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Abstract.  

We propose and evaluate methods for the integration of automatic implicit geological modelling into the geophysical 15 

(potential field) inversion process. The objective is to enforce structural geological realism in level-set inversion, which 

inverts for the location of boundaries between rock units. We propose two approaches. In the first one, a geological 

correction term is applied at each iteration of the inversion to reduce geological inconsistencies. This is achieved by 

integrating an automatic implicit geological modelling scheme within the geophysical inversion process. In the second 

approach, we use automatic geological modelling to derive a dynamic prior model term at each iteration of the inversion 20 

to limit departures from geologically feasible outcomes. We introduce the main theoretical aspects of the inversion 

algorithm and perform the proof-of-concept using two synthetic studies. The analysis of results using indicators measuring 

geophysical, petrophysical and structural geological misfits demonstrates that our approach effectively steers inversion 

towards geologically consistent models and reduces the risk of geologically unrealistic outcomes. Results suggest that 

geological correction may be effectively applied to pre-existing models to increase their geological realism and that it can 25 

also be used to explore geophysically equivalent models. 

1. Introduction 

One of the longstanding challenges faced by geophysical inversion in general, and potential field studies in particular, is 

the recovery of geologically meaningful inverse models. One of the chief factors explaining this is the strong non-

uniqueness of the solution to the inverse problem: an infinite number of models can fit a given potential field dataset, 30 

including a vast space of geologically unrealistic outcomes. This has prompted the development of a number of approaches 

using prior information or constraints during inversion that aim at reducing the search space to models fitting the 

geophysical measurements (see, e.g., Lelièvre and Farquharson, 2016; Moorkamp, 2017; Wellmann and Caumon, 2018; 

Giraud et al., 2021b, and references therein). Early proposals comprise the use and design of Tikhonov regularisation 

schemes (Tikhonov and Arsenin, 1977) that account for prior information about the spatial variations of inverted 35 

properties (e.g., smoothness constraints, Li and Oldenburg , 1996) or departure from a reference model based on some 

hypothesis (e.g., smallness constraints, Hoerl and Kennard, 1970). A more recent, and drastic, approach to reduce the size 

of the search space is to consider the geometry of contact between units instead of the distribution of petrophysical values. 
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In such case, the rock units’ physical properties are assumed to be known a priori and can be kept constant during 

inversion. This idea was proposed decades ago for ray-based inversion in reflection seismology (Gjoystdal et al., 1985), 40 

but it raises challenges to automatically maintain consistent relationships between geological interfaces (Caumon et al., 

2004). More recently, surface-based inversion has become practical for seismic and for potential field inversion by using 

the level-sets of implicit functions modelling surfaces representing the boundaries of rock units (Dahlke et al., 2020; Li 

et al., 2016, 2017; Zheglova et al., 2013, 2018). In this implicit boundary representation, the units’ boundaries correspond 

to a value of the implicit functions representing, e.g., the signed distance to interfaces, equal to zero. In this type of 45 

modelling, the algorithms inverts directly for the location of the contacts between geological units by adjusting the location 

of these level-sets, allowing the automatic deformation of the geological units using geophysical data.  

In exploration geophysics, recent studies have applied level-set inversion to the recovery of the geometry of one or two 

anomalous units, in both single physics or multi-physics inversion (Zheglova et al., 2018; Li et al., 2017, 2016). 

Subsequent works comprise the extension and modification of level-set inversion by Giraud et al.(2021a) and Rashidifard 50 

et al. (2021) whose framework addresses an arbitrary number of rock units in 3D gravity inversion. In comparison to the 

direct inversion of petrophysical parameters, these geometrical inversions present a direct pathway to obtaining 

geologically meaningful outcomes from the inversion of potential field data. Nonetheless, to the best of our knowledge, 

level-set inversions still lack the capability to ensure the geological plausibility of resulting inverted models, in the sense 

that they can depart from those produced by geological modelling. To mitigate this, several solutions may be devised. In 55 

what follows, we distinguish between two possibilities to integrate geophysical inversion and geological modelling: to 

apply geological correction either after or during geophysical inversion. In the first case, one can think of ensuring 

geological plausibility a posteriori using an ad hoc process in which an existing geophysical inverse model undergoes 

modifications until it satisfies geological plausibility conditions. This could be applied, for instance, to existing rock unit 

models obtained from previous geophysical processing or interpretation. In the second case, there is the possibility to 60 

integrate geological modelling principles, data, and rules directly within the geophysical inversion algorithm. In this 

contribution, we will focus on, and explore, two avenues in this direction: 

a. The application of geological correction to the proposed model at each iteration of the geophysical inversion to 

ensure that the search for a model honouring the geophysical measurements does not decrease geological realism 

(introduced in sect. 3.3.1 and tested in sect. 5.1 and 5.2).  65 

b. Incorporating a geological term in the objective function of the geophysical inverse problem (introduced in 

section 3.3.2 and tested in section 5.2).  

In the two points above, the recovery of geological parameters from models proposed during inversion is necessary. At 

each inversion iteration of the inversion, geological quantities such as the orientation of a contact or its location are 

extracted from the current model and subsequently fed to a geological modelling engine. The geological modelling engine 70 

will, in turn propose the geological realisation closest to the geophysical inverse model, from which a ‘geological 

correction’ can be calculated and applied to the model update. This forms the basis for geological correction (point a. 

above) to ensure that geological consistency with principles and data is maintained throughout inversion. The same 

principle is used in b., but to define a constraint term as part of the inversion’s objective function in the same spirit as the 

well-established Tikhonov regularisation. 75 

The main object of this contribution is to introduce the methodology allowing the integration of automated geological 

modelling in the geophysical inversion process as mentioned above and to provide idealised proof-of-concepts in the form 

of two synthetic examples. This paper is articulated in six sections as follows. In the second section, we introduce the 
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inversion algorithm that we use to integrate geological constraints. Following this, in sect. 3 we provide elements of 

implicit geological modelling required by the automated geological modelling process used to constrain geophysical 80 

inversion. In this section, we also detail how geological constraints are applied using the approaches (a) and (b) mentioned 

above through an automated geological modelling process. In sect. 4, we introduce the series of metrics that we consider 

to assess inversion convergence and recovered models from both the geological and geophysical point of views. Sect. 5 

presents the proof-of-concept using two synthetic examples of 3D models representing idealised scenarios. In the 

Discussion (Sect. 6), we place our findings in the broader context of subsurface modelling, discuss the limitations of our 85 

work and review potential extensions of the proposed method. 

2. Geometrical inversion: formalization 

2.1. Pre-requisite: Linking rock unit boundaries to physical property inversion  

The method we present relies on the formulation of the model using an implicit model formulation in the form of signed 

distances. As proposed by Giraud et al. (2021a), each rock unit is modelled by a unique signed-distance scalar field 90 

covering the study area. In a study considering 𝑛𝑟 rock units, we consider a set of 𝑛𝑟 signed-distance fields 𝝓 =

{𝝓𝑘 , 𝑘 = 1,… , 𝑛𝑟} over 𝑛𝑚 model cells corresponding to the distance to the boundaries of rock units. These signed-

distances are calculated using the fast-marching method of Sethian (1996) to maintain the following properties:  

𝝓𝑘 {
> 0 inside unit k,       
= 0 at the boundary,
< 0 outside unit k.     

 (1) 

In our level-set inversions, 𝝓 is the primary variable inverted for, which constitutes the proxy for a direct link mapping 

geophysical and geological representations of the subsurface. From the values of 𝝓, a transform is applied to map signed 95 

distances to petrophysical property values 𝒎 (e.g., density contrasts in the case of gravity inversion):  

𝒎(𝝓1, … , 𝝓𝑛𝑟
) =∑𝑉𝑖𝐻(𝝓𝑖) [ ∏ (1 − 𝐻(𝝓𝑗))

𝑛𝑟

𝑗=1,𝑗≠𝑖

]

𝑛𝑟

𝑖=1

, (2) 

where 𝑽 ∈  ℝ𝑛𝑟 is a vector storing the physical property value assigned to each of the 𝑛𝑟 geological units (e.g., density 

contrasts for the different rock units). Similar to Giraud et al. (2021a), 𝐻 is the smeared-out Heaviside function, which we 

calculate following Osher and Fedkiw (2003). Adapting it to our problem, it is defined as follows, for the kth rock unit in 

the ith model-cell:  100 

𝐻(𝜙𝑘,𝑖) =

{
 

 
0 if 𝜙𝑘,𝑖 < − 𝜏𝑖 ,                                                      

1

2
+
𝜙𝑘,𝑖
2𝜏𝑖

+
1

2𝜋
sin (

𝜋𝜙𝑘,𝑖
𝜏𝑖

)  if 0 ≤ |𝜙𝑘,𝑖| ≤  𝜏𝑖 ,

1 if 𝜙𝑘,𝑖 > 𝜏𝑖 ,                                                          

 (3) 

where 𝝉 = {𝜏𝑖 , 𝑖 = 1, … , 𝑛𝑚} defines the volume of rock where the boundary is allowed to vary between two successive 

iterations of the inversion. This allows for gradual changes of the model. To the best of our knowledge, it is common to 

set is as a constant value, equal to 0.5 × min(∆𝑥, ∆𝑦, ∆𝑧) (Li et al., 2017) in a regular mesh of cells with volume ∆𝑥 ×

