¹ Supplement of

2	Spatial and Diurnal Variations of Aerosol
3	Organosulfates in Summertime Shanghai, China:
4	Potential Influence of Photochemical Process and
5	Anthropogenic Sulfate Pollution
6	Ting Yang, et al.
7	Correspondence to: Yu Xu (xuyu360@sjtu.edu.cn)
8	Yue Zhao (yuezhao20@sjtu.edu.cn)
9	Hua-Yun Xiao (xiaohuayun@sjtu.edu.cn)
10	
11	The copyright of individual parts of the supplement might differ from the article licence.
12	
13	
14	
15	

16 S1. Classification of OSs

A total of 212 organosulfates (OSs) were detected in PM_{2.5} samples using UPLC-MS. The quantified OSs were distributed over a wide mass range (m/z 167–489). The OSs and nitrooxy-organosulfates (NOSs) were initially identified from their molecular formulas based on the following equation (1) (Wang et al. 2019; Tao et al. 2014).

21
$$n_{\rm O}/(4n_{\rm S}+3n_{\rm N}) \ge 1$$
 (1)

where the n_0 , n_s , and n_N denote the number of oxygen, sulfur, and nitrogen atoms in a molecular formula, respectively.

24 The groups of isoprene-derived, monoterpene-derived, and C₂-C₃ OSs were further classified according to previous laboratory and filed studies (Hettiyadura et al. 25 2019; Wang et al. 2021a). Specifically, the isoprene-derived OSs (OS_i) were identified 26 27 using the following method: (1) molecules with 4 and 5 carbon atoms were selected; (2) compounds with 4 carbon atoms have a molecular unsaturation degree (SD) of 1-2, 28 $n_0 \le 6$, and $n_H \ge 6$; and (3) compounds with 5 carbon atoms have a SD of 0–2, $n_0 \le 7$, 29 30 and $n_{\rm H} \ge 8$. The detailed explanations about the workflow were provided by Xu et al., (2021) It should be noted that C7H9O7S⁻ was classified as OS_i based on Nozière et al., 31 32 (2010).

For monoterpene-derived OSs (OS_m), they were grouped according to the following criteria. The compounds have the characteristics of 10 carbon atoms, effective oxygen atoms ($n_{\text{Oeff}} = n_{\text{O}} - 2n_{\text{N}}$) of more than 4, and $2 \leq \text{DBE} \leq 4$ (Guo et al. 2022; Ehn et al. 2012; Yan et al. 2016; Jokinen et al. 2014; Boyd et al. 2015; Berndt et al. 2016; Berndt et al. 2018). Moreover, C₇H₁₁O₆S⁻, C₇H₁₁O₇S⁻, C₈H₁₃O₇S⁻, C₉H₁₅O₆S ³⁸ ⁻, and C₉H₁₄NO₈S⁻ were assigned to OS_m based on previous reports (Yassine et al. 2012; ³⁹ Nozière et al. 2010; Wang et al. 2017; Surratt et al. 2008). Moreover, correlation ⁴⁰ analysis between these target OSs and typical OS_m (e.g., C₁₀H₁₇O₅S⁻) was conducted, ⁴¹ showing the significant correlations between them (r = 0.83-0.99, P < 0.01). This result ⁴² further confirms the reliability of the above classification.

Previous studies have suggested that OSs with double bond equivalent (DBE) ≥ 2 and aromaticity equivalent (Xc) ≥ 2.5 can be assigned to aromatic OSs (Jiang et al. 2022; Xie et al. 2021; Xie et al. 2020; Ma et al. 2022). The DBE and Xc value were calculated via the following equations, respectively (Yassine et al. 2014).

47 DBE =
$$1 + n_{\rm C} - n_{\rm H}/2 + n_{\rm N}/2$$
 (2)

48
$$X_{C} = [3(DBE - (f_{m}n_{O} - f_{n} \times n_{s})) - 2]/[DBE - (f_{m}n_{O} - f_{n}n_{s})]$$
 (3)

where the $n_{\rm C}$, $n_{\rm H}$, $n_{\rm N}$, $n_{\rm O}$, and $n_{\rm S}$ denote the number of carbon, hydrogen, nitrogen, oxygen, sulfur atoms in a molecular formula, respectively. The $f_{\rm m}$ and $f_{\rm n}$ refer to the fractions of oxygen and sulfur atoms involved in the π -bond structure of the compound, respectively (Yassine et al. 2014). In this study, the negative mode was used in UPLC-ESI-QToF-MS analysis, which preferentially identified the compounds containing carboxylic acids and esters (Ye et al. 2021). Thus, the calculation for Xc of organosulfates can be simplified as the following equation (Ye et al. 2021).

56
$$X_{\rm C} = [3({\rm DBE} - 0.5(n_{\rm O} - 4)) - 2]/[{\rm DBE} - 0.5(n_{\rm O} - 4)])$$
 (4)

However, the products of monoterpene oxidation by •OH or NO₃• also include the
compounds with a DBE value of 2 (Yan et al. 2016; Ehn et al. 2014; Trostl et al. 2016).
This means that OS_m and aromatic OSs overlapped partly. Thus, aromatic OSs with a

60 DBE value of 2 were further identified through correlation analysis between 61 unidentified aromatic OSs and known OS_m and aromatic OSs (Bryant et al. 2021). The 62 compounds were adopted with r value greater than 0.6.

The OSs with DBE less than 2, including alkanes and some unsaturated 63 64 compounds, were assigned to aliphatic OSs (Xie et al. 2021; Xie et al. 2020; Tao et al. 65 2014). Recently, some aliphatic oxygenated organic molecules were found to have a DBE value of 2 (Wang et al. 2021b). Thus, OSs with a DBE value of 2 were further 66 identified through correlation analysis between unidentified aliphatic OSs and known 67 68 aliphatic subgroups. The compounds were adopted with r value greater than 0.6. It should be noted that C₉H₁₅O₆S⁻ was divided into OS_m based on the abovementioned 69 classification rules for OS_m , while $C_9H_{15}O_7S^-$ was not classified as OS_m . This is because 70 71 $C_{9}H_{15}O_{7}S^{-}$ showed a stronger correlation with typical anthropogenic OS $(e.g., C_8H_{17}O_4S^-; r = 0.98)$ than typical OS_m $(e.g., C_{10}H_{17}O_5S^-; r = 0.96)$. In this study, 72 aliphatic and aromatic OSs were referred to anthropogenic OSs (OSa). Several repotred 73 74 OSs (non aromatic or aliphatic compounds) were classified as other anthropogenic OS 75 (OS_a-other) (Wang et al. 2021a; Berndt et al. 2016).

- 76
- 77
- 78
- 79
- 80
- 81

Formula [M-H]-	MW (Da)	Standard for quantification	Reference	r ^a
Isoprene-deriv	ed OSs			
$C_4H_7O_5S^-$	167.0014	Lactic acid sulfate (LAS)	(Schindelka et al. 2013)	
$C_4H_7O_6S^-$	182.9963	LAS	(Shalamzari 2013)	
$C_5H_9O_6S^-$	197.0120	LAS	(Riva et al. 2016a)	
$C_4H_7O_7S^-$	198.9912	LAS	(Hettiyadura et al. 2015)	
$C_5H_{11}O_6S^-$	199.0276	LAS	(Riva et al. 2016a)	
$C_5H_7O_7S^-$	210.9912	LAS	(Hettiyadura et al. 2015)	
$C_5H_9O_7S^-$	213.0069	LAS	(Riva et al. 2016a)	
$C_5H_{11}O_7S^-$	215.0225	LAS	(Surratt et al. 2010)	
$C_7H_9O_7S^-$	237.0069	LAS	(Nozière et al. 2010)	
$C_5H_{10}NO_9S^-$	260.0076	LAS	(Surratt et al. 2007)	
$C_5H_8NO_{10}S^-$	273.9869	LAS	(Nestorowicz et al. 2018)	
$C_5H_7O_8S^-$	226.9862	LAS		0.90
$C_5H_9O_8S^-$	229.0018	LAS		0.94
$C_4H_7O_8S^-$	214.9862	LAS		0.72
$C_4H_5O_7S^-$	196.9756	LAS		0.67
$C_4H_6NO_9S^-$	243.9763	LAS		0.87
$C_4H_8NO_7S^-$	214.0021	LAS		0.94
$C_5H_8NO_7S^-$	226.0021	LAS		0.90
$C_5H_9N_2O_{11}S^-$	260.0076	LAS		0.75
Monoterpene-	derived OSs			
$C_7H_{11}O_6S^-$	223.0276	Glycolic acid sulfate (GAS)	(Yassine et al. 2012)	
$C_7H_{11}O_7S^-$	239.0225	GAS	(Nozière et al. 2010)	
$C_{10}H_{17}O_5S^-$	249.0797	α-Pinene sulfate	(Wang et al. 2017)	
$C_8H_{13}O_7S^-$	253.0382	GAS	(Schindelka et al. 2013)	
$C_{10}H_{15}O_7S^-$	279.0538	GAS	(Surratt et al. 2007)	
$C_{10}H_{17}O_{7}S^{-}$	281.0695	α-Pinene sulfate	(Nozière et al. 2010)	
$C_{10}H_{16}NO_7S^-$	294.0647	α-Pinene sulfate	(Surratt et al. 2008)	
$C_9H_{14}NO_8S^-$	296.0440	Limonaketone sulfate	(Surratt et al. 2008)	
$C_{10}H_{16}NO_{10}S^{-}$	342.0495	Limonaketone sulfate	(Yassine et al. 2012)	
$C_9H_{15}O_6S^-$	251.0589	Limonaketone sulfate	(Wang et al. 2017)	
$C_{10}H_{15}O_5S^-$	247.0640	α -Pinene sulfate		0.81
$C_{10}H_{15}O_6S^-$	263.0589	α -Pinene sulfate		0.87
$C_{10}H_{17}O_6S^-$	265.0746	α -Pinene sulfate		0.94

82 **Table S1.** Organosulfate quantification using UPLC-ESI(-)-QToFMS.

