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Abstract.  

We propose and evaluate methods for the integration of automatic implicit geological modelling into the geophysical 15 

(potential field) inversion process. The objective is to enforce structural geological realism and to consider geological 

observations in level-set inversion, which inverts for the location of boundaries between rock units. We propose two 

approaches. In the first approach, a geological correction term is applied at each iteration of the inversion to reduce 

geological inconsistencies. This is achieved by integrating an automatic implicit geological modelling scheme within the 

geophysical inversion process. In the second approach, we use automatic geological modelling to derive a dynamic prior 20 

model term at each iteration of the inversion to limit departures from geologically feasible outcomes. We introduce the 

main theoretical aspects of the inversion algorithm and perform the proof-of-concept using two synthetic studies. The 

analysis of results using indicators measuring geophysical, petrophysical and structural geological misfits demonstrates 

that our approach effectively steers inversion towards geologically consistent models and reduces the risk of geologically 

unrealistic outcomes. Results suggest that geological correction may be effectively applied to pre-existing geophysical 25 

models to increase their geological realism and that it can also be used to explore geophysically equivalent models. 

1. Introduction 

One of the longstanding challenges faced by geophysical inversion in general, and potential field studies in particular, is 

the recovery of geologically meaningful inverse models. One of the chief factors explaining this is the strong non-

uniqueness of the solution to the inverse problem: an infinite number of models can fit a given potential field dataset, 30 

including a vast space of geologically unrealistic outcomes. This has prompted the development of a number of approaches 

using prior information or constraints during inversion that aim at reducing the search space to models fitting the 

geophysical measurements (see, e.g., Lelièvre and Farquharson, 2016; Moorkamp, 2017; Wellmann and Caumon, 2018; 

Giraud et al., 2021b, and references therein). Earlier proposals comprise the use and design of regularisation schemes that 

account for prior information about the spatial variations of inverted properties (e.g., smoothness constraints, Li and 35 

Oldenburg , 1996) or departure from a reference model based on some hypothesis (e.g., smallness constraints, Hoerl and 

Kennard, 1970). A more recent, and drastic, approach to reduce the size of the search space is to consider the geometry 

of contact between rock units instead of the distribution of petrophysical values. In such case, the rock units’ physical 
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properties are assumed to be known a priori and can be kept constant during inversion. This idea was proposed decades 

ago for ray-based inversion in reflection seismology (Gjoystdal et al., 1985), but it raises challenges to automatically 40 

maintain consistent relationships between geological interfaces (Caumon et al., 2004). More recently, surface-based 

inversion has become practical for seismic or for potential field inversion by using either an explicit formulation for the 

interface between rock units (Galley et al., 2020) or using level-sets in the inversion (e.g., Dahlke et al., 2020; Giraud et 

al., 2021a; Li et al., 2017, 2020; Rashidifard et al., 2021; Zheglova et al., 2018). In the implicit boundary representation, 

the unit boundaries correspond to the zero iso-value of the implicit functions representing the signed distance to interfaces. 45 

In this type of modelling, the algorithms invert directly for the location of the contacts between geological units by 

adjusting the location of these level-sets, allowing the automatic deformation of the geological units using geophysical 

data. Implicit formulations have a better ability than explicit surfaces to maintain volumetric validity throughout model 

updates and can additionally deal with topological changes (Collon et al., 2016; Wellmann and Caumon, 2018).  

In exploration geophysics, recent studies have applied level-set inversion to the recovery of the geometry of one or two 50 

anomalous units, in both single physics or multi-physics inversion (Zheglova et al., 2018; Li et al., 2017, 2016). 

Subsequent works comprise the extension and modification of level-set inversion by Giraud et al. (2021a) and Rashidifard 

et al. (2021) whose framework addresses an arbitrary number of rock units in 3D gravity inversion. In comparison to the 

direct inversion of physical properties (i.e., density, electrical resistivity, seismic velocities, etc.), these geometrical 

inversions present a direct pathway to obtaining geologically realistic outcomes from the inversion of potential field data. 55 

Nonetheless, to the best of our knowledge, level-set inversions still lack the capability to ensure the geological plausibility 

of inverted models, in the sense that they can produce alterations of the original models that can potentially violate 

geological principles while exploring the geophysical data space. To mitigate this, several solutions may be devised. One 

possibility, explored recently by Güdük et al (2021) and Liang et al. (2023), consists in computing the geophysical 

response directly on geological models. In what follows, we propose two alternative approaches to integrate geophysical 60 

inversion and geological modelling that allow more freedom to the geophysical component of the workflow: to apply 

geological correction either during or after level-set based geophysical inversion. In the first case, one can think of 

ensuring geological plausibility a posteriori using an ad hoc process in which an existing geophysical inverse model 

undergoes modifications until it satisfies geological plausibility conditions. This could be applied, for instance, to existing 

rock unit models obtained from previous geophysical processing or interpretation. In the second case, there is the 65 

possibility to integrate geological modelling principles, data, and rules directly within the geophysical inversion algorithm. 