∆𝑦 × ∆𝑧. In our implementation, we extend this to the possibility to use spatially varying boundary thicknesses by 

allowing the neighbourhood defined by 𝝉 to vary in space. This enables the possibility to anchor the model at observation 105 

points with 𝝉 = 0 at specific locations such as surface observations, borehole, along seismic lines, etc. In extreme 
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scenarios, the volume occupied by boundaries with 𝜏𝑖 ≫ ∆𝑥, ∆𝑦, ∆𝑧 of cells with volume ∆𝑥 × ∆𝑦 × ∆𝑧 may cover 

extensive parts of the study area, or, conversely, prevent the model from evolving when 𝝉 = 0 everywhere.  

At each iteration of the inversion, 𝒎 is updated from the changes in 𝝓, 𝛿𝝓, which are required by the process of optimizing 

the objective function (also called cost function, see Section 2.2) within the domain defined by 𝝉.  110 

2.2. General formulation 

We formulate the inverse problem in the least-squares sense, taking gravity data inversion as an example. Adjusting the 

words of Giraud et al. (2021a), the choice of a least-squares framework is motivated by the flexibility it allows in the 

number of constraints and forms of prior information that can be used in the inversion. Note that it corresponds to the 

multi-Gaussian Bayesian inversion framework as a maximum a posteriori estimator (Tarantola, 2005). 115 

The objective function we minimize is given as: 

𝛹(𝝓, 𝒅𝑜𝑏𝑠  ) =  ‖𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙𝑐‖2
2 + 𝜆𝑝‖𝑾𝑝(𝝓 − 𝝓

𝑝𝑟𝑖𝑜𝑟)‖
2

2
, (4) 

where 𝒅𝑜𝑏𝑠 are the observed data and 𝒅𝒄𝒂𝒍𝒄 the gravity response of the density contrast model 𝒎(𝝓). We use 𝒅𝑐𝑎𝑙𝑐 =

𝒅𝑐𝑎𝑙𝑐(𝒎) =  𝑺𝑚𝒎(𝝓), where 𝑺𝑚 is the sensitivity matrix of the gravity data 𝒅 to changes in densities 𝒎(𝝓). The first 

term of Eq. 4 corresponds to a data misfit term whereas the second term is a regularization term that minimizes deviations 

from the prior model; 𝜆𝑝 is a positive scalar weighting the regularisation term; 𝑾𝑝 is an inverse diagonal variance matrix 120 

of dimensions (𝑛𝑚𝑛𝑟) × (𝑛𝑚𝑛𝑟) whose values can vary in space according to prior information to favour or discourage 

specific changes or features in the model. We note that the definition of 𝑾𝑝 used here differs from Giraud et al. (2021a), 

where 𝑾𝑝 is constituted of line vectors of dimensions 𝑛𝑟 × (𝑛𝑚𝑛𝑟). This allows for more flexibility to translate prior 

information into constraints on a cell by cell basis. 𝝓𝑝𝑟𝑖𝑜𝑟  is the signed distances of a prior model.  

We solve Eq. 4 iteratively and calculate the update of signed distances 𝛿𝝓 that reduces 𝛹(𝝓, 𝒅𝑜𝑏𝑠 ) at each iteration. It 125 

can be shown that the objective function 𝛹(𝝓, 𝒅𝑜𝑏𝑠) is equal to the log-posterior probability density distribution as 

formulated in the Bayesian framework (Tarantola 2005,  Chapters 1 and 3 for more details). Here, the problem is therefore 

cast as a maximum a posteriori estimation. At the kth iteration, we calculate 𝝓𝑘+1 such that 𝝓𝑘+1 = 𝝓𝑘 + 𝛿𝝓, and the 

updated model 𝒎(𝝓) is calculated consistently with Eq. (1) by selecting the rock unit with the largest signed distance 

value at each model-cell 𝑖 = 1,… , 𝑛𝑚:  130 

𝒎𝑖
𝑘+1 = 𝑽𝑠 where 𝑠 = argmax 

𝑠
(𝝓𝑠=1,…,𝑛𝑟

𝑘+1 )
𝑖
. (5) 

We remind that the vector 𝑽 ∈  ℝ𝑛𝑟 contains the physical property values assigned to the different geological units (see 

Eq. (2). In Eq. (5), the argmax function leads to selecting the density contrast corresponding to the highest value of 𝝓, 

which, intuitively, corresponds to the “innermost” rock unit. Following the same rationale as Zheglova et al. (2013), we 

then calculate the signed distances corresponding to the updated boundaries of 𝒎𝑘+1 to maintain the signed distance 

properties of 𝝓𝑘+1 as introduced in 2.1. We note that at any given iteration, the search space is restricted to the vicinity 135 

of boundaries between rock units as defined by the boundary’s neighbourhood controlled by 𝛕, which determines the 

current inversion’s domain. This localisation dramatically reduces the volume of rock and the number of model-cells 

considered for modification between two successive iterations in order to satisfy geophysical data fit requirements.  
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2.3. Prior model constraints on signed distances 

Using a prior structural geological model, the corresponding signed distances 𝝓𝑝𝑟𝑖𝑜𝑟  to boundaries can be calculated. We 140 

remind that in Eq. (4), the prior model constraints on signed distances are given as: 

𝜓𝑝𝑟𝑖𝑜𝑟(𝝓,𝝓𝑝𝑟𝑖𝑜𝑟) =  𝜆𝑝‖𝑾𝑝(𝝓 − 𝝓
𝑝𝑟𝑖𝑜𝑟)‖

2

2
. (6) 

This allows the inversion to explore a part of the model space remaining within the neighbourhood of 𝝓𝑝𝑟𝑖𝑜𝑟 . The size of 

this neighbourhood globally depends on 𝜆𝑝, which controls the relative importance assigned to the prior model term during 

inversion compared to the geophysical data misfit term. It is also locally determined by 𝑾𝑝, which tunes the importance 

of the prior model term for each model cell. Similar to other least-squares inversions, 𝜆𝑝 can be set manually by trial and 145 

error, for example starting with a high value until model changes occur. Alternatively, the L-curve (Hansen and Johnston, 

2001; Hansen and O’Leary, 1993) or general cross-validation principle (Farquharson and Oldenburg, 2004) may be used. 

In instances where a geological prior model is used, it is generally obtained before geophysical inversion and remains 

constant throughout inversion. In this contribution, our objective is to use as prior model the result of a geological 

modelling process anchored only to the geological data and principles to better explore the admissible geological and 150 

geophysical parameter space. 

3. Integrating structural geological modelling into geophysical inversion  

The goal of this section is to introduce the methods that we use to extract geological information in the form of contact 

location and orientation data (angles) of geological features from inverted models that can be subsequently treated as 

geological data to implicit geological modelling.  155 

3.1. Pre-requisite: implicit geological modelling in a nutshell 

In implicit modelling, geological structures (e.g., faults, foliations, intrusions; and stratigraphic horizons) are represented 

by iso-values of one or several 3D scalar field (see Wellmann and Caumon, 2018, for a review). For example, fault 

surfaces are generated as iso-values of signed distance functions (possibly restricted to a given region of space), and strata 

as iso-values of a relative geological time function. For each geological surface or series of surfaces, the 3D scalar field 160 

is obtained by least-squares interpolation between spatial measurement points. In this paper, we use LoopStructural, which 

is an open-source Python library for implicit 3D geological modelling (Grose et al., 2021). In LoopStructural, geological 

features are modelled backwards in time starting with the most recent. Faults are modelled by first modelling the fault 

surface and fault displacement vector by building a structural frame consisting of three signed distance fields representing 

the fault geometry and kinematics. The fault can then be applied to the faulted features by restoring the observations of 165 

the faulted surface prior to interpolating the faulted surface. This means that the kinematics of the fault are directly 

incorporated into the surface description.  

