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Abstract. The AutoIce challenge, organized by multiple national and international agencies, seeks to advance the development

of near-real-time sea ice products with improved spatial resolution, broader spatial and temporal coverage, and enhanced

consistency. In this paper, we present a detailed description of our solutions and experimental results for the challenge. We have

implemented an automated sea ice mapping pipeline based on a multi-task U-Net architecture, capable of predicting sea ice

concentration (SIC), stage of development (SOD), and floe size (FLOE). The AI4Arctic dataset, which includes SAR imagery,5

ancillary data, and ice chart-derived label maps, is utilized for model training and evaluation. Among the submissions from

over 30 teams worldwide, our team achieved the highest combined score of 86.3%, as well as the highest scores on SIC (92.0%)

and SOD (88.6%). Notably, the result analysis and ablation studies demonstrate that instead of model architecture design, a

collection of strategies/techniques we employed lead to substantial enhancement in accuracy, efficiency, and robustness within

the realm of deep learning-based sea ice mapping. Those techniques include input SAR variable downscaling, input feature10

selection, spatial-temporal encoding, and the choice of loss functions. By highlighting the various techniques employed and

their impacts, we aim to underscore the scientific advancements achieved in our methodology.

1 Introduction

Automated sea ice mapping using satellite data plays a vital role in understanding and monitoring the Earth’s polar regions.

Sea ice, a critical component of the cryosphere, undergoes significant spatial and temporal variations, impacting climate,15

ecosystems, and human activities. Satellite-based automated mapping techniques offer a unique advantage in providing com-

prehensive and frequent coverage over vast and remote areas. By employing advanced algorithms and machine learning (ML)

approaches, these methods enable the efficient detection and characterization of different sea ice parameters (Lyu et al. 2022b).

Accurate and timely sea ice mapping aids in climate modeling, facilitating climate change assessments, supporting opera-

tional activities such as navigation and resource management (Li et al. 2022), and enhancing our understanding of the intricate20

dynamics between the atmosphere, ocean, and ice-covered regions (Mahmud et al. 2022). The continuous advancements in au-

tomated sea ice mapping techniques using satellite data offer valuable insights into this fragile environment and aid in making

informed decisions for sustainable development and environmental stewardship.
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Deep learning (DL) has emerged as a powerful tool for sea ice parameter estimation from satellite data especially dual-

polarized SAR imagery, revolutionizing the field with its wide-ranging applications and improved performance compared to25

traditional algorithms or conventional ML methods. DL-based models have demonstrated exceptional capabilities in accurately

estimating crucial sea ice parameters such as sea ice concentration (SIC) (Wang et al. 2016, 2017; Cooke and Scott 2019;

Radhakrishnan et al. 2021; De Gelis et al. 2021; Stokholm et al. 2022; Malmgren-Hansen et al. 2020), stage of development

(SOD) (Jiang et al. 2022; Lyu et al. 2022a; Chen et al. 2023a; Song et al. 2021; Khaleghian et al. 2021a; Liu et al. 2021a;

Khaleghian et al. 2021b; Kruk et al. 2020; Boulze et al. 2020; Guo et al. 2023; Zhang et al. 2021b, a; Kortum et al. 2022), and30

floe size (Chen et al. 2020; Nagi et al. 2021). These models leverage the ability of deep neural networks to automatically learn

complex features and patterns from large volumes of data, enabling more robust and precise parameter estimation.

However, it is important to acknowledge potential areas for improvements of previous proposed DL-based methods. First,

many existing models focus on estimating a specific parameter, which do not address the comprehensive characterization of

sea ice in operational use. Second, a significant number of studies rely on data from a single sensor. Although this simplifies35

operational aspects and can enable the investigation of how to extract its maximum value, it might lead to potential ambiguities

and limitations in information integration. For example, although SAR images are capable of showing the spatial patterns

formed by sea ice in high resolution, its backscatter intensities do not always distinguish between open sea in windy conditions

and various ice surfaces (Malmgren-Hansen et al. 2020). In contrast, brightness temperature maps collected by radiometers

such as the Advanced Microwave Scanning Radiometer 2 (AMSR2) satellite sensor can distinguish well between ice and open40

water but with coarse spatial resolution. Recent studies have implemented ML and DL-based methods for retrieving SIC from

brightness temperature data and achieved promising results (Chi et al. 2019; Soleymani and Scott 2021; Chen et al. 2023b).