$C_{10}H_{17}O_8S^-$	297.0644	α -Pinene sulfate		0.96
$C_{10}H_{15}O_{7}S^{-}$	279.0538	α -Pinene sulfate		0.97
$C_{10}H_{15}O_8S^-$	295.0488	α -Pinene sulfate		0.98
$C_{10}H_{17}NO_9S^-$	326.0546	α -Pinene sulfate		0.85
C2-C3 OSs				
$C_3H_5O_4S^-$	136.9909	GAS	(Yassine et al. 2012)	
$C_2H_3O_5S^-$	138.9701	GAS	(Yassine et al. 2012)	
$C_3H_5O_5S^-$	152.9858	GAS	(Hettiyadura et al. 2015)	
$C_2H_3O_6S^-$	154.9650	GAS	(Olson et al. 2011)	
$C_3H_7O_5S^-$	155.0014	GAS	(Hettiyadura et al. 2019)	
$C_3H_5O_6S^-$	168.9807	LAS	(Olson et al. 2011)	
Aliphatic-OSs				
$C_8H_{17}O_4S^-$	210.0926	Sodium octyl Sulfate (SOS)	(Wang et al. 2021a)	
$C_{12}H_{21}O_{7}S^{-}$	309.1008	SOS		0.94
$C_{14}H_{29}O_5S^-$	309.1736	SOS		0.79
$C_{16}H_{33}O_5S^-$	337.2049	SOS		0.93
$C_6H_{13}O_4S^-$	181.0535	SOS		0.98
$C_7H_{15}O_4S^-$	195.0691	SOS		0.91
$C_7H_{15}O_5S^-$	211.064	SOS		0.89
$C_9H_{19}O_4S^-$	223.1004	SOS		0.70
$C_{10}H_{21}O_4S^-$	237.1161	SOS		0.7
$C_{24}H_{51}N_2O_{13}S^{-}$	607.3112	SOS		0.79
$C_7H_{13}O_5S^-$	209.0484	SOS		0.86
$C_9H_{17}O_5S^-$	237.0797	SOS		0.89
$C_{10}H_{19}O_5S^-$	251.0953	SOS		0.70
$C_9H_{17}O_7S^-$	269.0695	SOS		0.72
$C_{12}H_{23}O_5S^-$	279.1266	SOS		0.90
$C_9H_{17}O_4S^-$	221.0848	SOS		0.68
$C_{10}H_{19}O_5S^-$	251.0953	SOS		0.72
$C_9H_{17}O_6S^-$	253.0746	SOS		0.90
$C_{11}H_{21}O_5S^-$	265.1110	SOS		0.68
$C_{10}H_{19}O_{6}S^{-}$	267.0902	SOS		0.73
$C_{13}H_{25}O_5S^-$	293.1423	SOS		0.84
$C_{14}H_{27}O_5S^-$	307.1579	SOS		0.94
$C_{13}H_{25}O_{6}S^{-}$	309.1372	SOS		0.72
$C_{14}H_{27}O_6S^-$	323.1528	SOS		0.75
$C_{16}H_{31}O_5S^-$	335.1892	SOS		0.96
$C_{17}H_{33}O_5S^-$	349.2049	SOS		0.94
$C_{16}H_{31}O_6S^-$	351.1841	SOS		0.7
$C_{18}H_{35}O_5S^-$	363.2205	SOS		0.76

$C_{21}H_{41}O_5S^-$	405.2675	SOS		0.94
$C_8H_{15}O_5S^-$	223.0640	SOS		0.69
$C_7H_{13}O_6S^-$	225.0433	SOS		0.76
$C_6H_{11}O_7S^-$	227.0225	SOS		0.94
$C_8H_{15}O_6S^-$	239.0589	SOS		0.89
$C_6H_{11}O_8S^-$	243.0175	SOS		0.87
$C_{11}H_{21}O_5S^-$	265.1110	SOS		0.69
$C_{10}H_{19}O_6S^-$	267.0902	SOS		0.88
$C_7H_{13}O_9S^-$	273.0280	SOS		0.70
$C_{15}H_{29}O_5S^-$	321.1736	SOS		0.88
$C_{26}H_{51}O_{12}S^-$	587.3101	SOS		0.95
$C_{10}H_{17}O_{6}S^{-}$	265.0746	SOS		0.85
$C_9H_{15}O_5S^-$	235.0640	SOS		0.95
$C_{10}H_{17}O_5S^-$	249.0797	SOS		0.93
$C_9H_{15}O_6S^-$	251.0589	SOS		0.91
$C_{10}H_{17}O_6S^-$	265.0746	SOS		0.72
$C_9H_{15}O_5S^-$	235.0640	SOS		0.98
$C_{10}H_{17}O_5S^-$	249.0797	SOS		0.94
$C_9H_{15}O_6S^-$	251.0589	SOS		0.92
$C_{10}H_{17}O_6S^-$	265.0746	SOS		0.69
$C_{11}H_{19}O_6S^-$	279.0902	SOS		0.78
$C_{12}H_{21}O_{6}S^{-}$	293.1059	SOS		0.72
$C_{14}H_{25}O_{6}S^{-}$	321.1372	SOS		0.63
$C_8H_{13}O_6S^-$	237.0433	SOS		0.75
$C_9H_{15}O_7S^-$	267.0538	SOS		0.73
Aromatic-OSs				
$C_6H_5O_4S^-$	172.9909	Methyl sulfate	(Wang et al. 2021a)	
$C_7H_7SO_4S^-$	218.9786	Methyl sulfate	(Wang et al. 2021a)	
$C_{11}H_{19}O_{11}S^-$	359.0648	Methyl sulfate		0.77
$C_{10}H_{17}O_{12}S^-$	361.0441	Methyl sulfate		0.64
$C_7H_{11}O_9S^-$	271.0124	Methyl sulfate		0.65
$C_{7}H_{11}O_{10}S^{-}$	287.0073	Methyl sulfate		0.69
$C_8H_{13}O_9S^-$	285.0280	Methyl sulfate		0.70
$C_8H_{13}O_{10}S^-$	301.0229	Methyl sulfate		0.81
$C_{11}H_{17}O_{11}S^-$	357.0492	Methyl sulfate		0.86
$C_8H_{12}NO_{11}S^-$	330.0131	Methyl sulfate		0.90
$C_8H_7O_5S^-$	215.0014	Methyl sulfate		0.91
$C_8H_7NO_5S^-$	229.0045	Methyl sulfate		0.89
$C_8H_7O_4S^-$	199.0065	Methyl sulfate		0.98
$C_9H_7O_7S^-$	258.9912	Methyl sulfate		0.89
$C_9H_7O_6S^-$	242.9963	Methyl sulfate		0.74

$C_{34}H_{49}O_5S^-$	569.3301	Methyl sulfate		0.64
$C_{43}H_{63}O_5S^-$	691.4396	Methyl sulfate		0.72
$C_7H_{11}O_9S^-$	271.0124	Methyl sulfate		0.74
$C_{10}H_{7}O_{11}S^{-}$	334.9709	Methyl sulfate		0.86
$C_{10}H_5O_{11}S^-$	332.9553	Methyl sulfate		0.77
$C_{10}H_5O_{10}S^-$	316.9603	Methyl sulfate		0.72
$C_{12}H_{7}O_{13}S^{-}$	390.9607	Methyl sulfate		0.65
$C_8H_7O_5S^-$	215.0014	Methyl sulfate		0.77
$C_7H_5SO_5S^-$	200.9858	Methyl sulfate		0.65
$C_9H_9O_4S^-$	213.0222	Methyl sulfate		0.72
$C_7H_6SO_4S^-$	185.9987	Methyl sulfate		0.73
$C_{18}H_{13}O_6S^-$	357.0433	Methyl sulfate		0.69
$C_{23}H_{19}O_{7}S^{-}$	439.0851	Methyl sulfate		0.65
$C_{25}H_{21}O_7S^-$	465.1008	Methyl sulfate		0.77
$C_{24}H_{17}O_4S^-$	401.0848	Methyl sulfate		0.73
$C_{27}H_{21}O_7S^-$	489.1008	Methyl sulfate		0.90
$C_{12}H_{21}N_2O_{11}S \\$	401.0866	Methyl sulfate		0.77
OS _a -other				
$C_4H_7O_4S^-$	151.0065	Methyl sulfate	(Wang et al. 2021a)	
$C_5H_7O_6S^-$	194.9963	GAS	(Wang et al. 2021a)	
$C_6H_9O_6S^-$	209.0120	GAS	(Berndt et al. 2016)	

83 ^aUnreported OSs were further identified through correlation analysis between unreported OSs and known

84 OSs. Aliphatic and aromatic OSs were referred to anthropogenic OSs (OSa). The compounds were

adopted with R value greater than 0.6. Details were shown in **Sect. S1** (Classification of OSs).