LoopStructural uses a discrete implicit modelling approach, where the implicit function is approximated using a piecewise 

combination of basis functions on a predefined support such as a linear tetrahedron on a tetrahedral mesh or a trilinear 

basis function on a Cartesian grid. Discrete implicit modelling forms an under-constrained system of equations because 170 

geological observations are sparse and there are usually more degrees of freedom than geological constraints (location or 

orientation of geological features). To ensure the stability of the solution, a continuous regularisation term is added. Usual 

choices for regularisation constraints are some type of discrete smoothness constraint (Frank et al., 2007; Irakarama et al., 

2021) or minimisation of a continuous energy  
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(Irakarama et al., 2021; Renaudeau et al., 2019). In this study, we use the finite difference regularization as implemented 175 

in LoopStructural, which minimizes the second derivative of the scalar fields in all directions using a finite difference 

scheme on a Cartesian grid, following Irakarama et al. (2021). 

Geological observations such as the location of contacts, form lines, fault locations and structural measurements can 

constrain the value and/or gradient of the implicit function (Frank et al., 2007). Geological observation (further denoted 

as 𝒅𝑔𝑒𝑜𝑙) are incorporated by finding the mesh element which contains the observation point and adding the linear 180 

constraint for the relevant degrees of freedom (nodes of the element). Orientation data, can be used to constrain the partial 

derivatives of the implicit function 𝑔: 

𝑔′(𝐱) = 𝐧, (7) 

where 𝐧 is the normal vector of the geological surface at the location 𝐱. As Eq. (7) constrains both the direction and 

magnitude of the gradient of the scalar field, an alternative formulation to impose only the orientation is to find two vectors 

parallel to the surface, e.g., the strike vector 𝐯𝑠𝑡𝑟𝑖𝑘𝑒 and dip vector 𝐯𝑑𝑖𝑝, and to add two tangent constraints: 185 

{
𝜵𝑔(𝐱) ⋅ 𝐯𝑠𝑡𝑟𝑖𝑘𝑒 = 𝟎,

𝜵𝑔(𝐱) ⋅ 𝐯𝑑𝑖𝑝 = 𝟎.    
 

(8) 

Geological contacts or location of geological features are integrated into the implicit modelling by setting the value of the 

implicit function:  

𝑔(𝐱) = 𝑣𝑎𝑙, (9) 

where 𝑣𝑎𝑙 is the value of the implicit function given at the location 𝐱. The value should represent the distance to a reference 

horizon, for example 0 when the observation is located directly on the surface being modelled (e.g., a fault surface), or 

the cumulative stratigraphic thickness to some reference horizon for different conforming stratigraphic interfaces. The 190 

implicit function is determined by solving the regularized, over determined problem using least squares minimisation. For 

this, LoopStructural uses a conjugate gradient algorithm to iteratively find the solution of the system of equations.  

In the next subsections, we introduce how to recover input data for implicit geological modelling as mentioned above 

from models obtained through geophysical inversion. More specifically, we detail how to:  

(1) Extract the location of contacts between units from geophysical regions to constrain stratigraphic contacts. 195 

(2) Retrieve orientation data from the plane approximating the location of contacts between non-conformable units 

to model an unconformity using both geological and geophysical modelling.  

We note that while we use LoopStructural, the generation of geological models using the data provided in this paper can 

be carried out with other implicit geological modelling engines. 

3.2. Recovering structural information from and for geophysical inversion 200 

3.2.1.Stratigraphic information  

Stratigraphic information are recovered from the current geophysical model by identification of the contacts between rock 

units. More specifically, the 3D coordinates of the top of the different units within a given layered stratigraphy are 

identified. These locations are extracted from 3D rock unit models and stored as input data (as in Eq. 8) for implicit 

geological modelling.  205 
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3.2.2.Orientation observations: example of a subplanar unconformity 

In some cases, interpretive orientation data can be used as input to geological modelling (e.g., Sprague and de Kemp, 

2005). Similarly, the geophysical level-set approach provides region boundary orientation which can be used to locally 

constrain the planar orientations of geological interfaces. 

For instance, let us consider the example of a roughly planar erosion surface affecting some older stratigraphic series, 210 

which constitute an unconformity. We propose to recover the average normal vector 𝐧 to this plane, which is required for 

the implicit model to be well posed in the absence of post-erosional stratigraphic data, by:  

1) Identification of the contact locations for the surface of interest from current geophysical model 𝝓, followed by 

2) Calculation of the best-fitting plane approximating the identified locations of the selected contacts (constrained 

least-squares fit through a least-squares minimization process, see Appendix 1). 215 

After it is recovered, the vector 𝐧 is normalised and used with Eq. (7) or (8) in implicit geological modelling. The recovery 

of unconformity orientation data and transfer to implicit geological modelling is summarized in Figure 1.  

 

  

Figure 1. Derivation of scalar fields from geological modelling using a rock unit model from geophysical inversion: case of 220 

an unconformity fit to a plane.  

3.3. Automated geological modelling during inversion  

In implicit geological modelling, interfaces are defined by iso-values of one or several scalar fields analogous to a distance, 

which opens up pathways to integrate implicit geological modelling and level-set inversion as introduced above. The 

underlying concept is illustrated in Figure 2. 225 

Identification of erosive 

contact points between 

rock units 

Constrained least-squares 

fitting to a plane

Input data to implicit 

geological modelling

Scalar fields for constraints 

in geophysical inversion

Surface and/or borehole 

geological observations
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Figure 2. Proposed strategy to link implicit geological modelling with geophysical level-set inversion. The geological 

domain represents implicit geological modelling (left hand side) and relates to Sect. 3.1 and 3.2. The middle and right 

hand side panels illustrates the link between signed distances and density contrasts introduced in Sect. 2.1. The dashed 

line arrow connecting geophysical inversion to geological domain symbolises the exchange of information between 230 

geological and geophysical modelling that can be used to link the two modelling processes.   

  

3.3.1.Geological correction  

A way to promote geological consistency at each iteration of the geophysical inversion is to adjust the model update 𝛿𝝓 

to limit changes in 𝝓 that contradict geological data and principles. For this, we apply what we further refer to as a 235 

‘geological correction term’ to the update term 𝛿𝝓 obtained from solving Eq. (4). In what follows, we introduce the 

‘geological’ signed distances values 𝒇𝑔𝑒𝑜𝑙  to the rock units corresponding to the geological model derived from  𝒅𝑔𝑒𝑜𝑙  

and the current geophysical update 𝝓∗
𝑘. 𝒇𝑔𝑒𝑜𝑙  can be seen as a re-parameterisation of the geological model in a way that 

is compatible with the geophysical signed distances values 𝝓. It is computed using the following:  

1) Extraction of geological information from the current signed distance model 𝝓∗
𝑘 (contacts and orientation data 240 

corresponding to the current model, see sect. 3.2), 

2) Utilisation of this geological information as input to an implicit geological modelling engine (here, 

LoopStructural), where it is used to calculate the corresponding geological model together with geological data 

𝒅𝑔𝑒𝑜𝑙 , and 
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3) Computation of signed distances 𝒇𝑔𝑒𝑜𝑙  from the geological model to calculate the ‘geological correction term’ 245 

 𝛿𝝓𝑔𝑒𝑜𝑙 . 

At the 𝑘th iteration, we first calculate 𝝓∗
𝑘, the signed distance update obtained from solving the geophysical inverse 

problem formulated in eq. (4) around the current model:  

𝝓∗
𝑘 = 𝝓𝑘−1 + 𝛿𝝓,  (10) 

and then we use it to calculate the geological correction term: 

𝛿𝝓𝑔𝑒𝑜𝑙(𝝓∗
𝑘 , 𝒅𝑔𝑒𝑜𝑙) = 𝒇𝑔𝑒𝑜𝑙(𝝓∗

𝑘 , 𝒅𝑔𝑒𝑜𝑙) − 𝝓∗
𝑘 . (11) 

Calculating 𝒇𝑔𝑒𝑜𝑙(𝝓∗
𝑘 , 𝒅𝑔𝑒𝑜𝑙) provides the closest geological model honouring geological information extracted from 𝝓∗

𝑘 250 

together with geological data and knowledge encapsulated in 𝒅𝑔𝑒𝑜𝑙  (i.e., it is the geological image of image of 𝝓∗
𝑘). In 

this way, 𝒇𝑔𝑒𝑜𝑙(𝝓∗
𝑘 , 𝒅𝑔𝑒𝑜𝑙) returns a set of signed distance values which account for the relation between units (e.g., 

stratigraphic thickness, age relationships), known locations of contacts (e.g., seismic interpretation, borehole data, and 

surface geological observations), orientation data, and models proposed by geophysical inversion. Using 𝛿𝝓𝑔𝑒𝑜𝑙, we 

update the signed distances as follows:   255 

𝝓𝑘 = 𝝓∗
𝑘 + 𝛼𝛿𝝓𝑔𝑒𝑜𝑙(𝝓∗

𝑘 , 𝒅𝑔𝑒𝑜𝑙) = (1 − 𝛼)𝝓∗
𝑘 + 𝛼𝒇𝑔𝑒𝑜𝑙(𝝓∗

𝑘 , 𝒅𝑔𝑒𝑜𝑙  ), 𝛼 ∈ [0, 1[,  (12) 

where 𝛼 adjusts the importance given to the geological correction term.  