Third, due to the challenges in obtaining labeled samples for training, DL-based models for sea ice often suffer from limited

volume of datasets, which can impact their generalization capabilities. Addressing these limitations is crucial to further enhance

the effectiveness and applicability of DL-based sea ice parameter estimation methods.45

Therefore, to address these challenges in automated sea ice mapping, the ESA (European Space Agency), DMI (Danish

Meteorological Institute), the Technical University of Denmark (DTU), and NERSC (the Nansen Environmental and Remote

Sensing Center) collaborated to create a sea ice challenge called AutoIce (Stokholm et al. 2023a, c). The goal of the challenge

is to invite participants worldwide to derive more accurate and robust AI-based solutions of automated retrieval of multiple sea

ice parameters, specifically, sea ice concentration (the percentage ratio of sea ice to open water, abbreviated as SIC), stage of50

development (the type of sea ice and its thickness, abbreviated as SOD), and floe size (the size and continuity of sea ice pieces,

abbreviated as FLOE). A large volume of multi-source satellite and auxiliary data named as AI4Arctic Sea Ice Challenge

Dataset (Buus-Hinkler et al. 2022b) are provided for the training and evaluation of the derived models.

In this paper, we present our methodology and corresponding outcomes that resulted in achieving 1st place in the challenge.

Following the Introduction, Section 2 provides an overview of the AI4Arctic dataset used in this work. The methodology for55

the retrieval of sea ice parameters based on a multi-task U-Net, along with a collection of strategies/techniques employed

for model performance improvement (e.g., SAR scene downscaling, input variable selection, spatial-temporal encoding, loss
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function selection) are illustrated extensively in Section 3. Experimental results with ablation studies are analyzed and discussed

in Section 4. Finally, conclusions along with future research are summarized in Section 5.

2 Data Overview60

The Ai4Arctic dataset consists of 533 netCDF files, including 513 training files and 20 test files. Each training file contains

dual-polarized Sentinel-1 Extra Wide Swath (EW) images, AMSR2 passive microwave radiometer measurements, numerical

weather prediction (NWP) parameters from ERA5 reanalysis dataset, and ice charts that follows the World Meteorological

Organization (WMO) code for sea ice classes provided by either the Greenland Ice Service or the Canadian Ice Service. The

20 test files have the same parameters as the training files, except for the sea ice chart (label) data. There are two versions of the65

dataset available: a raw version and a ready-to-train version. The ready-to-train version undergoes additional processing steps

to prepare it for deep learning algorithms. To focus on model development and skip the initial preparation steps, we adopt the

ready-to-train version to train our models. This version converts the original ice chart shapefile format into the netCDF format.

Each polygon in the ice chart is represented by an ID number, and a table containing the ice chart variables for the polygon

in the associated netCDF file. The SIC in each polygon represents the ratio of sea ice to open water in a given area, divided70

into 11 classes with 10% increments, ranging from 0% (open water) to 100% (fully-covered sea ice). In addition to total SIC,

each polygon contains partial sea ice concentrations, associated with SOD and FLOE, which sum up to the total SIC. The

partial concentrations are normalized by the total concentration to determine if a partial concentration is dominant in each

polygon. Dominant parameters are identified based on a threshold of 65%. Therefore, a large portion of polygons do not have

a dominant SOD or FLOE and are masked out from the labeling of SOD and FLOE. The SOD serves as an indicator of the75

sea ice type, which can be interpreted as a proxy for its thickness and ease of traversal. It consists of 5 classes: 0 represents