In this contribution, we will focus on, and explore, two avenues in this direction: 

a. The application of geological correction to the proposed model at each iteration of the geophysical inversion to 

ensure that the search for a model honouring the geophysical measurements does not decrease geological realism 

(introduced in sect. 3.3.1 and tested in sect. 5.1 and 5.2).  70 

b. Incorporating a geological term in the objective function of the geophysical inverse problem (introduced in 

section 3.3.2 and tested in section 5.2).  

In the two points above, the recovery of geological parameters from models proposed during inversion is necessary. At 

each iteration of the inversion, geological quantities such as the orientation of a contact or its location are extracted from 

the current model and subsequently fed to a geological modelling engine. The geological modelling engine will, in turn 75 

propose the geological realisation closest to the geophysical inverse model, from which a ‘geological correction’ can be 

calculated and applied to the model update. This forms the basis for geological correction (point a. above) to ensure that 
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geological consistency with principles and data is maintained throughout inversion. The same principle is used in b., but 

to define a constraint term as part of the inversion’s objective function. 

The main object of this contribution is to introduce the methodology allowing the integration of automated geological 80 

modelling in the geophysical inversion process as mentioned above and to provide idealised proof-of-concepts in the form 

of two synthetic examples. This paper is articulated in six sections as follows. In the second section, we introduce the 

inversion algorithm that we use to integrate geological constraints. Following this, in sect. 3 we provide elements of 

implicit geological modelling required by the automated geological modelling process used to constrain geophysical 

inversion. In this section, we also detail how geological constraints are applied using the approaches (a) and (b) mentioned 85 

above through an automated geological modelling process. In sect. 4, we introduce the series of metrics that we consider 

to assess inversion convergence and recovered models from both the geological and geophysical point of views. Sect. 5 

presents the proof-of-concept using two synthetic examples of 3D models representing idealised scenarios. In the 

Discussion (Sect. 6), we place our findings in the broader context of subsurface modelling, discuss the limitations and 

implications of our work and review potential extensions of the proposed method. 90 

2. Geometrical inversion: formalization 

2.1. Pre-requisite: Linking rock unit boundaries to physical property inversion  

The proposed method relies on the formulation of the model using an implicit model formulation in the form of signed 

distances to interfaces between rock units (right-hand side of Fig. 1, right). As proposed by Giraud et al. (2021a), this 

modelling approach considers ‘rock units’ as one or more rock types characterised by the same physical value (e.g., here, 95 

each unit is characterised by a single density value within the modelled area). Each rock unit is modelled by a unique 

signed-distance scalar field covering the study area. In a study considering 𝑛𝑟 rock units of known contrasting physical 

properties, we consider a set of 𝑛𝑟 signed-distance fields 𝝓 = {𝝓𝑘 , 𝑘 = 1,… , 𝑛𝑟} over 𝑛𝑚 model cells corresponding to 

the distance to the boundaries of rock units. These signed-distances are calculated using the fast-marching method of 

Sethian (1996) to maintain the following properties:  100 

𝝓𝑘 {
> 0 inside unit k,      
= 0 at the boundary,
< 0 outside unit k.   

 

(1) 

 

In our level-set inversions, 𝝓 is the primary variable inverted for, which constitutes the proxy for a direct link mapping 

geophysical and geological representations of the subsurface. We map these signed distances to petrophysical properties 

using:  

𝒎(𝝓1, … , 𝝓𝑛𝑟) =∑𝑉𝑖𝐻(𝝓𝑖) [ ∏ (1 − 𝐻(𝝓𝑗))

𝑛𝑟

𝑗=1,𝑗≠𝑖

]

𝑛𝑟

𝑖=1

, (2) 

where 𝑽 ∈  ℝ𝑛𝑟 is a vector storing the physical property value assigned to each of the 𝑛𝑟 geological units (e.g., density 

contrasts for the different rock units in the case of gravity inversion). Similar to Giraud et al. (2021a), 𝐻 is the smeared-105 

out Heaviside function, which we calculate following Osher and Fedkiw (2003). This smearing is useful for the calculation 

of the sensitivity matrix of the calculated data to changes in 𝝓 from Eq. (2). Adapting it to our problem, 𝐻 is defined for 

the kth rock unit in the ith model-cell as  
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𝐻(𝜙𝑘,𝑖) =

