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Abstract. Climate change has resulted in more frequent occurrences of extreme events, such as flooding and 10 
heavy snowfall, which can have a significant impact on densely populated or industrialised areas. Numerical 11 
models are used to simulate and predict these extreme events, enabling informed decision-making and planning 12 
to minimise human casualties and protect costly infrastructure. LISFLOOD is an integrated hydrological model 13 
underpinning the European and Global Flood Awareness Systems (EFAS and GloFAS, respectively) developed 14 
by the Copernicus Emergency Management Service (CEMS). The CEMS_SurfaceFields_2022 dataset is a new 15 
set of high-resolution surface fields at 1 and 3 arc min (approximately 2 and 6 km at the Equator respectively) 16 
covering Europe and the global land surface (excluding Antarctica) respectively, based on a wide variety of high-17 
resolution and up-to-date data sources. The dataset has been created together with upgrades to the open source 18 
LISFLOOD code. The set encompasses (i) catchment morphology and river network, (ii) land use, (iii) vegetation 19 
cover type and properties, (iv) soil properties, (v) lake information, and (vi) water demand. This manuscript details 20 
the complete workflow to generate CEMS_SurfaceFields_2022 fields, including data sources and methodology. 21 
The use of these fields is expected to significantly improve accuracy, detail, and realism of LISFLOOD 22 
simulations. CEMS_SurfaceFields_2022 can also be used as input for other Earth system models or for carrying 23 
out general statistical analyses across various spatial scales, ranging from global and regional to local levels. 24 

1 Introduction  25 

Current numerical Earth system models are highly complex. Thanks to the availability of High Performance 26 
Computers, cloud computing, and a wide range of high-resolution environmental data derived from the use of 27 
ground, unconventional and satellite measurement sensors, numerical global models are even able to reach 28 
kilometre-scale horizontal resolution. But increase in spatial resolution also means that the Earth system and 29 
environmental models have to represent more surface and atmospheric processes and their interactions, which can 30 
become challenging, for example in complex orographic areas. Model accuracy heavily depends on the quality of 31 
the input surface fields (i.e. how realistic and up-to-date they are), and it is essential to minimise errors in surface 32 
fields. New high-resolution (i.e. 10-100 m) surface datasets based on daily satellite observations are now 33 
frequently released and continuously supported by e.g. the Copernicus program (e.g. Global Land Cover: 34 
Buchhorn et al., 2021; GHSL-BUILT-S: Pesaresi and Politis, 2022; Schiavina et al., 2022), which helps in 35 
achieving the goal of minimising surface field errors. It was shown, e.g. in Kimpson et al. (2023, in review), that 36 
the use of accurate and up-to-date underlying information to generate model’s input surface fields can substantially 37 
reduce skin temperature errors even at 30 km horizontal resolution (Kimpson et al., 2023 in review). 38 
Following the digital revolution of cloud archiving and computing, where data, software and IT infrastructure can 39 
be accessed by anyone from everywhere, the Earth systems and environmental modelling community has also 40 
moved from codes developed by a single organisation and few contributors, to so-called ‘community models’ 41 
where a reference code is open for free use and/ or development according to sharing principles. Such models 42 
include Joint UK Environmental Simulator JULES, a land surface model whose development is coordinated by 43 
the UK Met Office and UKCEH (Best et al., 2011; Clark et al., 2011; Marthews et al., 2022), OpenIFS, a 44 
Numerical Weather Forecast model available to external users for research and training (Sparrow et al., 2021; 45 
Carver, 2022; Huijnen et al., 2022; Köhler et al., 2023), the Community Land Model CLM, an Earth System 46 
Model with strong climate component maintained by the National Centre for Atmospheric Research but available 47 
for use by the wider research community (Lawrence et al., 2019), or LISFLOOD-OS, a spatially distributed water 48 
resources model developed by the Joint Research Centre (JRC; Van Der Knijff and De Roo, 2008) and available 49 
for use and development through a share code repository (https://ec-jrc.github.io/lisflood/#lisflood; https://ec-50 
jrc.github.io/lisflood-code/). 51 
To promote the seamless development of science, and facilitate research community efforts in working with the 52 
same code and input data, providing feedback, and improving the code and the data itself, powerful web-based 53 
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platforms can be used. One of them is the Google Earth Engine (GEE; Gorelick et al., 2017), a free-of-charge 54 
platform that provides easy, web-based access to an extensive catalogue of satellite imagery and other geospatial 55 
data in an analysis-ready format. The data catalogue is embedded into Google computing platform that lets you 56 
easily implement all personal workflows, which facilitates global-scale analysis and visualization (GEE: FAQ, 57 
2023). GEE was chosen for the generation of a new vast surface field set due to its high resolution data catalogue 58 
and powerful computation capabilities. 59 
This manuscript presents the methodology used to prepare the CEMS_SurfaceFields_2022 dataset containing all 60 
surface fields necessary to run the LISFLOOD-OS model at 1 arc min (over Europe) and 3 arc min (globally). 61 
CEMS_SurfaceFields_2022 can also be used in the set-up of the Early Warning Systems of the Copernicus 62 
Emergency Management Service of the European Union for the European (European Flood Awareness System 63 
EFAS version 5; Smith et al., 2016; https://www.efas.eu/) and global (Global Flood Awareness System GloFAS 64 
version 4; Hirpa et al., 2018; Harrigan et al., 2023; https://www.globalfloods.eu/) domains expected to become 65 
operational during 2023. The detailed explanation, encompassing raw data collection, scientific protocol, and 66 
technical details, will allow the adequate understanding and interpretation of the surface field datasets (openly 67 
available from the data catalogue of the JRC – for EFAS https://data.jrc.ec.europa.eu/dataset/f572c443-7466-68 
4adf-87aa-c0847a169f23, for GloFAS https://data.jrc.ec.europa.eu/dataset/68050d73-9c06-499c-a441-69 
dc5053cb0c86), with clear methodological protocols that can be replicated or adapted easily to prepare alternative 70 
fields over a different geographical domain, spatial resolution or different content as relevant for downstream 71 
application. Finally, the resulting surface fields are expected to be a useful resource not only for hydrological 72 
modelling but also for weather prediction, Earth system modelling, environmental modelling, or statistical 73 
analysis in general, with a spatial scale allowing for global, regional and even national applications.  74 

2 Surface fields for distributed environmental modelling  75 

Environmental models, especially land surface and hydrological models, simulate how water moves across 76 
canopy, surface, subsurface, ground and eventually river channels using mechanistic equations that describe the 77 
physics of these processes. Each model represents processes with more or less complexity, depending on the 78 
model purpose and expected output (Rosbjerg and Madsen, 2005). With most represented terrestrial processes 79 
depending on the landscape, information describing the spatial variation in the geophysical and vegetation 80 
characteristics is needed. Such characteristics include morphological features (e.g. channel geometry, orography 81 
or slope), soil hydraulic property, land and vegetation features (e.g. ecosystem cover type, leaf area index (LAI), 82 
evaporation rates, crop type, planting and harvesting dates), and if relevant, human intervention information such 83 
as population density or type of water usage.  84 
LISFLOOD is a semi-distributed, physically based hydrological model which has been designed for the modelling 85 
of rainfall-runoff processes in large and transnational catchments (Bates and De Roo, 2000; De Roo et al., 2000; 86 
De Roo et al., 2001; Van Der Knijff and De Roo, 2008; Van Der Knijff et al., 2010; Burek et al., 2013). In its 87 
most prominent application, LISFLOOD is used by the Copernicus Emergency Management Services’ EFAS and 88 
GloFAS to provide medium range and seasonal riverine flow forecasts. LISFLOOD is also widely used for a 89 
variety of applications, including water resources assessment (drought forecast); analysis of the impacts of land 90 
use changes, river regulation measures, water management plans; climate change analysis (e.g. Vanham et al., 91 
2021).  92 
To facilitate users’ uptake and enable the seamless development of science, LISFLOOD has been released as open 93 
source in 2019. The open-source suite includes the LISFLOOD hydrological model and a set of auxiliary tools 94 
for model setup, calibration, and post-processing of the results. For instance, the pre-processor LISFLOOD-95 
LISVAP can be used to compute evapotranspiration, which is one of the three meteorological variables, along 96 
with total precipitation and average temperature, strictly required as input to the hydrological model.  97 
The modelling of runoff processes in different climates and socio-economic contexts then requires a set of raster 98 
fields to provide information of terrain morphology, surface water bodies, soil properties, land cover and land use 99 
features, water demand. The total number of fields range between 66, when only the essential rainfall-runoff 100 
processes are modelled, to a total 108 for a more comprehensive model set-up in which, for instance, lakes, 101 
reservoirs, water demand for anthropogenic use are included (https://ec-jrc.github.io/lisflood-model/).  102 
In this section, we introduce the main characteristics of environmental fields dataset produced, grouped according 103 
to their role in process representation (name in brackets next to each field correspond to the name in the data 104 
repository). The main model’s technical field is ‘mask’ – a Boolean field that defines model boundaries, i.e. grid-105 
cells over which the model performs calculations and grid-cells which are skipped (e.g. ocean grid-cells). Whilst 106 
the fields described in this manuscript follow some specific requirements of the LISFLOOD model, they can be 107 
used for any environmental modelling application, either directly, or following a transformation, as relevant. 108 
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2.1 Catchment morphology and river network 109 

Morphology and channel shape information are essential for the computation of snow melting, temperature 110 
scaling, and river routing. Land morphology is derived from elevation and its variability within a single cell can 111 
be represented through slope, standard deviation, aspect, etc. River drainage information, derived from elevation, 112 
is used to connect the model cells according to the direction of the surface runoff, with channel geometry 113 
information used for routing processes.  114 
The dataset contains 14 morphology and river network variables: 115 

• Morphologic information: local drainage direction (i.e. flow direction from one cell to another; LDD, 116 
dimensionless), upstream area (upArea, m2), grid-cell area (pixarea, m2), grid-cell length (pixleng, m), 117 
standard deviation of elevation (elvstd, m), gradient (i.e. elevation gradient; gradient, m/m); 118 

• Kinematic wave equation for routing: channel bottom width (chanbw, m), channel length (chanlenght, 119 
m), channel gradient (changrad, m/m), Manning's roughness coefficient for channels (chanman, s/m1/3); 120 

• River network information: channel mask (i.e. presence of river channel; chan, dimensionless), channel 121 
side slope (i.e. channel’s horizontal distance divided by vertical distance; chans, m/m);  122 

• Open water evaporation: bankfull channel depth (chanbnkf, m), channel flood plain (i.e. width of the area 123 
where the surplus of water is distributed when the water level in the channel exceed the channel depth; 124 
chanflpn, m).  125 

2.2 Land use fields 126 

Land use is an essential component of environmental models. Many models use a sub-grid-cell approach where a 127 
single grid-cell can include several different land uses with each land use being subject to different prominent 128 
physical processes. This approach allows to keep a high level of accuracy when representing how different types 129 
of land cover affect e.g. the hydrological cycle (e.g. evaporation is different in urban areas compared to forests) 130 
while limiting the increase in computational time.  131 
The dataset differentiates between six different land uses: 132 

• Forest: areas where the main hydrological processes are canopy interception, evapotranspiration from 133 
canopies, canopies drainage and evapotranspiration, root uptake and evaporation from the soil (fraction 134 
of forest; fracforest, dimensionless fraction); 135 

• Sealed surface: impervious areas where there is no water infiltration into the soil, i.e. water is 136 
accumulated in the surface depression, yet evaporates, but once the depression is full, water is transported 137 
by a surface runoff (fraction of sealed surface; fracsealed, dimensionless fraction); 138 

• Inland water: open water bodies where the most prominent hydrological process is evaporation (fraction 139 
of inland water; fracwater, dimensionless fraction); 140 

• Irrigated crops: areas used by agriculture – water is abstracted from ground water and surface water 141 
bodies to irrigate the fields. The main hydrological processes connected with the irrigated crops are 142 
canopy interception, evapotranspiration from canopies, canopies drainage and evapotranspiration, root 143 
uptake and evaporation from the soil (fraction of all irrigated crops, excluding rice; fracirrigated, 144 
dimensionless fraction); 145 

• Irrigated rice: areas used to grow rice with flooded irrigation agricultural technique, when water is 146 
abstracted from the inland water bodies and delivered to the rice fields. The main hydrological processes 147 
connected with rice fields are soil saturation, flooding, rice growing phase, soil drainage phase (fraction 148 
of irrigated rice; fracrice, dimensionless fraction); 149 

• Other land cover: used in canopy interception, evaporation from the canopies, canopy drainage, plant 150 
evapotranspiration, evaporation from the soil hydrological processes. The relative importance of these 151 
processes depends on the LAI (fraction of other cover types; fracother, dimensionless fraction). 152 

2.3 Vegetation properties  153 

Vegetation-related information contributes to the computation of precipitation interception, evaporation, 154 
transpiration, and root water uptake. Depending on the model, vegetation dynamics can be represented with 155 
different degrees of complexity including in hydrology processes, vegetation growth and feedback on climate 156 
(Bonan et al., 2002). Rice being the world’s most important food crop and having specific water demands, its 157 
water cycle is often considered explicitly, with planting and harvesting dates being critical information to represent 158 
the inter-annual variability in its water demand, provided the maximum three growing seasons. The variables 159 
allow to model how vegetation affects the hydrology, with a particular focus on root water uptake and transpiration 160 
depending on vegetation type and vegetation state (e.g. water stress conditions). For example, the crop group 161 
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number depends on the critical amount of soil moisture below which water uptake from plants is reduced as they 162 
start closing their stomata. 163 
The dataset describes vegetation properties through four variables (note that LAI consists in total of 36 10-day 164 
average fields) for each of forest (_f), irrigated crops (_i) and other land cover types (_o), and another six (two 165 
types times three seasons) variables for rice: 166 

