1	Spatial and Diurnal Variations of Aerosol
2	Organosulfates in Summertime Shanghai, China:
3	Potential Influence of Photochemical Process and
4	Anthropogenic Sulfate Pollution
5	
6	Ting Yang ¹ , Yu Xu ^{1,*} , Qing Ye ¹ , Yi-Jia Ma ¹ , Yu-Chen Wang ² , Jian-Zhen Yu ² , Yu-Sen
7	Duan ³ , Chen-Xi Li ¹ , Hong-Wei Xiao ¹ , Zi-Yue Li ¹ , Yue Zhao ^{1,*} , Hua-Yun Xiao ^{1,*}
8	
9	¹ School of Environmental Science and Engineering, Shanghai Jiao Tong University,
10	Shanghai 200240, China
11	² Division of Environment & Sustainability, Hong Kong University of Science &
12	Technology, Hong Kong SAR, China
13	³ Shanghai Environmental Monitoring Center, Shanghai 200235, China
14	
15 16	
17	
18	*Corresponding authors
19	Yu Xu, e-mail: xuyu360@sjtu.edu.cn
20	Yue Zhao, e-mail: yuezhao20@sjtu.edu.cn
21	Hua-Yun Xiao, e-mail: xiaohuayun@sjtu.edu.cn
22	
23 24	
24	

25	ABSTRACT: Organosulfates (OSs) are ubiquitous aerosol components with intense
26	research over years. However, spatial and diurnal variations in OS formation in polluted
27	atmosphere remain poorly understood. In this study, 130 OS species were quantified
28	(or semi-quantified) in ambient fine particulate matter (PM _{2.5}) collected in urban and
29	suburban Shanghai (East China) in summer 2021. Isoprene- and monoterpene-derived
30	OSs were dominant OS groups (averaging 51% and 19% of total quantified OSs,
31	respectively), likely indicating a large biogenic contribution to OS formation in summer.
32	Most OSs peaked during daytime, while monoterpene-derived nitrooxy-OSs (NOS _m)
33	increased during nighttime. Accordingly, OSs were largely produced via daytime
34	formation processes, rather than nighttime chemistry, excepting NOS _m . Additionally,
35	although OS formation in the urban and suburban areas exhibited similar diurnal
36	variations, the average concentrations of biogenic and anthropogenic OSs decreased
37	significantly from the urban site to the suburban site. Furthermore, we concretized
38	daytime OS formation based on the interactions among OSs, ultraviolet (UV), ozone
39	(O ₃), and sulfate (SO ₄ ^{2–}). Indeed, the concentrations of most OSs were significantly
40	correlated with the values of UV[O ₃][SO ₄ ^{2–}] during daytime in both urban and suburban
41	Shanghai. In particular, the correlation between major OSs and $UV[O_3][SO_4^{2-}]$ was
42	stronger than the correlation of major OSs with O_3 and SO_4^{2-} ; moreover, there was no
43	significant correlation between major OSs and UV. Thus, higher urban OS events were
44	attributed to the enhanced photochemical processes and sulfate level in the urban area.
45	Overall, this study provides field evidence for the influence of photochemical process
46	and anthropogenic sulfate on OS formation and has important implications for the

47 mitigation of organic particulate pollution.

48 KEYWORDS: Organosulfates; Aerosols; Photooxidation; Sulfate pollution; Shanghai
49

50 **1. Introduction**

51 Organosulfates (OSs) are ubiquitous constituents in secondary organic aerosol (SOA) and can contribute up to $\sim 30\%$ of organic mass in atmospheric fine particles 52 (PM_{2.5}) (Tolocka and Turpin 2012; Surratt et al. 2008; Hettiyadura et al. 2018). OSs 53 affect the formation, hygroscopicity, light-absorbing, and acidity of organic aerosols as 54 55 well as biogeochemical cycles of sulfur (Estillore et al. 2016; Riva et al. 2019; Fleming et al. 2019), which are tightly associated with air quality, human health, and regional 56 et al. 2001; Menon et al. 2008). Thus, understanding the climate (Ramanathan 57 58 mechanisms and key influencing factors of OS formation in the ambient atmosphere is of great significance for an effective assessment of environment and climate effects of 59 OSs. 60

61 Many laboratory studies have suggested that heterogeneous and multiphase reactions involving biogenic and anthropogenic volatile organic compounds (VOCs), 62 their oxidation intermediates, and sulfate or gas-phase sulfur dioxide (SO₂) are 63 important pathways for the formation of OSs (Blair et al. 2017; Riva et al. 2016b; Ye et 64 al. 2018). For example, the formation of 2-methyltetrol sulfate ester (2-MT-OS) and 2-65 methylglyceric acid sulfate ester (2-MGA-OS) can be attributed to the reactive uptake 66 of isoprene epoxydiols (IEPOX) and isoprene-derived hydroxymethyl-methyl-a-67 lactone (HMML) by acidic particles, respectively (Surratt et al. 2010; Nguyen et al. 68

69	2015). The ozonolysis of α -pinene and limonene in the presence of SO ₂ can contribute
70	to the production of monoterpene-derived OSs (e.g., $C_9H_{15}O_7S^-$ and $C_{10}H_{17}O_7S^-$) (Ye
71	et al. 2018). Chamber experiments by Riva et al., (Riva et al. 2015) showed that the
72	photooxidation of C_{10} – C_{12} alkanes is associated with the formation of aliphatic OSs.
73	More recently, the aliphatic OSs have been identified based on the uptake experiments
74	of SO ₂ by oleic acid and other unsaturated fatty acids (Shang et al. 2016; Passananti et
75	al. 2016). In addition, the gas-phase oxidation of polycyclic aromatic hydrocarbons was
76	found to be an important source of aromatic OSs (Riva et al. 2015).
77	Furthermore, OSs have been identified in different ambient atmospheres, including
78	suburban, rural, urban, marine, polar, and forest areas (Kristensen andGlasius 2011;
79	Hettiyadura et al. 2017; Hawkins et al. 2010; Stone et al. 2012; Hettiyadura et al. 2018;
80	Hansen et al. 2014; Glasius et al. 2018). Owing to different levels of precursors and
81	atmospheric pollution, the abundance and formation pathways of OSs change
82	substantially in temporal and spatial scales (Wang et al. 2021; Ding et al. 2022; Jiang
83	et al. 2022; Nozière et al. 2010; O'brien et al. 2014). Patently, field observations are
84	valuable for verifying the mechanistic understanding of OS formation obtained in the
85	laboratory studies. The importance of atmospheric oxidants and sulfate (or SO ₂) in the
86	OS formation was proposed in field observations according to a correlation analysis of
87	OSs with ozone (O_3) (or the sum of O_3 and NO_2 concentrations) and sulfate (or SO_2)
88	(Nguyen et al. 2014; Hettiyadura et al. 2019; Wang et al. 2018). Notably, these
89	observation-based studies also highlighted the role of photochemistry of OS precursors.
90	However, the interactions among ultraviolet (UV), O ₃ , and sulfate have not been well

investigated. In particular, few studies were performed to systematically reveal the
difference in the formation processes of OSs in polluted and clean areas, as well as
during daytime and nighttime.

Shanghai is a megacity in the Yangtze River Delta (YRD) region of China. 94 Locally varied ambient conditions such as O₃, SO₂, and NO_x, relative humidity (RH), 95 and aerosol acidity affect the formation of OSs significantly (Cai et al. 2020; Wang et 96 al. 2021). Here, 130 OS species were quantified (or semi-quantified) in PM_{2.5} samples 97 collected in urban and suburban Shanghai in summer 2021 to investigate the relative 98 99 influence of photochemistry and nighttime chemistry on OS formation and their linkages with anthropogenic sulfate pollution. In addition, the potential impacts of 100 aerosol acidity and aerosol liquid water (ALW) on OS formation were discussed. This 101 102 study can help to deepen the understanding of photochemical process and nighttime chemistry of OSs in the atmosphere. 103

104

105 **2. Materials and Methods**

106 **2.1 Site Description and Sample Collection**

107 Ambient $PM_{2.5}$ samples were continuously collected in the urban center and 108 suburban area in Shanghai from 11 to 23 July 2021 (**Figure S1**). The sampling site in 109 the urban center is located on the roof of a building (~20 m above the ground) in the 110 Xuhui Campus of Shanghai Jiao Tong University. The site is characterized by a typical 111 urban environment with heavy traffic and dense population. The aerosol sampler in the 112 suburban area was placed on the roof of a ~20 m high building in a monitoring station

of Pudong Huinan. This site is closer to the coastline than the urban sampling site 113 (Figure S1). Thus, the suburban site is expected to be more affected by clean air mass 114 from the sea. PM_{2.5} was sampled onto the prebaked (550°C for \sim 8 h) quartz fiber filters 115 (8 × 10 in., Whatman) using a high-volume air sampler (HiVol 3000, Ecotech) at a flow 116 rate of 67.8 m³ min⁻¹. The duration of each sample collection in both urban and 117 suburban areas was approximately 11 h during the daytime (8:30-19:30 LT) and 12 h 118 during the nighttime (20:00-8:00 LT). Two blank filter samples were collected at each 119 site during the campaign. A total of 50 filter samples were collected, which were stored 120 121 at -30°C until analysis.

122

123 2.2 Chemical Analysis and Prediction of Aerosol Acidity and ALW

A portion of the filter (~15.9 cm²) was extracted with 3 mL methanol in an 124 ultrasonic bath for 30 min for two times. The sodium camphor sulfonate (1 ppm) was 125 spiked on the filter punches as an internal standard before extracting. The extracts 126 127 obtained each time were combined and filtered through a 0.22 µm Teflon syringe filter (CNW Technologies GmbH) and then concentrated to 300 µL under a gentle stream of 128 ultra-high-purity nitrogen gas. Subsequently, 300 µL ultrapure water was added into the 129 concentrated samples, followed by centrifugation to get the supernatant for analysis. 130 OSs were analyzed using an Acquity UPLC (Waters, USA) coupled to a Xevo G2-XS 131 Quadrupole time-of-flight mass spectrometer (ToF-MS, Waters, USA) equipped with 132 an electrospray ionization (ESI) source operated in the negative ion mode. The 133 chromatographic conditions and analytical procedures were detailed in our recent 134

135 publication (Wang et al. 2021).