86

87

92

93

$\frac{1111112.5}{111112.5}$							
Formula [M ⁻ H] ⁻	MW (Da)	Doutime	Nighttime	Dovtime	Nighttime		
Isonrono dorivod		Daytille	Inigittime	Daytime	Inighttime		
C ₄ H ₂ O ₂ S ⁻	167 0014	0.70 ± 0.75	0.49 ± 0.55	0.53 ± 0.44	0.34 ± 0.17		
$C_4H_7O_5S^-$	182 9963	5.93 ± 6.30	0.49 ± 0.53 1 94 + 2 83	3.80 ± 4.18	0.94 ± 0.17 0.96 ± 1.13		
$C_4H_0O_6S^-$	197.0120	3.93 ± 0.50 4.36 ± 5.49	1.94 ± 2.05 1.93 ± 2.95	2.00 ± 4.10 2.20 ± 2.51	1.26 ± 1.15		
C.H-O-S-	197.0120	4.30 ± 3.49 6.00 ± 7.03	1.93 ± 2.95 2 20 + 3 56	2.20 ± 2.51 3.20 ± 4.10	1.20 ± 1.32 1 30 + 1 76		
$C_4H_1O_1S^-$	190.0012	1.60 ± 2.46	2.20 ± 0.00	0.77 ± 0.04	1.30 ± 1.70 0.30 ± 0.41		
C-H-O-S-	210 0012	1.00 ± 2.40 11 00 \pm 16 15	0.00 ± 0.90 1.88 ± 6.49	6.38 ± 7.07	0.39 ± 0.41 3 67 + 4 46		
C-H-O-S-	210.9912	11.99 ± 10.13 12.32 ± 12.2	4.88 ± 0.49 6.01 ± 4.83	0.38 ± 7.97 0.47 ± 4.36	5.07 ± 4.40 6.61 + 2.05		
C-HO-S-	215.0009	12.32 ± 12.2 53 11 ± 72.16	0.91 ± 4.03 22 74 \pm 36 10	9.47 ± 4.50 25.64 + 28.00	0.01 ± 2.05 13 01 + 14 14		
$C_{2}H_{0}O_{2}S^{-}$	215.0225	0.81 ± 1.01	0.44 ± 0.85	0.46 ± 0.51	0.29 ± 0.44		
$C_{119}O_{13}$	237.0009	0.81 ± 1.01 0.80 ± 10.60	0.44 ± 0.03	6.22 ± 6.87	0.29 ± 0.44 2 13 + 3 01		
C ₅ H ₂ O ₈ S	220.9802	9.09 ± 10.09	4.38 ± 3.00 2 20 \pm 3 67	0.22 ± 0.87 2 00 + 2 64	2.13 ± 3.01 0.08 + 1.37		
C.H-O.S ⁻	229.0018	4.47 ± 3.90 0.52 ± 0.46	2.29 ± 3.07 0.40 + 0.44	2.09 ± 2.04 0.53 ± 0.54	0.96 ± 0.37 0.26 ± 0.20		
C_{411}/O_{85}	106 0756	0.32 ± 0.40 0.48 ± 0.31	0.40 ± 0.44 0.34 ± 0.27	0.33 ± 0.34 0.44 ± 0.31	0.20 ± 0.29 0.23 ± 0.10		
C H NO S-	190.9750	0.48 ± 0.31 0.18 ± 0.10	0.34 ± 0.27 0.12 ± 0.07	0.44 ± 0.31 0.12 \pm 0.01	0.33 ± 0.19 0.11 ± 0.01		
$C H NO S^{-}$	243.9703	0.10 ± 0.19 0.28 ± 0.47	0.13 ± 0.07 0.22 ± 0.24	0.13 ± 0.01 0.25 \pm 0.17	0.11 ± 0.01 0.18 ± 0.11		
$C_{4}\Pi_{8}NO_{7}S$	214.0021	0.38 ± 0.47	0.23 ± 0.24 0.17 ± 0.20	0.23 ± 0.17 0.28 ± 0.28	0.18 ± 0.11 0.15 ± 0.00		
$C_{5}\Pi_{8}NO_{7}S$	220.0021	0.49 ± 0.83	0.17 ± 0.20	0.20 ± 0.20	0.13 ± 0.09		
$C_5H_{10}NO_9S$	200.0070	1.79 ± 3.03	0.95 ± 2.06	0.49 ± 0.80	0.37 ± 0.71		
$C_{5}\Pi_{8}NO_{10}S$	2/3.9809	1.14 ± 2.09	0.75 ± 1.47	0.41 ± 0.44	0.23 ± 0.33		
$C_5H_9N_2O_{11}S$	200.0070	1.02 ± 1.90	5.00 ± 0.10	0.37 ± 0.42	0.82 ± 1.00		
	222 0276	8.24 ± 12.05	2.07 ± 4.24	4.12 ± 5.16	1.92 ± 1.72		
$C_7\Pi_{11}O_6S$	223.0270	6.24 ± 12.03	3.07 ± 4.24	4.13 ± 3.10	1.62 ± 1.72		
$C_{7}\Pi_{1}O_{7}S$	239.0223	11.04 ± 17.39 0.20 ± 0.20	5.29 ± 5.02	4.40 ± 3.84	1.09 ± 1.01 0.10 ± 0.05		
$C_{10}\Pi_{17}O_5S$	249.0797	0.20 ± 0.20	0.11 ± 0.03 0.21 ± 0.21	0.10 ± 0.03 0.20 ± 0.16	0.10 ± 0.03 0.22 ± 0.00		
$C_{9}\Pi_{15}O_{6}S$	251.0369	0.47 ± 0.47	0.31 ± 0.21	0.30 ± 0.10	0.22 ± 0.09 8 71 + 25 21		
$C_{8}\Pi_{13}O_{7}S$	233.0382	10.33 ± 10.91	5.16 ± 4.92	4.53 ± 3.81	0.71 ± 23.31		
$C_{10}\Pi_{15}O_{7}S$	279.0338	6.24 ± 12.34	4.94 ± 0.01	4.08 ± 4.50	2.88 ± 2.04		
$C_{10}\Pi_{17}O_7S$	281.0093	0.14 ± 0.09	0.10 ± 0.03	0.14 ± 0.03	0.10 ± 0.01		
$C_{10}H_{15}O_5S$	247.0040	0.07 ± 0.02	0.08 ± 0.03	0.08 ± 0.01	0.07 ± 0.01		
$C_{10}H_{15}O_6S$	205.0389	0.04 ± 0.03	0.04 ± 0.04	0.03 ± 0.04	0.03 ± 0.03		
$C_{10}H_{17}O_6S$	203.0740	0.08 ± 0.03	0.00 ± 0.01	0.07 ± 0.02	0.00 ± 0.01		
$C_{10}H_{17}O_8S$	297.0644	0.13 ± 0.05	0.10 ± 0.02	0.13 ± 0.02	0.11 ± 0.01		
$C_{10}H_{15}O_7S$	279.0538	0.19 ± 0.14	0.13 ± 0.06	0.16 ± 0.04	0.12 ± 0.02		
$C_{10}H_{15}O_8S$	295.0488	0.13 ± 0.06	0.10 ± 0.02	0.14 ± 0.01	0.11 ± 0.01		
$C_{10}H_{17}NO_9S$	326.0546	0.16 ± 0.07	0.13 ± 0.07	0.16 ± 0.03	0.12 ± 0.03		
$C_{10}H_{16}NO_7S$	294.0647	0.34 ± 0.3	1.98 ± 1.89	0.24 ± 0.14	$0.8 / \pm 0.58$		
$C_9H_{14}NO_8S$	296.0440	0.12 ± 0.11	0.39 ± 0.23	0.12 ± 0.11	0.26 ± 0.07		
$C_{10}H_{16}NO_{10}S$	342.0495	0.22 ± 0.20	0.41 ± 0.41	0.17 ± 0.14	0.26 ± 0.13		
C_2 - C_3 USs	126 0000	1 26 + 0.04	0.00 + 0.50	1 17 + 0 40	0.05 + 0.27		
C3H5O4S	130.9909	1.56 ± 0.94	0.98 ± 0.59	$1.1 / \pm 0.48$	0.95 ± 0.3		
$C_2H_3O_5S^-$	138.9701	1.73 ± 1.13	1.69 ± 1.25	1.70 ± 0.64	1.60 ± 1.17		
$C_3H_5O_5S^-$	152.9858	9.33 ± 10.64	4.51 ± 4.51	5.91 ± 5.50	3.18 ± 2.54		
$C_2H_3O_6S^-$	154.9650	9.69 ± 8.65	4.55 ± 4.55	6.89 ± 6.07	4.07 ± 3.58		
$C_3H_7O_5S^-$	155.0014	1.44 ± 1.07	1.69 ± 1.42	1.76 ± 1.28	1.37 ± 0.93		
$C_3H_5O_6S^-$	168.9807	3.19 ± 2.61	2.18 ± 3.08	2.64 ± 1.94	1.60 ± 0.88		