{
 

 
0 if 𝜙𝑘,𝑖 < − 𝜏𝑖 ,                                                     

1

2
+
𝜙𝑘,𝑖
2𝜏𝑖

+
1

2𝜋
sin (

𝜋𝜙𝑘,𝑖
𝜏𝑖

)  if 0 ≤ |𝜙𝑘,𝑖| ≤  𝜏𝑖 ,

1 if 𝜙𝑘,𝑖 > 𝜏𝑖 ,                                                         

 (3) 

where 𝝉 = {𝜏𝑖 , 𝑖 = 1, … , 𝑛𝑚} defines the volume of rock where the boundary is allowed to vary between two successive 

iterations of the inversion. To the best of our knowledge, it is common to set all 𝜏𝑖 values to a constant, equal to 0.5 ×110 

min(∆𝑥, ∆𝑦, ∆𝑧) (Li et al., 2017) in a regular mesh of cells with volume ∆𝑥 × ∆𝑦 × ∆𝑧. In our implementation, we extend 

this to the possibility to use spatially varying boundary thicknesses by allowing the neighbourhood defined by 𝝉 to vary 

in space. This enables to anchor the model at observation points where 𝝉𝑖 = 0, e.g., at surface observations, boreholes, 

along seismic lines, etc. In extreme scenarios, the volume occupied by boundaries with 𝜏𝑖 ≫ ∆𝑥, ∆𝑦, ∆𝑧 of cells with 

volume ∆𝑥 × ∆𝑦 × ∆𝑧 may cover extensive parts of the study area, or, conversely, prevent the model from evolving when 115 

𝝉 = 𝟎 everywhere.  

At each iteration of the inversion, 𝒎 is updated from the changes in 𝝓, 𝛿𝝓, which are required by the process of optimizing 

the objective function (also called cost function, see Section 2.2) within the domain defined by non-null values of 𝝉.  

2.2. General formulation 

We formulate the inverse problem in the least-squares sense, taking gravity data inversion as an example. Adjusting the 120 

words of Giraud et al. (2021a), the choice of a least-squares framework is motivated by the flexibility it allows in the 

number of constraints and forms of prior information that can be used in the inversion. Note that it corresponds to the 

multi-Gaussian Bayesian inversion framework as a maximum a posteriori estimator (Tarantola, 2005). 

The objective function to minimise reads:  

𝛹(𝝓, 𝒅𝑜𝑏𝑠  ) =  ‖𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙𝑐‖2
2 + 𝜆𝑝‖𝑾𝑝(𝝓 − 𝝓

𝑝𝑟𝑖𝑜𝑟)‖
2

2
, (4) 

where 𝒅𝑜𝑏𝑠 are the observed data and 𝒅𝒄𝒂𝒍𝒄 the gravity response of the density contrast model 𝒎(𝝓). We use 𝒅𝑐𝑎𝑙𝑐 =125 

𝒅𝑐𝑎𝑙𝑐(𝒎) =  𝑺𝑚𝒎(𝝓), where 𝑺𝑚 is the sensitivity matrix of the gravity data 𝒅 to changes in densities 𝒎(𝝓). The first 

term of Eq. (4) corresponds to a data misfit term whereas the second term is a regularisation term that minimises deviations 

from the prior model; 𝜆𝑝 is a positive scalar weighting the regularisation term; 𝑾𝑝 is an inverse diagonal variance matrix 

of dimensions (𝑛𝑚𝑛𝑟) × (𝑛𝑚𝑛𝑟) whose values can vary in space according to prior information to favour or discourage 

specific changes or features in the model. We note that the definition of 𝑾𝑝 used here differs from Giraud et al. (2021a), 130 

where 𝑾𝑝 is constituted of line vectors of dimensions 𝑛𝑟 × (𝑛𝑚𝑛𝑟). This allows for more flexibility to translate prior 

information into constraints on a cell by cell basis. 𝝓𝑝𝑟𝑖𝑜𝑟  is the signed distances of a prior model. For simplicity, we do 

not include data measurement and modelling errors in the term ‖𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙𝑐‖2
2 of Eq. (4), but instead stop the inversion 

when the solution reaches a prescribed misfit level. Naturally, variable measurement errors could be integrated by 

replacing this term by the more general expression  ‖𝑪𝒅
−1(𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙𝑐)‖2

2 where 𝑪𝒅 would be the data covariance matrix.  135 
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We solve Eq. (4) iteratively and calculate the update of signed distances 𝛿𝝓𝒌 that reduces 𝛹(𝝓𝑘 , 𝒅𝑜𝑏𝑠  ) at each iteration 

𝑘. To solve for 𝛿𝝓𝑘, we build the system of equations given in Appendix 1, which requires the sensitivity matrix 𝑺𝜙,𝑘 of 

𝒅𝑐𝑎𝑙𝑐(𝒎(𝝓𝑘)) with respect to changes in 𝝓𝑘 using the chain rule: 

 

 140 

𝑺𝜙,𝑘 =
𝜕𝒅𝑐𝑎𝑙𝑐(𝒎(𝝓𝑘))

𝜕𝝓𝑘
=

𝜕𝒅

𝜕𝒎(𝝓𝑘)

𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
= 𝑺𝑚

𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
, 

(5) 

where 
𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
 is obtained analytically from Eqs. (2-3) (see Giraud et al., 2021a for details). 