open water, 1 is for new ice, 2 for young ice, 3 for thin first-year ice, 4 for thick first-year ice, and 5 for old ice (older than 1

year). The FLOE characterizes the size and continuity of sea ice floes, and it is defined by 6 classes: 0 for open water, 1 for

cake ice, 2 for small floe, 3 for medium floe, 4 for big floe, 5 for vast floe, and 6 for bergs, which include various forms of

icebergs and glacier ice. In addition, SAR scenes are downsampled to 80 m pixel spacing (around 5000×5000 pixels) for ease80

of use and to help reduce barrier to entry. The pixel values in the scenes are normalized within the [−1,1] range, and statistical

information and class bins are provided. NaN values in SAR images are replaced with 2, and polygon ice charts are assigned a

value of 255 to represent non-data or masked pixels. A detailed description of the dataset can be found in the manual provided

by (Buus-Hinkler et al. 2022b). To evaluate the model performance numerically, SIC results are evaluated by calculating the

R2 coefficient, while SOD and FLOE maps are both evaluated using the F1 score. The three sea ice parameter scores will be85

combined into one single final score as defined in the weighting scheme shown in Table 1.

The utilization of ice charts as ground truths enables the classifier to extract the three sea ice parameters mentioned above

at region level. Although pixel-based labels produced from the ice charts are provided in the ready-to-train version of the

AI4Arctic dataset, they are generated based on a thresholding approach and cannot tell us about the locations of different ice

types/floe sizes at SAR sensor resolution. That being said, the extraction of the sea ice parameters mentioned above at SAR90
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sensor resolution is out of the scope of classification in this research. Besides, some other ice characteristics, such thickness

and drift, are also outside the scope of this research due to a lack of such information in the ice charts.

Table 1. The metrics for evaluating the three sea ice parameters and their weights in the final score specified by the competition.

Sea ice parameter Metric (%) Weight in total score

SIC (sea ice concentration) R2 2/5

SOD (stage of development) F1 2/5

FLOE (floe size) F1 1/5

3 Methodology

3.1 Network Design and Loss Function Selection

The network designed in this research is based on the architecture of a U-Net (Ronneberger et al. 2015) due to the following95

reasons. Characterized by the U-shaped structure, the network is able to capture both high-level contextual information and

fine-grained details. Besides, the incorporation of skip connections facilitates the reuse of feature maps, addressing spatial in-

formation preservation and the vanishing gradient problem. Moreover, U-Net’s demonstrated efficacy, particularly in scenarios

with limited annotated data like sea ice mapping, underscores its ability to learn effectively from small datasets and generalize

to new, challenging data environments. U-Net has shown success in many recent research concerning sea ice mapping (Rad-100

hakrishnan et al. 2021; Stokholm et al. 2022; Kucik and Stokholm 2023; Nagi et al. 2021; Ren et al. 2021; Huang et al. 2021;

Stokholm et al. 2023b). For example, in a recent study by Kucik et al. (Kucik and Stokholm 2023), a U-Net architecture was

trained on the AI4Arctic Sea Ice Dataset version 2 (ASID-v2) (Saldo et al. 2021) to accurately retrieve SIC with different loss

functions for performance comparison. Building upon this success, we extend the model to estimate three sea ice parameters

concurrently. Our multi-task U-Net consists of four encoder-decoder blocks, with the first two blocks having 32 filters and the105

remaining blocks having 64 filters (as shown in Figure 1). Alternative configurations, such as adding more blocks or increas-

ing the number of filters, as well as employing state-of-the-art DL-based models for image segmentation such as the Swin

transformer (Liu et al. 2021b), were explored. However, none of these approaches surpassed the performance of our current

model.