136	A total of 212 OSs were identified by UPLC-MS analysis, in which 130 OS species
137	were quantified (or semi-quantified) (Table 1 and Table S1). The quantified (or semi-
138	quantified) species included isoprene-derived OSs (OSi), monoterpene-derived OSs
139	(OS_m) , C_2 - C_3 OSs, aliphatic OSs, and aromatic OSs (Hettiyadura et al. 2019). It is worth
140	noting that most of identified OSs were semi-quantified using surrogate standards
141	because of the lack of authentic standards (Staudt et al. 2014; Hettiyadura et al. 2015).
142	The surrogate OS standards included potassium phenyl sulfate (98%, Tokyo Chemical
143	Industry), methyl sulfate (99%, Macklin), sodium octyl sulfate (95%, Sigma-Aldrich),
144	glycolic acid sulfate (artificial synthesis), lactic acid sulfate (artificial synthesis),
145	limonaketone sulfate (artificial synthesis), and α -pinene sulfate (artificial synthesis)
146	(Olson et al. 2011; Wang et al. 2017; Hettiyadura et al. 2019; Hettiyadura et al. 2017;
147	Wang et al. 2018), as detailed by our previous study (Wang et al. 2021). Considering
148	that OSs with similar structures of carbon backbone typically have similar MS
149	responses (Wang et al. 2021; Wang et al. 2017), the selection of surrogate standard for
150	a given OS was primarily based on the similarities in the carbon chain structure of the
151	standard and targeted OS species (Hettiyadura et al. 2017). Furthermore, the similarities
152	of the sulfur-containing fragment ions in the MS/MS spectra of the standard and
153	targeted OS species have also been adopted (Wang et al. 2021; Hettiyadura et al. 2019).
154	For OSs that have been reported in previous studies, MS/MS can further support their
155	structural identifications (Table 1). However, most of OSs without identified structural
156	information were classified and semi-quantified according to their molecular formulas

and correlation analysis with known OSs and unidentified OSs (Sect. S1) (Bryant et al. 157 2021; Hettiyadura et al. 2019). Details about the standards used for quantitative OS 158 species as well as about the classification or identification of OSs were shown in Table 159 1, Table S1, and Supplementary Information (Sect. S1). We found that most of OSs 160 without identified structural information in previous studies and this study had 161 significantly lower peak intensity compared to those listed in Table 1, implying that 162 these OS compounds have weak impact on total OS abundance in ambient aerosols. In 163 general, the differential ionization efficiencies and fragmentation patterns in the OS 164 165 measurement may introduce biases (Hettiyadura et al. 2017). Consequently, the OS species shown in Table 1 and Table S1 should not be regarded as an accurate measure 166 of OS compounds, but a best solution in the absence of authentic OS standards 167 168 (Hettiyadura et al. 2015; Hettiyadura et al. 2017; Hettiyadura et al. 2019; Wang et al. 2021). The recoveries of OS standards ranged from 84% to 94% (87%±4%). Thus, we 169 assumed that there is a high extraction efficiency for major OS species in this study, as 170 171 indicated by previous studies (Wang et al. 2021; Hettiyadura et al. 2015). Detailed data quality control was described in our recent publication (Wang et al. 2021). 172

The mass concentrations of organic carbon (OC) and elemental carbon (EC) were determined via an OC/EC analyzer (DRI Model 2015). The mass concentrations of OC were converted to those of organic matter (OM) using a conversion factor of 1.6 (Turpin andLim 2001; Wang et al. 2021; Wang et al. 2018). The mass concentrations of inorganic ions in PM_{2.5} samples, including Na⁺, NH⁺₄, K⁺, Mg²⁺, Ca²⁺, Cl⁻, NO⁻₃, and SO²⁻₄, were measured using an ion chromatograph system (ICS-5000+, Thermo, USA).

179	A thermodynamic model (ISORROPIA-II) was used to predict the mass
180	concentration of ALW and pH (Guo et al. 2015; Hennigan et al. 2015). The model was
181	operated with particle-phase concentrations of Na ⁺ , SO ₄ ²⁻ , NH ₄ ⁺ , NO ₃ ⁻ , Cl ⁻ , Ca ²⁺ , K ⁺ ,
182	and Mg^{2+} , as well as ambient temperature (T) and RH as the inputs. Moreover, the
183	forward mode with the thermodynamically metastable state was selected. The detailed
184	descriptions on ALW and pH predictions were shown in our previous studies (Wang et
185	al. 2021; Xu et al. 2020). In particular, we compared different outputs of the pH values
186	calculated by ISORROPIA-II between the cases with and without considering OSs as
187	additional sulfates to investigate potential impact of OSs on pH prediction (Riva et al.
188	2019). The pH values predicted from these two cases (2.55 ± 0.93 vs 2.65 ± 0.94 at the
189	urban site and 2.17 \pm 0.68 vs 2.23 \pm 0.74 at the suburban site) have an insignificant
190	difference. Thus, OSs were expected to have a considerably small contribution to pH
191	prediction in this study.

193 **2.3.** Auxiliary Data and Data Analysis

The transport trajectories of air masses arriving at the sampling sites during the sampling period were created using the database of NOAA's Air Resources Laboratory (NOAA's Air Resources Laboratory, USA) and MeteoInfoMap software coupled with TrajStat program (Chinese Academy of Meteorological Sciences, China). The data of T, RH, wind speed, and UV irradiation as well as the concentrations of NO, NO₂, O₃, SO₂, and PM_{2.5} at the urban and suburban sites were obtained from the environmental monitoring stations of Xuhui (~4 km away from the sampling site) and Pudong Huinan (~10 m away from the sampling site), respectively. The ventilation coefficient (VC) can
be used to characterize the state of atmospheric dilution in pollutant concentrations
(Gani et al. 2019). The VC value can be expressed as a product of wind speed and
planetary boundary layer height (PBLH).

205

3. Results and Discussion

207 **3.1. Molecular compositions and concentrations of OSs**

The mass concentrations and mass fractions of the OS species in PM2.5 collected 208 209 in Shanghai were shown in Figure 1, with a focus on their spatial and diurnal differences. On average, isoprene-derived OSs (i.e., OSi) were the dominant 210 components at both urban and suburban sites (Figures 1a,d), which accounted for 53.9 211 212 \pm 0.1% and 48.1 \pm 0.1% of the total OS masses, respectively. The mass fractions and concentrations of $C_5H_{11}O_7S^-$ were the highest among all kinds of OS_i . In contrast, OS_i 213 containing nitrogen atoms only accounted for a small proportion of OS_i in both urban 214 215 and suburban areas (Figures 1a,d and Table S2). Monoterpene-derived OSs (OS_m) were the second most abundant OS components, whose concentrations averaged 30.6 216 \pm 46.4 ng m⁻³ and 19.3 \pm 25.7 ng m⁻³ in the urban and suburban areas, respectively. 217 Moreover, the abundance of OS_m was also less controlled by nitrogen-containing OS_m. 218 On average, the OS species with two or three carbon atoms (C2-C3 OSs) and 219 anthropogenic OSs (OSa) together contributed to 26.8% and 33.1% of total OS 220 concentrations in the urban and suburban areas, respectively (Figures 1a,d and Table 221 S3). A similar pattern in the relative abundance of different groups of OSs was also 222

223	observed at the same sites in summer 2020 (Figure S2). The predominance of OS_i was
224	well documented by many previous observations in Beijing, China (Wang et al. 2018),
225	Guangzhou, China (Bryant et al. 2021), and Atlanta, Georgia, USA (Hettiyadura et al.
226	2019), Hong Kong, China (Wang et al. 2022), Copenhagen, Denmark (Nguyen et al.
227	2014), Centreville, AL, USA (Hettiyadura et al. 2017), Zion, Illinois, USA (Hughes et
228	al. 2021). A reasonable explanation for these cases is that there is a large biogenic
229	emission of isoprene, particularly during summer days with higher temperature than in
230	other seasons (Bryant et al. 2021). Interestingly, we found that the mass concentrations
231	of all types of OSs (i.e., total OS_i , OS_m , C_2 - C_3 OSs, and OS_a) tended to decrease from
232	the urban area to the suburban area. This spatial difference in OS concentrations can be
233	attributed to varied atmospheric oxidation capacity and aerosol properties (e.g., sulfate,
234	acidity, and ALW) (Wang et al. 2021), which will be discussed in detail below.
235	Table S4 gives an overview of OSs in $PM_{2.5}$ in different regions around the world.
236	The concentrations of total OSs in our study (more than 102.3 ng m ⁻³) were higher than
237	those in Copenhagen, Denmark (75.7 ng m ⁻³) (Nguyen et al. 2014), and Beijing, China
238	(27.4 ng m ⁻³) (Wang et al. 2018). However, the OSs showed a lower concentration in
239	Shanghai compared to the observations in Guangzhou (486.4 ng m ⁻³) (Wang et al. 2022)
240	and Atlanta, USA (Hettiyadura et al. 2019) (1249.4 ng m ⁻³). The concentrations of OS _i
241	in this study were lower than those observed in summertime Atlanta, USA (1123.0 ng
241 242	in this study were lower than those observed in summertime Atlanta, USA (1123.0 ng m ⁻³) (Hettiyadura et al. 2019), Guangzhou, China (460.2 ng m ⁻³) (Wang et al. 2022),
241 242 243	in this study were lower than those observed in summertime Atlanta, USA (1123.0 ng m ⁻³) (Hettiyadura et al. 2019), Guangzhou, China (460.2 ng m ⁻³) (Wang et al. 2022), and Hongkong, China (163.2 ng m ⁻³) (Wang et al. 2022), but higher than Copenhagen,

245	concentrations also showed a variable range in different regions (Table S4). The
246	concentrations of OS_a in this study were much higher than those in previous
247	observations (Hettiyadura et al. 2017; Kanellopoulos et al. 2022), which is likely
248	explained by more OS _a species being quantified or higher air pollution level in this study.
249	It should be noted that these spatial comparisons for OS levels mentioned above
250	involved more or less uncertainty due to the lack of authentic standards for precise
251	quantification of OSs. However, our semi-quantitative data provides at least literature
252	reference for future research on these OSs. At the same study site, the abundances of
253	biogenic OSs (OS _i + OS _m) were typically higher than those of other types of OSs,
254	particularly during the summertime when vegetation grows vigorously (Table S4).
255	Thus, the yield of summertime OSs in the investigated areas largely depends on the
256	emission level of biogenic VOCs and the air pollution status.
257	We found that the contributions of total OSs to OM were $1.3\pm0.5\%$ and $1.9\pm0.5\%$
258	at urban and suburban sites in summer 2021, respectively. These proportions of total
259	OSs in OM were larger than those observed in Beijing, China (0.3%) (Wang et al. 2018)
260	and Centreville, USA (0.2%) (Hettiyadura et al. 2017). However, significant higher

contribution of total OSs to OM was observed in Atlanta, USA (10.3%) (Hettiyadura et

al. 2019) where the formation of OSs was dominated by the oxidation of biogenic VOCs.