• Transpiration rate: crop coefficient (cropcoef_f, cropcoef_i, cropcoef_o, dimensionless); 167 
• Water uptake: crop group number (cropgrpn_f, cropgrpn_i, cropgrpn_o, dimensionless);  168 
• Surface runoff generation and water routing: Manning’s surface roughness coefficient (mannings_f, 169 

mannings_o, s/m1/3), rice planting and harvesting days (riceplantingday1, riceplantingday2, 170 
riceplantingday3, calendar day number; riceharvestday1, riceharvestday2, riceharvestday3, calendar 171 
day number);  172 

• Water interception and evaporation: leaf area index (laif, laii, laio, m2/m2). 173 

2.4 Soil properties  174 

In land surface and distributed hydrological models, the water movement, storage and plants’ water-uptake from 175 
the soil are often described by the soil/ water retention curve (SWRC). The SWRC is derived empirically by 176 
measuring how water is retained and released by different soil types. Throughout time different SWRC have been 177 
developed and integrated into models, the most widely applied are Van Brooks and Corey (Brooks and Corey, 178 
1964), Fredlund and Xing (Fredlund and Xing, 1994), van Genuchten (van Genuchten, 1980), and Gardner 179 
(Gardner, 1956) SWRCs. Different SWRC equations require different parameters, some shared between different 180 
SWRC concepts, e.g. referring physical soil characteristics such as water saturated and unsaturated content, 181 
hydraulic conductivity and pore size, others uniquely describing the SWRC function shape, not directly related to 182 
soil properties. Often, for computational reasons, the soil profile from ground level to bedrock depth is sliced into 183 
layers, at the modeller’s choice, and the SWRC function is applied to each soil layer.  184 
The dataset includes variables required to apply the Van Genuchten SWRC equations (van Genuchten, 1980) to 185 
describe the water dynamics through a vertical soil profile composed of three layers (1, 2, 3), each variable is 186 
required for each soil layer and for forest (_f) or non-forest (_o) land use, with different soil depth in forest (_f) 187 
and non-forest (_o) areas following root depth values from Allen at al. (1998), further referred as FAO56, (total 188 
of 29 variables; see Section 4.4 for detailed definition and calculation): 189 

• Soil profile: surface layer depth (soildepth1_f, soildepth1_o, mm), middle layer depth (soildepth2_f, 190 
soildepth2_o, mm), subsoil depth (soildepth3_f, soildepth3_o, mm);  191 

• Soil hydraulic properties: saturated (thetas1_f, thetas1_o, thetas2_f, thetas2_o, thetas3, m3/m3) and 192 
residual (thetar1, thetar2, thetar3, m3/m3) volumetric soil moisture content, pore size index (lambda1_f, 193 
lambda1_o, lambda2_f, lambda2_o, lambda3, dimensionless), Van Genuchten equation parameter 194 
(genua1_f, genua1_o, genua2_f, genua2_o, genua3, cm-1), saturated soil conductivity (ksat1_f, ksat1_o, 195 
ksat2_f, ksat2_o, ksat3, mm/day). 196 

2.5 Lakes  197 

Lakes (and reservoirs) are important as they influence the atmosphere regionally and globally as well as the river 198 
discharge. The area covered by lakes is used for computing evaporation from open water surfaces. In LISFLOOD 199 
the volume of evaporated water is not subtracted from the storage volume of lakes. Here the dataset only includes 200 
data on lake extent and not reservoirs (generally smaller): lake mask (i.e. presence of lakes consistent with fraction 201 
of inland water; lakemask, dimensionless).  202 

2.6 Water demand 203 

Some environmental models explicitly represent a number of the human interventions impacting on the water 204 
cycle. One of the most common is water demand, which represents the withdrawal of water from natural water 205 
sources (e.g. rivers, reservoirs, groundwater) to satisfy the water demand for anthropogenic use. The segregation 206 
of the total water demand for anthropogenic use into four main sectors, namely domestic, energy, industrial, and 207 
livestock water withdrawal, enables a more accurate representation of the processes. Following the Food and 208 
Agriculture Organisation of the United Nations (FAO) terminology (Kohli et al., 2012), domestic water 209 
withdrawal represents indoor and outdoor household water use as well as other uses (e.g. industrial and urban 210 
agriculture) connected to the municipal system (e.g., water use by shops, schools, and public buildings). Electricity 211 
(energy) water withdrawal is the water use for the cooling of thermoelectric and nuclear power plants. Water 212 
withdrawal for industry is the water used for fabricating, processing, washing, cooling or transporting products, 213 
also includes water within the final products and water used for sanitation within the manufacturing facility. 214 
Livestock withdrawal is the demand for drinking and cleaning purposes of livestock. 215 
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Higher accuracy in environmental modelling is achieved by differentiating water demand sources and by 216 
allocating different levels of priority to different usages. Within LISFLOOD, for instance, water demand for the 217 
energy sector and flooded irrigation (rice crops) is supplied by surface water bodies only, while non-flooded 218 
irrigation, domestic, industrial, livestock water demand can be supplied by both groundwater and surface water 219 
bodies. Moreover, domestic water demand has the highest priority in case of water scarcity conditions.  220 
It must be noted that the fields of water demand for agriculture are not included in this dataset because LISFLOOD 221 
computes crops water demand internally by accounting for climatic conditions, information on land cover (see 222 
Section 2.2), crops properties (see Section 2.4), and soil properties (see Section 2.5). Conversely, fields 223 
representing the volume of water to satisfy the domestic, energy, industrial, and livestock demand must be 224 
provided as input. Domestic, industrial, energy, and livestock water demand volumes have seasonal (e.g. due to 225 
temperature differences) and inter-annual variations (e.g. due to population changes and different economic 226 
conditions). In order to account for this variability, in LISFLOOD the four sectoral water demand fields provide 227 
daily water demand data with monthly or annual variability from 01.01.1979 to 31.12.2019: the water demand 228 
values are provided in mm/day, one field per month (the first day of each month is used as representative 229 
timestamp for the entire month) for domestic and energy demand, one value per year (the monthly fields are 230 
repeated twelve times per each year) for industrial and livestock demand. 231 
The dataset includes water demand for four main sectors (note that each sector consists in total of 12 daily water 232 
demand fields per 41 (1979-2019) years, so 492 fields per sector) for: livestock (liv, mm/day), industry (ind, 233 
mm/day), energy production, (ene, mm/day) and domestic use (dom, mm/day). The temporal extension of the 234 
water demand fields presented in this manuscript includes the most recent information of water demand at the 235 
time of the dataset’s preparation. Readers that are interested in using more recent water demand data are invited 236 
to follow the protocol presented in Section 4.6 to further extend in time the provided fields. 237 

2.7 Specific requirements for the dataset 238 

The dataset produced follows the specific requirements of LISFLOOD for EFAS (European domain, 1 arc min 239 
resolution at mid-latitude of the domain (47.50 N) is ~1.25 km) and GloFAS (Global domain) implementation, 240 
summarised in Table 1.  241 
 242 
Table 1. Dataset files technical specifications. 243 

Type Specification 

Format NetCDF 

Projection EPSG:4326 - WGS84: World Geodetic System 

Horizontal 

resolution 

Europe: 1 arc min (~1.86 km at the Equator) [file size 4530x2970 grid-cells] 

Globe: 3 arc min (~5.57 km at the Equator) [file size 7200x3600 grid-cells]  

Domain bound 
Europe: [North = 72.25 N; South = 22.75 N; West = 25.25 W; East = 50.25 E] 

Globe: [North = 90.00 N; South = 90.00 S; West = 180.00 W; East = 180.00 E] 

Missing value (i.e. 

NoData) location 

Over land: none 

Over ocean: all ocean grid-cells have missing value (i.e. ocean is masked based on ‘mask’ field) 

Missing value (i.e. 

NoData) number 

For Integer variable type: 0 

For Real variable type: -999999.0 

Variable type 
Integer: Int8 

Real: Float32 

3 Reference data and overall methodology 244 

This section describes all data sources used to produce dataset’s surface fields introduced in Section 2. All data 245 
considered were open source, freely available, updated as recently as possible, with recognised reference on their 246 
quality. Note that whilst the majority of surface fields contain no time element, vegetation and water demand 247 
fields explicitly describe the annual cycle (vegetation, rice) or annual time evolution (water demand) and therefore 248 
have more stringent requirements regarding the data source. Global single-source datasets (e.g. Te Chow, 1959; 249 
Supit et al., 1994; Allen et al., 1998; Buchhorn et al., 2021) were favoured to regional and/ or multiple data sources 250 
that needed to be combined in order to produce the required data unless sub-set information was of much better 251 
quality (e.g. Moiret-Guigand, 2021).  252 
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3.1 Catchment morphology and river network 253 

3.1.1 Digital Elevation Model 254 

The MERIT DEM: Multi-Error-Removed Improved-Terrain Digital Elevation Model v.1.0.3 [15 October, 255 
2018] (further referred as MERIT DEM) is a high accuracy global DEM at 3 arc second resolution (~90 m at the 256 
Equator) covering land area from 90 N to 60 S, selected for its ability to clearly represent landscapes such as river 257 
networks and hill-valley structures even in flat areas where height errors could be larger than topography 258 
variability (Yamazaki et al., 2017; Bhardwaj, 2021; Chai et al., 2022). It is derived from seven different open-259 
source datasets, delivered as 57 GeoTiff files 30º by 30º region each, at ~90 m resolution (in total 90.0 GB), 260 
representative of the year 2018. More detail on method, data content and access can be found in Yamazaki et al. 261 
(2017) and MERIT DEM web-page http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM. 262 
The MERIT DEM was used to compute standard deviation of elevation, gradient and channel geometry fields. 263 

3.1.2 Hydromorphology  264 

The Catchment-based Macro-scale Floodplain (CaMa-Flood) Global River Hydrodynamics Model v4.0 265 
maps (further referred as CaMa-Flood) are used for the basic maps describing all physical properties of the river 266 
network. It is derived from MERIT Hydro (MERIT Hydro is a global hydrography dataset, created by using 267 
elevation (i.e. MERIT DEM) and several inland water maps; more detail can be found in Yamazaki et al. (2019) 268 
and MERIT Hydro web-page http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro) for high resolution river 269 
routing applications using the FLOW algorithm (Yamazaki et al., 2009; Yamazaki et al., 2011). The maps include 270 
information on channel length, river topography parameters, floodplain elevation profile, channel width and 271 
channel depth. The maps exist at 15, 6, 5, 3 and 1 arc min resolutions covering land area from 90 N to 60 S, 272 
representative of the year 2017, and for each resolution, they are available as one single file with all variables in 273 
NetCDF format (for 1 arc min 737.0 MB). More detail on method, data content and access can be found in 274 
Yamazaki et al. (2011) and CaMa-Flood web-page http://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-275 
flood/index.html. Note that whilst the CaMaFlood maps where originally generated for the specific use of the 276 
CaMa-Flood model, they can also serve as basic to derive alternative maps for other environmental models, as 277 
done here. 278 
The CaMa-Flood maps were used to create the local drainage direction (LDD), upstream area, channel geometry 279 
and land masks fields. 280 

3.2 Land use fields 281 

3.2.1 Land cover 282 

The Copernicus Global Land Service (CGLS) Land Cover (LC) 100m map (further referred as CGLS-LC100) 283 
is a global land cover map of the year 2015 (Buchhorn et al., 2020). It is derived from the PROBA-V 100 m 284 
satellite image collection, a database of high quality land cover training sites and ancillary datasets, reaching an 285 
accuracy of 80 % at Level1 (Buchhorn et al., 2021). It contains 23 classes for discrete classification and 10 classes 286 
for continuous cover fractions; and it is delivered as 15 files in GeoTiff format (in total 39.3 GB) at 100 m 287 
resolution covering land area from 90 N to 60 S and representative of the year 2015. More detail on method, data 288 
content and access can be found in Buchhorn et al. (2021) and Copernicus web-site 289 
https://land.copernicus.eu/global/products/lc.  290 
The CGLS-LC100 was used to generate crop parameters and Manning’s surface roughness coefficient for forest 291 
and other land cover types, to generate forest, inland water, and sealed surface fraction fields, following a basic 292 
quality check on large water bodies (i.e. correcting Fox Basin and Caspian Sea).  293 
 294 
The Coordination of Information on the Environment (CORINE) Land Cover (CLC) inventory for 2018 295 
(further referred as CLC2018) is a set of maps describing the land cover/ land use status of 2018 covering 296 
39 countries in Europe with a total area of over 5.8 Mkm2. The dataset is derived from satellite imagery (mainly 297 
Sentinel-2, based on a constellation of two satellites orbiting Earth at altitude of 786 km 180° apart revisiting 298 
equator every 5 days, and for gap filling Landsat-8, making a constellation together with Landsat-9 satellite 299 
orbiting Earth at altitude of 705 km each revisiting equator every 16 days) and in-situ data and contains 44 classes, 300 
delivered as one GeoTiff raster file (125.0 MB) at 100m resolution covering land area over Europe, representative 301 
of the time period 2017-2018. The overall accuracy for CLC2018 is 92 % for the blind analysis (i.e. validation 302 
team had no knowledge of the CLC2018 thematic classes) but there are regional variations: the Black Sea 303 
geographical region has the lowest accuracy of 84 %; country-wise overall accuracy vary from 86 % for Portugal 304 
to 99 % for Iceland, lowest accuracy being linked to the landscape complexity (Moiret-Guigand, 2021). More 305 
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detail on method, data content and access can be found in Büttner and Kosztra (2017) and Moiret-Guigand (2021), 306 
and Copernicus web-site https://land.copernicus.eu/pan-european/corine-land-cover/clc2018. 307 
The CLC2018 was used to generate the irrigated crop fraction and rice fraction fields. 308 