To predict stage of development (SOD) and floe size (FLOE), we utilize the output feature maps from the final decoder110

and feed them into separate 1× 1 convolution layers. Each convolution layer has a number of filters equal to the number of

classes, enabling the generation of pixel-based classification results through segmentation. Regarding SIC estimation, as it can

be treated as either a classification or a regression problem, we investigate both convolution and regression layers, employing

different loss functions (e.g., mean squared error loss and cross-entropy loss) to compare their effectiveness.
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Figure 1. The structure of the proposed multi-task U-Net-based model with output layers in yellow.

3.2 Input SAR Variable Downscaling115

Despite the resolution of the SAR imagery that is well suited for SAR sea ice monitoring, the polygon egg code data is derived

from the knowledge of ice analysts who have to produce charts in low resolution due to time constraints. Therefore, to generate

predictions consistent with the label maps, it is advantageous for input SAR image patches to encompass a large receptive

field, which is achieved through the following operations. Initially, the dual-polarized SAR images, distance maps (DMs), and

corresponding ice chart-derived label maps are downsampled by a certain ratio (10 in the proposed model). During the training120

process, patches of size 256× 256 are randomly extracted from the downsampled SAR images. As the AMSR2 and ERA5

inputs have been resampled to the Sentinel-1 geometry, their corresponding data points within the geographical areas covered

by these patches are also interpolated to the size of 256× 256. This downscaling operation has also been implemented in a
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previous work (Liu et al. 2021a) concerning sea ice classification to avoid the appearance of scalloping and interscan banding

artifacts in classification results.125

After downscaling, data augmentation operations listed in Table 3 are applied to the extracted patches (with a probability of

0.5 for each operation) to enhance the model’s generalization ability. During the validation and testing phases, the complete

SAR scenes and DMs are downscaled, combined with other upsampled data inputs, and then fed into the trained model. The

outputs are subsequently interpolated to match the original size of the SAR data and ice charts for evaluation purposes.

3.3 Ancillary Data Input Selection130

To select suitable inputs for training the model, we conduct experiments using various combinations of data inputs. Table 2

presents the combination of data inputs that yield the best performance. For the AMSR2 data, frequencies of 18.7 GHz and

36.5 GHz are chosen due to their higher spatial resolution in comparison to lower frequency channels, as well as their reduced

sensitivity to atmospheric water vapor and cloud liquid water when compared to the 89 GHz channels (Minnett et al. 2019;

Chen et al. 2023b). All ERA5 inputs in the AI4Arctic dataset are included, except for the skin temperature, which exhibits a135

high correlation with the 2-meter air temperature and does not significantly improve overall accuracy. Detailed results using

different combinations of input channels will be demonstrated and discussed in Section 4. The auxiliary data are brought up to

input patch dimensions and added as channels in this research. Although it is also feasible to add them in the bottleneck, adding

them as input channels facilitates us to analyze the effect of choosing different data inputs on model performance. Besides, it

enables the CNN model to extract pixel-based nonlinear features at the very beginning. Nevertheless, in future works it would140

be interesting to compare the current channel adding approach vs adding them in the bottleneck.

Table 2. The combination of data inputs that produces the highest combined score using the proposed model.

Variable

abbreviation
Variable description

Total number

of channels

HH, HV Dual-pol SAR scene 2

AMSR2 subset Dual-pol AMSR2 brightness temperature data in 18.7 and 36.5 GHz 4

ERA5 subset
10-m wind speed, 2-m air temperature, total column water vapor,

total column cloud liquid water
5

Loc, time Latitude/longitude of each pixel and scene acquisition month 3

3.4 Spatial-temporal Encoding

In operational sea ice mapping, ice experts not only rely on satellite data analysis but also utilize their domain knowledge,

such as understanding typical ice conditions in specific regions during certain months in previous years. Additionally, SAR

scenes captured in close proximity and similar time periods tend to exhibit comparable ice conditions. As the DL-based models145

proposed in this study lack access to such domain knowledge, we incorporate spatial and temporal information of each scene
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into the input channels, as illustrated in the last row of Table 2. Specifically, the latitude and longitude coordinates of the