In particular, total OSs contributed to $1.2 \pm 0.8\%$ of OM in summer 2015 and $1.1 \pm 0.8\%$ of OM in summer 2019 in urban Shanghai (Wang et al. 2021). Thus, although anthropogenic emission reduction has been vigorously promoted by the local government in recent years (Guo et al. 2022; Pei et al. 2022), the contribution of SOA to OM in Shanghai has not decreased significantly as expected (Wang et al. 2021).

Figures 1b,e show diurnal differences in the mass concentrations and mass 268 fractions of the OS components in PM_{2.5} collected at the urban site. The OS_i was the 269 dominant sulfur-containing species regardless of in daytime and nighttime. However, 270 271 the concentrations of OS_i exhibited a significant decrease from the daytime (117.8 \pm 148.1 ng m⁻³) to the nighttime (43.9 \pm 62.0 ng m⁻³), except for isoprene-derived 272 nitrooxyorganosulfates (NOS_i). Moreover, the variations in OS_i mass concentrations 273 (~2 times) were much larger than those in OS_i mass fractions (< 1.2 times). These 274 275 results indicate that the production of major OS_i (e.g., $C_5H_{11}O_7S^-$, $C_5H_9O_7S^-$ and $C_5H_7O_7S^-$) was weakened during the nighttime. In contrast, the higher concentration 276 for these OS_i in the daytime can be attributed to the increased levels of precursors (e.g., 277 278 isoprene) (Bryant et al. 2021) and oxidants (e.g., O₃) (Table S5) as well as the strong photochemistry in the daytime. Although the average fraction of NOS_i was higher in 279 the nighttime than in the daytime, their concentration was similar between the daytime 280 and nighttime. This is because that several special NOS_i (e.g., C₅H₁₀NO₉S⁻, 281 C₅H₈NO₁₀S⁻, C₄H₈NO₇S⁻, and C₅H₈NO₇S⁻) peaked in the daytime, although 282 $C_5H_9N_2O_{11}S^-$ showed maximum in the nighttime (Table S2). Previous laboratory 283 studies have suggested that the formation of $C_5H_{10}NO_9S^-$ is mainly related to •OH 284 oxidation processes (Hamilton et al. 2021). Thus, a strong photochemical oxidation 285 during daytime can be responsible for the increases in concentrations of these NOS_i 286 (particularly C₅H₁₀NO₉S⁻) from the nighttime to the daytime. Overall, the diurnal 287 variations of other OSs including OS_m, C₂-C₃ OSs, and OS_a were similar to that of OS_i, 288

with a higher level in the daytime than in the nighttime excepting for NOSs (**Figure 1** and **Tables S2** and **S3**). It is noteworthy that the fractions and concentrations of monoterpene-derived NOSs (NOS_m) were higher in the nighttime than in the daytime (**Table S2**). This case can be attributed to NO₃•-related nighttime chemistry (Wang et al. 2018). Thus, these findings further emphasize the importance of photochemistry for daytime OS formation and nighttime chemistry for NOS (in particular NOS_m) formation in urban Shanghai.

The concentrations of various types of OSs at the suburban site were lower than 296 297 those at the urban site in both daytime and nighttime (Figures 1b,c). However, the characteristics of diurnal difference in various OSs at the suburban site were similar to 298 those observed at the urban site, which showed a substantially higher OS level in the 299 300 daytime. A similar case was also found in Beijing in 2016 (Wang et al. 2018) and Shanghai in 2017 (Cai et al. 2020). Clearly, the aerosol OS abundance in Shanghai was 301 mainly controlled by the OS formation process in the daytime rather than in the 302 nighttime. 303

304

305 3.2. Time series of the major OSs

Figures 2a-2h compare the time series of the major OS species and inorganic ions in PM_{2.5} collected at urban and suburban sites. The OS_i concentrations peaked during daytime on July 11 and 12, with maximum values of 479.8 ng m⁻³ and 309.5 ng m⁻³ at urban and suburban sites, respectively. Owing to the high proportion of OS_i in total OSs, total OS concentrations also showed maximum values during July 11 and 12. The mass

311	concentrations of total OSs, OS_i , and $C_5H_{11}O_7S^-$ (a major OS_i component) decreased
312	from July 11 to July 14 (period A; i.e., relatively polluted period) in both urban and
313	suburban areas, whereas their concentrations exhibited a quite small fluctuation after
314	July 14 (period B; i.e., clean period). As a result, the mean concentrations of total OSs
315	and OS_i were ~4 times higher in the period A than in the period B. The temporal
316	variations in the concentrations of $OS_m,\ C_8H_{13}O_7S^-$ (a major component of $OS_m)$
317	(Schindelka et al. 2013), OS_a , and C_2 - C_3 OSs were similar to those of total OSs and OS_i .
318	However, the dissimilarities in the diurnal variations of OSs in period A and period B
319	suggest that the sources or levels of precursors and oxidants associated with OS
320	formation differed between these two periods. This consideration was further supported
321	by decreasing O ₃ and NO ₂ levels from period A to period B (Table S5 and Figures 2i,j).
322	Sulfate showed a temporal variation similar to total OSs, $\mbox{OS}_{i},$ and \mbox{OS}_{m}
322 323	Sulfate showed a temporal variation similar to total OSs, OS_i , and OS_m concentrations in most days (Figures 2g,h). We observed several abnormally high
322 323 324	Sulfate showed a temporal variation similar to total OSs, OS_i , and OS_m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport
322323324325	Sulfate showed a temporal variation similar to total OSs, OS_i , and OS_m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure
 322 323 324 325 326 	Sulfate showed a temporal variation similar to total OSs, OS _i , and OS _m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure S3); moreover, VC value was lower on July 18 than on other days (Figure S4). Thus,
 322 323 324 325 326 327 	Sulfate showed a temporal variation similar to total OSs, OS _i , and OS _m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure S3); moreover, VC value was lower on July 18 than on other days (Figure S4). Thus, this high sulfate case can be partly attributed to the special meteorological conditions
 322 323 324 325 326 327 328 	Sulfate showed a temporal variation similar to total OSs, OS _i , and OS _m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure S3); moreover, VC value was lower on July 18 than on other days (Figure S4). Thus, this high sulfate case can be partly attributed to the special meteorological conditions on July 18. In general, sulfate concentrations showed a strong correlation with total OSs,
 322 323 324 325 326 327 328 329 	Sulfate showed a temporal variation similar to total OSs, OS_i , and OS_m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure S3); moreover, VC value was lower on July 18 than on other days (Figure S4). Thus, this high sulfate case can be partly attributed to the special meteorological conditions on July 18. In general, sulfate concentrations showed a strong correlation with total OSs, OS_i , and OS_m concentrations at both sites ($P < 0.01$, $r = 0.76$ –0.78). These results
 322 323 324 325 326 327 328 329 330 	Sulfate showed a temporal variation similar to total OSs, OS _i , and OS _m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure S3); moreover, VC value was lower on July 18 than on other days (Figure S4). Thus, this high sulfate case can be partly attributed to the special meteorological conditions on July 18. In general, sulfate concentrations showed a strong correlation with total OSs, OS _i , and OS _m concentrations at both sites ($P < 0.01$, $r = 0.76$ –0.78). These results indicate that the abundances of OSs in these two study areas were tightly associated
 322 323 324 325 326 327 328 329 330 331 	Sulfate showed a temporal variation similar to total OSs, OS _i , and OS _m concentrations in most days (Figures 2g,h). We observed several abnormally high sulfate events during period B (from the evening of the 17th to 18th). The transport distance of air mass on July 18 was found to be shorter than that in other days (Figure S3); moreover, VC value was lower on July 18 than on other days (Figure S4). Thus, this high sulfate case can be partly attributed to the special meteorological conditions on July 18. In general, sulfate concentrations showed a strong correlation with total OSs, OS _i , and OS _m concentrations at both sites ($P < 0.01$, $r = 0.76-0.78$). These results indicate that the abundances of OSs in these two study areas were tightly associated with sulfate-related particle-phase chemistry (Surratt et al. 2008).

The concentrations of total OSs, OS_i , and OS_m exhibited a distinct diurnal

variation during period A at both sites, with a higher concentration in the daytime. The 333 diurnal variation pattern of OSs was similar to those of O₃ and sulfate. These findings 334 imply an important role of atmospheric oxidation capacity and sulfate in daytime OS 335 formation. Exceptionally, although a clear diurnal pattern was also observed for NOS_m, 336 their concentrations peaked in the nighttime, suggesting that the formation of NOS_m 337 was highly affected by the NO₃•-related nighttime chemistry (linuma et al. 2007; 338 Surratt et al. 2008). In the period B, the concentrations of various OSs showed a weak 339 diurnal variation, with a slightly higher level in the daytime. 340

341 As mentioned above, the ambient levels of oxidants (e.g, O₃ and NO₂) and sulfates showed a significant difference in period A and period B, which were tightly associated 342 with the formation of OSs (Wang et al. 2021). Cluster analysis of backward trajectories 343 344 showed that air masses arriving at both urban and suburban sites in the period A mainly originated from the continental region, with significant influences of anthropogenic 345 emissions (e.g., NO_x and SO₂) from southern YRD. Furthermore, considering the 346 347 distinct and similar diurnal variation of O₃, NO₂, SO₂, sulfate, and OSs during period A at both sites, aerosol OSs can be assumed to be mainly formed in local areas. In contrast, 348 these two sampling sites were primarily affected by air masses transported from the 349 East China Sea in the period B. Moreover, the average VC value in the period A was 350 two times lower than that in the period B (Table S5), implying relatively weaker 351 diffusion and dilution of air pollutants in the period A. These factors can be partly 352 353 responsible for the higher oxidant and sulfate concentrations in the period A than in the period B. Similarly, since the suburban site is closer to the East China Sea with a 354

decreased influence from anthropogenic emissions (**Figure 3**), the levels of O₃, NO_x, and sulfate were higher at the urban site than at the suburban site (**Figure 2** and **Table S5**). The differences in the concentration of oxidants and sulfate might provide an explanation for the difference in the concentrations of OSs between periods A and B as well as between urban and suburban sites.

360

361 **3.3. Formation mechanisms of OSs**

363 Previous laboratory studies have suggested that isoprene can react with •OH to form IEPOX in the gas phase under low NO_x conditions (Fabien et al. 2009). In the 364 daytime, ambient O₃ can be rapidly photolyzed to generate •OH under the influence of 365 366 UV (Kourtchev et al. 2015). Thus, O₃ and UV could serve as a proxy of •OH. Considering a significant role of photochemistry and sulfate-related heterogeneous 367 chemistry in the formation of OSs, OS_i production is expected to be closely associated 368 369 with isoprene, O₃, UV, and sulfate. Specifically, the simplified pathways leading to the formation of OS_i in the atmosphere can be derived as follows. 370

371
$$O_3 + hv \to O(^1D) + O_2 \qquad J_{O_3} \quad (1)$$

372
$$O(^{1}D) + H_{2}O \rightarrow 2 \bullet OH$$
 k_{1} (2)

373
$$O(^{1}D) + M \rightarrow O(^{3}P) + M$$
 k_{2} (3)

$$374 \qquad \text{Isoprene} + \bullet \text{OH} \to X \qquad \qquad k_3 \qquad (4)$$

$$X + SO_4^{2^-} \to OS_i \qquad \qquad k_4 \qquad (5)$$

Where J_{O3} is the photolysis rate constant, k_{1-4} is the second-order rate coefficient, M is

N₂ or O₂, and X represents the potential products (e.g., IEPOX and HMML) of isoprene
oxidation by •OH.