3.2.2 Crop cover 309 

The Spatial Production Allocation Model (SPAM) – Global Spatially-Disaggregated Crop Production 310 
Statistics Data for 2010 v2.0 (further referred as SPAM2010) is a global dataset generated in 2020, which 311 
redistributes crop production information from country and sub-national provinces level to a finer grid-cell level 312 
(IFPRI, 2019). It is derived from numerous data sources, including crop production statistics, cropland data, 313 
biophysical crop “suitability” assessments, spatial distribution of specific crops or crop systems, and population 314 
density. SPAM2010 contains estimates of crop distributions within disaggregated units (based on a cross-entropy 315 
approach) for 42 crops and two production systems (irrigated and rainfed), and is delivered as 84 files in shapefile 316 
format at 10 km (5 arc min) resolution covering land area from 90 N to 60 S and representative of the year 2010 317 
(in total 2.2 GB). Based on crop expert judgement from international (i.e. International Rice Research Institute, 318 
International Maize and Wheat Improvement Center) and national organisations (i.e. The Chinese Academy of 319 
Agricultural Sciences) SPAM2010 over Europe and America is more accurate than over Africa and South East 320 
Asia, with best performance in allocating rice; grid-by-grid comparison of crop areas with independent Cropland 321 
Data Layer (produced by using satellite images and vast amount of ground truth) over continental United States 322 
shows coefficient of determination (R2) 0.7-0.9 and root mean square error (RMSE) 231-307 ha indicating a 323 
relatively high reliability, with highest R2 and lowest RMSE values are for maize and soybean (Yu et al., 2020). 324 
More detail on method, data content and access can be found in Yu et al. (2020) and MapSPAM web-site 325 
https://mapspam.info. 326 
SPAM2010 was used to compute the irrigated crop and rice fractions, crop parameters and Manning’s surface 327 
roughness coefficient for irrigated crop fields. 328 

3.3 Vegetation properties 329 

3.3.1 Crop properties 330 

The Food and Agriculture Organisation (FAO) of the United Nations Irrigation and Drainage Paper No. 331 
56 (further referred as FAO56) is a publication covering geographically referenced statistics for crop development 332 
stages, crop coefficients, crop height, rooting depth, and soil water depletion fraction for common crops found 333 
across the world; it also covers procedures for information aggregation, e.g. on the grid. It is delivered as an article 334 
with a set of tables and equations and can be considered as the most complete source of information on crop 335 
properties. More detail on method and data content can be found in Allen et al. (1998) and FAO online crop 336 
information web-page http://www.fao.org/land-water/databases-and-software/crop-information/tobacco/en/.  337 
FAO56 was used to compute the crop coefficients for forest, irrigated crops and other land cover types (online 338 
crop information was specifically used for tobacco); and for intermediate computations such as depletion fraction 339 
for different crop and surface types (table), crop height and root depth fields. 340 
 341 
Intara et al. (2018) is a publication covering oil palm roots architecture. 342 
Intara et al. (2018) was used for oil palm root depth information in addition to FAO56. 343 
 344 
Burek et al. (2014) is a publication covering summarised information for crop coefficients, rooting depth, crop 345 
group number and Manning’s surface roughness coefficient for different surface types. 346 
Burek et al. (2014) was used for built-up, bare/ sparse vegetation, snow & ice, permanent inland water, ocean & 347 
seas, herbaceous wetland, moss & lichen surface types crop coefficients, rooting depth, crop group number and 348 
Manning’s surface roughness coefficient information in addition to FAO56 and other sources.  349 
 350 
The Wofost 6.0 crop simulation model description (further referred as SUPIT) is a publication on developing, 351 
validating, and testing new or already existing agrometeorological models (Supit et al., 1994). It contains crop 352 
group information for several crops as examples, and relation of a crop group from water depletion fraction. The 353 
publication is delivered as a book with a set of tables and equations. Information on crop group is still considered 354 
up-to-date. More detail on method and data content can be found in Supit et al. (1994). 355 
SUPIT was used to compute the crop group fields for forest, irrigated crops and other land cover types. 356 
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3.3.2 River hydraulics properties 357 

The Open-Channel Hydraulics manual (further referred as CHOW) is a publication on open-channel 358 
hydraulics, including basic principles and different types of flows, i.e. uniform, gradually varied, rapidly varied, 359 
and unsteady (Te Chow, 1959). It contains information on roughness coefficient over different surfaces. The 360 
publication is delivered as a book with a set of tables and equations. More detail on method and data content can 361 
be found in Te Chow (1959). 362 
CHOW was used to compute the Manning’s surface roughness coefficient fields for forest, irrigated crops and 363 
other land cover types. 364 

3.3.3 Vegetation time evolution  365 

The Copernicus Global Land Service (CGLS) Leaf Area Index (LAI) 1km Version 2 collection (further 366 
referred as CGLS-LAI) is a set of global maps without missing data describing vegetation dynamics – the annual 367 
evolution of LAI at 10-day intervals over the period of 1999-2020. The dataset is derived from 368 
SPOT/VEGETATION and PROBA-V data. The dataset’s root mean square deviations over 20 GBOV sites over 369 
the period 2014-2018 is 0.92, compared to 1.19 for MODIS C6 LAI product (Martinez-Sanchez, 2020). The 370 
dataset is delivered as one multi-band file per year in NetCDF (netCDF4 CF-1.6) format (14.7 GB per year) at 1 371 
km resolution covering land area from 90 N to 60 S and representative of the 10-year period of 2010-2019. More 372 
detail on method, data content and access can be found in Smets (2019) and Martinez-Sanchez (2020), and 373 
Copernicus web-site https://land.copernicus.eu/global/products/lai.  374 
CGLS-LAI was used to compute the LAI fields for forest, irrigated crops and other land cover types. 375 

3.3.4 Crop time evolution 376 

The RiceAtlas v3 (further referred as RiceAtlas) is a spatial database of global rice calendars and production. It 377 
contains information on start, peak and end dates of sowing, transporting and harvesting rice, derived from global 378 
and regional databases, national publications, online reports, and expert knowledge. It is delivered as 7 files in 379 
shapefile format (in total 195.8 MB) for administrative units (in total 2725 spatial units) at 1 km resolution for the 380 
national production totals to match the years 2010-2012 (Laborte et al., 2017a). RiceAtlas is ~10 times more 381 
spatially detailed, and has ~7 times more special units comparing with other global datasets (Laborte et al., 2017b). 382 
More detail on method, data content and access can be found in Laborte et al. (2017a) and Laborte et al. (2017b). 383 
RiceAtlas was used to compute rice planting and rice harvesting days for three different seasons. 384 

3.4 Soil properties 385 

The International Soil Reference and Information Centre (ISRIC) SoilGrids250m global gridded soil 386 
information release 2017 (further referred as SoilGrids250m) is an output of special predictions produced by the 387 
SoilGrids system, as a set of global soil property and class maps at 250 m resolution. It is derived from soil profile 388 
data (from ~150,000 sites globally) with the use of machine learning, and contains information on soil 389 
characteristics at six standard depths, including soil textures (clay, silt, sand), depth to bedrock, bulk density, 390 
organic carbon, pH and cation exchange capacity. It is delivered as 43 files in GeoTiff format (in total 111.8 GB) 391 
at 250 meters resolution covering land area with no permanent ice and representative for the year 2010 (according 392 
to land cover) (Hengl et al., 2017). SoilGrids250m pH comparison with SSURGO data over California (depth 0-393 
200 cm) and Soil and Landscape Grid of Australia data over Tasmania (depth 0-5 cm) show high correlation, 0.79 394 
and 0.71 respectively (Hengl et al., 2017). Despite its limited accuracy (i.e. between 30 and 70 %, according to 395 
the SoilGrids web-site) due to the scarcity of soil profile observations (especially in Central Asia, Artic regions 396 
costal area and desert), low resolution of covariates data and algorithms, it was selected as the most recent source 397 
of information. More detail on method, data content and access can be found in Hengl et al. (2017) and 398 
SoilGrids250m web-site https://www.isric.org/explore/soilgrids/faq-soilgrids-2017.  399 
SoilGrids250m was used to compute the soil depth and soil hydraulic properties for forest and non-forest. 400 

3.5 Lakes 401 

The Global Lakes and Wetlands Database (further referred as GLWD) is a global database of water bodies. It 402 
is derived from a combination of global and regional lake data sets, registers and inventories (i.e. point information 403 
with descriptive attributes), and digital maps (i.e. polygons, rasterised global land cover and land use maps). The 404 
database consists of two global files in shapefile format at spatial resolutions of up to 1:1 million – GLWD-1 with 405 
3067 largest lake and 654 largest reservoir polygons (6.4 MB), and GLWD-2 with ~250000 smaller lake and 406 
reservoir polygons (32.0 MB); and of one global file in ADF raster format at 30 arc sec resolution – GLWD-3 407 
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combines GLWD-1, GLWD-2 and additional information (8.9 MB). Validation against documented data shows 408 
that GLWD represents good wetland maximum extent, and describes comprehensively lakes with surface area 409 
greater or equal 1 km2 (Lehner and Döll, 2004). More detail on method, data content and access can be found in 410 
Lehner and Döll (2004) and GLWD web-site https://www.worldwildlife.org/pages/global-lakes-and-wetlands-411 
database.  412 
GLWD (i.e. only GLWD-1 and GLWD-2) was used to compute the discrete lake mask field. 413 