21× 21 Sentinel-1 SAR geographic grid points provided in the dataset are interpolated to match the size of the input SAR

image. The time information of each pixel corresponds to the acquisition month (represented by enumeration, e.g., ’01’ for

January) of the respective SAR scene. The incorporation of spatial and temporal information as data inputs originates from150

a previous work concerning the sea ice thickness estimation with Google Earth Engine and Sentinel-1 GRD data (Shamshiri

et al. 2022). The reason to discretize time information instead of using continuous values (i.e., values specific to day) is that

since the ice climatology is similar within one month, adopting continuous values might not improve model performance

significantly. Besides, the imbalanced data distribution between different dates might lead to overfitting. In contrast, the data

volume available for each month is relatively balanced. In future works, when the next version of the dataset is released (with155

around 16 times more data), it would be interesting to adopt the continuous approach for comparison. The effectiveness of

spatial-temporal encoding in enhancing accuracy will be demonstrated in the subsequent ablation studies.

3.5 Model Training and Implementation

The specifications of model training are detailed in Table 3, encompassing the combination of hyperparameters that yields

the highest validation accuracy. Cosine Annealing (Loshchilov and Hutter 2016) is employed as our learning rate schedule,160

initially utilizing a large learning rate that gradually decreases following the cosine function to reach a minimum value, before

rapidly increasing again (every 20 epochs in our model). This approach allows the model to navigate different regions of

the loss landscape, potentially avoiding suboptimal local minima and converging to a favorable solution. To ensure sufficient

exposure per data sample during training, each epoch comprises 500 iterations, with a batch of patches randomly extracted from

training scenes during each iteration. Through exploring various combinations of loss functions, we observe that employing165

mean square error (MSE) loss for SIC and cross entropy (CE) loss for SOD and FLOE produces the highest testing accuracy.

Specifically, the SIC retrieval is treated as a regression task, with a regression layer added before the SIC output in the model.

Considering that the magnitude of MSE loss is considerably higher than that of CE loss, we assign a larger weight value

(determined empirically) to the CE losses when calculating the total loss. This weight assignment facilitates the convergence

of the three scores, as outlined in Table 3.170

To validate the generalization capability of the model, for each experiment 20 SAR scenes from the training data are ran-

domly selected as the validation set. Besides, to prevent the influence of randomness in parameters initialization and training,

we train a total of 20 networks for each configuration and obtain the mean and variation of accuracy for more trustworthy

performance evaluation. At the conclusion of each epoch, a combined score is calculated from the validation set, utilizing the

metrics outlined in Table 1. If the score obtained in the current epoch surpasses all previous epoch scores, the model parameters175

are updated and saved. The final saved model is subsequently employed to generate predictions for the testing data submissions.

All experiments were conducted on the Narval cluster of Compute Canada, Canada’s national high-performance computing

system. The experiments utilized a NVIDIA A100-SXM4-40GB GPU with 128GB of RAM memory, employing the PyTorch

1.12 library. It takes an average of about 3.5 hours to train the proposed model.
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Table 3. Specifications of training the proposed model with the highest combined score, including hyperparameter values, learning algo-

rithms, and loss functions.

Optimizer Stochastic gradient descent with momentum (SGDM)

Learning rate 0.001

Weight decay 0.01

Scheduler Cosine Annealing

Batch size 16

Number of iterations per epoch 500

Total epoch 300

Number of epochs for the first restart 20

Downscaling ratio 10

Data augmentation Rotation, flip, random scale, cutmix

Patch size 256

Loss functions Mean square error loss for SIC, cross entropy loss for SOD and FLOE

Total loss calculation SIC×1+SOD×3+FLOE×3

Number of validation scenes 20

4 Experimental Results180

Out of numerous submissions on the leaderboard, we achieved the highest combined score of approximately 86.3%, as well as

the highest SIC and SOD scores. As the ice chart-derived labels for the testing data were released subsequent to the conclusion

of the competition, we conducted additional model retraining using diverse configurations to obtain more comprehensive

statistical outcomes for detailed analysis.