Assuming the concentrations of $O(^{1}D)$ and •OH are in the steady state, we can derive the following equations (H. andSeinfeld 2016).

381
$$[O(^{1}D)] = \frac{J_{O_{3}}[O_{3}]}{k_{1}[H_{2}O] + k_{2}[M]}$$
(6)

382
$$[\bullet OH] = 2\tau_{OH}k_1[O(^1D)][H_2O]$$
(7)

Where τ_{OH} is the average lifetime of •OH. In general, J_{O3} is linearly dependent on the UV radiation, i.e., $J_{O3} = \varphi UV$, where φ is the slope of the linear fitting between J_{O3} and UV radiation (Li et al. 2022). Combining equation (6) and (7), the steady-state •OH concentration can be expressed as:

387
$$[\bullet OH] = \frac{2\tau_{OH}k_1[H_2O]J_{O_3}[O_3]}{k_1[H_2O] + k_2[M]} = \alpha\varphi\tau_{OH}UV[O_3]$$
(8)

$$\alpha = \frac{2k_1[H_2O]}{k_1[H_2O] + k_2[M]} \tag{9}$$

Also, assuming a steady-state to the oxygenated organic intermediates (i.e., X),we can derive:

391
$$[X] = k_3 \tau_X [Isoprene][OH] = \alpha \varphi k_3 \tau_X \tau_{OH} [Isoprene] UV[O_3]$$
(10)

392 Where τ_X is the average lifetime of X in the atmosphere.

393 During the strong formation of OS_i via the heterogeneous reactions of X on acidic 394 sulfate, the change in the abundance of OS_i is expected to be proportional to its 395 formation rate:

396
$$\frac{d[OS_i]}{dt} \propto k_4[SO_4^{2-}][X] \propto \alpha \varphi k_3 k_4 \tau_X \tau_{OH}[Isoprene]UV[O_3][SO_4^{2-}]$$
(11)

It should be noted that the above equations are derived based on the assumption that the reaction between $O(^1D)$ and H_2O is a major source of summertime •OH in the studied areas. Given that a linear relationship was observed between atmospheric •OH and $J_{O(^1D)}$ in different atmospheres (Stone et al., 2012), such an assumption seems to be reasonable. When isoprene is in a steady state in the atmosphere, OS_i production is expected to be proportional to the product of O₃, UV, and sulfate.

403

$$\frac{d[OS_i]}{dt} \propto \text{UV}[O_3][SO_4^{2-}] \tag{12}$$

It should be noted that equation (12) did not consider the influences of aerosol 404 acidity, ALW, and other factors (e.g., •OH production from the photolysis of nitrous 405 acid and aldehydes during the daytime). However, the deduction can at least suggest 406 that the secondary production of OS_i is positively correlated with the value of 407 $UV[O_3][SO_4^{2-}]$. Indeed, the concentrations of daytime OS_i and major OS_i species 408 showed a linear positive relationship with the value of $UV[O_3][SO_4^{2-}]$ at both urban and 409 410 suburban sites (r = 0.84-0.92, P < 0.01) (Figure 4a-c). We found that the correlation between major OS_i species and $UV[O_3][SO_4^{2-}]$ was stronger than the correlation of 411 major OS_i species with O₃ and SO₄²⁻ (r < 0.82, P < 0.01); moreover, there was no 412 significant correlation between major OSs and UV (P > 0.05). Thus, our results provide 413 414 field evidence that the formation of daytime OS_i in these two study areas was mainly controlled by •OH oxidation of isoprene; moreover, the higher concentration of OS_i in 415 the urban area can be attributed to the stronger atmospheric oxidation capacity (i.e., 416 higher UV[O₃] value) and more serious anthropogenic sulfate pollution (particularly 417 during period A). We also observed that the OS concentrations did not significantly 418 increase in several high sulfate events in the period B. One possible explanation is that 419 these abnormal high sulfate events resulted in excessive SO_4^{2-} in the formation of OSs. 420

421	2-MT-OS and 2-MGA-OS have been identified as important tracers of isoprene-
422	derived SOA (Hettiyadura et al. 2019; Cai et al. 2020). During isoprene oxidation by
423	•OH, these two OS species are produced under low (i.e., IEPOX pathway) and high
424	(i.e., HMML or methacrylic acid epoxide (MAE) pathways) NO _x conditions,
425	respectively (Surratt et al. 2010; Nguyen et al. 2015). The ratios of 2-MT-OS
426	concentration to 2-MGA-OS concentration in the daytime were 9.7 \pm 3.1 and 12.1 \pm
427	5.5 at urban and suburban sites, respectively (Figure S5b). A 2-MT-OS/2-MGA-OS
428	ratio of larger than 1 was also found in observations in summer 2020 (Figure S5a),
429	suggesting low NO_x channel dominated the formation of daytime OS_i in the two study
430	areas. This finding was similar to previous observations in Beijing (3.2) (Wang et al.
431	2020) and Guangzhou (7.6) (Bryant et al. 2021). Other abundant OS_i compounds
432	including $C_5H_7O_7S^-$, $C_4H_7O_6S^-$, and $C_5H_9O_7S^-$ can be produced by the photooxidation
433	of isoprene, heterogeneous oxidative aging of 2-MT-OS, or sulfate radical-initiated
434	reaction with methacrolein and methyl vinyl ketone in the aqueous phase (Schindelka
435	et al. 2013; Wach et al. 2019; Hettiyadura et al. 2015). These OSs showed strong
436	correlations ($r = 0.74-0.90$, $P < 0.01$) with UV[O ₃][SO ₄ ²⁻], which further highlights the
437	significance of the photochemistry in OS _i formation.

In the nighttime, the formation •OH can be primarily attributed to the reactions of olefins and O₃ (Paulson andOrlando 1996). As shown in **Figures 4d-f**, total OS_i and major OS_i compounds were significantly correlated with the product of O₃ and SO₄^{2–} concentrations (P < 0.01, r = 0.96-0.98). Since the nighttime oxidant level (including O₃ and •OH) was substantially lower than that in the daytime (**Table S5**), the production

of OS_i was weakened in the nighttime (Table S2). It is interesting to note the 2-MT-443 OS/2-MGA-OS mean ratio in the nighttime was 13.1–15.0 (Figure S5(b)), significantly 444 445 higher than the mean ratio (9.7-12.1) in the daytime, indicating that the IEPOX pathway may be a potential mechanism to generate OS_i in the nighttime. Another 446 possible explanation for the decreased OS concentration in the nighttime is that these 447 OSs were mainly formed during the daytime, but had a lower abundance in the 448 nighttime due to deposition and weak nighttime formation. Namely, considering the 449 strong diffusion effect during the daytime and the weak diffusion effect at the nighttime 450 451 (Figure S4), the nighttime OSs may be partially derived from OSs formed via photochemical processes during the daytime. This is because the enhanced diffusion 452 effect during the daytime can result in a decrease in the amount of OS produced during 453 454 the daytime to deposit into the nighttime.

Furthermore, NO₃• chemistry in the nighttime was another possible pathway to 455 form OS_i, particularly NOSs. The nighttime NOS concentration was linearly correlated 456 with the product of NO₂ and O₃ ([NO₂][O₃], i.e., a proxy of NO₃•) (Figure S6). 457 Interestingly, most of NOS_i (e.g., C₅H₁₀NO₉S⁻, C₅H₈NO₁₀S⁻, C₄H₈NO₇S⁻, and 458 $C_5H_8NO_7S^-$) have higher concentrations in the daytime, excepting for $C_5H_9N_2O_{11}S^-$. 459 Thus, although nighttime NO₃• chemistry was important, the NOS_i formed via 460 photochemistry under the influence of NO_x in the daytime was still dominant 461 contributors to total NOS_i in our study areas. Regarding C₅H₉N₂O₁₁S⁻, its formation 462 pathway is mainly the NO₃• oxidation of C₅H₉NO₅ as illustrated in Figure S7 463 (Hamilton et al. 2021). Accordingly, the abundance of $C_5H_9N_2O_{11}S^-$ peaked during the 464

nighttime (Figure S8). It should be pointed out that the \bullet OH oxidation of C₅H₉NO₅ can 465 also contribute to the production of $C_5H_{10}NO_9S^-$ (Figure S7). Clearly, this mechanism 466 can be responsible for the higher $C_5H_{10}NO_9S^-$ concentrations in the daytime as 467 mentioned above. In general, increased OS_i level in the daytime demonstrated that the 468 formation of OS_i in urban and suburban areas was largely controlled by photooxidation 469 of isoprene in the presence of sulfate in the daytime, rather than nighttime NO3• 470 chemistry. Moreover, a decrease in average OS_i level from the urban area to the 471 suburban area can be explained by the weakened photooxidation of isoprene and the 472 473 decreased anthropogenic sulfate pollution (particularly in the relatively polluted period).

474

475 **3.3.2 Monoterpene-derived OSs**

The concentrations of the most abundant OS_m species ($C_{10}H_{15}O_7S^-$ and $C_8H_{13}O_7S^-$) showed a strong correlation with the value of $UV[O_3][SO_4^{2-}]$ (and $UV[O_3][SO_2]$) in the daytime at both urban and suburban sites (r = 0.82-0.86, P < 0.01), indicating that the photooxidation of monoterpenes was a significant source for OS_m . Previous studies also demonstrated that $C_{10}H_{15}O_7S^-$ can be produced through the photooxidation of monoterpenes or sulfate radical reaction with α -pinene (Surratt et al. 2008; Nozière et al. 2010).