3.6 Water demand 414 

AQUASTAT is the FAO’s global information system on water resources and agricultural water management. 415 
AQUASTAT collects information on water use via the network of AQUASTAT National Correspondents who 416 
are required to fill the annual questionnaire and collaborate with AQUASTAT team in the data validation process. 417 
Five types of manual checks are followed by automatic implementation of almost 200 validation rules. The dataset 418 
includes data for 180 countries worldwide, yearly data from 1979 to 2019 were used to produce the maps presented 419 
by this manuscript. Float, lumped values for each country for the variables "Gross Domestic Product (GDP)", 420 
"Industry, value added to GDP", "Agricultural water withdrawal", "Industrial water withdrawal", "Municipal 421 
water withdrawal", "Total water withdrawal", and "Irrigation water withdrawal" were obtained in CSV format (2 422 
files, in total 2.0 MB) from the AQUASTAT data acquisition dashboard 423 
(https://tableau.apps.fao.org/views/ReviewDashboard-v1/country_dashboard). More detail on method, data 424 
content and access can be found in AQUASTAT web-site 425 
https://www.fao.org/aquastat/en/overview/methodology/.  426 
AQUASTAT variables were used accordingly to compute water demand fields for domestic, industrial, energy, 427 
livestock use.  428 
 429 
United States Geological Survey National Water Information System (further referred as USGS NWIS) is a 430 
national database on water use data for the United States (US) with annual statistics provided every 5 years since 431 
1950. The water use data are best estimates produced by the USGS in cooperation with local, state, and federal 432 
agencies as well as academic and private organisations. The water use data are lumped values (float numbers) for 433 
each state, delivered in plain text format (52 files, in total 56.0 MB). Following variables were used: "Domestic 434 
total self-supplied withdrawals, fresh, in Mgal/d", "Public Supply total self-supplied withdrawals, fresh, in 435 
Mgal/d", "Industrial total self-supplied withdrawals, fresh, in Mgal/d", "Total Thermoelectric Power total self-436 
supplied withdrawals, fresh, in Mgal/d", "Total Thermoelectric Power power generated, in gigawatt-hours", and 437 
"Livestock total self-supplied withdrawals, fresh, in Mgal/d". More detail on method, data content and access can 438 
be found in USGS NWIS web-site https://waterdata.usgs.gov/nv/nwis/wu. For this study, data from 1985 to 2015 439 
were used.  440 
USGS NWIS variables were used accordingly to refine the global water demand fields for the domestic, industrial, 441 
energy, livestock use sectors for the US. 442 
 443 
Global Change Analysis Model (further referred as GCAM) is an integrated, multi-sector model developed by 444 
the Joint Global Change Research Institute (JGCRI) to explore the overall behaviour of human and physical 445 
systems dynamics and interactions. GCAM includes five main systems. One of these systems, the water module, 446 
provides information about water withdrawals for energy, agriculture, and municipal uses as lumped values of 447 
235 hydrologic basins; a detailed explanation can be found in Calvin et al. (2019). Estimates of industrial, 448 
thermoelectric water withdrawals (energy sector) and electricity consumption were computed by running the 449 
GCAM model, the output used are two files in CSV format (in total 4.0 MB). Data from the following sectors was 450 
used: "biomass", "electricity", "nuclearFuelGenII", "nuclearFuelGenIII", "regional coal", "regional natural gas", 451 
"regional oil", "SheepGoat", "Beef", "Dairy", "Pork", and "Poultry". More detail on method, data content and 452 
access can be found in the documentation of the open source package https://github.com/JGCRI/gcam-453 
core/tree/gcam-v6.0.  454 
GCAM variables were used accordingly to estimate water withdrawals for industrial, energy, livestock use. 455 
 456 
Global-scale gridded estimates of thermoelectric power and manufacturing water use (further referred as 457 
Vassolo and Doll, 2005) is a global-scale gridded estimate of water withdrawal for cooling of thermal power 458 
stations and for manufacturing. Estimates of values for the year 1995 are provided with a spatial resolution of 0.5° 459 
by 0.5°. Thermoelectric power water use is based on the geographical location of 63590 thermal power stations. 460 
Manufacturing water use is computed by estimating country-specific water withdrawal values, and spatial 461 
downscaling using city night-time lights. Dataset verification of Vassolo and Doll (2005) showed satisfactory 462 
representation of thermoelectric power water use but high uncertainty in the representation of manufacturing water 463 
use. The data are delivered as one shapefile (2.5 MB). More details on method, data content and validation, and 464 
data access can be found in Vassolo and Doll (2005). 465 
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Vassolo and Doll (2005) dataset was used for the computation of energy demand fields. 466 
 467 
The Gridded Livestock of the World (GLW) version3 (further referred as GLW3) is a spatial gridded dataset 468 
of the global distribution of eight livestock species for 2010. It is delivered as 8 GeoTiff files at 0.083333° (~10  469 
km at the Equator) resolution (in total 208.0 MB). The species abundance was converted to total livestock mass. 470 
More detail on method, data content and access can be found in Gilbert et al. (2018).  471 
GLW3 was used to spatially disaggregate the water demand for livestock use. 472 
 473 
World Bank manufacturing value added and gross domestic product (further referred as World Bank) data 474 
provide "Manufacturing, value added (constant 2015 US$)" values (further referred as MVA) and "Gross 475 
Domestic Product GDP (constant 2015 US$)" values. The data provided as a table, downloaded in CSV format 476 
(6 files, in total 6.0 MB) from https://data.worldbank.org.  477 
World Bank dataset was used to temporally downscale the values of water demand fields for the industrial and 478 
energy sectors. 479 
 480 
The Global Human Settlement Population Grid multitemporal version R2019A (further referred as GHS-481 
POP) is a spatial raster dataset that depicts the distribution of population, expressed as the number of people per 482 
grid-cell (Freire et al., 2016; Florczyk et al., 2019; Schiavina et al., 2019). GHS-POP residential population 483 
estimates for target years provided by CIESIN GPWv4.10 were disaggregated from census or administrative units 484 
to grid-cells, informed by the distribution and density of built-up as mapped in the Global Human Settlement 485 
Layer. The dataset has a spatial resolution of 9 arc sec (~300 m at the Equator) resolution and is delivered as 486 
individual files in GeoTiff format for 1975, 1990, 2000 and 2015 (4 files, in total 6.5 GB; available online: 487 
https://ghsl.jrc.ec.europa.eu/ghs_pop2019.php, last accessed: 21.02.2023).  488 
GHS-POP was used to spatially disaggregate the country, state, basin-level information of domestic, industrial, 489 
energy water withdrawal. 490 
 491 
Thematic Mapping Country Borders shapefile (further referred as TM ‘country borders’) was derived from 492 
Thematic Mapping ™, which is a tool enabling web browsers to create thematic maps and associated world 493 
datasets. For this work, the TM World Borders Dataset was downloaded as one shapefile (10.0 MB). The United 494 
States Census Bureau Cartographic Boundary Files – Shapefile (further referred as US CB) provides the State 495 
boundaries for the USA. For this work, the 2018 version was retrieved as one shapefile (3.2 MB; available online: 496 
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html, last accessed: 497 
21.02.2023). More detail on method, data content and access can be found in 498 
http://thematicmapping.org/downloads/.  499 
TM ‘country borders’ and US CB were used to spatially disaggregate the information of water withdrawal for 500 
domestic, industrial, energy use. 501 
 502 
Multi-Source Weather (further referred as MSWX) is a high-resolution (3‑hourly, 0.1°), bias-corrected 503 
meteorological product with global coverage from 1979 to 7 months into the future. The data for 42 years 504 
(~316700 files in NetCDF format, in total 128.0 GB) were retrieved via www.gloh2o.org/mswx/. For more 505 
detailed information, see Beck et al. (2022).  506 
MSWX 2-meter daily and monthly maximum and minimum air temperature were used to account for the climate-507 
induced intra- and inter- annual fluctuations of domestic, livestock, and energetic water demand.  508 
 509 
Huang et al. (2018) is a publication presenting 0.5° resolution global monthly gridded sectoral water withdrawal 510 
dataset for the period 1971–2010.  511 
Huang at al. (2018) Table 3 (calibrated R coefficient values) and Eq. (2) to (6) for temporal downscaling of 512 
domestic and energy water demands were used in this study, respectively. 513 

3.7 Surface field creation overview 514 

Considering the high resolution (i.e. hundreds of meters) and volume of data (i.e. GB) of most input datasets used 515 
to generate the surface fields, a high performing data manipulation platform was needed. GEE (Gorelick et al., 516 
2017) was selected as it provides (embedded) a vast high resolution data catalogue (e.g. ready available MERIT 517 
DEM, CGLS-LC100, CLC2018) and powerful computation capabilities. It also allows to upload any raster and 518 
vector data (e.g. GeoTiff or shapefiles) and to conduct each surface field tailored computations. All GEE scripts 519 
were written in JavaScript to produce GeoTiff files, converted to the final file format (NetCDF) locally after 520 
transfer from GEE platform.  521 
To ensure a consistent representation of physical processes at all scales, surface fields should be as coherent as 522 
possible among each other – between variables and across scales. Coherency can be achieved by using, where 523 
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possible, the same input datasets to derive different field types (e.g. unique forest information input to create all 524 
forest-related surface fields), and making sure spatial aggregation/ disaggregation across scales results in expected 525 
values. Figure 1 shows a simplified scheme that relates input datasets (e.g. CGLS-LC100) with the resulting 526 
surface fields (e.g. surface cover fractions – forest, inland water, and sealed surface fraction fields), also 527 
highlighting fields requiring intermediary and sequential steps (e.g. forest fraction is needed to create soil 528 
parameter fields over forested and non-forested areas).  529 
 530 

 531 
Figure 1. Flow chart connecting input datasets and surface fields created. Dashed border denotes intermediate fields, 532 
that are not part of the final dataset catalogue. 533 

For processes with horizontal dependency such as river routing, the relationship between grid-cells (e.g. how the 534 
grid-cells are connected) must be defined first so that all dependent fields can be generated on the same grid 535 
coordinates, spatial resolution and using consistent input data. For example, LDD defines how water moves across 536 
the model grid-cells as a river drainage network (see Figure ) and strongly depends on elevation data (see Section 537 
3.1.2 for more details). Because of the complex spatial dependency of a river drainage network, LDD must be 538 
created directly from elevation data at the required grid and resolution and cannot be resampled from a previous 539 
LDD field of a different grid and/ or resolution. It is then used to define information on the river network, including 540 
upstream area and gradient. Note, Figure 1 misses an arrow from MERIT DEM to LDD only because this step 541 
was mainly done by CaMa-Flood developers (see Section 3.1.2 for more details).  542 
Four steps are involved in generating a particular surface field (see Table 2), with step 3 being the most complex 543 
and varied (see Figure 2 for an example), and step 4 being necessary only for some model specifications (here as 544 
required by LISFLOOD). Further details on specific manipulations associated with each field category are given 545 
in Section 4 as relevant. 546 
 547 

a. 

 

b. 

 
Figure 2. Examples of data manipulation for (a) transformation of elevation data into LDD (done within CaMa-Flood), 548 
and (b) upscaling with weighted average for one final grid-cell of soil hydraulic property over forested area. 549 
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4 Generation of surface fields 550 

This section details the complex data manipulations required to generate the surface fields introduced in Section 2, 551 
with examples of resulting fields. The techniques are reproduceable to different input data and/ or for different 552 
output data specifications. Full technical descriptions for all fields needed by the LISFLOOD model are available 553 
in the LISFLOOD user guide (available online: https://ec-jrc.github.io/lisflood-code/4_Static-Maps-introduction/, 554 
last accessed: 21.02.2023). 555 
 556 
Table 2. The four steps of a particular surface field generation and associated data manipulations. 557 

Order Description Purpose Function 

1 
Raw file 

preparation 

Vector gridding, region 

merging 

 

Upscaling (spatial/ temporal 

aggregation) 

Arithmetic mean, mode, sum, standard deviation (weighted) 

resampling from auxiliary data 

2 
Unit 

conversion 

Converting values from native 

to fraction per grid-cell 

Surface area, percentage or categorical to fractions per grid-cell 

(see Annex 1 for more details) 

3 
Value 

computation 

Transforming Mathematical equation/ function needed to generate the output 

variable 

Reprojecting Interpolation (changing grid, preserving resolution in meters) 

Upscaling (spatial [default]/ 

temporal aggregation) 

Arithmetic mean, mode, sum, standard deviation (weighted) 

resampling from auxiliary data (changing resolution, 

preserving grid) 

Downscaling (spatial [default]/ 

temporal disaggregation) 

Nearest neighbour (changing resolution, preserving grid) 

Limiting Force a minimum/ maximum value to satisfy e.g. calculation 

precision, physical meaning and/ or model requirement 

4 

Zero/ 

NoData 

filling  

Replace zero/ NoData by the 

most appropriate values 

LIGHT. Constant value, unweighted global mean, unweighted 

global mode 

DEEP. Values from next coarser resolution (up to an agreed 

maximum resolution); if still missing, method LIGHT 

4.1 Catchment morphology and river network 558 

Environmental models require an accurate description of terrain and hydro-morphology to represent the 559 
hydrodynamics at the spatial resolution of the model. Here all catchment morphology and river network fields are 560 
derived from CaMa-Flood and MERIT DEM (see Table 3). They follow a complex sequential workflow (see 561 
Figure ). Note that whilst some river network fields were already directly available from the CaMa-Flood 562 
catalogue (e.g. LDD, channel length), they had to be adapted to the specific requirements of LISFLOOD, 563 
specifically consistent with an interconnected river network described by the D8 algorithm (O’Callaghan and 564 
Mark, 1984; Figure 2a) different to that used by the CaMa-Flood algorithm.  565 
 566 

 567 
Figure 3. Workflow of complex manipulations to create some of the morphology and river network fields; solid arrows 568 
indicate a function transformation, dashed – modification of existing input data to LISFLOOD specifications.  569 

Table 3. Morphology and river network fields, their description, data source and applied transformation; * denotes 570 
transformation following Burek et al. (2014). 571 

Field type   Description   Data source (variable) Transformation 

Local drainage 

direction (LDD) 

Connects every grid-cell 

forming a river network 

from springs to mouth  

CaMa-Flood (flwd) Direction coding, ensuring grid-cell 

connectivity  

Grid-cell area 

(pixarea) 

Area of every grid-cells CaMa-Flood (flwd) Grid-cell area based on a given 

coordinate reference system and 

resolution  

MERIT DEM

channel bottom 

width

channel gradient

upstream area

CaMa-Flood

local drain direction

channel length
bankfull channel 

depth

Manning’s roughness 
coefficient for channels

SoilGrids250m

soil depth layers 1,2,3 

for forest/ non-forest

soil hydraulic parameters

SoilGrids250m depths

root depth for 

forest/ non-forest

forest fraction

soil depth layers 1,2,3 

for forest/ non-forest

final grid and resolution

soil hydraulic parameters

for soil depth layers 1,2,3 

and for forest/ non-forest

soil hydraulic parameters

for soil depth layers 1,2,3 

and for forest/ non-forest

final grid and resolution

grid-cell lengthgrid-cell area
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Grid-cell length 

(pixlength) 

Length of every grid-cell pixarea 𝑝𝑖𝑥𝑙𝑒𝑛𝑔𝑡ℎ = 𝑝𝑖𝑥𝑎𝑟𝑒𝑎

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
, where 

resolution – 1.86 km and 5.57 km for 1 

and 3 arc min respectively 

Upstream area 

(upArea) 

Accumulated area of all 

connected grid-cells of the 

LDD from springs (start; 

lowest values) to mouth 

(end; highest values)  

LDD, pixarea PCRaster Accuflux function 

(Karssenberg et al., 2010) 

Standard deviation 

of elevation (elvstd) 

Amount of elevation 

variation within a grid-cell 

MERIT DEM Upscaling (spatial) with standard 

deviation 

Gradient (gradient) Elevation gradient between 

two connected grid-cells 

MERIT DEM; LDD 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
abs( 𝑒𝑙𝑣𝑢𝑐−𝑒𝑙𝑣𝑑𝑐)

𝐷𝑢𝑐,𝑑𝑐
, where elv 

– elevation, uc and dc – upstream and 

downstream cell, Duc,dc – distance 

between upstream and downstream 

cells 

Channel bottom 

width (chanbw) 

Width of the bottom of the 

channel  

CaMa-Flood (width); 

upArea 

Recomputing zero and negative values 

based on equation*  

𝑐ℎ𝑎𝑛𝑏𝑤 = 𝑢𝑝𝐴𝑟𝑒𝑎 ∙ 0.0032 

Channel length 

(chanlength) 

Length of river channel in 

each grid-cell (can exceed 

grid-size to account for 

meandering river)  

CaMa-Flood (rivlen) No transformation was carried out 

Channel gradient 

(changrad) 

Gradient (slope) of river 

channel inside a grid-cell  

MERIT DEM; LDD, 

chanlength 
𝑐ℎ𝑎𝑛𝑔𝑟𝑎𝑑 =

abs( 𝑒𝑙𝑣𝑢𝑐−𝑒𝑙𝑣𝑑𝑐)