As a consequence of eq. (5), 𝛿𝝓𝑔𝑒𝑜𝑙(𝝓∗
𝑘) is equal to 0 at all locations the proposed geophysical update 𝛿𝝓 does not 

conflict with geological modelling, and differs elsewhere, thereby steering the inversion towards the region of the 

geophysical model space corresponding to geologically consistent models. The contribution of the geological term to 

model update during geophysical inversion is illustrated in Figure 3 following ①. 260 

3.3.2.Geological term into the cost function  

A possible shortcoming of the approach proposed in 3.3.1 is that the geophysical solution 𝝓∗
𝑘 at iteration k remains 

anchored on the prior model 𝝓𝑝𝑟𝑖𝑜𝑟 . In this section, we propose instead to integrate geological modelling in the cost 

function so that inversion can explore a larger portion of the model space. This can be achieved by considering the implicit 

geological model calculated in the same fashion as 𝛿𝝓𝑔𝑒𝑜𝑙 in Section 3.3.1. In such a case, 𝛿𝝓𝑔𝑒𝑜𝑙 can be used as a 265 

substitute for 𝛿𝝓𝑝𝑟𝑖𝑜𝑟  by setting 𝛿𝝓𝑝𝑟𝑖𝑜𝑟 = 𝝓 − 𝝓𝑝𝑟𝑖𝑜𝑟 =  𝛿𝝓𝑔𝑒𝑜𝑙(𝝓𝑘 , 𝒅𝑔𝑒𝑜𝑙) in eq. (4) to solve the problem at iteration 

𝑛 + 1 (flow ② in Figure 3). Therefore, eq. (4) becomes a function of 𝒅𝑔𝑒𝑜𝑙 and 𝛹(𝝓, 𝒅𝑜𝑏𝑠) rewrites as 𝛹(𝝓, 𝒅𝑜𝑏𝑠 , 𝒅𝑔𝑒𝑜𝑙) 

as the inversion solves a geophysical and geological problem at each iteration. At iteration 𝑘, combining eq. (4) and eq. 

(10), we obtain the update of the signed distances by minimizing:  

𝛹(𝝓,  𝒅𝑜𝑏𝑠 , 𝒅𝑔𝑒𝑜𝑙) =  ‖𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙𝑐‖2
2 + 𝜆𝑝‖𝑾𝑝( 𝝓 − 𝒇

𝑔𝑒𝑜𝑙(𝝓𝑘 , 𝒅𝑔𝑒𝑜𝑙))‖
2

2
, (13) 

where we set 𝝓𝑔𝑒𝑜𝑙 = 𝒇𝑔𝑒𝑜𝑙 . 270 
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Figure 3. Summary of the proposed approaches to integrated geological modelling in geophysical inversion: iterative use 

of the geological correction term with a fixed prior (1) or update of the prior geological model (2). Note that the 

combination of both is possible. Modified from Giraud et al. (2022).  

4. Metrics for the evaluation of inversion results 275 

The above inverse methodologies can produce different outcomes for the inverted models in terms of the rock unit 

geometries and spatial distribution of physical properties. For the evaluation of inversion results, this section proposes 

metrics adapted to the chosen model parameterisation. 

4.1. Overlap coefficient 

We calculate the overlap coefficient (OC) (Szymkiewicz, 2017), which is a similarity measure related to the Jaccard index 280 

(Jaccard, 1901) that measures the overlap between two sets. Applied to geological modelling, it is a measure of the 

dissimilarity between discrete representations of the subsurface. For the comparison of the inverted rock type model 𝒎𝑖𝑛𝑣  

and the reference model 𝒎𝑟𝑒𝑓 , OC can be written as:  

𝑶𝑪(𝒎𝒊𝒏𝒗,𝒎𝒓𝒆𝒇) =
𝐜𝐚𝐫𝐝(𝒎𝒓𝒆𝒇⋂𝒎𝒊𝒏𝒗)

𝐦𝐢𝐧(𝐜𝐚𝐫𝐝 (𝒎𝒓𝒆𝒇), 𝐜𝐚𝐫𝐝(𝒎𝒊𝒏𝒗))
=

𝟏

𝒏𝒎
∑𝟙

𝒎𝒊
𝒓𝒆𝒇

=𝒎𝒊
𝒊𝒏𝒗

𝒏𝒎

𝒊=𝟏

 , (14) 

where ⋂ denotes the intersection of values of sets; 𝑐𝑎𝑟𝑑 is the cardinality operator, which returns the size of a given set; 

card(𝒎𝑟𝑒𝑓⋂𝒎𝑖𝑛𝑣) is number of model cells where the rock types from 𝒎𝑟𝑒𝑓  and 𝒎𝑖𝑛𝑣  are the same, while 285 

min(card (𝒎𝑟𝑒𝑓), card(𝒎𝑖𝑛𝑣)) returns the size of the smallest set (here, the number of model-cells); 𝟙 is the indicator 

function such that 𝟙
𝑚𝑖
𝑟𝑒𝑓

=𝑚𝑖
𝑖𝑛𝑣  = 1 if 𝑚𝑖

𝑟𝑒𝑓
 and 𝑚𝑖

𝑖𝑛𝑣  are equal, and 𝟙
𝑚𝑖
𝑟𝑒𝑓

= 𝑚𝑖
𝑖𝑛𝑣 = 0 otherwise. In this paper, 𝒎𝑟𝑒𝑓  and 

𝒎𝑖𝑛𝑣  have the same discretization. Therefore, a straightforward interpretation is that 𝑂𝐶 as per Eq. (14) represents the 

relative volume of rock assigned with the correct rock unit. Full dissimilarity is characterized by a value of 𝑂𝐶 equal to 0 

and perfect similarity is characterized by a value of 1.  290 
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4.2. Density contrast model misfit  

In our analysis of synthetic cases, we assess the ability of inversion to recover the reference density contrast model using 

the root-mean-square error 𝐸𝑅𝑅𝑚 as a measure of the difference between the reference and inverted models:  

𝐸𝑅𝑅𝑚(𝒎
𝑟𝑒𝑓 ,𝒎𝑖𝑛𝑣) = √

1

𝑛𝑚
∑(𝑚𝑖

𝑟𝑒𝑓
−𝑚𝑖

𝑖𝑛𝑣)
2

𝑛𝑚

𝑖

, (15) 

It corresponds to the standard deviation of the misfit between retrieved and reference models. It is routinely used to 

evaluate the capacity of inversion algorithms to recover the reference petrophysical model in synthetic studies. 295 

4.3. Geophysical data misfit 

We assess whether the estimated model adequately reflects the measured geophysical data and monitor the inversion’s 

stability using the root-mean-square error 𝐸𝑅𝑅𝑑 as a measure of the geophysical data misfit. It corresponds to a 

normalisation of the data misfit term in Eq. (4). We calculate it as:  

𝐸𝑅𝑅𝑑(𝒎
𝑖𝑛𝑣) = √

1

𝑛𝑑
∑(𝑑𝑖

𝑜𝑏𝑠 − 𝑑𝑖
𝑐𝑎𝑙𝑐)2

𝑛𝑑

𝑖

. (16) 

It is one of the metrics most commonly used to evaluate the capability of inversion to reproduce field measurements.  300 

4.4. Adjacency matrix 

Similar to the posterior analysis of Giraud et al. (2019), we analyse rock unit models recovered from inversion using 

adjacency matrices. Adjacency defines which rock bodies are in contact (Egenhofer and Herring, 1990), and is one of the 

simplest ways to assess a geological model from a quantitative point of view. For details, we refer the reader to Pellerin 

et al. (2015) and Thiele et al. (2016), who show its usefulness in the context of geological modelling. In this work, we 305 

simply use the number of grid faces located at the boundary between units with indices 𝑖 and 𝑗, respectively, as coefficient 

for A𝑖,𝑗 of the corresponding 𝑛𝑟 × 𝑛𝑟 adjacency matrix 𝑨. From a more abstract standpoint, this representation amounts 

to consider the geological model as a non-oriented graph (Godsil and Royle, 2001), where nodes correspond to the rock 

units and edges correspond to adjacency relationships. It can be calculated globally for a general overview (i.e., one 

adjacency matrix calculated for the full model), or locally for more detailed analysis (i.e., adjacency matrices calculated 310 

only at certain locations). 