In the nighttime, the concentrations of nitrogen-free OS_m species decreased significantly with a decrease in the O₃ levels (Wang et al. 2020). However, NOS_m species increased in concentration in the nighttime and showed a significant correlation with the value of $[O_3][NO_2]$ (the proxy of NO_3 •, as mentioned above) (r = 0.90-0.95, P

< 0.01). Accordingly, nighttime NO₃• chemistry exerted a significant influence on the 487 abundance of NOS_m in these study areas. A study by Hamilton et al., (Hamilton et al. 488 489 2021) has reported that NO₃• chemistry plays an important role in the production of NOS_m . However, the overall lower OS_m level in the nighttime (Table S2) suggests that 490 daytime OS_m production via monoterpenes photooxidation was still the dominant 491 contributor to total OS_m throughout the day. Although several filed studies have 492 reported the abundance of various NOS_m (e.g., $C_{10}H_{16}NO_7S^-$ and $C_9H_{14}NO_8S^-$) (Wang 493 et al. 2018; Bryant et al. 2021; Cai et al. 2020), their structures, formation mechanisms, 494 495 and relevant diurnal variations remain large uncertainties, which need to be deeply explored in the future research. 496

497

498

3.3.3 C₂-C₃ and anthropogenic OSs

The OS species with two or three carbon atoms (C_2 - C_3 OSs) are generally 499 considered to originate from both biogenic and anthropogenic emissions (Wang et al. 500 501 2020). The abundant C_2 - C_3 OS species, including $C_2H_3O_6S^-$ (glycolic acid sulfate; GAS), C₃H₅O₅S⁻ (hydroxyacetone sulfate; HAS), and C₃H₅O₆S⁻ (lactic acid sulfate; 502 LAS), were significantly correlated with the values of $UV[O_3][SO_4^{2-}]$ in the daytime at 503 both urban and suburban sites (r = 0.79-0.91, P < 0.01), indicating that the 504 photochemical processes largely contributed to the formation of C₂-C₃ OSs. Recently, 505 the heterogeneous •OH oxidation of particulate 2-MT-OS has been shown to generate 506 a series of C₂-C₃ OSs (e.g., C₂H₃O₆S⁻, C₃H₅O₆S⁻, and C₂H₃O₅S⁻) (Chen et al. 2020). 507 Moreover, $C_3H_5O_4S^-$ and $C_3H_7O_5S^-$ have previously been reported to be produced by 508

the photooxidation of diesel vehicle exhausts (Blair et al. 2017).

Most of the quantified OS_a compounds, including C₁₃H₂₅O₅S⁻, C₉H₁₅O₇S⁻, 510 $C_8H_{17}O_4S^-$, benzyl sulfate ($C_7H_7O_4S^-$), phenyl sulfate ($C_6H_5O_4S^-$), as well as 511 $C_6H_9O_6S^-$, $C_5H_7O_6S^-$, and $C_4H_7O_4S^-$, exhibited a strong correlation (P < 0.01) with the 512 values of UV[O₃][SO₄²⁻] in the daytime. $C_{13}H_{25}O_5S^-$ has been detected in diesel exhaust 513 (Cui et al. 2019), which is the homologous compound of $C_{12}H_{23}O_5S^-$ produced from 514 dodecane photooxidation (Riva et al. 2016b). A chamber study has detected C₉H₁₅O₇S⁻ 515 in decalin SOA and speculated that it was produced via •OH oxidation of a C₉-carbonyl 516 517 hydroperoxide (C₉H₁₆O₃) and subsequent reaction on acidic sulfate aerosols (Riva et al. 2016b). In addition, photooxidation of diesel fuel vapor in the presence of SO₂ has been 518 suggested to be an important source of C₆H₉O₆S⁻, C₅H₇O₆S⁻, and C₄H₇O₄S⁻ species 519 520 (Blair et al. 2017). The formation of C₇H₇O₄S⁻ and C₆H₅O₄S⁻ can also be attributed to the photooxidation of naphthalene and 2-methylnaphthalene (Riva et al. 2015). 521 We note that the concentrations of most of C₂-C₃ OS and OS_a species decreased 522 523 significantly from the daytime to the nighttime (Table S2 and Table S3). As discussed above, the OSs observed in the nighttime may partially come from the OSs generated 524 during the daytime. Thus, the deposition effect from the daytime to the nighttime was 525 an important factor controlling nighttime levels of C₂-C₃ OSs and OS_a. In addition, the 526 nighttime gas-phase oxidation process was also likely associated with C2-C3 and 527 anthropogenic OS formation at both urban and suburban sites, as suggested by the 528 significant correlations of C₂-C₃ OSs and OS_a with O₃ and [O₃][NO₂] in the nighttime 529 (r = 0.89-0.91, P < 0.01). Overall, these results further highlight the importance of 530

531 photochemistry in controlling the all-day abundance of OSs, as discussed earlier.

532

533 **3.3.4** The effects of ALW and pH on OS formation

We have demonstrated that the atmospheric oxidation capacity (e.g., UV[O₃] and 534 $[O_3 + NO_2]$), sulfate pollution, and nighttime NO₃• chemistry exerted considerable 535 influences on the formation of OSs in both urban and suburban areas. In addition, 536 laboratory and field studies have suggested that aerosol properties including acidity and 537 ALW also play important roles in OS formation (Iinuma et al. 2007; Surratt et al. 2007b; 538 539 Wang et al. 2020; Wang et al. 2018; 2022). The aerosol pH in Shanghai in summer averaged 2.7 ± 0.9 and 2.2 ± 0.7 in urban and suburban areas, respectively. The mean 540 pH value was similar to that in northern China (summer) (Ding et al. 2019; Wang et al. 541 542 2018), but higher than that in the Pearl River Delta (PRD) region (Fu et al. 2015). In this study, only the 2-MT-OS concentration showed an evident negative correlation with 543 the pH value (r = 0.58, P < 0.05), suggesting the aerosol acidity is not a limiting factor 544 for the formation of most OS species. 545

A positive correlation was observed between the concentrations of OSs and ALW only in the urban area during both daytime and nighttime (**Figure 5**), consistent with our previous observations in urban Shanghai (Wang et al. 2021). It is interesting to note that although higher ALW concentrations and lower pH values were observed at the suburban site, the OS concentrations were significantly higher at the urban site (**Table S5**). This result further confirms that atmospheric oxidation capacity and sulfate pollution level governed the formation of OSs in urban and suburban Shanghai (particularly in the relatively polluted period), though ALW and aerosol acidity also played a role. Therefore, a synergistic regulation of atmospheric oxidation capacity and anthropogenic SO₂ emissions would be important for the mitigation of OS and SOA pollution in the megacity Shanghai.

557

558 **4. Conclusions**

We investigated the spatial and diurnal variations of aerosol OS formation in 559 Shanghai in summer. Isoprene- and monoterpene-derived OSs were found to be the 560 561 dominant OS groups during the entire sampling campaign, likely suggesting that the formation of OSs was largely controlled by biogenic VOCs. Most OSs decreased from 562 the daytime to the nighttime, while NOS_m peaked during nighttime. These findings 563 564 suggested that OSs were mainly produced via daytime formation processes in both urban and suburban areas, excepting NOS_m. Moreover, the average abundance of 565 various types of OSs showed a decrease trend from the urban area to the suburban area, 566 which can be explained by weakened atmospheric oxidation capacity and sulfate 567 pollution in the suburban area (primarily in the relatively polluted period). Further, 568 daytime OS formation was concretized according to the interactions among OSs, UV, 569 O_3 , and SO_4^{2-} , suggesting that the concentrations of most OSs were significantly 570 correlated with the values of $UV[O_3][SO_4^{2-}]$ during daytime in both urban and suburban 571 Shanghai. We concluded that an enhancement in the photochemical process and sulfate 572 level can exacerbate OS pollution in the urban area. These findings were summarized 573 in a diagram (Figure 6). Generally, our study not only deepens the understanding about 574

575	the importance of photochemical process and anthropogenic sulfate pollution in
576	controlling OS formation but also provides potential management strategies to decrease
577	the abundance of particulate OSs.
578	
579	Data availability
580	The data presented in this work are available upon request from the corresponding
581	authors.
582	
583	Supplement
584	The supplement related to this article is available online.
585	
586	Competing interests
587	The authors declare no competing financial interest.
588	
589	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M
589 590	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M performed field measurements; TY performed chemical analysis; YX, TY, and YZ
589 590 591	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M performed field measurements; TY performed chemical analysis; YX, TY, and YZ performed data analysis; YX and TY wrote the original manuscript; and YX, YZ, Y-
589 590 591 592	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M performed field measurements; TY performed chemical analysis; YX, TY, and YZ performed data analysis; YX and TY wrote the original manuscript; and YX, YZ, Y- C.W, J-Z.Y, Y-S.D, C-X.L, H-W.X, and Z-Y.L reviewed and edited the manuscript.
589 590 591 592 593	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M performed field measurements; TY performed chemical analysis; YX, TY, and YZ performed data analysis; YX and TY wrote the original manuscript; and YX, YZ, Y- C.W, J-Z.Y, Y-S.D, C-X.L, H-W.X, and Z-Y.L reviewed and edited the manuscript.
589 590 591 592 593 594	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M performed field measurements; TY performed chemical analysis; YX, TY, and YZ performed data analysis; YX and TY wrote the original manuscript; and YX, YZ, Y- C.W, J-Z.Y, Y-S.D, C-X.L, H-W.X, and Z-Y.L reviewed and edited the manuscript. Acknowledgements
589 590 591 592 593 594 595	Author contributions. YZ, H-Y.X, and YX designed the study; TY, QY and Y-J.M performed field measurements; TY performed chemical analysis; YX, TY, and YZ performed data analysis; YX and TY wrote the original manuscript; and YX, YZ, Y- C.W, J-Z.Y, Y-S.D, C-X.L, H-W.X, and Z-Y.L reviewed and edited the manuscript. Acknowledgements This study was supported by the National Natural Science Foundation of China (grant

597	Shanghai Institutions of Higher Learning, the Shanghai Sailing Program (grant
598	22YF1418700), the Shanghai Pujiang Program (grant 20PJ1407600), and the National
599	Natural Science Foundation of China (grant 42005090).
600	
601	Review statement. This paper was edited by Jason Surratt and reviewed by two
602	anonymous referees.
603	
604	
605	References
606	Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurten, T., Otkjaer, R. V., Kjaergaard,
607	H. G., Stratmann, F., Herrmann, H., Sipila, M., Kulmala, M., and Ehn, M.:
608	Hydroxyl radical-induced formation of highly oxidized organic compounds,
609	Nat. Commun., 7, 13677, 10.1038/ncomms13677, 2016.
610	Blair, S. L., MacMillan, A. C., Drozd, G. T., Goldstein, A. H., Chu, R. K., Pasa-Tolic,
611	L., Shaw, J. B., Tolic, N., Lin, P., Laskin, J., Laskin, A., and Nizkorodov, S. A.:
612	Molecular Characterization of Organosulfur Compounds in Biodiesel and
613	Diesel Fuel Secondary Organic Aerosol, Environ. Sci. Technol., 51, 119-127,
614	10.1021/acs.est.6b03304, 2017.
615	Bryant, D. J., Elzein, A., Newland, M., White, E., Swift, S., Watkins, A., Deng, W.,
616	Song, W., Wang, S., Zhang, Y., Wang, X., Rickard, A. R., and Hamilton, J. F.:
617	Importance of Oxidants and Temperature in the Formation of Biogenic
618	Organosulfates and Nitrooxy Organosulfates, ACS Earth Space Chem., 5, 2291-

2306, 10.1021/acsearthspacechem.1c00204, 2021.