Table S2. The mean mass concentrations $(\pm SD)$ of identified OS_i, OS_m, and C₂-C₃ OSs 96 in PM_{2.5} collected in urban and suburban Shanghai in daytime and nighttime.

	i uroun unu		-3		-3
Formula [M ⁻ H] ⁻	MW (Da)	Urban Daytime	(ng m ⁻³) Nighttime	Suburba Davtime	n (ng m ⁻³) Nighttime
Aliphatic-OSs ^a		2	0	2	<u> </u>
$C_{12}H_{21}O_7S^-$	309.1008	0.13 ± 0.09	0.10 ± 0.05	0.12 ± 0.03	0.10 ± 0.02
$C_8H_{17}O_4S^-$	210.0926	0.12 ± 0.03	0.13 ± 0.05	0.10 ± 0.02	0.08 ± 0.01
$C_{14}H_{29}O_5S^-$	309.1736	0.07 ± 0.01	0.06 ± 0.01	0.08 ± 0.01	0.07 ± 0.01
$C_{16}H_{33}O_5S^-$	337.2049	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_6H_{13}O_4S^-$	181.0535	0.05 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_7H_{15}O_4S^-$	195.0691	0.06 ± 0.01	0.06 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_7H_{15}O_5S^-$	211.064	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_9H_{19}O_4S^-$	223.1004	0.07 ± 0.01	0.06 ± 0.01	0.08 ± 0.01	0.07 ± 0.01
$C_{10}H_{21}O_4S^-$	237.1161	0.08 ± 0.01	0.08 ± 0.02	0.10 ± 0.01	0.09 ± 0.01
$C_{24}H_{51}N_2O_{13}S^-$	607.3112	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_7H_{13}O_5S^-$	209.0484	0.08 ± 0.03	0.06 ± 0.02	0.08 ± 0.02	0.06 ± 0.01
$C_{9}H_{17}O_{5}S^{-}$	237.0797	0.14 ± 0.08	0.08 ± 0.03	0.11 ± 0.05	0.07 ± 0.02
$C_{10}H_{19}O_5S^-$	251.0953	0.15 ± 0.25	0.06 ± 0.02	0.08 ± 0.02	0.06 ± 0.01
$C_9H_{17}O_7S^-$	269.0695	0.07 ± 0.03	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{12}H_{23}O_5S^-$	279.1266	0.28 ± 0.24	0.18 ± 0.14	0.16 ± 0.10	0.09 ± 0.04
$C_9H_{17}O_4S^-$	221.0848	0.09 ± 0.02	0.07 ± 0.01	0.10 ± 0.02	0.07 ± 0.01
$C_{10}H_{19}O_5S^-$	251.0953	0.15 ± 0.25	0.06 ± 0.02	0.08 ± 0.02	0.06 ± 0.01
$C_9H_{17}O_6S^-$	253.0746	0.08 ± 0.04	0.06 ± 0.02	0.08 ± 0.01	0.06 ± 0.01
$C_{11}H_{21}O_5S^-$	265.1110	0.17 ± 0.13	0.13 ± 0.08	0.14 ± 0.08	0.09 ± 0.03
$C_{10}H_{19}O_6S^-$	267.0902	0.07 ± 0.02	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{12}H_{25}O_5S^-$	293.1423	0.31 ± 0.27	0.20 ± 0.16	0.16 ± 0.08	0.11 ± 0.04
$C_{14}H_{27}O_5S^-$	307.1579	0.25 ± 0.25	0.13 ± 0.09	0.11 ± 0.05	0.08 ± 0.02
$C_{13}H_{25}O_6S^-$	309.1372	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{14}H_{27}O_6S^-$	323.1528	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{14}H_{21}O_{5}S^{-}$	335.1892	0.05 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{17}H_{33}O_5S^-$	349.2049	0.07 ± 0.01	0.08 ± 0.02	0.11 ± 0.03	0.13 ± 0.05
$C_{16}H_{31}O_6S^-$	351.1841	0.08 ± 0.03	0.06 ± 0.01	0.08 ± 0.01	0.06 ± 0.01
$C_{18}H_{25}O_5S^-$	363.2205	0.05 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_{21}H_{41}O_5S^-$	405.2675	0.06 ± 0.01	0.05 ± 0.01	0.08 ± 0.01	0.06 ± 0.01
$C_{2}H_{15}O_{5}S^{-}$	223.0640	0.08 ± 0.02	0.06 ± 0.02	0.08 ± 0.01	0.06 ± 0.01
$C_{7}H_{13}O_{5}S^{-}$	225.0433	0.06 ± 0.02	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_6H_{11}O_7S^-$	227.0225	0.07 ± 0.04	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_8H_{15}O_6S^-$	239.0589	0.08 ± 0.03	0.06 ± 0.01	0.08 ± 0.01	0.06 ± 0.01
$C_6H_{11}O_8S^-$	243.0175	0.05 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_{11}H_{21}O_5S^-$	265.1110	0.11 ± 0.05	0.09 ± 0.03	0.11 ± 0.02	0.09 ± 0.02
$C_{10}H_{10}O_6S^-$	267.0902	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_7H_{13}O_0S^-$	273.0280	0.05 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 0.01
$C_{15}H_{20}O_5S^{-}$	321.1736	0.15 ± 0.16	0.07 ± 0.04	0.08 ± 0.02	0.06 ± 0.01
$C_{15}H_{29}O_{15}S^{-}$	587.3101	0.08 ± 0.02	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{10}H_{17}O_6S^-$	265.0746	0.07 ± 0.02	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_0H_{15}O_5S^-$	235.0640	0.10 ± 0.04	0.06 ± 0.02	0.09 ± 0.02	0.06 ± 0.01
$C_{10}H_{17}O_5S^-$	249.0797	0.07 ± 0.02	0.06 ± 0.01	0.08 ± 0.01	0.06 ± 0.01
$C_0H_{15}O_6S^-$	251.0589	0.08 ± 0.05	0.06 ± 0.02	0.08 ± 0.02	0.06 ± 0.01
$C_{10}H_{17}O_{4}S^{-}$	265.0746	0.07 ± 0.02	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{11}H_{10}O_{6}S^{-}$	279.0902	0.07 ± 0.02	0.05 ± 0.01	0.07 ± 0.01	0.06 ± 0.01
$C_{12}H_{21}O_6S^-$	293.1059	0.06 ± 0.01	0.05 ± 0.01	0.07 ± 0.01	0.05 ± 00.01
C14H25O4S	321.1372	0.18 ± 0.19	0.08 ± 0.04	0.09 ± 0.02	0.07 ± 0.01
$C_8H_{13}O_6S^-$	237.0433	0.08 ± 0.03	0.06 ± 0.02	0.09 ± 0.02	0.07 ± 0.02
$C_{9}H_{15}O_{7}S^{-}$	267.0538	0.13 ± 0.14	0.06 ± 0.04	0.08 ± 0.02	0.06 ± 0.01

104 **Table S3.** The mean mass concentrations $(\pm$ SD) of identified anthropogenic OSs in 105 PM_{2.5} collected in urban and suburban Shanghai in daytime and nighttime.