It can be shown that the objective function 𝛹(𝝓, 𝒅𝑜𝑏𝑠) is equal to the log-posterior probability density distribution as 

formulated in the Bayesian framework (Tarantola 2005, Chapters 1 and 3 for more details). Here, the problem is therefore 

cast as a maximum a posteriori estimation. At the 𝑘th iteration, we calculate 𝝓𝑘+1 such that 𝝓𝑘+1 = 𝝓𝑘 + 𝛿𝝓𝑘, and the 

updated model 𝒎(𝝓𝑘+1) is calculated consistently with Eq. (2) by selecting the rock unit with the largest signed distance 145 

value at each model-cell 𝑖 = 1,… , 𝑛𝑚:  

𝒎𝑖
𝑘+1 = 𝑽𝑠 where 𝑠 = argmax 

𝑠
(𝝓𝑠=1,…,𝑛𝑟

𝑘+1 )
𝑖
. (6) 

We remind that the vector 𝑽 ∈  ℝ𝑛𝑟 contains the physical property values assigned to the different geological units (see 

Eq. 2). In Eq. (6), the argmax function leads to selecting the density contrast corresponding to the highest value of 𝝓, 

which, intuitively, corresponds to the “innermost” rock unit. Following the same rationale as Zheglova et al. (2013), we 

then calculate the signed distances corresponding to the updated boundaries of 𝒎𝑘+1 to maintain the signed distance 150 

properties of 𝝓𝑘+1 as introduced in Sect. 2.1. We note that at any given iteration, the search space is restricted to the 

vicinity of boundaries between rock units as defined by the boundary’s neighbourhood controlled by 𝛕, which determines 

the current inversion’s domain. This localisation dramatically reduces the volume of rock and the number of model-cells 

considered for modification between two successive iterations to satisfy geophysical data fit requirements.  

2.3. Prior model constraints on signed distances 155 

Using a prior structural geological model, the corresponding signed distances 𝝓𝑝𝑟𝑖𝑜𝑟  to boundaries can be calculated. We 

remind that in Eq. (4), the prior model constraints on signed distances are given as 𝜆𝑝‖𝑾𝑝(𝝓 − 𝝓
𝑝𝑟𝑖𝑜𝑟)‖

2

2
. 

This allows the inversion to explore a part of the model space remaining within the neighbourhood of 𝝓𝑝𝑟𝑖𝑜𝑟 . The size of 

this neighbourhood globally depends on 𝜆𝑝, which controls the relative importance assigned to the prior model term during 

inversion compared to the geophysical data misfit term. It is also locally determined by 𝑾𝑝, which tunes the importance 160 

of the prior model term for each model cell. Similar to other least-squares inversions, 𝜆𝑝 can be set manually by trial and 

error, for example starting with a high value until model changes occur. Alternatively, the L-curve (Hansen and Johnston, 

2001; Hansen and O’Leary, 1993) or general cross-validation principle (Farquharson and Oldenburg, 2004) may be used. 

In instances where a geological prior model is used, it is generally obtained before geophysical inversion and remains 

constant throughout inversion. In this contribution, our objective is to use as a prior model the result of a geological 165 

modelling process anchored only to the geological data and principles to better explore the admissible geological and 

geophysical parameter space. 
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3. Integrating structural geological modelling into geophysical inversion  

The goal of this section is to introduce possible methods to extract geological information in the form of contact location 

and orientation data (angles) of geological features from inverted models that can be subsequently treated as geological 170 

data to implicit geological modelling.  

3.1. Pre-requisite: implicit geological modelling in a nutshell 

In implicit modelling, geological structures (e.g., faults, foliations, intrusions; and stratigraphic horizons) are represented 

by iso-values of one or several 3D scalar field (see Wellmann and Caumon, 2018, for a review). For example, fault 

surfaces are generated as iso-values of signed distance functions (possibly restricted to a given region of space), and strata 175 

as iso-values of a relative geological time function. For each geological surface or series of surfaces, the 3D scalar field 

is obtained by least-squares interpolation between spatial measurement points. In this paper, we use LoopStructural, which 

is an open-source Python library for implicit 3D geological modelling (Grose et al., 2021). In LoopStructural, geological 

features are modelled backwards in time starting with the most recent. Faults are modelled by first modelling the fault 

surface and fault displacement vector by building a structural frame consisting of three signed distance fields representing 180 

the fault geometry and kinematics. The fault can then be applied to the faulted features by restoring the observations of 

the faulted surface prior to interpolating the faulted surface. This means that the kinematics of the fault are directly 

incorporated into the surface description.  