- 620 Cai, D., Wang, X., Chen, J., and Li, X.: Molecular Characterization of Organosulfates
- Highly Polluted Atmosphere Using Ultra-High-Resolution Mass 621 in Spectrometry, J. Geophys. Res.: Atmos., 125, 10.1029/2019jd032253, 2020. 622 Chen, Y., Zhang, Y., Lambe, A. T., Xu, R., Lei, Z., Olson, N. E., Zhang, Z., Szalkowski, 623 T., Cui, T., Vizuete, W., Gold, A., Turpin, B. J., Ault, A. P., Chan, M. N., and 624 Surratt, J. D.: Heterogeneous Hydroxyl Radical Oxidation of Isoprene-625 Epoxydiol-Derived Methyltetrol Sulfates: Plausible Formation Mechanisms of 626 627 Previously Unexplained Organosulfates in Ambient Fine Aerosols, Environ. Sci. Technol.Lett., 7, 460-468, 10.1021/acs.estlett.0c00276, 2020. 628 Cui, M., Li, C., Chen, Y., Zhang, F., Li, J., Jiang, B., Mo, Y., Li, J., Yan, C., Zheng, M., 629 630 Xie, Z., Zhang, G., and Zheng, J.: Molecular characterization of polar organic aerosol constituents in off-road engine emissions using Fourier transform ion 631 cyclotron resonance mass spectrometry (FT-ICR MS): implications for source 632
- apportionment, Atmos. Chem. Phys., 19, 13945-13956, 10.5194/acp-19-139452019, 2019.
- Ding, J., Zhao, P., Su, J., Dong, Q., Du, X., and Zhang, Y.: Aerosol pH and its driving
 factors in Beijing, Atmos. Chem. Phys., 19, 7939-7954, 10.5194/acp-19-79392019, 2019.
- Ding, S., Chen, Y., Devineni, S. R., Pavuluri, C. M., and Li, X. D.: Distribution
 characteristics of organosulfates (OSs) in PM2.5 in Tianjin, Northern China:
 Quantitative analysis of total and three OS species, Sci. Total. Environ., 834,

155314, 10.1016/j.scitotenv.2022.155314, 2022.

- 642 Estillore, A. D., Hettiyadura, A. P., Qin, Z., Leckrone, E., Wombacher, B., Humphry, T.,
- Stone, E. A., and Grassian, V. H.: Water Uptake and Hygroscopic Growth of
 Organosulfate Aerosol, Environ Sci Technol, 50, 4259-4268,
 10.1021/acs.est.5b05014, 2016.
- Fabien, P., John, D. C., Henrik, G. K., Andreas, k., Jason, M. S. C., John, H. S., and
 Paul, O. W.: Unexpected Epoxide Formation in the Gas-Phase Photooxidation
 of Isoprene, Science, 325, 730-733, 2009.
- 649 Fleming, L. T., Ali, N. N., Blair, S. L., Roveretto, M., George, C., and Nizkorodov, S.
- A.: Formation of Light-Absorbing Organosulfates during Evaporation of
 Secondary Organic Material Extracts in the Presence of Sulfuric Acid, ACS
 Earth Space Chem., 3, 947-957, 10.1021/acsearthspacechem.9b00036, 2019.
- Fu, X., Guo, H., Wang, X., Ding, X., He, Q., Liu, T., and Zhang, Z.: PM2.5 acidity at a
 background site in the Pearl River Delta region in fall-winter of 2007-2012, J.
 Hazard. Mater., 286, 484-492, 10.1016/j.jhazmat.2015.01.022, 2015.
- Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G.,
 Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the
 world's most polluted megacity: the Delhi Aerosol Supersite study, Atmos.
- 659 Chem. Phys., 19, 6843-6859, 10.5194/acp-19-6843-2019, 2019.
- Glasius, M., Thomsen, D., Wang, K., Iversen, L. S., Duan, J., and Huang, R. J.:
 Chemical characteristics and sources of organosulfates, organosulfonates, and
 carboxylic acids in aerosols in urban Xi'an, Northwest China, Sci Total Environ,

810, 151187, 10.1016/j.scitotenv.2021.151187, 2022.

664	Glasius, M., Bering, M. S., Yee, L. D., de Sa, S. S., Isaacman-VanWertz, G., Wernis, R.
665	A., Barbosa, H. M. J., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost,
666	P., Day, D. A., Jimenez, J. L., Shrivastava, M., Martin, S. T., and Goldstein, A.
667	H.: Organosulfates in aerosols downwind of an urban region in central Amazon,
668	Environ Sci Process Impacts, 20, 1546-1558, 10.1039/c8em00413g, 2018.
669	Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite Jr, J. R., Carlton, A.
670	G., Lee, S. H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Fine-
671	particle water and pH in the southeastern United States, Atmos. Chem. Phys.,
672	15, 5211-5228, 10.5194/acp-15-5211-2015, 2015.
673	Guo, Q., Wei, Y., and Wan, R.: Leading officials' accountability audit of natural
674	resources and haze pollution: evidence from China, Environmental Science and
675	Pollution Research, 30, 17612-17628, 10.1007/s11356-022-23340-x, 2022.
676	H., J. and Seinfeld, S. N. P.: Atmospheric chemistry and physics: from air pollution to
677	climate change, 2016.
678	Hamilton, J. F., Bryant, D. J., Edwards, P. M., Ouyang, B., Bannan, T. J., Mehra, A.,
679	Mayhew, A. W., Hopkins, J. R., Dunmore, R. E., Squires, F. A., Lee, J. D.,
680	Newland, M. J., Worrall, S. D., Bacak, A., Coe, H., Percival, C., Whalley, L. K.,
681	Heard, D. E., Slater, E. J., Jones, R. L., Cui, T., Surratt, J. D., Reeves, C. E.,
682	Mills, G. P., Grimmond, S., Sun, Y., Xu, W., Shi, Z., and Rickard, A. R.: Key
683	Role of NO3 Radicals in the Production of Isoprene Nitrates and
684	Nitrooxyorganosulfates in Beijing, Environ. Sci. Technol., 55, 842-853,

10.1021/acs.est.0c05689, 2021.

- Hansen, A. M. K., Kristensen, K., Nguyen, Q. T., Zare, A., Cozzi, F., Nøjgaard, J. K.,
- 587 Skov, H., Brandt, J., Christensen, J. H., Ström, J., Tunved, P., Krejci, R., and
 688 Glasius, M.: Organosulfates and organic acids in Arctic aerosols: speciation,
 689 annual variation and concentration levels, Atmos. Chem. Phys., 14, 7807-7823,
 690 10.5194/acp-14-7807-2014, 2014.
- Hawkins, L. N., Russell, L. M., Covert, D. S., Quinn, P. K., and Bates, T. S.: Carboxylic
 acids, sulfates, and organosulfates in processed continental organic aerosol over
 the southeast Pacific Ocean during VOCALS-REx 2008, J. Geophys. Res.:
 Atmos., 115, 10.1029/2009jd013276, 2010.
- Hennigan, C. J., Izumi, J., Sullivan, A. P., Weber, R. J., and Nenes, A.: A critical
 evaluation of proxy methods used to estimate the acidity of atmospheric
 particles, Atmos. Chem. Phys., 15, 2775-2790, 10.5194/acp-15-2775-2015,
 2015.
- Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T., and Stone, E. A.:
 Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic
 secondary organic aerosol formation, Atmos. Chem. Phys., 19, 3191-3206,
 10.5194/acp-19-3191-2019, 2019.
- Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes, E., Richards, K., and
 Humphry, T.: Determination of atmospheric organosulfates using HILIC
 chromatography with MS detection, Atoms. Meas. Tech., 8, 2347-2358,
 10.5194/amt-8-2347-2015, 2015.

707	Hettiyadura, A. P. S., Jayarathne, T., Baumann, K., Goldstein, A. H., de Gouw, J. A.,
708	Koss, A., Keutsch, F. N., Skog, K., and Stone, E. A.: Qualitative and quantitative
709	analysis of atmospheric organosulfates in Centreville, Alabama, Atmos. Chem.
710	Phys., 17, 1343-1359, 10.5194/acp-17-1343-2017, 2017.
711	Hettiyadura, A. P. S., Xu, L., Jayarathne, T., Skog, K., Guo, H., Weber, R. J., Nenes, A.,
712	Keutsch, F. N., Ng, N. L., and Stone, E. A.: Source apportionment of organic
713	carbon in Centreville, AL using organosulfates in organic tracer-based positive
714	matrix factorization, Atmospheric Environment, 186, 74-88,
715	10.1016/j.atmosenv.2018.05.007, 2018.
716	Hughes, D. D., Christiansen, M. B., Milani, A., Vermeuel, M. P., Novak, G. A., Alwe,
717	H. D., Dickens, A. F., Pierce, R. B., Millet, D. B., Bertram, T. H., Stanier, C. O.,
718	and Stone, E. A.: PM2.5 chemistry, organosulfates, and secondary organic
719	aerosol during the 2017 Lake Michigan Ozone Study, Atmos. Environ., 244,
720	10.1016/j.atmosenv.2020.117939, 2021.
721	Iinuma, Müller, Berndt, Böge, Claeys, , and Herrmann: Evidence for the
722	Existence of Organosulfates from β -Pinene Ozonolysis in Ambient Secondary
723	Organic Aerosol, Environ. Sci. Technol., 41, 6678-6683, 2007.
724	Iinuma, Y., Müller, C., Böge, O., Gnauk, T., and Herrmann, H.: The formation of
725	organic sulfate esters in the limonene ozonolysis secondary organic aerosol
726	(SOA) under acidic conditions, Atmos. Environ., 41, 5571-5583,
727	10.1016/j.atmosenv.2007.03.007, 2007.
728	Jiang, H., Li, J., Tang, J., Cui, M., Zhao, S., Mo, Y., Tian, C., Zhang, X., Jiang, B., Liao,