𝑐ℎ𝑎𝑛𝑙𝑒𝑛𝑔𝑡ℎ𝑢𝑐
, where 

elv – elevation, uc and dc – upstream 

and downstream cell; 

Note: LDD is used to define uc and dc 

Manning's 

roughness 

coefficient for 

channels (chanman) 

Manning's roughness 

coefficient of river channel 

for each grid-cell  

MERIT DEM; upArea Transformation based on equation*  

𝑐ℎ𝑎𝑛𝑚𝑎𝑛 = 0.25 + 0.015 ∙

min ( 50

𝑢𝑝𝐴𝑟𝑒𝑎
𝑘𝑚2

, 1) + 0.030 ∙

min(𝑒𝑙𝑣𝑚
2000

, 1), where elv – elevation, 

km2 and m – values in km2 and m 

Channel 

mask (chan) 

Channel presence in the 

grid-cell indicator. Note 

LISFLOOD specific 

requirement to have 

channels in every ‘mask’ 

grid-cell 

‘mask’ (main model’s 

technical field) 

Channel mask is equal to 1 everywhere 

Side slope (chans) Slope of river banks (i.e. 

horizontal distance divided 

by vertical distance)  

 Side slope of all channels is 45°, hence 

side slope is equal to 1 everywhere 

Bankfull channel 

depth (chanbnkf) 

Channel depth (i.e. river 

bed depth)  

upArea Transformation based on equation*  

𝑐ℎ𝑎𝑛𝑏𝑛𝑘𝑓 = 0.27 ∙ 𝑢𝑝𝐴𝑟𝑒𝑎𝑘𝑚2
0.33 , 

where km2 – values in km2 

4.2 Land use fields 572 

In models explicitly accounting for sub-grid variability, the fraction of each land use in every cell must be provided 573 
so that process representation for each land use can be weighted accordingly. Here, the fractions of the five land 574 
use classes used in LISFLOOD (and additional ocean fraction for consistency check) are derived from super-high 575 
resolution datasets each following specific steps summarised in Table 4. Note that LISFLOOD requires all ‘mask’ 576 
(main model’s technical field) grid-cells to have at least one non-zero fraction type, hence the extra step in the 577 
generation of the inland water fraction field was to set empty grid-cells (i.e. grid-cells that based on the data source 578 
are fully covered with ocean) as fully covered with inland water.  579 
 580 
Table 4. Fraction of land use fields, their description, data source and applied transformations; ‘sum’ refers to the sum 581 
of all fractions except ‘other land cover fraction’; grey cells show required intermediate fields. 582 

Field type Description  Data source (variable) Transformation (in order) 

Forest fraction 

(fracforest) 

Evergreen and deciduous 

needle leaf and broad leaf 

tree areas 

CGLS-LC100 (tree-

coverfraction)  

Unit conversion % to fraction; 

Reprojecting and upscaling to final 

grid and resolution with mean; 

Consistency check with other fractions 
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Sealed surface 

fraction 

(fracsealed) 

Urban areas, characterizing 

the human impact on the 

environment 

CGLS-LC100 (urban-

coverfraction)  

Unit conversion % to fraction, scaled 

by 0.75; 

Reprojecting and upscaling to final 

grid and resolution with mean; 

Consistency check with other fractions 

Inland water 

fraction 

(fracwater) 

Rivers, freshwater and 

saline lakes, ponds and 

other permanent water 

bodies over the continents 

CGLS-LC100 (water-

permanent-coverfraction) 

Force Fox Basin and Caspian Sea to be 

fully covered with water; 

Unit conversion % to fraction; 

Reprojecting and upscaling to final 

grid and resolution with mean; 

Consistency check with other fractions; 

Cross-checking with ‘mask’ and 

forcing empty grid-cells as inland 

water 

Irrigated crops 

fraction 

(fracirrigated) 

Irrigated areas of all 

possible crops excluding 

rice 

SPAM 

(spam2010v1r0_global_physi

cal-area_CROP_i, 41 crops 

rice excluding) 

Shapefile gridding to its native 

resolution (~10 km); 

Unit conversion ha to fractions; 

Reprojecting and downscaling to 

CLC2018 grid and resolution (~100 m) 

with nearest neighbour 

CLC2018 (landcover = ‘212’) Unit conversion class to fraction 

 Merging SPAM- and CLC2018-

derived fractions, priority to CLC2018; 

Reprojecting and upscaling to final 

grid and resolution with mean; 

Consistency check with other fractions 

Irrigated rice 

fraction 

(fracrice) 

Irrigated areas of rice SPAM 

(spam2010v1r0_global_physi

cal-area_RICE_i) 

Shapefile gridding to its native 

resolution (~10 km); 

Unit conversion ha to fractions; 

Reprojecting and downscaling to 

CLC2018 grid and resolution (~100 m) 

with nearest neighbour 

CLC2018 (landcover = ‘213’) Unit conversion class to fraction 

 Merging SPAM- and CLC2018-

derived fractions, priority to CLC2018; 

Reprojecting and upscaling to final 

grid and resolution with mean; 

Consistency check with other fractions 

Other land 

cover fraction 

(fracother) 

Agricultural areas, non-

forested natural area, 

pervious surface of urban 

areas 

Non-negative residual from 1 

subtracting ‘sum’ of all other 

fractions 

𝑓𝑟𝑎𝑐𝑜𝑡ℎ𝑒𝑟 = max((1 − 𝑠𝑢𝑚),0) 

Ocean 

fraction 

(fracocean) 

Oceans CGLS-LC100 

(discrete_classification = 

‘200’) 

Unit conversion class to fraction; 

Forcing NoData to zero over ‘mask’ 

grid-cells, otherwise – fully covered; 

Reprojecting and upscaling to final 

grid and resolution with mean; 

Consistency check with other fractions 

 583 
For the sealed surface fraction, it is assumed that water can infiltrate in roughly 25 % of urban areas at kilometre 584 
scale through e.g. trees along the road, bushes along the fence, grass or moss between concrete tiles or cobble 585 
stones. 586 
To ensure consistency between fractions, the sum of all fraction fields must be 1 at any resolution. When sum is 587 
greater than 1, the inland water fraction value is assumed correct (input data corrected prior computation over Fox 588 
Basin and Caspian Sea) and all other fractions are corrected (𝑓𝑟_𝑐𝑜𝑟𝑟) following Eq. (1): 589 

𝑓𝑟_𝑐𝑜𝑟𝑟 = 𝑓𝑟 (1 −
𝑓𝑟𝑖𝑛𝑙𝑎𝑛𝑑𝑊𝑎𝑡𝑒𝑟+𝑓𝑟𝑜𝑐𝑒𝑎𝑛+𝑓𝑟𝑓𝑜𝑟𝑒𝑠𝑡+𝑓𝑟𝑠𝑒𝑎𝑙𝑒𝑑+𝑓𝑟𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑+𝑓𝑟𝑟𝑖𝑐𝑒−1

𝑓𝑟𝑓𝑜𝑟𝑒𝑠𝑡+𝑓𝑟𝑠𝑒𝑎𝑙𝑒𝑑+𝑓𝑟𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑒𝑑+𝑓𝑟𝑟𝑖𝑐𝑒
),    (1)  590 

where fr refers to the original (i.e. before consistency check) fraction of the forest, irrigated crops, rice and sealed 591 
surfaces. 592 
The generated fraction fields, e.g. forest (see Figure 4a) and other land cover (see Figure 4b), have generally good 593 
consistency with other up-to-date products like ESA CCI Land Cover time-series v2.0.7 (ESA CCI map viewer 594 
https://maps.elie.ucl.ac.be/CCI/viewer/; Defourny et al., 2017).  595 
 596 
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 597 
Figure 4. Fraction fields for forest (a) and other land cover (b) at 3 arc min (~5.6 km at the equator) resolution. 598 

4.3 Vegetation properties  599 

In complement to the land use fraction, the distribution of vegetation type and characteristics is required to capture 600 
the difference in environmental processes such as water intake of evaporation to be represented accurately (see 601 
Section 2). Here the vegetation properties are derived from many data sources using maps to account for the 602 
species spatial distribution and tables to obtain associated hydro-dynamics properties. This requires assumptions 603 
to be made in case different sources did not contain the same information, and transformations to be applied 604 
depending on the vegetation type. The main data sources and general transformation steps to derive the 605 
18 vegetation properties fields are summarised in Table  and following text. Note that ‘crop group number’ 606 
variable corresponds to a water depletion value and can be averaged across different crop types.  607 
 608 
Table 5. Vegetation property fields, their description, data source and applied transformations; grey cells show 609 
required intermediate fields. 610 

Field type Description  Data source Transformation (in order) 

Crop coefficient 

for forest, 

irrigated crops 

and other land 

cover type 

(cropcoef_f, 

cropcoef_i, 

cropcoef_o) 

Ratio between 

the potential 

(reference) 

evapotranspirati

on rate, in 

mm/day, and 

the potential 

evaporation rate 

of a specific 

crop (averaged 

by time and 

ecosystem type) 

CGLS-LC100 

(discrete_classification = ‘111’, 

‘112’, ‘113’, ‘114’, ‘115’, ‘116’, 

‘121’, ‘122’, ‘123’, ‘124’, ‘125’, 

‘126’ [forest types], ‘20’, ‘30’, 

‘40’, ‘60’, ‘70’, ‘90’, ‘100’ [other 

land cover types]) 

Force Fox Basin and Caspian Sea to be 

fully covered with water; 

Unit conversion class to fraction (in total 

12 forest related and 7 other land cover 

related fraction fields); 

Reprojecting and upscaling to final grid 

and resolution with mean 

SPAM 

(spam2010v1r0_global_physical-

area_CROP_i/r, 42 crops, ‘i’ – 

irrigated, ‘r’ – rainfed) 

Shapefile gridding to its native resolution 

(~10 km); 

Unit conversion ha to fractions (in total 42 

irrigated crop related and 42 rainfed crop 

related fraction fields); 

Reprojecting and downscaling to final grid 

and resolution with nearest neighbour; 

Limiting values to 0.0-1.0 interval 

FAO56 (Table 11, 12 – 

information on crop coefficient 

and crop height); Intara et al. 

(2018), Burek et al. (2014) 

 

Average crop coefficient value across 

climate zones for each crop growing stage 

and crop/ land cover type;  

Weighted average of crop coefficient per 

different crop growth stages (weighted by 

stage duration in days if available, 

otherwise mean); 

Average crop height value across climate 

zones for each crop/ land cover type 

 Weighted average of relevant crop 

coefficient for forest, irrigated crops and 

other land cover type (weighted by crop 

height and fraction) following Eq. (2); 

Note: for other land cover type 

computation of crop coefficient of all 

rainfed crops is used for CGLS-LC100 

(discrete_classification = ‘40’); 

Zero/ NoData filling with global mean 

Crop group 

number for forest, 

Represents a 

vegetation type 

CGLS-LC100 

(discrete_classification = ‘111’, 

Same steps as for crop coefficient 

a. b. 
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irrigated crops 

and other land 

cover type 

(cropgrpn_f, 

cropgrpn_i, 

cropgrpn_o) 

and is an 

indicator of its 

adaptation to 

dry climate 

(averaged by 

ecosystem type) 

‘112’, ‘113’, ‘114’, ‘115’, ‘116’, 

‘121’, ‘122’, ‘123’, ‘124’, ‘125’, 

‘126’ [forest types], ‘20’, ‘30’, 

‘40’, ‘60’, ‘70’, ‘90’, ‘100’ [other 

land cover types]) 

SPAM 

(spam2010v1r0_global_physical-

area_CROP_i/r, 42 crops, ‘i’ – 

irrigated, ‘r’ – rainfed) 

Same steps as for crop coefficient 

FAO56 (Table 22 – information 

on crop depletion fraction), 

SUPIT (Table 6.1, 6.2 – 

information on crop groups), 

Burek et al. (2014) 

Applying function (SUPIT) to water 

depletion fraction (FAO56) for each crop/ 

land cover type 

𝑐𝑟𝑜𝑝𝑔𝑟𝑝𝑛 = 10 ∙ 𝑓𝑟𝑑𝑒𝑝 − 1.5, where frdep 

– water depletion fraction; 

Limiting values to 1.0-5.0 interval; 

Note: if frdep missing – using precomputed 

crop group number (Burek et al., 2014) 

 Same steps as for crop coefficient, but in 

Eq. (2) weighted by fraction only 

Manning’s 

surface roughness 

coefficient for 

forest, irrigated 

crops and other 

land cover type 

(mannings_f, 

mannings_o) 

Roughness or 

friction applied 

to the flow by 

the surface on 

which water is 

flowing 

(averaged by 

ecosystem type) 

CGLS-LC100 

(discrete_classification = ‘111’, 

‘112’, ‘113’, ‘114’, ‘115’, ‘116’, 

'121', ‘122’, ‘123’, ‘124’, ‘125’, 

‘126’ [forest types], ‘20’, ‘30’, 

‘40’, ‘60’, ‘70’, ‘90’, ‘100’ [other 

land cover types]) 

Same steps as for crop coefficient 

SPAM 

(spam2010v1r0_global_physical-

area_CROP_i/r, 42 crops, ‘i’ – 

irrigated, ‘r’ – rainfed) 

Same steps as for crop coefficient 

CHOW (Table 5, 6 – information 

on roughness coefficient n, Burek 

et al. (2014) 

Matching roughness coefficient for each 

crop/ land cover type 

 Same steps as for crop coefficient, but in 

Eq. (2) weighted by fraction only 

Leaf area index 

for forest, 

irrigated crops 

and other land 

cover type (laif, 

laii, laio) 