LoopStructural uses a discrete implicit modelling approach, where the implicit function is approximated using a piecewise 

combination of basis functions on a predefined support such as a linear tetrahedron on a tetrahedral mesh or a trilinear 185 

basis function on a Cartesian grid. Discrete implicit modelling forms an under-constrained system of equations because 

geological observations are sparse and there are usually more degrees of freedom than geological constraints (location or 

orientation of geological features). To ensure the stability of the solution, a continuous regularisation term is added. Usual 

choices for regularisation constraints are some type of discrete smoothness constraint (Frank et al., 2007; Irakarama et al., 

2021) or minimisation of a continuous energy (Irakarama et al., 2022; Renaudeau et al., 2019). In this study, we use the 190 

finite difference regularisation as implemented in LoopStructural, which minimises the second derivative of the scalar 

fields in all directions using a finite difference scheme on a Cartesian grid, following Irakarama et al. (2021). 

Geological observations such as the location of contacts, form lines, fault locations and structural measurements can 

constrain the value and/or the gradient of the implicit function (Frank et al., 2007). Geological observation (further denoted 

as 𝒅𝑔𝑒𝑜𝑙) are incorporated by finding the mesh element which contains the observation point and adding the linear 195 

constraint for the relevant degrees of freedom (nodes of the element). Orientation data can be used to constrain the gradient 

of the implicit function 𝑔:  

𝜵𝑔(𝐱) = 𝐧, (7) 

where 𝐧 is the normal vector of the geological surface at the location 𝐱. As Eq. (7) constrains both the direction and 

magnitude of the gradient of the scalar field, an alternative formulation to impose only the orientation is to find two 

tangent vectors, e.g., the strike vector 𝐯𝑠𝑡𝑟𝑖𝑘𝑒 and dip vector 𝐯𝑑𝑖𝑝, and to set 200 

{
𝜵𝑔(𝐱) ⋅ 𝐯𝑠𝑡𝑟𝑖𝑘𝑒 = 0,

𝜵𝑔(𝐱) ⋅ 𝐯𝑑𝑖𝑝 = 0.  
 

(8) 

Geological contacts or location of geological features are integrated into the implicit modelling by setting the value of the 

implicit function:  
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𝑔(𝐱) = 𝑣𝑎𝑙, (9) 

where 𝑣𝑎𝑙 is the value of the implicit function given at the location 𝐱. The value should represent the distance to a reference 

horizon, for example 0 when the observation is located directly on the surface being modelled (e.g., a fault surface), or 

the cumulative stratigraphic thickness to some reference horizon for different conforming stratigraphic interfaces. The 205 

implicit function is determined by solving the regularised, over determined problem using least squares minimisation. For 

this, LoopStructural uses a conjugate gradient algorithm to iteratively find the solution of the system of equations.  

In the next subsections, we introduce how to recover input data for implicit geological modelling as mentioned above 

from models obtained through geophysical inversion. More specifically, we detail how to:  

(1) Extract the location of contacts between units from geophysical regions to constrain stratigraphic contacts. 210 

(2) Retrieve orientation data from the plane approximating the location of contacts between non-conformable units 

to model an unconformity using both geological and geophysical modelling.  

We note that while we use LoopStructural, the generation of geological models using the data provided in this paper can 

be carried out with other implicit geological modelling engines, such as through GeoModeller’s application programming 

interface (Calcagno et al., 2008; Guillen et al., 2008), GemPy (De La Varga et al., 2019), SKUA-GOCAD (Jayr et al., 215 

2008), Petrel (Souche et al., 2015), or Leapfrog (Cowan and Beatson, 2002). 

3.2. Recovering structural information from and for geophysical inversion 

3.2.1. Stratigraphic information  

In implicit geological modelling, interfaces are defined by iso-values of one or several scalar fields analogous to signed 

distances or to relative geological time. This opens up pathways to integrate implicit geological modelling and level-set 220 

inversion as introduced above and illustrated in Figure 2Erreur ! Source du renvoi introuvable.. Stratigraphic 

information are recovered from the current geophysical model by identification of the contacts between rock units. More 

specifically, the 3D coordinates of the top of the different units within a given layered stratigraphy are extracted from 3D 

rock unit models and stored as input data (as in Eq. 9) for implicit geological modelling. 
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Figure 1. Proposed strategy to link implicit geological modelling with geophysical level-set inversion. The geological 

domain represents implicit geological modelling (left hand side) and relates to Sect. 3.1 and 3.2. The middle and right 

hand side panels illustrates the link between signed distances and density contrasts introduced in Sect. 2.1. The dashed 

line arrow connecting geophysical inversion to geological domain symbolises the exchange of information between 

geological and geophysical modelling that can be used to link the two modelling processes.  230 

3.2.2. Orientation observations: example of a subplanar unconformity 

In some cases, interpretive orientation data can be used as input to geological modelling (e.g., Sprague and de Kemp, 

2005). Similarly, the geophysical level-set approach provides region boundary orientation which can be used to locally 

constrain the planar orientations of geological interfaces. 