Aromatic-OSs					
$C_{11}H_{19}O_{11}S^{-}$	359.0648	0.14 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_{10}H_{17}O_{12}S^{-}$	361.0441	0.15 ± 0.02	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_7H_{11}O_9S^-$	271.0124	0.16 ± 0.04	0.13 ± 0.02	0.19 ± 0.02	0.15 ± 0.01
$C_7H_{11}O_{10}S^-$	287.0073	0.22 ± 0.10	0.15 ± 0.04	0.23 ± 0.06	0.17 ± 0.03
$C_8H_{13}O_9S^-$	285.0280	0.15 ± 0.01	0.12 ± 0.01	0.18 ± 0.02	0.15 ± 0.01
$C_8H_{13}O_{10}S^-$	301.0229	0.15 ± 0.02	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_{11}H_{17}O_{11}S^{-}$	357.0492	0.14 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_8H_{12}NO_{11}S^-$	330.0131	0.15 ± 0.02	0.13 ± 0.02	0.19 ± 0.02	0.15 ± 0.01
$C_7H_7SO_4S^-$	218.9786	0.15 ± 0.01	0.13 ± 0.02	0.18 ± 0.01	0.15 ± 0.01
$C_8H_7O_5S^-$	215.0014	0.18 ± 0.05	0.15 ± 0.05	0.20 ± 0.03	0.16 ± 0.02
$C_8H_7NO_5S^-$	229.0045	0.14 ± 0.01	0.12 ± 0.01	0.17 ± 0.01	0.14 ± 0.01
$C_8H_7O_4S^-$	199.0065	0.15 ± 0.02	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_9H_7O_7S^-$	258.9912	0.14 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.14 ± 0.01
$C_9H_7O_6S^-$	242.9963	0.14 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.14 ± 0.01
$C_{34}H_{49}O_5S^-$	569.3301	1.34 ± 0.51	0.59 ± 0.35	0.26 ± 0.11	0.18 ± 0.02
$C_{43}H_{63}O_5S^-$	691.4396	0.27 ± 0.07	0.18 ± 0.06	0.19 ± 0.01	0.16 ± 0.01
$C_7H_{11}O_9S^-$	271.0124	0.24 ± 0.14	0.16 ± 0.08	0.22 ± 0.06	0.17 ± 0.04
$C_{10}H_7O_{11}S^-$	334.9709	0.20 ± 0.09	0.15 ± 0.07	0.20 ± 0.05	0.16 ± 0.03
$C_{10}H_5O_{11}S^-$	332.9553	0.15 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_{10}H_5O_{10}S^-$	316.9603	0.15 ± 0.02	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_{12}H_7O_{13}S^-$	390.9607	0.14 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.14 ± 0.01
$C_8H_7O_5S^-$	215.0014	0.20 ± 0.07	0.17 ± 0.06	0.22 ± 0.04	0.18 ± 0.03
$C_7H_5SO_5S^-$	200.9858	0.20 ± 0.07	0.15 ± 0.05	0.21 ± 0.04	0.17 ± 0.03
C ₉ H ₉ O ₄ S ⁻	213.0222	0.21 ± 0.08	0.16 ± 0.05	0.25 ± 0.06	0.17 ± 0.03
$C_7H_6SO_4S^-$	185.9987	0.16 ± 0.02	0.13 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_{18}H_{13}O_6S^-$	357.0433	0.14 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.15 ± 0.01
$C_{23}H_{19}O_7S^-$	439.0851	0.19 ± 0.04	0.13 ± 0.01	0.21 ± 0.02	0.17 ± 0.01
$C_{25}H_{21}O_7S^-$	465.1008	0.14 ± 0.01	0.13 ± 0.03	0.17 ± 0.01	0.15 ± 0.01
$C_{24}H_{17}O_4S^-$	401.0848	0.19 ± 0.03	0.15 ± 0.02	0.23 ± 0.03	0.18 ± 0.01
$C_{27}H_{21}O_7S^-$	489.1008	0.14 ± 0.01	0.12 ± 0.01	0.17 ± 0.01	0.14 ± 0.01
$C_6H_5O_4S^-$	172.9909	0.15 ± 0.01	0.12 ± 0.01	0.18 ± 0.01	0.14 ± 0.01
$C_7H_7O_4S^-$	187.0065	0.15 ± 0.01	0.13 ± 0.02	0.18 ± 0.01	0.15 ± 0.01
$C_{12}H_{21}N_2O_{11}S^-$	401.0866	0.19 ± 0.03	0.15 ± 0.02	0.23 ± 0.03	0.18 ± 0.01
OS _a -other					
$C_4H_7O_4S^-$	151.0065	0.93 ± 0.77	0.83 ± 1.17	0.55 ± 0.43	0.44 ± 0.50
$C_5H_7O_6S^-$	194.9963	3.68 ± 3.75	1.80 ± 1.66	2.29 ± 1.80	1.35 ± 0.72
C ₆ H ₉ O ₆ S ⁻	209.0120	4.44 ± 6.52	3.00 ± 3.69	2.52 ± 3.24	1.90 ± 1.80

^aAliphatic and aromatic OSs were grouped into anthropogenic OSs (OS_a) (Riva et al. 2016b; Riva et al. 106

107 2015). Several unidentified aromatic and aliphatic OSs were classified as other anthropogenic OSs (OSa-108 other).

Typical Environment	Sampling site	Period	Season	OS _i (ng m ⁻³)	OS_m (ng m ⁻³)	OS _a (ng m ⁻³)	C_2-C_3 (ng m ⁻³)	Total (ng m ⁻³)	Ref.
	Pearl River Delta, China	2012	Summer	0.68	-	-	-	0.68	(He et al. 2014)
			Spring	0.017	0.20	0.219	-	0.44	
		2012	Summer	23.1	26.7	0.77	-	50.57	
	Shanghai, China	2012	Autumn	0.063	0.77	0.79	-	1.62	(Ma et al. 2014)
			Winter	0.82	0.90	0.72	-	2.44	
	Beijing, China	2016	Spring	16.2	13.0	-	19.5	48.7	(Wang et al. 2018)
		2016	Summer	12.3	15.1	-	-	27.4	
	Beijing, China	2016	Winter	2.0	6.0	-	-	8.0	(Wang et al. 2020)
	Atlanta, GA, USA	2014	Summer	1122.98	67.9	-	58.5	1249.38	(Hettiyadura et al. 2019)
	Guangzhou, China	2019	Summer	181.8	10.8	-	-	192.6	(Bryant et al. 2021)
	Tianjing, China	2019	Winter	600	-	-	-	600	(Ding et al. 2022)
Urban			Summer	400	-	-	-	400	
			Winter	31.5	20.7	3.1	-	55.3	
		2018	Spring	75.7	32.4	1.3	-	109.4	(Kanellopoulos et al.
	Patra, Greece		Summer	658	37.7	1.6	-	697.3	
			Autumn	53.2	25.4	1.1	-	79.7	2022)
	Hong Kong.	2016	Summer	163.19	2.95	-	-	166.14	
	China	2017	Winter	97.96	17.26	-	-	115.22	
		2016	Summer	460.2	26.22	-	-	486.42	
	Guangzhou, China	2017	Winter	88.03	20.96	-	-	108.99	
		2016	Summer	236.64	21.7	-	-	258.34	(Wang et al. 2022)
	Beijing, China	2017	Winter	176.32	36.01	-	-	212.33	
		2016	Summer	326.4	34.9	-	-	361.3	
	Shanghai, China	2017	Winter	70.31	32.32	-	-	102.63	

110 **Table S4.** The mean mass concentrations of various OSs in PM_{2.5} at different locations.

	Copenhagen, Denmark	2011	Summer	11.31	0.87	-	-	18.18	(Nguyen et al. 2014)	
	Xi'an, China	2014	Winter	-	-	0.14	77.3	77.44	(Huang et al. 2018)	
0 1 1	Centreville, AL, USA	2012	Summer	15.40	-	1.16	20.6	37.16	(Hettiyadura et al. 2017)	
Suburban	Zion, Illinois, USA	2013	Spring	121.1	8.7	-	-	129.8	(Hughes et al. 2021)	
	Beijing, China		2016	Summer	5.9	16.1	-	-	22.0	$(W_{2}, \dots, M_{2}, 1, 2020)$
Regional		2016	Winter	69.5	18.7	-	-	88.2	(wang et al. 2020)	
Forest	Centreville, Alabama	2012	Summer	16.5	20.6	-	-	37.1	(Hettiyadura et al. 2017)	
Polar sites	Arctic sites	2013	Spring	47	-	-	-	47	(Hansen et al. 2014)	
Urban		2021	G	85.38	30.61	19.31	23.38	158.68	T (1' (1	
Suburban	rban Shanghai, China		Summer	48.98	19.30	15.73	18.25	102.26	In this study	

111 ^aThe symbol of "-" denotes no data.

116	Table S5. The mean values	$(\pm SD)$ of the m	ajor parameters ol	bserved in different	periods in dayti	me and nighttime.