The statistical results obtained from model validation and testing are summarized in Table 4. Different configurations of185

trained models are represented by distinct model numbers (from Model 1 to Model 9), as specified in Table 4. Model 1

corresponds to the full model with settings described in Section 3 and Table 3. The remaining models serve as ablation studies

to validate the effectiveness of the tricks we applied, with modifications detailed in Table 4. In the context of our study,

conducting ablation studies on different data inputs enables a nuanced examination of their individual effects on the model’s

ability to accurately predict sea ice characteristics. This scientific approach aids in unraveling the intricate relationships between190

input features and model outcomes, guiding the optimization of model architectures and data preprocessing techniques for

improved performance and interpretability. Each score in a certain model corresponds to the average score of the 20 networks

trained with the same configuration. The relatively large standard deviation (STD) values of the combined scores in validation

are caused by the randomness in validation scene selection. In contrast, the STDs of combined scores in testing are much

smaller (around 1%). Through comparison, the capability of those strategies in enhancing model performance is validated, as195

illustrated below.
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Table 4. The average default scores for SIC, SOD and FLOE (i.e. R2, F1, F1) obtained from models with different configurations. The

average combined scores and the associated standard deviations are also calculated. Model 1 (full model) is developed using the specifications

introduced in Tables 2 and 3. Compared to Model 1, Models 2-7 change the combinations of data inputs, Model 8 changes the loss function

for SIC, and Model 9 splits the decoder into three separate parts for the three parameters.

Model

number

Modifications

compared

to Model 1

Mean validation accuracy (%) Mean testing accuracy (%)

Combined

score

Standard

deviation

SIC SOD FLOE Combined

score

Standard

deviation

SIC SOD FLOE

1 N/A (full model) 91.6 2.2 93.9 92.2 85.7 86.5 1.2 91.7 87.2 73.7

2 Remove SAR

downscaling

85.6 2.5 88.9 86.1 78.1 79.7 1.4 84.4 80.7 68.4

3 Remove all data

inputs except

HH, HV

87.9 2.6 91.1 86.8 83.5 78.6 1.4 84.8 75.1 73.1

4 Remove AMSR2

data inputs

91.3 2.6 93.1 92.6 85.2 82.2 0.7 85.3 84.4 71.5

5 Remove ERA5

data inputs

91.7 2.4 93.6 92.6 86.3 85.2 0.6 90.4 86.5 72.0

6 Remove

spatial-temporal

encoding

88.7 2.1 92.9 86.8 83.9 82.5 0.8 91.1 78.1 73.8

7 Add all available

data inputs not

used in Model 1

91.5 2.3 93.6 91.8 86.6 86.5 0.6 91.3 88.7 73.3

8 Replace MSE loss

with CE loss for SIC

90.7 2.3 91.4 92.9 85.0 83.5 1.2 86.7 85.8 72.7

9 Change the shared

decoder to

separate decoders

91.7 2.1 93.4 92.2 87.2 87.3 0.7 91.7 88.2 76.4

9



– Model 1 (full model) vs. Model 2 (no downscaling)

Downsampling the SAR data inputs significantly improves the mapping accuracy (Model 1 vs. Model 2), with improve-

ments of 6.8% in average testing combined score, 7.3% in SIC, 6.5% in SOD, and 5.3% in FLOE. Furthermore, this

downsampling enhancement also leads to a substantial increase in computational efficiency. Training the full model200

takes approximately 3.5 hours, while producing a map using the forward model for a SAR scence only requires an aver-

age of around 2 seconds. In contrast, without downsampling, the average training time is approximately 15 times longer.

Various downsampling ratios were tested, and a value of 10 yielded one of the best results along with high efficiency.