For instance, let us consider the example of a roughly planar erosion surface affecting some older stratigraphic series, 235 

which constitute an unconformity. We propose to recover the average normal vector 𝐧 to this plane, which is required for 

the implicit model to be well posed in the absence of post-erosional stratigraphic data, by:  

1) Identification of the contact locations for the surface of interest from current geophysical model 𝝓, followed by 

2) Calculation of the best-fitting plane approximating the identified locations of the selected contacts (constrained 

least-squares fit through a least-squares minimization process, see Appendix 2). 240 

After it is recovered, the vector 𝐧 is normalised and used with Eqs. (7) or (8) in implicit geological modelling.  
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3.3. Automated geological modelling during inversion  

3.3.1. Geological correction  

A way to promote geological consistency at each iteration of the geophysical inversion is to adjust the model update 𝛿𝝓 245 

to limit changes in 𝝓 that contradict geological data and principles. For this, we apply what we further refer to as a 

‘geological correction term’ to the update term 𝛿𝝓 obtained from solving Eq. (4). In what follows, we introduce the 

‘geological’ signed distances or relative geological time values 𝒇𝑔𝑒𝑜𝑙  to the rock units corresponding to the geological 

model derived from 𝒅𝑔𝑒𝑜𝑙  and the current geophysical update of 𝝓. 𝒇𝑔𝑒𝑜𝑙  can be seen as a re-parameterisation of the 

geological model in a way that is compatible with the geophysical signed distances values 𝝓. In other words, the 250 

application of 𝒇𝑔𝑒𝑜𝑙  consists in the calculation of the geological image of the geophysical signed distances values 𝝓.  It is 

computed using the following:  

1) Extraction of geological information from the current signed distance model 𝝓∗
𝑘 (contacts and orientation data 

corresponding to the current model, see sect. 3.2.1), 

2) Utilisation of this geological information as input to an implicit geological modelling engine (here, 255 

LoopStructural), where it is used to calculate the corresponding geological model together with geological data 

𝒅𝑔𝑒𝑜𝑙 , and 

3) Computation of signed distances 𝒇𝑔𝑒𝑜𝑙  from the geological model to calculate the ‘geological correction term’ 

 𝛿𝝓𝑔𝑒𝑜𝑙 . 

At the 𝑘th iteration, we first calculate 𝝓∗
𝑘, the updated signed distance obtained from solving the geophysical inverse 260 

problem formulated in Eq. (4) around the current model:  

𝝓∗
𝑘 = 𝝓𝑘−1 + 𝛿𝝓𝑘 ,  (10) 

and then we use it to calculate the geological correction term: 

𝛿𝝓𝑔𝑒𝑜𝑙(𝝓∗
𝑘 , 𝒅𝑔𝑒𝑜𝑙) = 𝒇𝑔𝑒𝑜𝑙(𝝓∗

𝑘 , 𝒅𝑔𝑒𝑜𝑙) − 𝝓∗
𝑘 . (11) 

Calculating 𝒇𝑔𝑒𝑜𝑙(𝝓∗
𝑘 , 𝒅𝑔𝑒𝑜𝑙) provides the closest geological model honouring geological information extracted from 𝝓∗

𝑘 

together with geological data and knowledge encapsulated in 𝒅𝑔𝑒𝑜𝑙  (i.e., it is the geological image of image of 𝝓∗
𝑘). In 

this way, 𝒇𝑔𝑒𝑜𝑙(𝝓∗
𝑘 , 𝒅𝑔𝑒𝑜𝑙) returns a set of signed distance values which account for the relation between units (e.g., 265 

stratigraphic thickness, age relationships), known locations of contacts (e.g., seismic interpretation, borehole data, and 

surface geological observations), orientation data, and models proposed by geophysical inversion. Using 𝛿𝝓𝑔𝑒𝑜𝑙, we 

update the signed distances as follows:  

𝝓𝑘 = 𝝓∗
𝑘 + 𝛼𝛿𝝓𝑔𝑒𝑜𝑙(𝝓∗

𝑘 , 𝒅𝑔𝑒𝑜𝑙) = (1 − 𝛼)𝝓∗
𝑘 + 𝛼𝒇𝑔𝑒𝑜𝑙(𝝓∗

𝑘 , 𝒅𝑔𝑒𝑜𝑙  ), 𝛼 ∈ [0, 1[,  (12) 

where 𝛼 adjusts the importance given to the geological correction term.  