Defined as half 

the total area of 

green elements 

of the canopy 

per unit 

horizontal 

ground area 

m2/m2 (10-day 

average; 36 

fields in total) 

CGLS-LAI 10-day average for 

2010-2019; fracforest, 

fracirrigated, fracother 

Upscaling to final temporal resolution (in 

total 36 LAI fields); 

Reprojecting and upscaling to final grid 

and spatial resolution with unweighted 

mean; 

Filtering sparce areas of relevant fractions 

𝑓𝑟 < 0.7, where fr – fraction; 

NoData filling DEEP (upscaling to 1, 3, 15 

arc min, 1, 3, 15, 60 degrees spatial 

resolution with unweighted mean; 

replacing NoData at final resolution with 

first available precomputed less coarser 

resolution, if not – with zero)  

Rice planting day 

(riceplantingday1, 

riceplantingday2, 

riceplantingday3) 

Most probable 

day of the year 

when rice is 

planted for the 

first, second and 

third time 

RiceAtlas (PLANT_PKn, 3 

seasons)  

Ordering planting seasons by increasing 

Julian day (in total 3 planting dates per 

spatial unit); 

Shapefile gridding to final grid and spatial 

resolution (in total 3 fields); 

Note: if less than 3 seasons – repeating last 

available planting/ harvesting seasons date; 

NoData filling with global unweighted 

mode date of first planting/ harvesting 

season (i.e. 105 – 15th April/ 227 – 15th 

August) 

Rice harvest day 

(riceharvestday1, 

riceharvestday2, 

riceharvestday3) 

Most probable 

day of the year 

when rice is 

harvested after 

planting for the 

first, second and 

third time 

RiceAtlas (HARV_PKn, 3 

seasons) 

Root depth for 

forest and non-

forest 

(root_depth_f, 

root_depth_o) 

Deepest soil 

depth reached 

by the crop 

roots  

CGLS-LC100 

(discrete_classification = ‘111’, 

‘112’, ‘113’, ‘114’, ‘115’, ‘116’, 

‘121’, ‘122’, ‘123’, ‘124’, ‘125’, 

‘126’ [forest types], ‘20’, ‘30’, 

Same steps as for crop coefficient 
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‘40’, ‘60’, ‘70’, ‘90’, ‘100’ [other 

land cover types]) 

SPAM 

(spam2010v1r0_global_physical-

area_CROP_i/r, 42 crops, ‘i’ – 

irrigated, ‘r’ – rainfed) 

Same steps as for crop coefficient 

FAO56 (Table 22 – information 

on crop rooting depth), Burek et 

al. (2014) 

Matching rooting depth for each crop/ land 

cover type 

 Same steps as for crop coefficient, but in 

Eq. (2) weighted by fraction only; 

Downscaling to native SoilGrids250m 

resolution with nearest neighbour (for soil 

depth calculations) 

 611 
The final step of the crop coefficient, crop group number, Manning’s surface roughness coefficient, and additional 612 
crop height (for crop coefficient calculation) and root depth (for soil depth calculation, see Section 4.4) for forest, 613 
irrigated crops and other land cover type is to compute weighted average of their components (e.g. different forest 614 
types) following Eq. (2): 615 
𝐾 = 𝐴1∙𝑓𝑟1∙𝐾1+𝐴2∙𝑓𝑟2∙𝐾2+⋯+𝐴𝑁∙𝑓𝑟𝑁∙𝐾𝑁

𝐴1∙𝑓𝑟1+𝐴2∙𝑓𝑟2+⋯+𝐴𝑁∙𝑓𝑟𝑁
,         (2) 616 

where A is a scaling parameter (equals 1, except for crop coefficient where it equals to crop height), fr refers to 617 
the fraction of crop or land cover type, K – default (i.e. source table based) variable in question values, 1..N – 618 
number of crop or land cover types included in the field (i.e. for forest N=12, irrigated crops N=41, other land 619 
cover type N=7 and for CGLS-LC100 type ‘40’ (cropland) default values are based on 42 rainfed crops).  620 
 621 

 622 
Figure 5. Crop coefficient for forest (a) and other land cover type (b) at 3 arc min (~5.6 km at the equator) resolution. 623 

4.4 Soil properties 624 

Soil proprieties are derived from SoilGrids250m (see Section 3.4) and are computed for both forested and non-625 
forested (also known in literature as ‘others’) areas, expressed as fractions (see Section 4.2), where non-forested 626 
area is the complementary fraction of forest. Soil depth layers are derived first and used as input to the soil 627 
hydraulic equations used to derive the properties, following a sequential workflow (see Error! Reference source 628 
not found.). Equations used are from Toth et al. (2015).  629 
 630 

 631 
Figure 6. Workflow to generate the soil related fields; solid arrows indicate a function transformation, dotted – 632 
upscaling; ‘SoilGrids250m depths’ – fields at the SoilGrids250m native grid and resolution with six default depths, 633 
‘final grid and resolution’ – fields at the dataset’s final grid and resolution, boxes with no explicit indication – fields at 634 
SoilGrids250m native grid and resolution only.  635 

Table 6. Soil property fields, their description, and applied transformations. 636 

MERIT DEM

channel bottom 

width

channel gradient

upstream area

CaMa-Flood

local drain direction

channel length
bankfull channel 

depth

Manning’s roughness 
coefficient for channels

SoilGrids250m

soil depth layers 1,2,3 

for forest/ non-forest

soil hydraulic parameters

SoilGrids250m depths

root depth for 

forest/ non-forest

forest fraction

soil depth layers 1,2,3 

for forest/ non-forest

final grid and resolution

soil hydraulic parameters

for soil depth layers 1,2,3 

and for forest/ non-forest

soil hydraulic parameters

for soil depth layers 1,2,3 

and for forest/ non-forest

final grid and resolution

grid-cell lengthgrid-cell area

a. b. 
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Field type  Description  Data Source Transformation (in order) 

Soil depth layers 1, 2, 3 for 

forest and non-forest 

(soildepth1_f, 

soildepth1_o, soildepth2_f, 

soildepth2_o, soildepth3_f, 

soildepth3_o) 

Root depths 

assumed to divide 

the total soil depth 

between topsoil 

(surface [layer 1] 

and middle [layer 

2]) and subsoil 

(bottom [layer 3]) 

SoilGrids250m 

(absolute_depth_to_bedrock); 

root_depth_f, root_depth_o 

Transforming at SoilGrids250m 

native grid and resolution as 

described in Annex 2 ‘Soil 

Depth’ (in total 3 forest and 3 

non-forest soil depth layer 

fields); 

Reprojecting and upscaling to 

final grid and resolution with 

unweighted mean; 

NoData filling DEEP (upscaling 

to 1, 3, 15 arc min, 1, 3, 15, 60 

degrees spatial resolution with 

unweighted mean; replacing 

NoData at final resolution with 

first available precomputed less 

coarser resolution, if not – with 

zero) 

Saturated volumetric soil 

moisture content for soil 

depth layers 1, 2, 3, and for 

forest and non-forest 

(thetas1_f, thetas1_o, 

thetas2_f, thetas2_o, 

thetas3)  

Saturated water 

content soil 

hydraulic property 

representing the 

maximum water 

content in the soil  

SoilGrids250m (clay_content, 

silt_content, bulk_density); 

soildepth1_f, soildepth1_o, 

soildepth2_f, soildepth2_o, 

soildepth3_f, soildepth3_o; 

fracforest 

Transforming at SoilGrids250m 

native grid and resolution as 

described in Annex 2 ‘Soil 

hydraulic parameters’ (in total 5 

fields per soil hydraulic 

parameter, except thetar – only 3 

as no forest/ non-forest 

separation); 

Limiting values and weighting 

by forest/ non-forest fraction 

(limits 𝑡ℎ𝑒𝑡𝑎𝑠 < 1.0, 𝑡ℎ𝑒𝑡𝑎𝑟 <
𝑡ℎ𝑒𝑡𝑎𝑠, 𝑙𝑎𝑚𝑏𝑑𝑎 ≤ 0.42, 

𝑔𝑒𝑛𝑢𝑎 ≤ 0.055, 𝑘𝑠𝑎𝑡 > 0.0); 

Upscaling to final grid and 

resolution with unweighted 

mean; 

NoData filling DEEP (upscaling 

to 1, 3, 15 arc min spatial 

resolution with unweighted 

mean; replacing NoData at final 

resolution with first available 

precomputed less coarser 

resolution, if not – with global 

unweighted mean) 

Residual volumetric soil 

moisture content for soil 

depth layers 1, 2, 3 

(thetar1, thetar2, thetar3) 

Residual water 

content soil 

hydraulic property 

representing the 

minimum water 

content in the soil  

SoilGrids250m (clay_content, 

silt_content); soildepth1_f, 

soildepth1_o, soildepth2_f, 

soildepth2_o, soildepth3_f, 

soildepth3_o; fracforest 

Pore size index for soil 

depth layers 1, 2, 3, and for 

forest and non-forest 

(lambda1_f, lambda1_o, 

lambda2_f, lambda2_o, 

lambda3) 

Van Genuchten 

parameter λ (also 

referred as ‘n-1’ in 

literature) soil 

hydraulic property 

representing the 

pore size index of 

the soil 

SoilGrids250m (clay_content, 

silt_content, bulk_density, 

organic_carbon_content); 

soildepth1_f, soildepth1_o, 

soildepth2_f, soildepth2_o, 

soildepth3_f, soildepth3_o; 

fracforest 

Van Genuchten equation 

parameter for soil depth 

layers 1, 2, 3, and for forest 

and non-forest (genua1_f, 

genua1_o, genua2_f, 

genua2_o, genua3) 

Van Genuchten 

parameter α soil 

hydraulic property  

SoilGrids250m (clay_content, 

silt_content, bulk_density, 

organic_carbon_content); 

soildepth1_f, soildepth1_o, 

soildepth2_f, soildepth2_o, 

soildepth3_f, soildepth3_o; 

fracforest 

Saturated soil conductivity 

for soil depth layers 1, 2, 3, 

and for forest and non-

forest (ksat1_f, ksat1_o, 

ksat2_f, ksat2_o, ksat3) 

Saturated hydraulic 

conductivity soil 

hydraulic property 

representing the 

ease with which 

water moves 

through pore spaces 

of the soil 

SoilGrids250m (clay_content, 

silt_content, soil_pH, 

cation_exchange_capacity); 

soildepth1_f, soildepth1_o, 

soildepth2_f, soildepth2_o, 

soildepth3_f, soildepth3_o; 

fracforest 

 637 
Two of the most common soil parameters of land surface and hydrological models, saturated hydraulic 638 
conductivity ksat and saturated water content, are shown in Figure 7.  639 
Saturated hydraulic conductivity ksat (see Figure 7a) ranges from 2 to 7445 mm/day. The highest ksat values are 640 
concentrated in desertic areas such as the Sahara, Arabian Peninsula, Gobi, Patagonian, Sonoran-Mojave and 641 
Kalahari and Namib deserts. Low ksat between, 2 and 18 mm/day, are found in the Amazon river basin, the lower 642 
Mississippi river basin and South East Asia. ksat was visually compared against 8 global datasets developed with 643 
different input data and/ or PTFs (Zhang and Schaap, 2019; Gupta et al., 2021); a general agreement is noticeable 644 
in areas that show low variability across all datasets. Northern Russia, Canada, South East Asia and Sonoran-645 
Mojave Desert are the areas with high variability among datasets, with values ranging from very low to very high 646 
ksat. Source of uncertainties in ksat values are primarily due to little availability of soil samples and measurements 647 
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carried out in those areas. Moreover, the climatic context plays a relevant role in clay mineralogy composition, 648 
organic composition and soil pores structure (Hodnett and Tomasella, 2002), which influence how water flows 649 
through the soil. Therefore, the PTF developed using soil samples collected in temperate areas (such as Europe) 650 
are expected to have a different hydraulic behaviour compared to those collected in tropical climates (Gupta et 651 
al., 2021), as also seen in Figure 7a. 652 
Saturated water content (see Figure 7b) ranges between 0.27 to 0.79, with 80% of values between 0.40 and 0.46. 653 
A comparison with other global datasets was not carried out, however uncertainties are expected to be of the same 654 
order of magnitude than those of ksat given the fact the saturated water content is calculated using bulk density 655 
and clay content data.  656 
 657 

 658 
Figure 7. Saturated hydraulic conductivity (a) and saturated water content (b) for forested areas of soil depth layer 2. 659 

4.5 Lakes 660 

The lake field is derived from the GLWD database. 661 
 662 
Table 7. Lake field, its description, data source and transformation. 663 

Field type Description  Data source Transformation (in order) 

Lake mask 

(lakemask) 

Area covered by 

lakes only (binary 

representation)  

GLWD (GLWD-1, GLWD-2, 

lake type only); fracwater 

Filtering non-lake spatial units; 

Shapefile gridding to final grid and resolution; 