– Model 1 (full model) vs. Models 3, 4, 5 (removing certain features)

The inclusion of multi-source input channels is essential, as demonstrated by the comparison between Model 1 and205

Model 3. Using only SAR data inputs results in lower SIC and SOD scores by 6.9% and 12.1%, respectively. Although

the removal of AMSR2 (Model 4) or ERA5 (Model 5) data inputs does not affect validation scores significantly, a drop

in testing accuracy can be observed. This is particularly evident in the model without AMSR2 inputs, where the average

SIC and SOD testing scores decrease by 6.4% and 2.8% compared to the full model. Thus, the inclusion of brightness

temperature data plays a vital role in enhancing model accuracy.210

– Model 1 (full model) vs. Models 6 (no spatial-temporal encoding)

The effectiveness of spatial-temporal encoding in improving accuracy, particularly the SOD score, is evident in the com-

parison between Models 1 and 6. This is likely because the model in Model 1 can learn the distribution of dominant

ice types in different Arctic regions during different months based on the training data, resulting in a 9.1% improve-

ment in average SOD score during testing. The inclusion of temporal and spatial information signifies the integration215

of sea ice climatology knowledge into the classification process. While this enhancement demonstrates improved model

performance on recent data, it is essential to acknowledge the inherent limitations of relying solely on climatological

information. The dynamic nature of the Arctic, undergoing continuous changes, emphasizes the continued reliance on

observations from diverse sensors, such as SAR and passive microwave, ensuring that satellite data occupies a predomi-

nant role in the input channels for robust sea ice mapping.220

– Model 1 (full model) vs. Models 7 (using all available data inputs)

Compared to the model utilizing all available data as inputs (Model 7), the full model with feature selection (selecting a

subset of AMSR2 and ERA5 data) achieves nearly the same accuracy while improving efficiency.

– Model 1 (MSE loss for SIC) vs. Models 8 (cross-entropy loss)

Adopting MSE loss for SIC, as opposed to CE loss (Model 8), increases the average SIC testing score significantly by225

5.0% and improves the average testing combined score by 3.0%.

– Model 1 (shared decoder) vs. Model 9 (separate decoders)
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Despite improvements in SIC and SOD scores, the FLOE scores remain relatively low, with a significant gap between

validation and testing accuracy. After exploring numerous configurations, we found that only downscaling and separating

the decoders for the three parameters (Model 9) might enhance the FLOE score. Visually, it is challenging to distinguish230

patterns of different floe sizes from SAR imagery. The mapping results of FLOE will be further discussed in the visual

analysis below.

In addition to numerical results, visual interpretation is essential for analysis. Sea ice mapping results from two example

SAR scenes in the testing data which were obtained using models with different configurations are presented in Figs. 2 and

3. Fig. 2 illustrates that implementing input downscaling (including Model 1 and Model 8) enhances the consistency between235

the ice-water boundaries in the label maps and the model predictions. With a larger receptive field, contextual information

is captured by the model, leading to spatially smoothed predictions. Conversely, without downscaling, the extracted features

only contain local intensity information, limiting the model’s ability to capture the presence of ice in surrounding areas, as

demonstrated in the row corresponding to Model 2. Although models with larger patch sizes (e.g., 512, 768) have been tried

out, we find that these models perform much worse than a patch size of 256. This could be due to a consequence of utilising a240

model with an insufficient receptive field for the patch size, which could be an area for further improvements to the model in

future works. Various input scales have also been implemented in a previous work (Stokholm et al. 2022) concerning sea ice

concentration estimation. Furthermore, while choosing CE loss for SIC yields lower accuracy than MSE loss, the predictions

consist of larger polygons that visually align more closely with the SIC label map, as seen in Model 8. This finding is consistent

with the observations in (Kucik and Stokholm 2023).245

Furthermore, the effectiveness of spatial-temporal encoding in improving SOD prediction accuracy can be observed by

comparing Model 1 and Model 6 in Fig. 3. In Model 6, where spatial-temporal encoding is not applied, a large area labeled

as young ice is misclassified as thick first-year ice (FYI). The model without AMSR2 inputs (Model 4) also misclassifies