729	Y., Chen, Y., and Zhang, G.: Molecular characteristics, sources, and formation
730	pathways of organosulfur compounds in ambient aerosol in Guangzhou, South
731	China, Atmos. Chem. Phys., 22, 6919-6935, 10.5194/acp-22-6919-2022, 2022.
732	Kanellopoulos, P. G., Kotsaki, S. P., Chrysochou, E., Koukoulakis, K., Zacharopoulos,
733	N., Philippopoulos, A., and Bakeas, E.: PM2.5-bound organosulfates in two
734	Eastern Mediterranean cities: The dominance of isoprene organosulfates,
735	Chemosphere, 297, 134103, 10.1016/j.chemosphere.2022.134103, 2022.
736	Kourtchev, I., Doussin, J. F., Giorio, C., Mahon, B., Wilson, E. M., Maurin, N., Pangui,
737	E., Venables, D. S., Wenger, J. C., and Kalberer, M.: Molecular composition of
738	fresh and aged secondary organic aerosol from a mixture of biogenic volatile
739	compounds: a high-resolution mass spectrometry study, Atmos. Chem. Phys.,
740	15, 5683-5695, 10.5194/acp-15-5683-2015, 2015.
741	Kristensen, K. and Glasius, M.: Organosulfates and oxidation products from biogenic
742	hydrocarbons in fine aerosols from a forest in North West Europe during spring,
743	Atmos. Environ., 45, 4546-4556, 10.1016/j.atmosenv.2011.05.063, 2011.
744	Li, X., Zhang, Y., Shi, L., Kawamura, K., Kunwar, B., Takami, A., Arakaki, T., and Lai,
745	S.: Aerosol Proteinaceous Matter in Coastal Okinawa, Japan: Influence of Long-
746	Range Transport and Photochemical Degradation, Environ Sci Technol, 56,
747	5256-5265, 10.1021/acs.est.1c08658, 2022.
748	Menon, S., ;, Unger, N., ;, Koch, D., ;, Francis, J., ;, Garrett, T., ;, Sednev, I., ;, Shindell,
749	D., ;, and Streets, D., ;: Aerosol climate effects and air quality impacts from
750	1980 to 2030, Environ. Res. Lett., 3, 10.1088/1748-9326/3/2/024004, 2008.

751	Nestorowicz, K., Jaoui, M., Rudzinski, K. J., Lewandowski, M., Kleindienst, T. E.,
752	Spolnik, G., Danikiewicz, W., and Szmigielski, R.: Chemical composition of
753	isoprene SOA under acidic and non-acidic conditions: effect of relative
754	humidity, Atmos Chem Phys, 18, 18101-18121, 10.5194/acp-18-18101-2018,
755	2018.
756	Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen,
757	K., Tulinius, T. E., Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A.,
758	Nøjgaard, J. K., and Glasius, M.: Understanding the anthropogenic influence on
759	formation of biogenic secondary organic aerosols in Denmark via analysis of
760	organosulfates and related oxidation products, Atmos. Chem. Phys., 14, 8961-
761	8981, 10.5194/acp-14-8961-2014, 2014.
762	Nguyen, T. B., Bates, K. H., Crounse, J. D., Schwantes, R. H., Zhang, X., Kjaergaard,
763	H. G., Surratt, J. D., Lin, P., Laskin, A., Seinfeld, J. H., and Wennberg, P. O.:
764	Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate
765	(MPAN) and its pathway toward secondary organic aerosol formation in the
766	atmosphere, Phys. Chem. Chem. Phys., 17, 17914-17926, 10.1039/c5cp02001h,
767	2015.
768	Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.: Radical-initiated formation
769	of organosulfates and surfactants in atmospheric aerosols, Geophys. Res. Lett.,
770	37, n/a-n/a, 10.1029/2009g1041683, 2010.
771	O'Brien, R. E., Laskin, A., Laskin, J., Rubitschun, C. L., Surratt, J. D., and Goldstein,
772	A. H.: Molecular characterization of S- and N-containing organic constituents

- in ambient aerosols by negative ion mode high-resolution Nanospray 773 Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field 774 study, Journal of Geophysical Research: Atmospheres, 119, 775 10.1002/2014jd021955, 2014. 776 Olson, C. N., Galloway, M. M., Yu, G., Hedman, C. J., Lockett, M. R., Yoon, T., Stone, 777 E. A., Smith, L. M., and Keutsch, F. N.: Hydroxycarboxylic acid-derived 778 organosulfates: synthesis, stability, and quantification in ambient aerosol, 779 Environ Sci Technol, 45, 6468-6474, 10.1021/es201039p, 2011. 780 781 Passananti, M., Kong, L., Shang, J., Dupart, Y., Perrier, S., Chen, J., Donaldson, D. J., and George, C.: Organosulfate Formation through the Heterogeneous Reaction 782 of Sulfur Dioxide with Unsaturated Fatty Acids and Long-Chain Alkenes, 783 784 Angew. Chem. Int. Ed. Engl., 55, 10336-10339, 10.1002/anie.201605266, 2016. Paulson, S. E. and Orlando, J. J.: The reactions of ozone with alkenes: An important 785 source of HOxin the boundary layer, Geophys. Res. Lett., 23, 3727-3730, 786 10.1029/96gl03477, 1996. 787 Pei, Z., Chen, X., Li, X., Liang, J., Lin, A., Li, S., Yang, S., Bin, J., and Dai, S.: Impact 788 of macroeconomic factors on ozone precursor emissions in China, Journal of 789
- Cleaner Production, 344, 10.1016/j.jclepro.2022.130974, 2022.
- Ramanathan , V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, Climate, and
 the Hydrological Cycle, Science, 294, 2119-2124, 2001.
- Riva, M., Budisulistiorini, S. H., Zhang, Z., Gold, A., and Surratt, J. D.: Chemical
 characterization of secondary organic aerosol constituents from isoprene

ozonolysis in the presence of acidic aerosol, Atmospheric Environment, 130, 5-

796 13, 10.1016/j.atmosenv.2015.06.027, 2016a.

- Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.:
 Chemical characterization of organosulfates in secondary organic aerosol
 derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 1100111018, 10.5194/acp-16-11001-2016, 2016b.
- Riva, M., Tomaz, S., Cui, T., Lin, Y. H., Perraudin, E., Gold, A., Stone, E. A., Villenave,
 E., and Surratt, J. D.: Evidence for an unrecognized secondary anthropogenic
 source of organosulfates and sulfonates: gas-phase oxidation of polycyclic
 aromatic hydrocarbons in the presence of sulfate aerosol, Environ. Sci. Technol.,

49, 6654-6664, 10.1021/acs.est.5b00836, 2015.

- 806 Riva, M., Chen, Y., Zhang, Y., Lei, Z., Olson, N. E., Boyer, H. C., Narayan, S., Yee, L.
- D., Green, H. S., Cui, T., Zhang, Z., Baumann, K., Fort, M., Edgerton, E.,
- 808 Budisulistiorini, S. H., Rose, C. A., Ribeiro, I. O., RL, E. O., Dos Santos, E. O.,
- Machado, C. M. D., Szopa, S., Zhao, Y., Alves, E. G., de Sa, S. S., Hu, W.,
- 810 Knipping, E. M., Shaw, S. L., Duvoisin Junior, S., de Souza, R. A. F., Palm, B.
- 811 B., Jimenez, J. L., Glasius, M., Goldstein, A. H., Pye, H. O. T., Gold, A., Turpin,
- B. J., Vizuete, W., Martin, S. T., Thornton, J. A., Dutcher, C. S., Ault, A. P., and
- 813 Surratt, J. D.: Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio
- 814 Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms:
- 815 Implications for Aerosol Physicochemical Properties, Environ. Sci. Technol., 53,
- 816 8682-8694, 10.1021/acs.est.9b01019, 2019.

817	Schindelka, J., Iinuma, Y., Hoffmann, D., and Herrmann, H.: Sulfate radical-initiated
818	formation of isoprene-derived organosulfates in atmospheric aerosols, Faraday
819	Discuss., 165, 237-259, 10.1039/c3fd00042g, 2013.
820	Shalamzari, M. S., Ryabtsova, O., Kahnt, A., Vermeylen, R., Herent, M. F., Quetin-
821	Leclercq, J., Van der Veken, P., Maenhaut, W., and Claeys, M: Mass
822	spectrometric characterization of organosulfates related to secondary organic
823	aerosol from isoprene, Rapid Commun. Mass Spectrom., 784-794,
824	10.1002/rcm.6511, 2013, 2013.
825	Shang, J., Passananti, M., Dupart, Y., Ciuraru, R., Tinel, L., Rossignol, S., Perrier, S.,
826	Zhu, T., and George, C.: SO2 Uptake on Oleic Acid: A New Formation Pathway
827	of Organosulfur Compounds in the Atmosphere, Environ. Sci. Technol.Lett., 3,
828	67-72, 10.1021/acs.estlett.6b00006, 2016.
829	Staudt, S., Kundu, S., Lehmler, H. J., He, X., Cui, T., Lin, Y. H., Kristensen, K., Glasius,
830	M., Zhang, X., Weber, R. J., Surratt, J. D., and Stone, E. A.: Aromatic
831	organosulfates in atmospheric aerosols: synthesis, characterization, and
832	abundance, Atmos Environ (1994), 94, 366-373,
833	10.1016/j.atmosenv.2014.05.049, 2014.
834	Stone, E. A., Yang, L., Yu, L. E., and Rupakheti, M.: Characterization of organosulfates
835	in atmospheric aerosols at Four Asian locations, Atmos. Environ., 47, 323-329,
836	10.1016/j.atmosenv.2011.10.058, 2012.
837	Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T.E., Edney,
838	E. O., and Seinfeld, J. H.: Effect of Acidity on Secondary Organic Aerosol

Formation from Isoprene, Environ. Sci. Technol., 41, 5363–5369, 2007a.