	Urban- period A		Urban- period B		Suburba	Suburban-period A		Suburban-period B	
	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	Daytime	Nighttime	
T (°C)	33.64 ± 0.98	29.16 ± 0.25	30.93 ± 0.78	27.95 ± 0.62	33.64 ± 0.98	29.16 ± 0.25	30.93 ± 0.78	27.95±0.62	
RH (%)	73.45 ± 3.57	89.84 ± 1.83	75.88 ± 3.84	90.59 ± 1.85	73.45 ± 3.57	89.84 ± 1.83	75.88 ± 3.84	90.59±1.85	
Wind speed	2.08 ± 0.66	1.97 ± 0.46	2.61 ± 0.19	2.17 ± 0.42	2.08 ± 0.66	1.97 ± 0.46	2.61 ± 0.19	2.17 ± 0.42	
PBLH (m)	459.17 ± 59.02	333.61 ± 36.65	919.17±189.63	574.63 ± 83.41	459.17 ± 59.02	333.61 ± 36.65	919.17 ± 189.63	574.63±83.41	
$UV (w/m^2)$	21.87 ± 3.97	0.38 ± 0.01	21.17 ± 3.13	0.37 ± 0.01	21.87 ± 3.97	0.38 ± 0.01	21.17 ± 3.13	$0.37{\pm}0.01$	
VC	951.89 ± 294.19	668.68 ± 220.05	2377.4 ± 378.6	1258.67 ± 334.63	951.89 ± 294.19	668.68 ± 220.05	2377.4 ± 378.6	1258.67 ± 334.63	
NO ₂ (ppb)	8.13 ± 1.80	9.25 ± 1.65	3.76 ± 1.31	5.01 ± 1.31	9.14 ± 1.26	9.76 ± 2.99	3.82 ± 1.75	5.80 ± 2.28	
NO (ppb)	0.47 ± 0.56	1.91 ± 0.38	0.70 ± 0.51	1.25 ± 1.02	2.13 ± 0.55	1.93 ± 0.29	1.98 ± 0.31	2.37 ± 0.53	
O ₃ (ppb)	70.28 ± 8.44	28.98 ± 8.70	31.79 ± 9.08	15.55 ± 7.48	59.73 ± 11.47	24.69 ± 7.79	29.43 ± 8.07	16.21 ± 8.68	
SO ₂ (ppb)	3.08 ± 0.71	2.20 ± 0.36	1.65 ± 0.50	1.68 ± 0.72	2.37 ± 0.09	2.21 ± 0.08	2.21 ± 0.11	2.19 ± 0.13	
ALW (ug m ⁻³)	3.26 ± 1.64	5.14 ± 3.53	1.40 ± 0.80	2.57 ± 2.20	1.29 ± 1.15	2.15 ± 1.24	1.70 ± 1.26	2.55 ± 2.86	
pН	2.08 ± 0.48	2.14 ± 0.31	3.10 ± 1.06	2.68 ± 0.98	2.21 ± 0.62	2.13 ± 0.35	2.56 ± 1.09	1.99 ± 0.43	
OM (ug m^{-3})	23.39 ± 4.64	15.38 ± 4.26	7.02 ± 2.78	3.91 ± 1.25	12.23 ± 3.51	8.72 ± 4.24	4.18 ± 2.59	2.55 ± 1.11	
EC (ug m ⁻³)	4.34 ± 1.24	3.71 ± 1.05	1.05 ± 0.94	0.38 ± 0.29	2.16 ± 0.92	1.51 ± 0.92	0.49 ± 0.86	0.21 ± 0.22	
NO3 ⁻ (ug m ⁻³)	2.60 ± 0.71	3.09 ± 2.18	1.44 ± 0.25	0.92 ± 0.14	2.28 ± 0.59	2.29 ± 2.12	1.11 ± 0.20	1.09 ± 1.02	
SO4 ²⁻ (ug m ⁻³)	5.29 ± 1.65	4.10 ± 1.22	2.41 ± 1.18	2.00 ± 1.28	3.08 ± 1.02	2.23 ± 0.52	2.29 ± 1.21	2.13 ± 1.82	
PM _{2.5} (ug m ⁻³)	31.75 ± 8.68	25.67 ± 9.12	12.54 ± 2.22	10.80 ± 3.10	27.91 ± 10.49	20.82 ± 8.25	10.75 ± 2.08	10.46 ± 3.95	
Total OSs (ng m ⁻³)	498.72 ± 249.22	272.38 ± 147.84	67.13 ± 24.53	48.55 ± 17.15	241.83 ± 123.49	175.04 ± 96.13	64.65 ± 18.61	49.4 ± 18.08	
$OS_i (ng m^{-3})$	289.18 ± 145.14	146.30 ± 103.80	32.04 ± 16.37	19.43 ± 11.77	132.56 ± 75.86	75.98 ± 42.35	29.21 ± 13.08	20.41 ± 12.23	
$C_5H_{11}O_7S^{-}(ng m^{-3})$	136.47 ± 71.59	66.77 ± 55.60	11.93 ± 8.75	8.07 ± 7.06	54.26 ± 36.67	30.08 ± 19.65	11.33 ± 6.48	8.52 ± 6.89	
$NOS_i (ng m^{-3})$	13.33 ± 11.18	19.24 ± 13.08	0.81 ± 0.25	0.62 ± 0.30	4.19 ± 2.53	5.58 ± 3.81	0.8 ± 0.28	0.62 ± 0.35	
$OS_m (ng m^{-3})$	105.86 ± 70.67	55.97 ± 26.08	8.09 ± 3.16	8.73 ± 3.96	42.14 ± 27.33	51.62 ± 52.67	8.88 ± 1.88	7.64 ± 2.34	
$C_8H_{13}O_7S^-(ng m^{-3})$	27.70 ± 21.05	9.95 ± 6.43	1.64 ± 0.75	0.93 ± 0.27	10.29 ± 7.28	32.00 ± 49.38	1.39 ± 0.40	0.95 ± 0.34	
$NOS_m (ng m^{-3})$	1.57 ± 0.58	6.63 ± 0.48	0.46 ± 0.26	1.66 ± 1.18	1.12 ± 0.20	2.44 ± 0.29	0.49 ± 0.24	1.21 ± 0.55	
C2-C3 OS (ng m ⁻³)	63.51 ± 19.82	41.10 ± 11.74	12.55 ± 4.68	9.27 ± 3.57	41.73 ± 13.50	27.81 ± 8.65	12.38 ± 4.39	9.85 ± 4.15	
$OS_a (ng m^{-3})$	40.17 ± 16.25	29.01 ± 6.92	14.45 ± 1.64	11.12 ± 1.91	25.40 ± 8.12	19.63 ± 3.45	14.18 ± 1.06	11.5 ± 0.90	

123 **Figure S1.** The locations of the sampling sites. The map was derived from Baidu Maps

124 (BIDU, China).

125

129 Figure S2. Average distributions in (a) mass concentrations and (b) mass fractions of

130 various OSs in PM_{2.5} collected in urban and suburban Shanghai in September 2020.

Figure S3. The 1-day (24 h) backward trajectories showing the daily air mass flows to

the (a) urban and (b) suburban sites during period B.

141 **Figure S4.** The temporal variations of ventilation coefficient (VC) during the sampling

142 period.

143

146 **Figure S5.** The temporal variations of the ratio of 2-MT-OS to 2-MGA-OS during (a)

147 2020 and (b) 2021 sampling campaigns.

149

Figure S6. Scatterplots of the products of NO₂ and O₃ concentrations with the mass
concentrations of NOS_i in PM_{2.5} collected in the urban and suburban areas. Red and
blue lines show regression lines at the urban and suburban sites, respectively.

