM LOO performed better for regularly
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distributed data (Figure 5)?

Regarding regularly-distributed samples in Figure 1, the W statistic between Ĝij(r) and Ĝj(r) for
regular samples will indeed be larger since distances between training points will be longer than
during prediction (i.e. Ĝj(r) ≤ Ĝij(r)). This, however, does not impact our results, since the
Kolmogorov-Schirnov test we perform as a first step of the algorithm is one-sided and will only
perform clustering if the null hypothesis H0 : Ĝj(r) ≤ Ĝij(r) is rejected in favour of the alternative
hypothesis H1 : Ĝj(r) > Ĝij(r), which will not occur for regular samples. As a result, the algorithm
will return a random k-fold CV instead.

We think that the worse performance of NNDM k-fold CV compared to NNDM LOO CV for regular
samples in Figure 5 is due to the fact that in absence of clustering, NNDM LOO CV generalises
to LOO CV while NNDM k-fold CV generalises to random k-fold CV. In a random k-fold CV,
neighbouring points can still be in the same fold due to a random chance that will increase with
smaller number of folds k, thus causing slightly longer NND during CV. In contrast, in a NNDM
LOO CV all points except the one being validated will be included in the model leading to the
smallest possible W.

Minor comment: I assume the hyperparameters of the models are not tuned as it is not mentioned,
but this could be stated explicitly.

We confirm we did not tune the model hyperparameters in order to save computation time in the
already computationally-demanding simulations, given that our objective was not to optimize the
performance of the models. We will add the respective information in the updated version of the
manuscript.

Finally, I would recommend testing the method on at least one additional dataset, as the results
presumably depend on the spatial autocorrelation present in the dataset used.

We agree with the reviewer that testing the model on a different dataset is needed. We added a
second simulation in the revised version of the manuscript where we test the kNNDM method using
the Above-Ground Biomass example presented in de Bruin et al. (2022).

Community comments

Just a quick hint that https://doi.org/10.1016/j.jag.2023.103364 was just published - may or may
not be relevant for your discussion.

We thank Dr. Nils Tjaden for providing the reference, which we have included in the revised version
of the manuscript.
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