4.5. Signed-distances misfit 

To quantify the difference between rock unit boundary locations in the reference and recovered models from an implicit 

modelling point of view, we propose a metric using signed-distances to these interfaces: 

𝐸𝑅𝑅𝜙(𝝓
𝑟𝑒𝑓 , 𝝓𝑖𝑛𝑣) = √

1

𝑛𝑟

1

𝑛𝑚
∑∑(𝜙𝑖𝑗

𝑟𝑒𝑓
− 𝜙𝑖𝑗

𝑖𝑛𝑣)
2

𝑛𝑚

𝑗

𝑛𝑟

𝑖

. (17) 
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Like the density contrast model misfit measures 𝐸𝑅𝑅𝑚 introduced above, the signed distances misfit 𝐸𝑅𝑅𝜙 measures the 315 

discrepancy between two models. Here, it offers a qualitative insight into the distance between interfaces of two structural 

models with the same discretisation. 

5. Synthetic application cases 

This section introduces the proof of concept of the proposed approach using two idealized examples. They illustrate the 

capability of the proposed inversion scheme to interleave geological modelling and geophysical inversion to recover 320 

geologically consistent models. We first explore the case of a layered stratigraphy before moving on with an example of 

the investigation of the dip of a planar unconformity.  

5.1. Geological correction: layered stratigraphy  

5.1.1.Survey setup 

The synthetic example presented here is an extension from Giraud et al. (2022), which shows a summarized example of 325 

the use of a geological correction term. We present it in more details and expand on the analysis and interpretation of 

results.  

The reference geological structural model is generated starting from the Claudius dataset in the Carnarvon Basin (Western 

Australia, interpreted from WesternGeco seismic data made available by Geoscience Australia). This real world dataset 

is freely available online for benchmarking purposes (https://github.com/Loop3D/ImplicitBenchmark, last accessed on 330 

10/02/2023) and used as a toy model in the LoopStructural package (Grose et al. 2021a). Here, the Claudius dataset, 

which consists of points sampled from interpreted seismic horizons in 3D, is used for the generation of implicit models 

in LoopStructural.  

In this work, we start from an upturned version of the original model (Figure 5a). We assume that two hypothetic 

perpendicular 2D seismic profiles (see their location in Figure 4c) together with general knowledge of the area provide 335 

sufficient information to build a prior rock model, from which 𝝓𝑝𝑟𝑖𝑜𝑟  is calculated. We assume that these seismic profiles 

and their close neighbourhood can be treated as low uncertainty zones. Low uncertainty areas also comprise the single 

shallowest layer of model-cells of the model under the assumption that the top layer can be well-constrained by geological 

field observations such as the nature of directly observable rocks. To convey increasing uncertainty with distance to 

seismic section, we assign 𝑾 with values inversely proportional to the squared distance to the seismic profiles (Figure 340 

4d), starting from a value of 1 along the profiles. As a consequence, the prior model weight (Figure 4d) decreases rapidly 

with distance to the seismic lines. Inversion is, therefore, mostly free to update the model as 𝑊𝑖𝑗 ≪ 1 in large a portion of 

the study area away from the seismic lines while remaining strongly influenced in their vicinity. 

For our testing, we modified the original geological model further with the manual exaggeration of a dome present in the 

original model which affects all units in the synthetic example. The dome is shown in Figure 4a and the resulting model 345 

is shown Figure 5a, where it is marked by the red arrow at the intersection of the two vertical slices. It is characterised by 

a vertical Gaussian displacement field with amplitude 500 m and standard deviation 350 m in both horizontal directions, 

centred around coordinates Easting = 2,700 m and Northing = 2,125 m. We note from Figure 4b that the added dome 

constitutes a noticeable difference with the starting model.  

 350 
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Figure 4. (a) Dome added to the original model, (b) reference model: signed distance field of unit 1 at depth equal to -1000 

meters, (c) starting model: signed distance field of unit 1 at depth equal to -1000 meters, (d) weights 𝑾𝒑 assigned to the 

prior model term in eq. (4). We note that the starting model as shown in (c) also corresponds to the prior model. 

In what follows, we test the capability of level-set based inversion to recover the uplift, both without and with geological 355 

correction. We use a starting model where the dome is nearly missing (see Figure 4b for the example of Unit 1, and Figure 

5b for a 3D view of the model), simulating the scenario in which little to no indication is present in the 2D seismic and 

geological information. In addition to the dome, we increased the discrepancy between the starting model and the reference 

model by subsampling the reference geological dataset generating the starting model. It is obtained by retaining one out 

of every nine points of the original dataset (i.e., points from 2D surfaces) used to generate the reference model in 360 

LoopStructural. This generates fine-scale variations of the model, as can be seen from the comparison of Figure 4b and 

Figure 4c. Figure 5a and Figure 5b, the sum of perturbations of the reference model generates a strong starting data misfit. 

We set up inversions such that the starting model is equal to 𝝓𝑠𝑡𝑎𝑟𝑡 = 𝝓𝑝𝑟𝑖𝑜𝑟 . To define the geological data 𝒅𝑔𝑒𝑜𝑙 used in 

the calculation of the geological correction term as in Eqs. (7-8), we assume only knowledge of the stratigraphic column 

and of the average orientation of layers. In this example, the stratigraphic column is conformable, meaning that all 365 

geological layers are represented with one continuous relative geological time function. Consequently, the influence of 

geological correction should be to direct inversion towards a model of conformable layers arranged following the 

deposition order encoded in the stratigraphic column. 
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 370 
Figure 5. Synthetic model for proof-of-concept testing: reference model (a) with the corresponding gravity anomaly 

shown in transparency and starting model (b). The location of the seismic sections used to derive the prior model is shown 

by the dashed lines. The red arrow shows the dome location. The two colour bars and their respective palettes are 

common to (a) and (b). Modified and adjusted from Giraud et al. (2022). 

5.1.2.Inversion results and interpretation 375 

Due to the overall simplicity of the model, the inversion converges in about 10 iterations, taking only a few seconds on a 

laptop computer. Inversion results are shown in Figure 6.  

 

Figure 6. Inversion results for proof-of-concept: without application of geological correction (a) and using geological 

correction (b). Modified and adjusted from Giraud et al. (2022). 380 

When no geological correction is applied (α = 0 in eq. 12), the sole requirement to reduce the data misfit visible in Figure 

5a and Figure 5b leads the inversion to produce geologically unfeasible features (abnormal stratigraphic contacts, Figure 

6a). On the contrary, consistent stratigraphic contacts and conformable stratigraphic units are obtained when the geological 

correction is applied with α = 0.5 (Figure 6b). Visually, the recovered model looks comparable to the reference model. 

Because the two recovered models have a different rock type representation, we consider other indicators to obtain a finer 385 

analysis.  
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We complement our comparison of inverted models using adjacency relationships introduced in Section 4.4. In a layered 

stratigraphy such as presented here, this can be useful to identify geological contacts violating age relationships. In 

addition, it may be an indicator of the ruggedness of surface contact as it measures the overall contact area. To compare 

the recovered models with the reference model, we calculate the difference between their respective adjacency matrices 390 

(Figure 7). In Figure 7a and Figure 7b, we observe the occurrence of contacts absent from the reference model, where 

adjacency between units only follows the depositional order (the stratigraphic column) (see Figure 7d). Following 

geological rules, the contacts between units 3 and 5 recorded by the adjacency matrices of the starting model (Figure 7a) 

and inversion without geological correction (Figure 7a) should be forbidden. This indicates that, in this case, inversion 

allows contact between units that are in disagreement with the reference model and which violate geological principles. 395 

It is interesting to notice, however, that geophysical inversion reduces the number of such contacts even in the absence of 

geological correction.  

 

 

Figure 7. Adjacency matrices: differences between the starting model (a), inverted model without geological correction 

(b), and with geological correction used during inversion (c); (d) shows the adjacency matrix of the true model. Adjacency 400 

relationships are represented using upper triangular adjacency matrices as adjacency relationships are symmetric. The 

diagonal is left empty because we do not record occurrences of a rock in contact with itself.  

Further, the geological correction term reduces the model search space to outcomes in agreement with the geological 

knowledge infused during inversion. While it is possible that such contacts come about at intermediate steps of the 

inversion, convergence of the algorithm makes it unlikely for them to persist.  405 

From the success of this synthetic test, we have developed a structurally more complex model to investigate other features 

of the proposed algorithms and evaluate the limits of the integration method. 