189 **REFERENCES**

190	Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel,
191	A.: Accretion Product Formation from Ozonolysis and OH Radical Reaction of
192	alpha-Pinene: Mechanistic Insight and the Influence of Isoprene and Ethylene,
193	Environ. Sci. Technol., 52, 11069-11077, 10.1021/acs.est.8b02210, 2018.
194	Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurten, T., Otkjaer, R. V., Kjaergaard,
195	H. G., Stratmann, F., Herrmann, H., Sipila, M., Kulmala, M., and Ehn, M.:
196	Hydroxyl radical-induced formation of highly oxidized organic compounds, Nat.
197	Commun., 7, 13677, 10.1038/ncomms13677, 2016.
198	Boyd, C. M., Sanchez, J., Xu, L., Eugene, A. J., Nah, T., Tuet, W. Y., Guzman, M. I.,
199	and Ng, N. L.: Secondary organic aerosol formation from the β -
200	pinene+NO ₃ system: effect of humidity and peroxy
201	radical fate, Atmos. Chem. Phys., 15, 7497-7522, 10.5194/acp-15-7497-2015,
202	2015.
203	Bryant, D. J., Elzein, A., Newland, M., White, E., Swift, S., Watkins, A., Deng, W.,

- Song, W., Wang, S., Zhang, Y., Wang, X., Rickard, A. R., and Hamilton, J. F.:
 Importance of Oxidants and Temperature in the Formation of Biogenic
 Organosulfates and Nitrooxy Organosulfates, ACS Earth Space Chem., 5, 22912306, 10.1021/acsearthspacechem.1c00204, 2021.
- Ding, S., Chen, Y., Devineni, S. R., Pavuluri, C. M., and Li, X. D.: Distribution
 characteristics of organosulfates (OSs) in PM2.5 in Tianjin, Northern China:
 Quantitative analysis of total and three OS species, Sci. Total. Environ., 834,

- 211 155314, 10.1016/j.scitotenv.2022.155314, 2022.
- Ehn, M., Kleist, E., Junninen, H., Petäjä, T., Lönn, G., Schobesberger, S., Dal Maso,
- 213 M., Trimborn, A., Kulmala, M., Worsnop, D. R., Wahner, A., Wildt, J., and Mentel,
- 214 T. F.: Gas phase formation of extremely oxidized pinene reaction products in
- chamber and ambient air, Atmos. Chem. Phys., 12, 5113-5127, 10.5194/acp-125113-2012, 2012.
- Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I., Springer, M.,
- 218 Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H.,
- 219 Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J.,
- 220 Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaergaard, H. G.,
- 221 Canagaratna, M., Maso, M. D., Berndt, T., Petaja, T., Wahner, A., Kerminen, V.
- 222 M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of 223 low-volatility secondary organic aerosol, Nature, 506, 476-479, 224 10.1038/nature13032, 2014.
- 225 Guo, Y., Yan, C., Liu, Y., Qiao, X., Zheng, F., Zhang, Y., Zhou, Y., Li, C., Fan, X., Lin,
- 226 Z., Feng, Z., Zhang, Y., Zheng, P., Tian, L., Nie, W., Wang, Z., Huang, D.,
- 227 Daellenbach, K. R., Yao, L., Dada, L., Bianchi, F., Jiang, J., Liu, Y., Kerminen, V.-
- 228 M., and Kulmala, M.: Seasonal variation in oxygenated organic molecules in urban
- 229 Beijing and their contribution to secondary organic aerosol, Atmos. Chem. Phys.,
- 230 22, 10077-10097, 10.5194/acp-22-10077-2022, 2022.
- 231 Hansen, A. M. K., Kristensen, K., Nguyen, Q. T., Zare, A., Cozzi, F., Nøjgaard, J. K.,
- 232 Skov, H., Brandt, J., Christensen, J. H., Ström, J., Tunved, P., Krejci, R., and

- Glasius, M.: Organosulfates and organic acids in Arctic aerosols: speciation,
 annual variation and concentration levels, Atmos. Chem. Phys., 14, 7807-7823,
 10.5194/acp-14-7807-2014, 2014.
- 236 He, Q. F., Ding, X., Wang, X. M., Yu, J. Z., Fu, X. X., Liu, T. Y., Zhang, Z., Xue, J.,
- Chen, D. H., Zhong, L. J., and Donahue, N. M.: Organosulfates from pinene and
 isoprene over the Pearl River Delta, South China: seasonal variation and
 implication in formation mechanisms, Environ Sci Technol, 48, 9236-9245,
 10.1021/es501299v, 2014.
- Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T., and Stone, E. A.:
 Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic
 secondary organic aerosol formation, Atmos. Chem. Phys., 19, 3191-3206,
 10.5194/acp-19-3191-2019, 2019.
- Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes, E., Richards, K., and
 Humphry, T.: Determination of atmospheric organosulfates using HILIC
 chromatography with MS detection, Atoms. Meas. Tech., 8, 2347-2358,
 10.5194/amt-8-2347-2015, 2015.
- 249 Hettiyadura, A. P. S., Jayarathne, T., Baumann, K., Goldstein, A. H., de Gouw, J. A.,
- 250 Koss, A., Keutsch, F. N., Skog, K., and Stone, E. A.: Qualitative and quantitative
- analysis of atmospheric organosulfates in Centreville, Alabama, Atmos. Chem.
- 252 Phys., 17, 1343-1359, 10.5194/acp-17-1343-2017, 2017.
- 253 Huang, R.-J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W.,
- Gao, B., Li, Y., Chen, Q., Hoffmann, T., O'Dowd, C. D., Bilde, M., and Glasius,

256

272

M.: Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2:5 from Xi'an, northwestern China, Atoms. Meas. Tech., 11, 3447-3456,

- 257 10.5194/amt-11-3447-2018, 2018.
- 258 Hughes, D. D., Christiansen, M. B., Milani, A., Vermeuel, M. P., Novak, G. A., Alwe,
- 259 H. D., Dickens, A. F., Pierce, R. B., Millet, D. B., Bertram, T. H., Stanier, C. O.,
- and Stone, E. A.: PM2.5 chemistry, organosulfates, and secondary organic aerosol
- during the 2017 Lake Michigan Ozone Study, Atmos. Environ., 244,
 10.1016/j.atmosenv.2020.117939, 2021.
- Jiang, H., Li, J., Tang, J., Cui, M., Zhao, S., Mo, Y., Tian, C., Zhang, X., Jiang, B., Liao,
- Y., Chen, Y., and Zhang, G.: Molecular characteristics, sources, and formation
 pathways of organosulfur compounds in ambient aerosol in Guangzhou, South
 China, Atmos. Chem. Phys., 22, 6919-6935, 10.5194/acp-22-6919-2022, 2022.
- 267 Jokinen, T., Sipila, M., Richters, S., Kerminen, V. M., Paasonen, P., Stratmann, F.,
- 268 Worsnop, D., Kulmala, M., Ehn, M., Herrmann, H., and Berndt, T.: Rapid
- autoxidation forms highly oxidized RO2 radicals in the atmosphere, Angew. Chem.

270 Int. Ed. Engl., 53, 14596-14600, 10.1002/anie.201408566, 2014.

271 Kanellopoulos, P. G., Kotsaki, S. P., Chrysochou, E., Koukoulakis, K., Zacharopoulos,

N., Philippopoulos, A., and Bakeas, E.: PM2.5-bound organosulfates in two

- Eastern Mediterranean cities: The dominance of isoprene organosulfates, Chemosphere, 297, 134103, 10.1016/j.chemosphere.2022.134103, 2022.
- 275 Ma, J., Ungeheuer, F., Zheng, F., Du, W., Wang, Y., Cai, J., Zhou, Y., Yan, C., Liu, Y.,
- 276 Kulmala, M., Daellenbach, K. R., and Vogel, A. L.: Nontarget Screening Exhibits

277	a Seasonal Cycle of PM2.5 Organic Aerosol Composition in Beijing, Environ. Sci.
278	Technol., 56, 7017-7028, 10.1021/acs.est.1c06905, 2022.
279	Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal variations of
280	particulate organosulfates in urban Shanghai, China, Atmos. Environ., 85, 152-
281	160, 10.1016/j.atmosenv.2013.12.017, 2014.
282	Nestorowicz, K., Jaoui, M., Rudzinski, K. J., Lewandowski, M., Kleindienst, T. E.,
283	Spolnik, G., Danikiewicz, W., and Szmigielski, R.: Chemical composition of
284	isoprene SOA under acidic and non-acidic conditions: effect of relative humidity,
285	Atmos Chem Phys, 18, 18101-18121, 10.5194/acp-18-18101-2018, 2018.
286	Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen,
287	K., Tulinius, T. E., Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A.,
288	Nøjgaard, J. K., and Glasius, M.: Understanding the anthropogenic influence on
289	formation of biogenic secondary organic aerosols in Denmark via analysis of
290	organosulfates and related oxidation products, Atmos. Chem. Phys., 14, 8961-
291	8981, 10.5194/acp-14-8961-2014, 2014.

- Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.: Radical-initiated formation
 of organosulfates and surfactants in atmospheric aerosols, Geophys. Res. Lett., 37,
 n/a-n/a, 10.1029/2009gl041683, 2010.
- Olson, C. N., Galloway, M. M., Yu, G., Hedman, C. J., Lockett, M. R., Yoon, T., Stone,
- E. A., Smith, L. M., and Keutsch, F. N.: Hydroxycarboxylic acid-derived
 organosulfates: synthesis, stability, and quantification in ambient aerosol, Environ
 Sci Technol, 45, 6468-6474, 10.1021/es201039p, 2011.