If fracwater > 0 and GLWD is ‘lake’, then 

lakemask is 1, otherwise 0 

4.6 Water demand  664 

Global gridded water demand fields with monthly variability were generated for the four sectors using the data 665 
sources listed in Section 3.6 and following the transformations summarised in Table 8 (for additional information 666 
and extra details see GitHub repository ‘lisflood-utilities/water-demand-historic at feature/add_h_branches_upd · 667 
ec-jrc/lisflood-utilities · GitHub’, last accessed: 21.02.2023). The water demand values are provided in mm/day, 668 
one field per month from 01.01.1979 to 31.12.2019 (the first day of each month is used as the representative 669 
timestamp for the entire month). The methodology applied largely follows Huang et al. (2018), with the key 670 
differences being the use of freely available datasets and the higher resolution of the resulting fields. Spatial 671 
downscaling was achieved following the approach of Hejazi et al. (2014); temporal downscaling was performed 672 
following the approaches of Wada et al. (2011), Voisin et al. (2013) and Huang et al. (2018). It should be noted 673 
that country-scale estimates (from AQUASTAT) were integrated with state-level water withdrawal estimates 674 
(from USGS NWIS). The protocol for the integration of local information with global data sources was developed 675 
for further use in the future, to enable the integration of other regional or national datasets as soon as they become 676 
available. 677 
 678 
Table 8. Water demand fields, their description, data source and applied transformations; grey cells show required 679 
intermediate fields. 680 

Field type Description  Data source Transformations (in order) 

Population 

density (pop) 

Number of 

people per 

grid-cell 

GHS-POP 

R2019A (1975, 

1990, 2000, 

2015) 

Reprojecting and upscaling from native (9 arc sec) to the final 

grid and intermediate resolution of 0.01ºx0.01º with sum (in 

total four fields); 

a. b. 
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Transforming from population number to density per grid-cell 

(i.e. dividing by grid-cell area) and upscaling from intermediate 

to final resolution with mean (in total four fields); 

NoData filling (year) with linear interpolation till 2015, and with 

years 2000 and 2015 trend extrapolation 2016 onwards 

(𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

; in total 41 fields) 

TM ‘country 

borders’, US CB 

‘state borders’ 

Shapefile (country, US State) gridding to final grid and 

intermediate resolution of 0.01ºx0.01º, then to final resolution; 

Transforming from population density per grid-cell to population 

per country (i.e. multiplying by grid-cell area and summing grid-

cells according to the country mask from step above; 

𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

; in total one table) 

Water demand 

for domestic 

use (dom) 

Daily supply 

of water 

volume for 

indoor and 

outdoor 

household 

purposes and 

for all the 

uses that are 

connected to 

the municipal 

system (e.g., 

water used by 

shops, 

schools, and 

public 

buildings) 

AQUASTAT (per 

country), USGS 

NWIS (per US 

State), pop 

Unit conversion from native to km3/year; 

NoData filling (year): for countries – with linear interpolation 

and forward/ backward extrapolation based on 𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

, for 

US states – with linear interpolation and nearest neighbour 

extrapolation (𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

, in total one table) 

pop, TM ‘country 

borders’, US CB 

‘state borders’ 

Transforming water demand (𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

) to water demand 

per capita per country/ US State per year (in total one table): 

𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝐷𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

=
𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟

𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ; 

NoData filling (country) with nearest neighbour; 

Transforming from water demand per capita to water demand 

per grid-cell (i.e. weighting by 𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

; in total one field per 

year): 𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 = 𝑝𝑒𝑟𝐶𝑎𝑝𝑖𝑡𝑎𝐷𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟

𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∙ 𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

 

MSWX, Huang et 

al. (2018) [Table 

3, Eq. (2)]. 

Temporal downscaling (month) to account for the withdrawal 

fluctuations between the warmest and coldest months based on 

Huang et al. (2018) Eq. (2) (in total 12 fields per year):  

𝑑𝑒𝑚𝑎𝑛𝑑𝑚𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 =

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

𝑚𝑜𝑛𝑡ℎ𝑦𝑒𝑎𝑟
𝑛𝑢𝑚𝑏𝑒𝑟 ∙ (

�̅�
𝑚𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

− �̅�𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑𝑎𝑣𝑔

�̅�𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

− �̅�𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑𝑚𝑖𝑛𝑚𝑎𝑥

∙ 𝑅 + 1), 

where �̅�𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑𝑎𝑣𝑔

, �̅�𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑𝑚𝑎𝑥 , �̅�𝑦𝑒𝑎𝑟

𝑔𝑟𝑖𝑑𝑚𝑖𝑛  are the average, 

maximum, minimum monthly temperatures in a year; 

�̅�𝑚𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

 is the average temperature in a month of the year; R 

is the amplitude of the monthly fluctuations from Huang et al. 

(2018) [Table 3]; 𝑚𝑜𝑛𝑡ℎ𝑦𝑒𝑎𝑟
𝑛𝑢𝑚𝑏𝑒𝑟 is number of months in a year, 

i.e. 12; 

Temporal downscaling (day; in total 12 fields per year): 

𝑑𝑒𝑚𝑎𝑛𝑑𝑑𝑎𝑦,𝑚𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

=
𝑑𝑒𝑚𝑎𝑛𝑑

𝑚𝑜𝑛𝑡ℎ,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

𝑑𝑎𝑦𝑚𝑜𝑛𝑡ℎ
𝑛𝑢𝑚𝑏𝑒𝑟 , where 𝑑𝑎𝑦𝑚𝑜𝑛𝑡ℎ

𝑛𝑢𝑚𝑏𝑒𝑟 is 

number of days in a month of a certain year 

Water demand 

for industrial 

use (ind) 

Daily supply 

of water 

volume for 

fabricating, 

processing, 

washing and 

sanitation, 

cooling or 

transporting a 

product, 

incorporating 

water into a 

product 

AQUASTAT (per 

country), USGS 

NWIS (per US 

State), GCAM 

(per region), 

Vassolo and Doll 

(2005), World 

Bank (MVA), 

pop, TM ‘country 

borders’ 

Unit conversion from native to km3/year; 

NoData filling (year; in total one table):  

• regional data – downscaling (spatial) to country values (i.e. 

weighting by 𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

), then linear interpolation (between 

years) and nearest neighbour extrapolation in time, finally 

rescaling values according to Vassolo and Doll (2005);  

• country data – with linear interpolation (between years) and 

forward/ backward extrapolation based on MVA or 𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

, 

value disaggregation from industrial water demand to 

manufacturing and thermoelectric water demands according to 

regional data results;  

• for US States data – with linear interpolation (between years) 

and nearest neighbour extrapolation;  

• mosaicking results from US States and country data, from 

regional data, if not – with zero 

pop, TM ‘country 

borders’, US CB 

‘state borders’ 

Transforming from water demand per country/ US State to per 

grid-cell (i.e. weighting by 𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 𝑝𝑜𝑝𝑦𝑒𝑎𝑟

𝑐𝑜𝑢𝑛𝑡𝑟𝑦
⁄ ; in total one 

field per year): 𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 =

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑝𝑜𝑝𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∙ 𝑝𝑜𝑝𝑦𝑒𝑎𝑟

𝑔𝑟𝑖𝑑
; 
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Temporal downscaling (day; in total one field per year): 

𝑑𝑒𝑚𝑎𝑛𝑑𝑑𝑎𝑦,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 =

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

𝑑𝑎𝑦𝑦𝑒𝑎𝑟
𝑛𝑢𝑚𝑏𝑒𝑟 , where 𝑑𝑎𝑦𝑦𝑒𝑎𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 is number of 

days in a year 

Water demand 

for 

thermoelectric 

use (ene) 

Daily supply 

of water 

volume for 

the cooling of 

thermoelectric 

and nuclear 

power plants 

AQUASTAT (per 

country), USGS 

NWIS (per US 

State), GCAM 

(per region), 

Vassolo and Doll 

(2005), World 

Bank (MVA), 

pop, TM ‘country 

borders’ 

Same steps as for water demand for industrial use, but using the 

energy withdrawals as input data (in total one table) 

pop, TM ‘country 

borders’, US CB 

‘state borders’ 

Same steps as for water demand for industrial use (in total one 

field per year) 

GCAM (per 

region), MSWX, 

Huang et al. 

(2018) [Eq. (3)-

(10)]. 

Temporal downscaling (month) to account for the withdrawal 

fluctuations between the warmest and coldest months based on 

Huang et al. (2018) Eq. (3)-(10) (in total 12 fields per year)  

Water demand 

for livestock 

use (liv) 

Daily supply 

of water 

volume for 

domestic 

animal needs  

AQUASTAT (per 

country), USGS 

NWIS (per US 

State), GCAM 

(per region), 

GLW3, TM 

‘country borders’ 

Unit conversion from native to km3/year; 

NoData filling (year; in total one table):  

• regional data – spatial downscaling from regional withdrawals 

to country values (i.e. weighting by total livestock mass 

estimates per country from GLW3, 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

): 

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦 =

𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙𝑦𝑒𝑎𝑟
𝑟𝑒𝑔𝑖𝑜𝑛

𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑒𝑎𝑟
𝑟𝑒𝑔𝑖𝑜𝑛 ∙ 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝑦𝑒𝑎𝑟

𝑐𝑜𝑢𝑛𝑡𝑟𝑦
, then value 

linear interpolation (between years) and nearest neighbour 

extrapolation, finally rescaled with country data (if available)  

• for US States data – with linear interpolation (between years) 

and nearest neighbour extrapolation;  

• mosaicking results from US States and regional data, if not – 

with zero 

GLW3, TM 

‘country borders’, 

US CB ‘state 

borders’ 

Transforming from water demand per country/ US State to per 

grid-cell (i.e. weighting by 
𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑦𝑒𝑎𝑟

𝑔𝑟𝑖𝑑

𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦; in total one field 

per year):  

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 =

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦

𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑦𝑒𝑎𝑟
𝑐𝑜𝑢𝑛𝑡𝑟𝑦 ∙ 𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑦𝑒𝑎𝑟

𝑔𝑟𝑖𝑑
; 

Temporal downscaling (day; in total one field per year): 

𝑑𝑒𝑚𝑎𝑛𝑑𝑑𝑎𝑦,𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑 =

𝑑𝑒𝑚𝑎𝑛𝑑𝑦𝑒𝑎𝑟
𝑔𝑟𝑖𝑑

𝑑𝑎𝑦𝑦𝑒𝑎𝑟
𝑛𝑢𝑚𝑏𝑒𝑟 , where 𝑑𝑎𝑦𝑦𝑒𝑎𝑟

𝑛𝑢𝑚𝑏𝑒𝑟 is number of 

days in a year 

To the best of the authors’ knowledge, no other publicly accessible temporally varying global water demand field 681 
set exists (only static datasets). A rigorous validation of the temporally varying water demand fields is not 682 
straightforward at the global scale, as the only comprehensive global data source, FAO AQUASTAT, was used 683 
to create the fields. 684 

5 Data, access, licensing, documentation 685 

The new CEMS_SurfaceFields_2022 is an open-source dataset of the Copernicus Emergency Management 686 
Service describing key components of the Earth surface generally required in environmental and hydrological 687 
modelling, including Earth system modelling and numerical weather prediction. The dataset includes static fields 688 
(e.g. forest fraction), yearly cycle fields (e.g. 10-day average LAI, in total 36 fields), and yearly varying fields 689 
(e.g. water demand). The surface fields are based on 25 different sources, including global and regional high 690 
resolution (up to 100 m) gridded and vector datasets. They were processed into two set of fields (i) at 1 arc min 691 
resolution (~1.86 km at the Equator) over Europe (72.25 N/ 22.75 N, 25.25 W/ 50.25 E; 4530x2970 grid-cells), 692 
and (ii) at 3 arc min resolution (~5.57 km at the Equator) over the Globe (90.00 N/ 90.00 S, 180.00 W/ 180.00 E; 693 
7200x3600 grid-cells), to provide an up-to-date surface state for six main field groups: (1) catchment morphology 694 
and river network, (2) land use fields, (3) vegetation properties, (4) soil properties, (5) lakes, (6) water demand.  695 

https://doi.org/10.5194/egusphere-2023-1306
Preprint. Discussion started: 21 August 2023
c© Author(s) 2023. CC BY 4.0 License.