5.2. Testing the inversion approaches in the presence of an unconformity 

In this section, we investigate a more challenging geological setting and explore the possibility to use automatic geological 

modelling to define a term from the inversion’s objective function. We also test the possibility to combine it with the 410 

application of geological correction to the model update. Additionally, we examine the possibility to use geological 

correction a posteriori to ‘geologify’ an existing model presenting features that conflict with geological principles and/or 

data.  
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5.2.1.Survey setup 

We generate a synthetic model to test of the proposed approach to recover information about objects others than 415 

conformable horizons such as unconformities. To this end, we generate a reference model resulting from three main 

geological events occurring in the following order:  

(1) Deposition of isopach stratigraphy made of 4 units and regional tilting. 

(2) Sinistral faulting of these layers. 

(3) Erosion followed by a new depositional episode, leading to the observation of an angular unconformity.  420 

These geological features can be produced using implicit modelling as follows. As explained above, all units within a 

conformable stratigraphic unit can be modelled using the same scalar field, which can be assimilated to a signed distance 

to some reference horizon. This signed distance represents conformable horizons where the value of the scalar field 

corresponds to the cumulative thickness from the base of the modelled series. Here, we define the stratigraphic column 

using these cumulative thicknesses to define the horizons. The units then correspond to thickness intervals which are 425 

associated to a rock model. The orientation of parallel layers is governed by a vector indicating the ‘younging’ direction 

of strata. In the case of a planar unconformity, a simple choice of sufficient data is the vector normal to the erosion surface 

making up the unconformity and one point constraining its location. Here, this erosion surface separates two groups of 

stratigraphic units. For simplicity, we only consider a single rock unit overlying the unconformity. The data used to 

generate the model is given in Appendix 4, which provides quantities used in Eqs. (7)-(9). Geological information and the 430 

corresponding geological model area shown in Figure 8, where the unconformity is shown in red. Density contrasts are 

given in Figure 8a and a view of the associated reference density contrast model for the interpretation of inversion results 

is shown in Figure 9.  
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Figure 8. Reference geological model and density contrasts: (a) top view, (b) 3D rock unit cube and (c) structural events, 435 

overlayed in (d).  

For our tests using this model, we simulate the case where the geological map with the strike of the unconformity as 

shown in Figure 8a and the vector normal to the fault 𝒏𝑓 are available. However, in this fictitious scenario, the dip of the 

unconformity plane (hence its normal 𝒏𝑢) is not known and needs to be recovered. We assume that the erosion is planar, 

so that there is only a lack of knowledge for dip of the unconformity (equivalently, the vertical component of 𝒏𝑢). The 440 

objective of this synthetic test is thus to estimate how accurately the unconformity can be modelled, and consequently, to 

determine whether we can retrieve the vertical component of 𝒏𝑢 and the model that gave rise to the observed 

measurements.  
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Figure 9. True model visualised in 3D view, slices, and representation of the unconformity plane.  445 

To test the geological components of inversion introduced in this paper, four geophysical inversion scenarios are 

investigated:  

(1) No use of geological implicit geological modelling during inversion. 

(2) Geological modelling used to calculate a geological correction term to model updates (Sect. 3.3.1). 

(3) Geological modelling used only to define the prior model term in the cost function of geophysical inversion 450 

(Sect. 3.3.2). 

(4) Geological modelling used in both the definition of the prior model term in the cost function and to calculate a 

geological correction term to model updates. 

For the recovery of the unconformity plane (erosional surface), we separate the rock units into two distinct stratigraphic 

groups, pre-erosional, post-erosional, respectively. The location of contacts between these two groups is used for the 455 

calculation of a plane defining the unconformity as detailed in Section 3.2.2. Assuming a complete lack of knowledge 

about the vertical component of 𝒏𝑢, we set it to 90 degrees (i.e., vertical unconformable contact) in the starting model for 

inversion (Figure 10). We run inversion corresponding to the four inversion scenarios proposed above. Inversions stop 

when reaching  𝐸𝑅𝑅𝑑 = 0.5 mGal. The gravity data simulated for the reference and starting models are shown in Figure 

11. 460 
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Figure 10. Starting model visualised in 3D view, slices, and representation of the unconformity plane. The black dashed 

line represents the location of reference (or true) unconformity plane.  

 

 465 

Figure 11. Gravity data simulated for the reference model (left) and for the starting model (right). 

5.2.2.Inversion results  

As a pre-requisite to comparing models, we point out that they are all geophysically equivalent from the point of view of 

the data misfit 𝐸𝑅𝑅𝑑 (Figure 15a). On this basis, the features presented by the recovered models can be assessed from a 

geological and petrophysical perspective. Starting with visual, qualitative interpretation of the results of the four scenarios 470 

listed above, we examine:  

 The slice D-C (Figure 13),  

 The slice B-A (Figure 14), 

 From the contact points shown as scattered points in Figure 12. 
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 475 

Figure 12. 3D visualisation of Inversion results for cases (1) through (4). The differences between the best fitting planes 

corresponding to the recovered uniformity interface shown here and the reference plane amount to 11.9, 3.2, 5.7, and 4.6 

degrees for cases (1) through (4), respectively. 

The main observation that can be made is that the unconformity boundary is poorly recovered for case (1) in the absence 

of either geological correction or a geological prior model term applied to inversion. This is clearly visible in all images 480 

showing inversion results, be it from the 3D plot of points constituting the non-conformable contact (Figure 12) or slices 

through the model (Figure 13 and Figure 14). This observation is further confirmed by the metrics shown in Figure 15. 

Case (1), which considers geophysical data only in the inversion process, stands out for all metrics. For instance, 𝐸𝑅𝑅𝑚 

remains notably higher when no geological modelling is used in the inversion than for all other cases (Figure 15c). A 

similar behaviour is observed both for 𝑂𝐶 and 𝐸𝑅𝑅𝛷 (Figure 15b and Figure 15d, respectively).  485 

 

Figure 13. Visualisation of Inversion results for cases (1) through (4) along section D-C. 

From this preliminary examination of results on a relatively simple geological case, we conclude that using automatic 

geological modelling in inversion dramatically increases the inversion’s capability, not only to recover models consistent 

https://doi.org/10.5194/egusphere-2023-129
Preprint. Discussion started: 13 February 2023
c© Author(s) 2023. CC BY 4.0 License.



21 

with geological data and principles, but also to avoid converging to local minima when the starting model is inappropriate. 490 

This is true for both the application of a geological correction term or for the definition of a dynamic prior model term. 

Further to this, convergence curves in Figure 15a suggest that inversion considering geophysics alone may require many 

more iterations to converge as compared to using appropriate geological correction.  

 

 495 

Figure 14. Visualisation of Inversion results for cases (1) through (4) along section B-A. The true location of the 

unconformity is indicated by the black dashed line.  
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Figure 15. Inversion metrics for cases (1) through (4): data misfit (a), Overlap Coefficient (b), model misfit (c) and signed-

distance misfit (d). 500 

Comparing visualisations of models from cases 2, 3 and 4, we notice that while they present features largely similar to 

the reference model, fine scale differences are noticeable. In Figure 12 through to Figure 14, scenario 2 presents a contact 

between the non-conformable unit and the sequence that is slightly better recovered at depth than for scenarios 3 and 4. 

Cases 2, 3, and 4 are difficult to distinguish visually except in the deeper part of the model, but this may be inconclusive 

due to the limited sensitivity of both geological and geophysical in this part of the model. Overall, visual inspection 505 

suggests that scenario 2 seemingly has a higher degree of resemblance with the reference model while converging to a 

similar geophysical misfit. This is also suggested by the calculation of the dip angle of the recovered unconformity plane 

by automatic interpretation of the best fitting plane. The difference with the reference model amounts to approximately 

11.9, 3.2, 5.7, and 4.6 degrees for cases (1) through (4). This indicate.  

Taken together, our results using this example suggest that: 510 

 The use of geological modelling to define either a dynamic prior model or a correction term greatly ‘improves’ 

the final model;  

 Inversion using a geological prior model term converges faster than otherwise; 

 The use of a geological correction term may provide slightly better recovered unconformity planes. 

5.3.  ‘Geologisation’ of pre-existing unrealistic model 515 

In this section, we briefly investigate the possibility of increasing the geological realism of a pre-existing model provided 

a priori from, e.g., already performed inversion or classification of inversion results, using the same reference model as 
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in Sect. 5.2. The model we consider (Figure 16a) shows unrealistic geometries defining the unconformity while presenting 

a geophysical data misfit value 𝐸𝑅𝑅𝑑 close to the objective data misfit value of 0.5 mGal (dashed line in Figure 15a). In 

real world studies, this could correspond to the results of rock type classification obtained a posteriori from geophysical 520 

inversion only or legacy inversion. We will further refer to this case scenario as case (5). As can be seen in Figure 16a, 

the starting model corresponding to case (5) is in strong disagreement with the reference model (Figure 9) from a structural 

geological point of view as shown, for instance, by the high starting 𝑂𝐶 value (Figure 17b). In particular, the unconformity 

is poorly recovered and the expected planar contact is significantly distorted. In contrast, the layered stratigraphy is well 

resolved.  525 

 

 

Figure 16. (a) starting model and (b) inverted model. From left to right, the views are the same as displayed in Figure 12, 

Figure 13, and Figure 14, respectively.  