- Riva, M., Budisulistiorini, S. H., Zhang, Z., Gold, A., and Surratt, J. D.: Chemical
 characterization of secondary organic aerosol constituents from isoprene
 ozonolysis in the presence of acidic aerosol, Atmospheric Environment, 130, 5-13,
- 302 10.1016/j.atmosenv.2015.06.027, 2016a.
- 303 Riva, M., Da Silva Barbosa, T., Lin, Y. H., Stone, E. A., Gold, A., and Surratt, J. D.:
- Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001-11018, 10.5194/acp-16-11001-2016, 2016b.
- 307 Riva, M., Tomaz, S., Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E. A., Villenave,
- E., and Surratt, J. D.: Evidence for an unrecognized secondary anthropogenic source of organosulfates and sulfonates: gas-phase oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate aerosol, Environ. Sci. Technol., 49, 6654-6664, 10.1021/acs.est.5b00836, 2015.
- 312 Schindelka, J., Iinuma, Y., Hoffmann, D., and Herrmann, H.: Sulfate radical-initiated
- formation of isoprene-derived organosulfates in atmospheric aerosols, Faraday Discuss., 165, 237-259, 10.1039/c3fd00042g, 2013.
- 315 Shalamzari, M. S., Ryabtsova, O., Kahnt, A., Vermeylen, R., Herent, M. F., Quetin-
- Leclercq, J., Van der Veken, P., Maenhaut, W., and Claeys, M: Mass spectrometric characterization of organosulfates related to secondary organic aerosol from
- isoprene, Rapid Commun. Mass Spectrom., 784-794, 10.1002/rcm.6511, 2013,
 2013.
- 320 Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T.E., Edney,

321	E. O., and Seinfeld, J. H.: Effect of Acidity on Secondary Organic Aerosol
322	Formation from Isoprene, Environ. Sci. Technol., 41, 5363–5369, 2007.
323	Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J.,
324	Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive
325	intermediates revealed in secondary organic aerosol formation from isoprene, Proc.
326	Natl. Acad. Sci. U.S.A., 107, 6640-6645, 10.1073/pnas.0911114107, 2010.
327	Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M.,
328	Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M.,
329	Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organosulfate
330	Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A., 112, 8345-
331	8378, 10.1021/jp802310p, 2008.
332	Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L., Nizkorodov, S.
333	A., Laskin, J., Laskin, A., and Yang, X.: Molecular characterization of
334	organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by
335	nanospray-desorption electrospray ionization high-resolution mass spectrometry,
336	Environ. Sci. Technol., 48, 10993-11001, 10.1021/es5024674, 2014.
337	Trostl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L.,
338	Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C.,
339	Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer, A. K.,
340	Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A.,
341	Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen,
342	H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kurten, A., Laaksonen, A.,

343	Lawler, M., Leiminger, M., Mathot, S., Mohler, O., Nieminen, T., Onnela, A.,
344	Petaja, T., Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N.,
345	Schobesberger, S., Sengupta, K., Sipila, M., Smith, J. N., Steiner, G., Tome, A.,
346	Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P.,
347	Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I.,
348	Worsnop, D. R., Donahue, N. M., and Baltensperger, U.: The role of low-volatility
349	organic compounds in initial particle growth in the atmosphere, Nature, 533, 527-
350	531, 10.1038/nature18271, 2016.
351	Wang, Y., Ren, J., Huang, X. H. H., Tong, R., and Yu, J. Z.: Synthesis of Four
352	Monoterpene-Derived Organosulfates and Their Quantification in Atmospheric
353	Aerosol Samples, Environ. Sci. Technol., 51, 6791-6801, 10.1021/acs.est.7b01179,
354	2017.
355	Wang, Y., Ma, Y., Kuang, B., Lin, P., Liang, Y., Huang, C., and Yu, J. Z.: Abundance of
356	organosulfates derived from biogenic volatile organic compounds: Seasonal and

- 357 spatial contrasts at four sites in China, Sci. Total. Environ., 806, 151275,
 358 10.1016/j.scitotenv.2021.151275, 2022.
- Wang, Y., Ma, Y., Li, X., Kuang, B. Y., Huang, C., Tong, R., and Yu, J. Z.: Monoterpene
 and Sesquiterpene alpha-Hydroxy Organosulfates: Synthesis, MS/MS
 Characteristics, and Ambient Presence, Environ. Sci. Technol., 53, 12278-12290,
- 362 10.1021/acs.est.9b04703, 2019.
- 363 Wang, Y., Zhao, Y., Wang, Y., Yu, J. Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z., Yan,
- 364 N., and Xiao, H.: Organosulfates in atmospheric aerosols in Shanghai, China:

365	seasonal and interannual variability, origin, and formation mechanisms, Atmos.
366	Chem. Phys., 21, 2959-2980, 10.5194/acp-21-2959-2021, 2021a.
367	Wang, Y., Hu, M., Wang, YC., Li, X., Fang, X., Tang, R., Lu, S., Wu, Y., Guo, S., Wu,
368	Z., Hallquist, M., and Yu, J. Z.: Comparative Study of Particulate Organosulfates
369	in Contrasting Atmospheric Environments: Field Evidence for the Significant
370	Influence of Anthropogenic Sulfate and NOx, Environ. Sci. Technol.Lett., 7, 787-
371	794, 10.1021/acs.estlett.0c00550, 2020.
372	Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu,
373	Y., Le Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist,
374	M., and Yu, J.: The secondary formation of organosulfates under interactions
375	between biogenic emissions and anthropogenic pollutants in summer in Beijing,
376	Atmos. Chem. Phys., 18, 10693-10713, 10.5194/acp-18-10693-2018, 2018.
377	Wang, Z., Ehn, M., Rissanen, M. P., Garmash, O., Quéléver, L., Xing, L., Monge-
378	Palacios, M., Rantala, P., Donahue, N. M., Berndt, T., and Sarathy, S. M.: Efficient
379	alkane oxidation under combustion engine and atmospheric conditions, Commun.
380	Chem., 4, 10.1038/s42004-020-00445-3, 2021b.
381	Xie, Q., Su, S., Chen, J., Dai, Y., Yue, S., Su, H., Tong, H., Zhao, W., Ren, L., Xu, Y.,
382	Cao, D., Li, Y., Sun, Y., Wang, Z., Liu, CQ., Kawamura, K., Jiang, G., Cheng, Y.,
383	and Fu, P.: Increase of nitrooxy organosulfates in firework-related urban aerosols
384	during Chinese New Year's Eve, Atmos. Chem. Phys., 21, 11453-11465,
385	10.5194/acp-21-11453-2021, 2021.

386 Xie, Q., Li, Y., Yue, S., Su, S., Cao, D., Xu, Y., Chen, J., Tong, H., Su, H., Cheng, Y.,

387	Zhao, W., Hu, W., Wang, Z., Yang, T., Pan, X., Sun, Y., Wang, Z., Liu, C. Q.,
388	Kawamura, K., Jiang, G., Shiraiwa, M., and Fu, P.: Increase of High Molecular
389	Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity
390	Beijing, J. Geophys. Res.: Atmos. , 125, 10.1029/2019jd032200, 2020.
391	Xu, Z. N., Nie, W., Liu, Y. L., Sun, P., Huang, D. D., Yan, C., Krechmer, J., Ye, P. L.,
392	Xu, Z., Qi, X. M., Zhu, C. J., Li, Y. Y., Wang, T. Y., Wang, L., Huang, X., Tang, R.
393	Z., Guo, S., Xiu, G. L., Fu, Q. Y., Worsnop, D., Chi, X. G., and Ding, A. J.:
394	Multifunctional Products of Isoprene Oxidation in Polluted Atmosphere and Their
395	Contribution to SOA, Geophys. Res. Lett., 48, 10.1029/2020gl089276, 2021.
396	Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen,
397	H., Jokinen, T., Sarnela, N., Häme, S. A. K., Schobesberger, S., Canonaco, F., Yao,
398	L., Prévôt, A. S. H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D. R., and Ehn,
399	M.: Source characterization of highly oxidized multifunctional compounds in a
400	boreal forest environment using positive matrix factorization, Atmos. Chem. Phys.
401	16, 12715-12731, 10.5194/acp-16-12715-2016, 2016.
402	Yassine, M. M., Dabek-Zlotorzynska, E., Harir, M., and Schmitt-Kopplin, P.:
403	Identification of weak and strong organic acids in atmospheric aerosols by
404	capillary electrophoresis/mass spectrometry and ultra-high-resolution Fourier

- 405 transform ion cyclotron resonance mass spectrometry, Anal. Chem., 84, 6586-
- 406 6594, 10.1021/ac300798g, 2012.
- 407 Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin, P.: Structural
 408 characterization of organic aerosol using Fourier transform ion cyclotron

409	resonance mass spectrometry: aromaticity equivalent approach, Rapid. Commun.
410	Mass. Spectrom., 28, 2445-2454, 10.1002/rcm.7038, 2014.
411	Ye, Y., Zhan, H., Yu, X., Li, J., Wang, X., and Xie, Z.: Detection of organosulfates and
412	nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-
413	high resolution FT-ICR mass spectrometry, Sci. Total. Environ., 767, 144339,
414	10.1016/j.scitotenv.2020.144339, 2021.
415	