a relatively large area as thin FYI. Despite achieving relatively high SOD accuracy, there are some classes with significant

misclassification rates. For instance, as shown in the confusion matrices in Fig. 4, the classification accuracies for new ice250

and thin FYI are only 19% and 31%, respectively. Misclassifications between ice types with neighboring thickness are also

prevalent. For example, 31% of old ice samples are misclassified as thick FYI. These issues may be attributed to various factors,

such as the highly imbalanced distribution of samples among ice types. As depicted in Fig. 5, new ice and thin FYI have the

most and second least samples in the training data (comprising only around 2% of the total). Additionally, the labeling method

of SOD and FLOE in the ready-to-train dataset might contribute to these challenges. Although most polygons in ice charts255

contain multiple ice types and floe sizes, they are labeled with only the dominant classes due to a lack of pixel-based labels,

leading to inevitable labeling errors. During the competition, we attempted several strategies to address the issue of sample

imbalance, such as implementing focal loss (Lin et al. 2017). However, none of these approaches significantly improved the

accuracy of the minority classes so far.
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Figure 2. Sea ice mapping results obtained from a SAR scene (ID: 20180707T113313 cis) in the testing data using models trained with

different configurations indicated by experiment numbers on the left. The ice chart-derived labels are displayed in the last row for comparison.

Areas that are land or without labels are masked in white.
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Figure 3. Sea ice mapping results obtained from a SAR scene (ID: 20211212T211242 dmi) in the testing data using models trained with

different configurations indicated by experiment numbers on the left. The ice chart-derived labels are displayed in the last row for comparison.

Areas that are land or without labels are masked in white.
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Figure 4. The confusion matrices of SOD (left) and FLOE (right) testing results.

Figure 5. The distribution of training samples for each class in the three parameters (SIC on the left, SOD in the middle, and FLOE on the

right). The bars of some categories may be invisible due to very low percentages (e.g., 0.43% for 10% SIC, 0.48% for cake ice, and 0.17%

for bergs in FLOE).

5 Conclusions260

In this paper, we present our MMSeaIce pipeline, which consists of a multi-task U-Net for automated sea ice parameter re-

trieval from the ready-to-train version. In particular, we implemented several tricks to improve model accuracy and efficiency.

The techniques behind those tricks include input downscaling, feature selection, incorporating spatial and temporal informa-

14



tion, and loss function design. First, to enable our model to learn contextual information within a large receptive field, we

initially apply a downscaling operation to the SAR data inputs. This enhances the consistency between model predictions and265

ice chart-derived labels, resulting in a remarkable improvement of 6.8% in the combined score and significant enhancement

in computation speed. Then, we conducted ablation studies to investigate the impact of different data inputs on model perfor-

mance. These studies demonstrate the necessity of including brightness temperature data, which leads to a 4.3% improvement

in the average combined score, as well as the importance of incorporating spatial-temporal information, which contributes to a

4.0% improvement in the combined score. Additionally, we show that other modifications to the model, such as applying the270

MSE loss in SIC retrieval during training and employing separate decoders for the three parameters, also improve the overall

performance. The best model we developed achieves an average combined score of 87.3% on the testing dataset, with average

individual scores of 91.7%, 88.2%, and 76.4% for SIC, SOD, and FLOE, respectively.

Despite our success in the competition, there are still several areas that require further investigation to derive robust and

accurate automated sea ice maps with high resolution. For instance, it is crucial to propose a new labeling method that ade-275

quately addresses polygons with mixed ice types or floe sizes. Furthermore, with the upcoming release of an updated AI4Arctic

dataset containing a significantly larger volume of data, we recommend retraining our full model to improve the predictive ac-

curacy of the minority classes. Additionally, considering the spatial and temporal variation of sea ice in SAR imagery, training

models specific to certain regions or seasons, particularly the melting season, would be a preferable approach for enhancing

performance.280
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