840	Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J.,
841	Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive
842	intermediates revealed in secondary organic aerosol formation from isoprene,
843	Proc. Natl. Acad. Sci. U.S.A., 107, 6640-6645, 10.1073/pnas.0911114107, 2010
844	Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Edney, E. O., Claeys, M., Sorooshian, A.,
845	Ng, N. L., Offenberg, J. H., Lewandowski, M., Jaoui, M., Flagan, R. C., and
846	Seinfeld, J. H.: Evidence for Organosulfates in Secondary Organic Aerosol,
847	Environ. Sci. Technol., 41, 517–527, 2007b.
848	Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M.,
849	Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M.,
850	Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organosulfate
851	Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A., 112,
852	8345-8378, 10.1021/jp802310p, 2008.
853	Tolocka, M. P. and Turpin, B.: Contribution of organosulfur compounds to organic

- aerosol mass, Environ. Sci. Technol., 46, 7978-7983, 10.1021/es300651v, 2012.
- 855 Turpin, B. J. and Lim, H.-J.: Species Contributions to PM2.5 Mass Concentrations:
- Revisiting Common Assumptions for Estimating Organic Mass, Aerosol
 Sci.Technol., 35, 602-610, 10.1080/02786820119445, 2001.
- Wach, P., Spolnik, G., Rudzinski, K. J., Skotak, K., Claeys, M., Danikiewicz, W., and
 Szmigielski, R.: Radical oxidation of methyl vinyl ketone and methacrolein in
 aqueous droplets: Characterization of organosulfates and atmospheric

- 861 implications, Chemosphere, 214, 1-9, 10.1016/j.chemosphere.2018.09.026,
 862 2019.
- Wang, Y., Ren, J., Huang, X. H. H., Tong, R., and Yu, J. Z.: Synthesis of Four
 Monoterpene-Derived Organosulfates and Their Quantification in Atmospheric
 Aerosol Samples, Environ. Sci. Technol., 51, 6791-6801,
 10.1021/acs.est.7b01179, 2017.
- Wang, Y., Ma, Y., Kuang, B., Lin, P., Liang, Y., Huang, C., and Yu, J. Z.: Abundance of
 organosulfates derived from biogenic volatile organic compounds: Seasonal and
 spatial contrasts at four sites in China, Sci. Total. Environ., 806, 151275,
 10.1016/j.scitotenv.2021.151275, 2022.
- 871 Wang, Y., Zhao, Y., Wang, Y., Yu, J. Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z., Yan,
- N., and Xiao, H.: Organosulfates in atmospheric aerosols in Shanghai, China:
 seasonal and interannual variability, origin, and formation mechanisms, Atmos.
 Chem. Phys., 21, 2959-2980, 10.5194/acp-21-2959-2021, 2021.

074 Chem. 1 hys., 21, 2959, 2900, 10.5194 acp 21, 2959, 2021, 2021.

- 875 Wang, Y., Hu, M., Wang, Y.-C., Li, X., Fang, X., Tang, R., Lu, S., Wu, Y., Guo, S., Wu,
- Z., Hallquist, M., and Yu, J. Z.: Comparative Study of Particulate
 Organosulfates in Contrasting Atmospheric Environments: Field Evidence for
 the Significant Influence of Anthropogenic Sulfate and NOx, Environ. Sci.
 Technol.Lett., 7, 787-794, 10.1021/acs.estlett.0c00550, 2020.
- Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu,
 Y., Le Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist,
- 882 M., and Yu, J.: The secondary formation of organosulfates under interactions

883	between biogenic emissions and anthropogenic pollutants in summer in Beijing,
884	Atmos. Chem. Phys., 18, 10693-10713, 10.5194/acp-18-10693-2018, 2018.
885	Xu, Y., Miyazaki, Y., Tachibana, E., Sato, K., Ramasamy, S., Mochizuki, T., Sadanaga,
886	Y., Nakashima, Y., Sakamoto, Y., Matsuda, K., and Kajii, Y.: Aerosol Liquid
887	Water Promotes the Formation of Water-Soluble Organic Nitrogen in
888	Submicrometer Aerosols in a Suburban Forest, Environ. Sci. Technol., 54,
889	1406-1414, 10.1021/acs.est.9b05849, 2020.
890	Yassine, M. M., Dabek-Zlotorzynska, E., Harir, M., and Schmitt-Kopplin, P.:
891	Identification of weak and strong organic acids in atmospheric aerosols by
892	capillary electrophoresis/mass spectrometry and ultra-high-resolution Fourier
893	transform ion cyclotron resonance mass spectrometry, Anal. Chem., 84, 6586-
894	6594, 10.1021/ac300798g, 2012.
895	Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO2 oxidation in the
896	atmosphere:reactions with monoterpene ozonolysis intermediates and
897	secondary organic aerosol, Atmos. Chem. Phys., 18, 5549-5565, 10.5194/acp-
898	18-5549-2018, 2018.
899	
900	
901	
902	
903	
904	

Formula ^a	MW (Da)	Standard	Structure	Reference
Isoprene-deri	ved OSs (n =	12)	-	
$C_4H_7O_7S^-$	198.9912	Lactic acid sulfate (LAS)	HO HO OSO3-	(Hettiyadura et al. 2015)
$C_5H_{11}O_6S^-$	199.0276	LAS	HO OSO3- OH	(Riva et al. 2016a)
$C_5H_9O_7S^-$	213.0069	LAS	OH OSO3-	(Riva et al. 2016a)
$C_4H_7O_5S^-$	167.0014	LAS		(Schindelka et al. 2013)
C4H7O6S ⁻	182.9963	LAS	HO OSO3-	(Shalamzari 2013)
$C_5H_7O_7S^-$	210.9912	LAS	OH OSO3-	(Hettiyadura et al. 2015)
C₅H9O6S ⁻	197.0120	LAS		(Riva et al. 2016a)
$C_5H_{10}NO_9S^-$	260.0076	LAS	OH OH ONO ₂	(Surratt et al. 2007a)
$C_7H_9O_7S^-$	237.0069	LAS	OSO3-	(Nozière et al. 2010)
$C_5H_8NO_{10}S^-$	273.9869	LAS	OH OH OH	(Nestorowic z et al. 2018)
$C_5H_{10}NO_9S^-$	260.0076	LAS	OH OH ONO ₂	(Surratt et al. 2007a)
$C_5H_{11}O_7S^-$	215.0225	LAS	OH OH OH OH	(Surratt et al. 2010)

Table 1. Organosulfate quantification using UPLC-ESI(-)-QToFMS(/MS).

Other quantified isoprene-derived OSs were shown in SI Monoterpene-derived OSs (n = 10)

$C_{10}H_{17}O_7S^-$	281.0695	α-Pinene sulfate	OH OSO3- OH	(Nozière et al. 2010)	
$C_{10}H_{17}O_5S^-$	249.0797	α-Pinene sulfate	OH OSO3-	(Wang et al. 2017)	
$C_8H_{13}O_7S^-$	253.0382	Glycolic acid sulfate (GAS)		(Schindelka et al. 2013)	
C7H11O6S ⁻	223.0276	GAS	-0OSO3-	(Yassine et al. 2012)	
C ₁₀ H ₁₆ NO ₇ S ⁻	294.0647	α-Pinene sulfate		(Surratt et al. 2008)	
C9H15O6S ⁻	251.0589	Limonaketone sulfate	OH oso3-	(Wang et al. 2017)	
C ₁₀ H ₁₆ NO ₁₀ S ⁻	342.0495	Limonaketone sulfate	OSO ₃ - OHOH OHONO ₂	(Yassine et al. 2012)	
C9H14NO8S⁻	296.0440	Limonaketone sulfate		(Surratt et al. 2008)	
$C_{10}H_{15}O_7S^-$	279.0538	GAS		(Surratt et al. 2007a)	
C ₇ H ₁₁ O ₇ S ⁻	239.0225	GAS	OSO3- OH O	(Nozière et al. 2010)	
Other quantified monoterpene-derived OSs were shown in SI C_2 - C_3 OSs ($n = 6$)					

$C_3H_5O_4S^-$	136.9909	GAS	unknown	(Yassine et
$C_2H_3O_6S^-$	154.9650	GAS	0	(Olson et al.
			OH OSO3-	2011)

$C_3H_5O_6S^-$	168.9807	LAS	OH OSO3-	(Olson et al. 2011)		
$C_3H_7O_5S^-$	155.0014	GAS	он 人 Joso3-	(Hettiyadura et al. 2019)		
$C_2H_3O_5S^-$	138.9701	GAS	OSO3-	(Yassine et al. 2012)		
C ₃ H ₅ O ₅ S ⁻	152.9858	GAS	O ↓OSO₃-	(Hettiyadura et al. 2015)		
OSa (aliphatic	-OSs)(n = 1)	1				
$C_8H_{17}O_4S^-$	210.0926	Sodium octyl Sulfate (SOS) \sim	OSO3-	(Wang et al. 2021)		
Other quantifie	d aliphatic-de	rived OSs were shown in	SI	2021)		
OSa (aromatic	(n = 2)					
$C_6H_5O_4S^-$	172.9909	Phenyl sulfate	OSO3-	(Wang et al. 2021)		
$C_7H_7SO_4S^-$	218.9786	Phenyl sulfate	OSO3-	(Wang et al. 2021)		
Other quantified aromatic-derived OSs were shown in SI						
OS_a -other ($n = 3$)						
$C_4H_7O_4S^-$	151.0065	Methyl sulfate	unknown	(Wang et al. 2021)		
$C_5H_7O_6S^-$	194.9963	GAS	unknown	(Wang et al. 2021)		
$C_6H_9O_6S^-$	209.0120	GAS	unknown	(Berndt et al. 2016)		

906 ^a MS/MS data supports tentative structural identification based on the listed references.

907		
908		
909		
910		
911		
912		
913		

Figure 1. Average distributions in the mass concentrations and mass fractions of various OSs in $PM_{2.5}$ in different cases: (a–d) urban vs suburban for all data, (b–e) daytime vs nighttime in the urban area, as well as (c–f) daytime vs nighttime in the suburban area. The areas divided by dashed lines in Figures a-c indicate C₅H₁₁O₇S⁻, OS_{i-other}, NOS_i, and NOS_m in sequence, as illustrated in Figure b. The areas divided by dashed lines in Figures d-f indicate aromatic and aliphatic OSs in sequence, as illustrated in Figure d.

- 923
- 924
- 925

926 **Figure 2.**

927

Figure 2. Temporal variations of OSs and other chemical components in $PM_{2.5}$ as well as other data measured in urban and suburban Shanghai in summer. (a–b) OSs, OS_i, $C_5H_{11}O_7S^-$ (major OS_i species), NOS_i, and OS/OM (%); (c–d) OS_m, $C_8H_{13}O_7S^-$, and NOS_m; (e–f) OS_a and C₂-C₃ OSs; (g–h) PM_{2.5}, SO₄²⁻, and NO₃; and (i–j) NO₂, NO, SO₂, and O₃. The sampling period A and B indicate the relatively polluted period and the clean period, respectively.

Figure 3.

939 Figure 3. Air mass backward trajectories of the major clusters in different periods in

940 the (a-b) urban and (c-d) suburban areas.

Figure 4. Mass concentrations of (a and d) OS_i , (b and e) 2-MT-OS, and (c and f) $C_5H_7O_7S^-$ as functions of $UV[O_3][SO_4^{2-}]$ and $[O_3][SO_4^{2-}]$ during daytime and nighttime in the urban (red solid circles) and suburban sites (blue solid circles). The open circles represent outliers, which was attributed to several particularly high sulfate events.

951 **Figure 5.**

Figure 5. Scatterplots of the ALW concentrations with the mass concentrations of total

954 OSs in PM_{2.5} collected in the (a) urban and (b) suburban areas. Yellow and grey lines

show regression lines in the daytime and nighttime, respectively.

958 Figure 6. Conceptual picture showing the characteristic and atmospheric process of

959 OSs in urban and suburban Shanghai.