We use this model as a starting model for inversion applying geological correction only. We use this scenario to evaluate 530 

the capability of our method to restore geological consistency between inversion results and geological observation while 

maintaining geophysical data fit within prescribed levels. As in the previous case study, we focus the analysis on the 

unconformity since it is the main feature targeted by the inversion in this example. Inversion results are shown in Figure 

16b. Here, we apply only geological correction using Eq. (4) (flow ① in). 

Visual inspection of inverted models shown in Figure 16b indicates that the application of geological correction effectively 535 

drives the optimization process towards models in better agreement with the unconformity observed in the geological 

map. In this case, the resulting model is in a region of the model space considerably closer to geologically plausible 

scenarios than the starting model. This is illustrated by the metrics used to monitor the inversion, which show an overall 

decrease in 𝑂𝐶 and in model misfit (Figure 17b and Figure 17c, respectively). This implies that using a geological 

correction term may reduce the risk of geophysical inversion converging to geologically unrealistic local minima of the 540 

cost function.  
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Figure 17. Comparison of inversion metrics for cases (1)-(4) with case (5). 

In terms of geophysical data misfit, the data error ERRd presents a plateau decreasing only after iteration 40 (Figure 17a), 

indicating gradual deformation of models with similar ERRd values. This shows that inversion navigates a region of the 545 

model space comprising models that are equivalent in terms of geophysical data misfit but which are gradually more 

consistent with the available geological data. This implies that the proposed approach may be effectively used to navigate 

the space of geophysically equivalent models. We note that the exploration of geophysically equivalent models can be 

performed using nullspace shuttles to modify an already existing model while maintaining a nearly constant geophysical 

data misfit (Deal and Nolet, 1996; Muñoz and Rath, 2006; Fichtner and Zunino, 2019). In our particular case, it could be 550 

achieved by gradual deformation of the starting model to accommodate geological information. On these premises, the 

use of geological correction as performed in this section may open up avenues to:  

 Derive models not proposed by implicit geological modelling or geophysical inversion alone but combining 

them instead. 

 Infuse geological data and principles into pre-existing inverted models derived without the knowledge or 555 

capability to integrate them. 

6. Discussion  

6.1. Proposed work in the context of geoscientific exploration  

In the last decade, the sampling of models from regions of the geological solution space to fit geological field observations 

has gained traction. The models proposed by these methods are usually derived from the interpolation of geological 560 

observations (Wellmann and Caumon, 2018). The inversion algorithm we proposed here can be used in conjunction with 

this strategy to modify such models using geophysical inversion. As geophysical inversion presents a different sensitivity 

to model parameters, inversion can be used to explore different regions of the solution space. This may be achieved with 

little development using models representative of families sampled from the geological model space, e.g., from topological 

analysis (Pakyuz-Charrier et al., 2019) or a similarity distance (Suzuki et al., 2008) to select starting models for inversion. 565 

Following the same idea, it may be possible to use deep learning for 3D geological structure inversion results (Jessell et 

al., 2022; Guo et al., 2021) as starting points to run series of inversions using the method presented here.  

In some cases, geological modelling and geophysical inversion are difficult to reconcile. This may indicate that the 

modelling of geology is not sufficiently well informed by the available geological measurements and/or that hypotheses 

about the area need to be revisited. Under these circumstances, the geological model space might not contain a sufficiently 570 

good representation of the subsurface to fit the geophysical data. It could be the case, for instance, when structures are 

invisible to the available geological observations but can be sensed by geophysical data. In such cases, geophysical 
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inversion as performed here could be used as a tool to adjust these models and to infer the presence of unseen geological 

features. 

As mentioned above, our inversion algorithm enables estimating the magnitude of adjustments required to reconcile 575 

geological models with geophysical measurements not only by comparing the forward response of given models but also, 

more importantly, by adjusting the model’s geometry to fit geophysical data. For scenario testing, the parameter 

controlling the amplitude of perturbation of interfaces between two successive iterations, 𝝉, can be set accordingly with 

uncertainty information. For instance, it can be set arbitrarily small in locations of low uncertainty such as the vicinity of 

boreholes, outcrops, or high resolution seismic, and, conversely, large in uncertain areas where geological data is sparse 580 

to leave more freedom to geophysical inversion. Following the same idea, 𝝉 could also be set using uncertainty about 

domain boundaries derived using the implicit approach of Fouedjio et al. (2021). 

We note that while experienced interpreters may be able to interpret geologically unrealistic inversion results ‘correctly’, 

it is nonetheless safer to ensure geological principles are not violated by inversion. It evacuates an important source of 

uncertainty, and it reduces the impact of human bias and ambiguous interpretation while ensuring that results can be 585 

robustly passed on to the next stage of modelling. More fundamentally, adding constraints essentially reduces the non-

uniqueness of the inverse problem by making the search space smaller. In practice, however, more studies should be 

performed to assess whether the geological constraints change the “landscape”, or rugosity, or the objective function, and 

whether it always helps optimization methods to avoid convergence to local minima.  

6.2. Limitations of the method and potential weaknesses 590 

A potential limitation of the proposed approach that is inherent to the use of geological constraints pertains to the 

projection of an implicit rock model realisation onto the discrete mesh used to model geophysical data. Quoting Scalzo et 

al. (2021): “Naively exporting voxelised geology […] can easily produce a poor approximation to the true geophysical 

[response]”. While it can be alleviated with the appropriate material averaging approach, aliasing can affect the 

geophysical response of the geological model projected onto the aforementioned mesh. This consideration is absent from 595 

our investigations, but it may be important to address in real world case studies where stakes are higher than in the work 

presented here.  

A clear limitation of this work, which is intrinsic to level-set inversion, is the discreteness of physical properties inverted 

for, which probably makes this kind of inversion one of the most parsimonious approaches. It presupposes accurate 

knowledge of the density of rock units and/or that they can be described by constant densities, neglecting geological and 600 

petrophysical phenomena leading, for instance, to lateral facies variations, compaction, and alteration. Polynomials 

describing properties could be used instead of constant values. This limitation precludes application of the method in 

certain scenarii. This may also call for integration with more advanced statistical rock physics and geostatistical modelling, 

using, for instance, the approach of Phelps (2016) to generate densities using a geostatistical approach. Additionally, 

porting the continuous-value inversion component of the shape optimization workflow of Dahlke et al. (2020) to 3D 605 

potential field inversion may help generalize the potential use of level set inversion.  

6.3. Future research avenues  

We formulate and solve the inverse problem in the least-squares sense using Tikhonov regularization to stabilize the 

inversion and to infuse geological information. The regularization functional we employ addresses only the difference 

between the proposed model and a given model. It is straightforward to consider other regularisation terms such as a 610 
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gradient or Laplacian minimization to encode geological information. Another avenue could be to use the same 

parametrisation for the geophysical and geological modelling, and to solve for all information simultaneously.  

In addition, the flexibility offered by the least-squares framework allows for the design of constraint terms specific to the 

use of signed distances to enforce physical principles. For instance, one can think of maintaining the sum of the updates 

of signed distances to zero in each model-cell, such that, for the ith model-cell, ∑ 𝛿𝜙𝑘
𝑖𝑁

𝑘=1 = 0. This would preserve the 615 

signed-distance properties of 𝝓 at each iteration, thereby eliminating the need to reinitialise the signed-distance fields at 

each iteration using the fast-marching method.  

The available geological information to constrain geophysical inversion can take many forms ranging from sparse 

information about rocks properties to dense borehole data and seismic interpretations (Grana et al., 2012). We have 

explored the possibility to constrain a geophysical inverse model using surface geological data and seismic sections. It is 620 

obvious that borehole information can be considered in the same manner, and that there is no restriction to the use of other 

sources of information such as modelling of other geophysical techniques (e.g., depth-to-basement from electromagnetic 

methods, reflectors from passive seismics, etc).  