 22 

The CEMS_SurfaceFields_2022 dataset consist in total of 140 gridded fields at EPSG:4326 – WGS84: World 696 
Geodetic System projection in NetCDF format with information on Earth’s surface state (see Table 9 for the full 697 
list of fields), which are grouped thematically in sub-folders. The 1 arc min European fields have a total volume 698 
of 9.3 GB and the 3 arc min global fields have a total volume of 22.7 GB. The CEMS_SurfaceFields_2022 dataset 699 
is freely available for download from the JRC Data Catalogue (https://data.jrc.ec.europa.eu/). The set of global 700 
surface fields at 3 arc min resolution can be found here (JRC Data Catalogue – LISFLOOD static and parameter 701 
maps for GloFAS – European Commission (europa.eu), https://data.jrc.ec.europa.eu/dataset/68050d73-9c06-702 
499c-a441-dc5053cb0c86) and the set of surface fields for the European domain at 1 arc min resolution can be 703 
found here (JRC Data Catalogue – LISFLOOD static and parameter maps for Europe – European Commission 704 
(europa.eu), https://data.jrc.ec.europa.eu/dataset/f572c443-7466-4adf-87aa-c0847a169f23). The README.txt 705 
file that can be found there contains the basic description of each surface fields including general information, 706 
data description, file overview, methodological information and data access and sharing information (for detailed 707 
technical description of how the surface fields were generated refer to the LISFLOOD User Guide, available 708 
online: https://ec-jrc.github.io/lisflood-code/4_Static-Maps-introduction/). The changelog.txt file – provides users 709 
with information on updates to the datasets. The copyright.txt file – information about the data license (CC BY 710 
4.0). 711 
 712 
Table 9. Full list of surface fields with short description and units included in CEMS_SurfaceFields_2022 dataset. 713 

Field group Description  Name Units 

Main model’s technical field mask dimensionless 

Catchment 

morphology 

and river 

network 

local drainage direction (i.e. flow direction from 

one cell to another) 

LDD dimensionless 

grid-cell area pixarea m2 

grid-cell length pixlength m 

upstream area upArea m2 

standard deviation of elevation elvstd m 

gradient gradient m/m 

channel bottom width chanbw m 

channel length chanlenght m 

channel gradient changrad m/m 

Manning's roughness coefficient for channels chanman s/m1/3 

channel mask (i.e. presence of river channel) chan dimensionless 

channel side slope (i.e. channel’s horizontal 

distance divided by vertical distance) 

chans m/m 

bankfull channel depth chanbnkf m 

channel floodplain (i.e. width of the area where 

the surplus of water is distributed when the water 

level in the channel exceed the channel depth) 

chanflpn m 

Land use 

fields 

fraction of forest fracforest dimensionless 

fraction of sealed surface fracsealed dimensionless  

fraction of inland water fracwater dimensionless  

fraction of irrigated crops fracirrigated dimensionless  

fraction of rice fracrice dimensionless  

fraction of other cover types fracother dimensionless  

Vegetation 

properties 

(for forest 

[f], irrigated 

crops [i], 

other land 

cover types 

[o]) 

crop coefficient cropcoef_f, cropcoef_i, cropcoef_o dimensionless 

crop group number cropgrpn_f, cropgrpn_i, 

cropgrpn_o 

dimensionless 

Manning’s surface roughness coefficient mannings_f, mannings_o, s/m1/3 

rice planting days (3 seasons) riceplantingday1, riceplantingday2, 

riceplantingday3 

calendar day 

number 

rice harvesting days (3 seasons) riceharvestday1, riceharvestday2, 

riceharvestday3 

calendar day 

number 

leaf area index laif, laii, laio m2/m2 

Soil 

properties 

(for [1, 2, 

3] layers; 

for forest 

[f], non-

forest [o]) 

surface layer depth soildepth1_f, soildepth1_o mm 

middle layer depth soildepth2_f, soildepth2_o, mm 

subsoil depth soildepth3_f, soildepth3_o mm 

saturated volumetric soil moisture content thetas1_f, thetas1_o, thetas2_f, 

thetas2_o, thetas3 

m3/m3 

residual volumetric soil moisture content thetar1, thetar2, thetar3 m3/m3 

pore size index lambda1_f, lambda1_o, lambda2_f, 

lambda2_o, lambda3 

dimensionless 
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Van Genuchten equation parameter genua1_f, genua1_o, genua2_f, 

genua2_o, genua3 

cm-1 

saturated soil conductivity ksat1_f, ksat1_o, ksat2_f, ksat2_o, 

ksat3 

mm/day 

Lakes lake mask (i.e. presence of lakes) lakemask dimensionless 

Water 

demand 

livestock liv mm/day 

industry ind mm/day 

thermoelectric production ene mm/day 

domestic use dom mm/day 

 714 
Whilst the CEMS_SurfaceFields_2022 dataset followed strict requirements of the LISFLOOD-OS model (e.g. 715 
format, treatment of missing values, number of soil layers, etc…) it definitely can be used outside the LISFLOOD 716 
context, using the full dataset or its parts, for applications such as modelling risk assessment. The workflow and 717 
methodology used to generate the dataset and published in this manuscript can be used as reference and be easily 718 
modified if further adaptation to the dataset is needed (e.g. using different set of equations to describe the soil 719 
properties, or sourcing new/ more relevant local datasets). 720 

6 Conclusion 721 

The Earth’s surface has a strong impact on the surface energy and water balance that drives lower atmosphere 722 
weather conditions and river discharge fluctuations. Depending on the surface type (e.g. land use, terrain or soil), 723 
weather in the region can be colder/ warmer, more/ less humid, drier/ rainier, and/ or calmer/ windier than its 724 
surroundings, and the terrestrial water cycle can differ, with water infiltrating more/ less in the soil, leaving as 725 
evaporation in a larger/ smaller rate, and reaching rivers faster/ slower. Surface information is provided by land 726 
use and ecosystem type (e.g., forest, rice paddy, bare ground, urban), river geometry (e.g., channel width, channel 727 
length), soil properties (e.g., depth, porosity, hydraulic properties), amongst others. 728 
Information of underlying surface fields can be accounted for in Earth system and environmental models (e.g. 729 
atmospheric, hydrological, etc.) to simulate the evolution in space and time of water, energy and carbon cycles. If 730 
artificial influences and human intervention are included within the modelled processes (e.g. irrigation or water 731 
management through reservoirs), the information required to describe the processes must also be integrated within 732 
the modelling framework. Generally, this is achieved through a set of independent files used as input to the models. 733 
Because of the temporal non-stationarity of some surface fields, typically associated with human intervention such 734 
as land use and water use, but also due to climatic variation such as lake extent (new lakes forming or lakes 735 
shrinking), input surface fields must be as representative as possible to the simulated period of interest. For 736 
medium-range forecasting systems, this should be as close from present as possible, for example. When simulating 737 
long periods, especially looking at past or future decades, caution must be given to results especially if some 738 
surface fields which have substantially changed during the simulation period do not explicitly incorporate time 739 
and instead are based on the most recent period, as they may not be representative to the full study period. 740 
In addition, in recent years the horizontal resolution of global Earth system and environmental models has been 741 
constantly increasing reaching the kilometre scale milestone, supported by the technological developments in the 742 
field of High Performance Computers and the wealth of high resolution datasets freely available. This imposes 743 
another condition to the input surface fields – it has to be of rather high horizontal resolution (i.e. ~2 and 6 km at 744 
the Equator). 745 
Thanks to the availability of a wide range of high resolution environmental data derived from the use of ground, 746 
unconventional and satellite measurement sensors, new high resolution datasets describing the Earth’s surface are 747 
nowadays released regularly. Even though each dataset may have a very low absolute and root mean square errors 748 
compared against available independent data, merging different datasets for modelling purposes (e.g. to model 749 
hydrological surface parameters) might lead to questionable results and even model crash, due to possible 750 
discontinuity or inconsistency in the combined datasets. In the specific case of hydrological modelling where river 751 
flow is also represented, high horizontal resolution does not guarantee better modelling per se. Sources of 752 
potentially large errors can be easily hidden in high resolution datasets. This is the case for instance of errors in 753 
the Digital Elevation Models when they are used to obtain the rivers drainage network. Small errors in the 754 
elevation of a grid cell can lead to a totally inaccurate representation of the location and the direction in which the 755 
river is flowing in the model compared to reality. Mislocating a river or having a slightly inaccurate catchment 756 
area can represent a trivial inaccuracy for most applications, but it can also lead to missed flood warning for 757 
thousands of people within a flood awareness system. To benefit from different recent high resolution datasets 758 
based on satellite and ground measurements, it is essential that a well-defined, thorough workflow is designed and 759 
implemented so that the final products are consistent and compatible with each other, and can be used in 760 
combination.  761 
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The work presented in this manuscript is focused not only on the final surface field set generation (i.e. 762 
CEMS_SurfaceFields_2022), but also on deriving robust reproducible methodology that could be re-applied once 763 
new versions of 25 or less input sources are released. Understanding of the methodology applied helps to interpret 764 
values in the final surface fields and possibly even numerical model results that use these surface fields. The 765 
collection of input sources and their preparation for actual use is a very important step as it includes going through 766 
all technical documentation, comparison and verification of papers, and investigation of the actual data, as well 767 
as data gridding, interpolation, and scaling. All input sources for CEMS_SurfaceFields_2022 are ranked according 768 
to their quality and up-to-date in order to favour one value in ambiguous situations when several datasets provide 769 
different information for the same location. Consistency check between all surface type fractions is carried out to 770 
address that ambiguity during the merge of information of different origin (i.e. adjust fractions to sum to one in 771 
each grid-cell). Some fields, like forest fraction, were rather straightforward to create from available source, yet 772 
it was noted that prior correction of the source was needed to delete erroneous forest grid-cells from the Fox Basin 773 
in Canada (the mismatch was only spotted during the investigation of the actual data, as it was absent from the 774 
documentation). Other fields, like soil hydraulic properties, are created not only from the source information but 775 
also from the forest fraction that had to be generated prior; the soil hydraulic property methodology also includes 776 
several steps that have to be performed at the data native resolution (i.e. 250 m) using information from several 777 
global fields simultaneously which becomes technically and computationally challenging. Surface fields with 778 
clear multi-annual changes, like water demand maps, are created using temporal interpolation and extrapolation 779 
from multiple data sources to create time series fields. A final and non-trivial task is to have all resulting fields on 780 
the identical required grid without deterioration of the actual value precision, even after several file type 781 
translations (e.g. local drainage direction field can be automatically checked and corrected if needed for required 782 
boundaries only in PCRaster format, not NetCDF). Due to the number of data sources and surface fields required 783 
to represent the main variables (i.e. 70) used in Earth system and environmental models, the overall effort to 784 
generate the CEMS_SurfaceFields_2022 dataset (both human and computing resources) was substantial. 785 
The CEMS_SurfaceFields_2022 dataset at 1 arc min (over Europe) and 3 arc min (globally) were tested and 786 
indirectly validated using the LISFLOOD model through river discharge simulation (Grimaldi et al., 2024 in 787 
preparation); they are the underlying surface fields of the EFAS version 5 and GloFAS version 4 operational 788 
systems.  789 
The CEMS_SurfaceFields_2022 dataset is a new data source open to all offering a kilometre-scale resolution of 790 
high-quality data describing the Earth’s surface, providing exceptional opportunity for the research and scientific 791 
community to extend and multiply European and global applications in wide ranging fields of the water-energy-792 
food nexus. 793 
 794 
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Annex 1071 

Annex 1 1072 

Unit conversion to fraction 1073 

Hectare (ha): 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = ℎ𝑎 ∙ 104
𝐺𝑟𝑖𝑑𝐶𝑒𝑙𝑙𝐴𝑟𝑒𝑎𝑚2
⁄ ; 1074 

Percentage (%): 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = %
100⁄ ;  1075 

Class (landcover type): 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 1, i.e. assumes full 100 % coverage of the grid-cell. 1076 

Annex 2 1077 

Soil depth 1078 
Soil depth layers are derived following Burek et al. (2014) in which the total soil depth is horizontally divided in 1079 
three layers. The total soil depth is the ‘absolute_depth_to_bedrock’ from SoilGrids250m, whereas root depths of 1080 
forest and non-forest are derived from FAO56 and CGLS-LC100 dataset at SoilGrids250m native (~250 m) 1081 
resolution (see Section 4.3 for more details). The methodology implemented for the creation of three soil layers 1082 
is the following:  1083 

Soil depth layer 1 (surface) SD1 is assumed constant, equal to 50 mm all over the world for consistency with 1084 
satellite-derived datasets (satellite signal penetration depth of 50 mm is a good approximation to take into account 1085 
different meteorological conditions at different hour of the day globally based on Lv et al. (2018)), and follow Eq. 1086 
(A1):  1087 

𝑆𝐷1 = 50𝑚𝑚           (A1) 1088 
 1089 
Soil depth layer 2 (middle) SD2 depends on the absolute depth to bedrock adb – if it is equal or less than 300 mm 1090 
computation follow Eq. (A2), otherwise it is conditional of the root depths as per Eq. (A3), and must meet 1091 
requirement from Eq. (A4):  1092 
 1093 
𝑆𝐷2 = (𝑎𝑑𝑏 − 𝑆𝐷1)/2, 𝑎𝑑𝑏 ≤ 300𝑚𝑚        (A2) 1094 
𝑆𝐷2 = min(𝑟𝑜𝑜𝑡_𝑑𝑒𝑝𝑡ℎ, (𝑎𝑑𝑏 − 300𝑚𝑚 − 𝑆𝐷1)), 𝑎𝑑𝑏 > 300𝑚      (A3) 1095 
𝑆𝐷2 = 50mm,  𝑆𝐷2 < 50𝑚𝑚         (A4) 1096 
 1097 
Soil depth layer 3 (bottom) SD3, is computed following Eq. (A5):  1098 
 1099 
𝑆𝐷3 = 𝑎𝑑𝑏 − (𝑆𝐷1 + 𝑆𝐷2)          (A5) 1100 
 1101 
This set of equations is used twice, once with the root depth of forest area and a second time with the root depth 1102 
of non-forested areas, resulting in a total of six soil depth layers computed at SoilGrids250m native resolution.  1103 
 1104 
Soil hydraulic parameters 1105 
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Soil hydraulic parameters are derived by following three main steps (see Figure A1).  1106 
 1107 
First, soil hydraulic properties are derived at native resolution by applying pedotransfer functions (PTFs) to each 1108 
SoilGrids250m soil characteristics layer at each available depth. Pedotransfer functions translate field measured 1109 
soil information (such as soil texture, pH and structure) into proprieties and parameters needed to describe soil 1110 
processes. The PTFs implemented here are the ones proposed by Toth et al. (2015). Users can decide to derive 1111 
soil proprieties from different PTFs, but the general principle presented here remains valid. 1112 
 1113 
Second, the soil hydraulic parameters calculated at SoilGrids250m depths are vertically downscaled to the model 1114 
soil depth (previously computed) by weighted average (Figure A1, Step 2 with theta saturated as an example) at 1115 
the native SoilGrids250m resolution (~250 m). 1116 
 1117 
Third, the soil hydraulic parameters at the final soil depths are upscaled from native to final resolution by average 1118 
using forest and non-forest fraction layers as weights (Figure A1, Step 3). 1119 
 1120 

 1121 
Figure A1. Creation of theta saturated parameter ‘Qs’ using SoilGrids250m dataset ‘SoilGRID’ and forest 1122 
fraction. 1123 

 1124 
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