As a consequence of Eq. (11), 𝛿𝝓𝑔𝑒𝑜𝑙(𝝓∗
𝑘) is equal to 0 at all locations the proposed geophysical update 𝛿𝝓 does not 270 

conflict with geological modelling, and differs elsewhere, thereby steering the inversion towards the region of the 

geophysical model space corresponding to geologically consistent models. The contribution of the geological term to 

model update during geophysical inversion is illustrated in Figure 2 following ①. 

In what follows, we set 𝛼 = 1 2⁄  to balance the contributions of the different terms. 
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3.3.2. Geological term into the cost function  275 

A possible shortcoming of the approach proposed in 3.3.1 is that the geophysical solution 𝝓∗
𝑘 at iteration k remains 

anchored on the prior model 𝝓𝑝𝑟𝑖𝑜𝑟  (Eq. 4). In this section, we propose instead to integrate geological modelling in the 

cost function so that inversion can explore a larger portion of the model space. This can be achieved by considering the 

implicit geological model calculated in the same fashion as 𝛿𝝓𝑔𝑒𝑜𝑙 in Section 3.3.1. In such a case, 𝛿𝝓𝑔𝑒𝑜𝑙 can be used 

as a substitute for 𝛿𝝓𝑝𝑟𝑖𝑜𝑟  by setting 𝛿𝝓𝑝𝑟𝑖𝑜𝑟 = 𝝓− 𝝓𝑝𝑟𝑖𝑜𝑟 =  𝛿𝝓𝑔𝑒𝑜𝑙(𝝓𝑘 , 𝒅𝑔𝑒𝑜𝑙) in Eq. (4) to solve the problem at the 280 

next iteration (flow ② in Figure 2). Therefore, Eq. (4) becomes a function of 𝒅𝑔𝑒𝑜𝑙  and 𝛹(𝝓, 𝒅𝑜𝑏𝑠) rewrites as 

𝛹(𝝓, 𝒅𝑜𝑏𝑠 , 𝒅𝑔𝑒𝑜𝑙) as the inversion solves a geophysical and geological problem at each iteration. At iteration 𝑘, combining 

Eq. (4) and Eq. (12), we obtain the update of the signed distances by minimizing:  

𝛹(𝝓,  𝒅𝑜𝑏𝑠 , 𝒅𝑔𝑒𝑜𝑙) =  ‖𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙𝑐‖2
2 + 𝜆𝑝‖𝑾𝑝( 𝝓 − 𝒇

𝑔𝑒𝑜𝑙(𝝓𝑘−1, 𝒅𝑔𝑒𝑜𝑙))‖
2

2
, (13) 

where we set 𝝓𝑔𝑒𝑜𝑙 = 𝒇𝑔𝑒𝑜𝑙 . 

 285 

Figure 2. Summary of the proposed approaches to integrated geological modelling in geophysical inversion: iterative use 

of the geological correction term with a fixed prior (1) or update of the prior geological model (2). Note that the 

combination of both is possible. Modified from Giraud et al. (2022).  

4. Metrics for the evaluation of inversion results 

The above inverse methodologies can produce different outcomes for the inverted models in terms of the rock unit 290 

geometries and spatial distribution of physical properties. For the evaluation of inversion results, this section proposes 

metrics adapted to the chosen model parameterisation. 

4.1. Overlap coefficient 

The overlap coefficient (𝑂𝐶) (Szymkiewicz, 2017) is a similarity measure related to the Jaccard index (Jaccard, 1901) 

that measures the overlap between two sets. Applied to geological modelling, it is a measure of the dissimilarity between 295 
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discrete representations of the subsurface. For the comparison of the inverted rock type model 𝒎𝑖𝑛𝑣  and the reference 

model 𝒎𝑟𝑒𝑓 , 𝑂𝐶 can be written as:  

𝑶𝑪(𝒎𝒊𝒏𝒗,𝒎𝒓𝒆𝒇) =
card(𝒎𝒓𝒆𝒇⋂𝒎𝒊𝒏𝒗)

min(card (𝒎𝒓𝒆𝒇), card(𝒎𝒊𝒏𝒗))
=

𝟏

𝒏𝒎
∑𝟙

𝒎𝒊
𝒓𝒆𝒇

=𝒎𝒊
𝒊𝒏𝒗

𝒏𝒎

𝒊=𝟏

 , (14) 

where ⋂ denotes the intersection of values of sets; card is the cardinality operator, which returns the size of a given set; 

card(𝒎𝑟𝑒𝑓⋂𝒎𝑖𝑛𝑣) is number of model cells where the rock types from 𝒎𝑟𝑒𝑓  and 𝒎𝑖𝑛𝑣  are the same, while 

min(card (𝒎𝑟𝑒𝑓), card(𝒎𝑖𝑛𝑣)) returns the size of the smallest set (here, the number of model-cells); 𝟙 is the indicator 300 

function such that 𝟙
𝑚𝑖
𝑟𝑒𝑓

=𝑚𝑖
𝑖𝑛𝑣  = 1 if 𝑚𝑖

𝑟𝑒𝑓
 and 𝑚𝑖

𝑖𝑛𝑣  are equal, and 𝟙
𝑚𝑖
𝑟𝑒𝑓

= 𝑚𝑖
𝑖𝑛𝑣 = 0 otherwise. In this paper, 𝒎𝑟𝑒𝑓  and 

𝒎𝑖𝑛𝑣  have the same discretization. Therefore, 𝑂𝐶 represents the relative volume of rock assigned with the correct rock 

unit. Full dissimilarity is characterised by a value of 𝑂𝐶 equal to 0 and perfect similarity is characterised by a value of 1.  