An obvious and straightforward extension of this work is to extend it to magnetic data, the inversion of which shares many 

features with gravity inversion.  625 

Last, extensions of our method may allow null-space exploration and to mitigate some of the limitations exposed in the 

previous subsection. Using the sensitivity of geophysical data to changes in physical property, ways to generate the ‘birth’ 

new geological units for inversion to consider geological bodies previously not accounted due to lack of information may 

be devised. This may be useful, for instance, to model intrusions invisible to surface geology. Further to this, starting from 

a discrete model resulting from level-set inversion, it is possible to explore regions of the model space with intra rock unit 630 

variations (lateral facies variations, compaction, etc.) simply through usage of the null-space shuttles as proposed by Deal 

and Nolet (1996) and Fichtner and Zunino (2019). We believe that these two possibilities are faces of the same coin that 

constitute a promising area of research for future work.  

7. Conclusion 

We have introduced two new approaches towards unification of geological modelling and geophysical inversion into a 635 

deterministic inversion algorithm. They consist of: 

- the application of a geological correction term to the geophysical inversion’s model update, and 

- the integration of automated geological modelling in a dedicated term of the objective function governing 

geophysical inversion, 

and allow to obtain inverse models that are consistent with geological principles and data.  640 

These developments were motivated by the need to remediate to some of the limitations inherent to geological and 

geophysical modelling taken separately. We have shown that our framework is general in nature and can be applied in 

different contexts. We have tested the proposed approaches and demonstrated their potential using two synthetic examples, 

each representing a specific exploration scenario:  

- to constrain the modelling of a conformable stratigraphy, which relates to the deposition order of sediments,  645 

- to recover the parameters of a tilted unconformity, which relates to tectonic history.  

In each case, geological information used to derive constraints is sparse, and separate geological or geophysical modelling 

do not suffice to recover the reference model. We have shown experimentally that, in contrast, the integration of the two 
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sources of information as proposed here provides the capability to recover models much closer to the reference structures 

and reduces the effect of the ill-posedness affecting each method. Our investigations also suggest that the methodology 650 

we propose can be applied with different goals in mind, such as: 

- To complement geological sampling techniques by automatically tuning implicit geological models to fit 

geophysical data.  

- To derive models as starting points to navigate the joint geology-geophysics null-space. 

- To ‘geologify’ pre-existing models and navigate the geophysical space of equivalent models. 655 

- To recover geological parameters and models in sparse data scenarios.  
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Appendices  

11.1. Appendix 1: Estimating the best fitting plane of a contact under constraints 

In this Appendix, we detail the calculation of the vector determining the orientation of an erosion plane as mentioned in 805 

section 3.2.2. It is calculated from the location of the contacts between rock units making up the modelled unconformity. 

Let us define a plane by its normal vector 𝒏 = [𝑛𝑥 , 𝑛𝑦, 𝑛𝑧] and a real number 𝑠 such that 𝒏𝒙 + 𝑠 = 0, where 𝒙 is a 

coordinate vector in three-dimensional space. The best fitting plane approximating the contact between two units or groups 

of units is obtained by solving a linear equality-constrained least squares problem formalized as follows:  

minimize ‖𝑾𝑨𝒏 −𝑾𝒃‖2
2

s. t. 𝑪𝒏 = 𝒅,
 

(18) 

where 𝒃 is a column vector of ones and 𝑾 is a diagonal matrix. It contains weights controlling the relative importance 810 

given to the different values in 𝑨, which contains the spatial coordinates of the points constituting the interface to be 

approximated as a planar contact. The matrix 𝑪 contains the location of contacts measured, e.g., at surface level from 

geological observations or from borehole data, which are used to define the equality constraints; 𝒅 is a vector of ones. In 

our implementation, we solve eq. (17) using the open-source linear algebra library LAPACK proposed by Anderson et al. 

(1999), to which we refer the reader for further details.  815 

In practice, 𝑾 can be set according to the sensitivity of geophysical data to variations in physical property (sensitivity 

matrix 𝑺) in the model-cells considered. To constrain the horizontal component of the normal vector calculated using the 

system of equations (17), 2 points located at surface level suffice. In this situation, we obtain an estimate of the third 

component of the normal vector to the plane, 𝑛𝑧.  

After obtaining the normal vector approximating the orientation of the plane, 𝑠 can be determined from a location that the 820 

plane is known to cross (i.e., at the modelled interface) using the definition of the plane as 𝒏𝒙 + 𝑠 = 0. 

11.2. Appendix 2: Building the least-squares system of equations 

We derive the system of equations solved in the level-set inversion scheme used here. Writing 𝒅𝑐𝑎𝑙𝑐 = 𝑺𝑚𝒎(𝝓), the 

system of equations corresponding to Eq. (4) is given as:  
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[
𝑺𝑚𝒎(𝝓)

𝜆𝑝
2𝑾𝑝𝝓

] = [
𝒅𝑜𝑏𝑠

𝜆𝑝
2𝑾𝑝𝝓

𝑝𝑟𝑖𝑜𝑟], 
(19) 

At each iteration, the system is linearized around the current model. Solving for updates of the signed distances 𝛿𝝓, we 825 

obtain, for the kth iteration:  

[
𝑺𝑚

𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘

𝜆𝑝
2𝑾𝑝

] 𝛿𝝓 = −[
𝑺𝑚𝒎(𝝓𝑘) − 𝒅𝑜𝑏𝑠

𝜆𝑝
2𝑾𝑝(𝝓

𝑘 −𝝓𝑝𝑟𝑖𝑜𝑟)
]. (20) 

Using the chain rule and Eq. (5), we can rewrite the first element of the left hand side of Eq. (23) as follows and obtain 

the sensitivity matrix of the gravity data to changes of 𝝓:  

𝑺𝑚
𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
=

𝜕𝒅

𝜕𝒎(𝝓𝑘)

𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
=
𝜕𝒅

𝜕𝝓𝑘
= 𝑺𝜙. (21) 

𝑺𝜙, which relates the perturbation of signed distances to geophysical data, can be calculated from Eq. (2-3) (see Giraud 

et al., 2021a, for details about this derivation). Using Eq. 24, the system of equations in Eq. (23) rewrites as:  830 

[
𝑺𝜙

𝜆𝑝
2𝑾𝑝

] 𝛿𝝓 = − [
𝑺𝑚𝒎(𝝓𝑘) − 𝒅𝑜𝑏𝑠

𝑾𝑝(𝝓
𝑘 −𝝓𝑝𝑟𝑖𝑜𝑟)

]. (22) 

 

 

𝑾𝑝 is given as:  

𝑾𝑝 = 

[
 
 
 
 𝑾𝑝

𝜙1 𝟎 𝟎 𝟎

𝟎 𝑾𝑝
𝜙2 𝟎 𝟎

𝟎 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝑾𝑝

𝜙𝑛𝑟
]
 
 
 
 

, (23) 

where 𝑾𝑝
𝜙𝑘  is a diagonal matrix of dimensions 𝑛𝑚 × 𝑛𝑚 locally adjusting the amount of change allowed to the signed-

distance updates of the different model-cells.  835 

It is calculated as: 

𝑾𝑝
𝜙𝑘 =  𝜮𝑝 ∙ (𝟙𝜏(𝝓

𝑘))𝑇 , (24) 

where 𝜮𝑝 is a diagonal matrix containing uncertainty information derived from prior information. It can be used to control 

where the model updates are prioritized over other locations. In the absence of such prior information, 𝜮𝑝 may be set as 

the identity matrix; 𝟙𝜏(𝝓𝑘) is the indicator vector of 𝝉𝑖  applied to 𝝓𝑘. For the ith model cell, it is calculated as: 

(𝟙𝜏(𝝓𝑘))𝑖 = {
𝟏 𝑖𝑓 |(𝝓𝑘)𝑖| ≤ 𝝉𝑖
𝟎 𝑖𝑓|(𝝓𝑘)𝒊| >  𝝉𝑖

 (25) 

As a consequence, 𝑾𝑝
𝜙𝑘  is equal to 0 for all cells not part of the inversion’s domain (i.e., cells where 𝟙𝜏(𝝓𝑘) is null) and 840 

to 1 for all cells considered at any given iteration.  
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11.3. Appendix 3: Geological data 

Table A 1. Geological data used to build the reference geological model  

Stratigraphic column Stratigraphic ‘younging’ vector 

Rock unit Min. thickness Max. thickness 0 √2/2 √2/2 

(a) -Inf 0 Contact between unconformity and stratigraphy 

(b) 0 km 2.1 km X (m) Y (m) Z (m) 

(c) 2.1 km 6 km 0 -5000 0 

(d) 6 km Inf Coordinates of vector normal to the fault plane 

Coordinates of vector normal to unconformity  X (m) Y (m) Z (m) 

X (m) Y (m) Z (m) 0.5 -0.5 -0.5 

0.5 -0.5 0.5 Fault slip vector 

Fault displacement length (m) X (m) Y (m) Z (m) 

3.75 km  0 1 0 
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