4.2. Density contrast model misfit  

In our analysis of synthetic cases, we assess the ability of inversion to recover the reference density contrast model using 305 

the root-mean-square error 𝐸𝑅𝑅𝑚 as a measure of the difference between the reference and inverted models:  

𝐸𝑅𝑅𝑚(𝒎
𝑟𝑒𝑓 ,𝒎𝑖𝑛𝑣) = √

1

𝑛𝑚
∑(𝑚𝑖

𝑟𝑒𝑓
−𝑚𝑖

𝑖𝑛𝑣)
2

𝑛𝑚

𝑖

, (15) 

It corresponds to the standard deviation of the misfit between retrieved and reference models. It is routinely used to 

evaluate the capacity of inversion algorithms to recover the reference petrophysical model in synthetic studies. 

4.3. Geophysical data misfit 

We assess whether the estimated model adequately reflects the measured geophysical data and monitor the inversion’s 310 

stability using the root-mean-square error 𝐸𝑅𝑅𝑑 as a measure of the geophysical data misfit. It corresponds to a 

normalisation of the data misfit term in Eq. (4). We calculate it as:  

𝐸𝑅𝑅𝑑(𝒎
𝑖𝑛𝑣) = √

1

𝑛𝑑
∑(𝑑𝑖

𝑜𝑏𝑠 − 𝑑𝑖
𝑐𝑎𝑙𝑐)2

𝑛𝑑

𝑖

. (16) 

It is one of the metrics most commonly used to evaluate the capability of inversion to reproduce field measurements.  

4.4. Adjacency matrix 

Similar to the posterior analysis of Giraud et al. (2019), we analyse rock unit models recovered from inversion using 315 

adjacency matrices. Adjacency defines which rock bodies are in contact (Egenhofer and Herring, 1990), and is one of the 

simplest ways to assess a geological model from a quantitative point of view. For details, we refer the reader to Pellerin 

et al. (2015) and Thiele et al. (2016), who show its usefulness in the context of geological modelling. In this work, we 

simply use the number of grid faces located at the boundary between units with indices 𝑖 and 𝑗, respectively, as coefficient 

for A𝑖,𝑗 of the corresponding 𝑛𝑟 × 𝑛𝑟 adjacency matrix 𝑨. From a more abstract standpoint, this representation amounts 320 

to consider the geological model as a non-oriented graph (Godsil and Royle, 2001), where nodes correspond to the rock 

units and edges correspond to adjacency relationships. It can be calculated globally for a general overview (i.e., one 
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adjacency matrix calculated for the full model), or locally for more detailed analysis (i.e., adjacency matrices calculated 

only at certain locations). 

4.5. Signed distances misfit 325 

To quantify the difference between rock unit boundary locations in the reference and recovered models from an implicit 

modelling point of view, we propose a metric using signed distances to these interfaces: 

𝐸𝑅𝑅𝜙(𝝓
𝑟𝑒𝑓 , 𝝓𝑖𝑛𝑣) = √

1

𝑛𝑟

1

𝑛𝑚
∑∑(𝜙𝑖𝑗

𝑟𝑒𝑓
− 𝜙𝑖𝑗

𝑖𝑛𝑣)
2

𝑛𝑚

𝑗

𝑛𝑟

𝑖

. (17) 

Like the density contrast model misfit measures 𝐸𝑅𝑅𝑚 introduced above, the signed distances misfit 𝐸𝑅𝑅𝜙 measures the 

discrepancy between two models. Here, it offers a quantitative insight into the distance between interfaces of two structural 

models with the same discretisation. 330 

5. Synthetic application cases 

This section introduces the proof of concept of the proposed approach using two idealised examples. They illustrate the 

capability of the proposed inversion scheme to interleave geological modelling and geophysical inversion to recover 

geologically consistent models. We first explore the case of a layered stratigraphy before moving on with an example of 

the investigation of the dip of a planar unconformity.  335 

5.1. Geological correction: layered stratigraphy  

5.1.1. Survey setup 

The synthetic example presented here is an extension from Giraud et al. (2022), which shows a summarised example of 

the use of a geological correction term. We present it in more details and expand on the analysis and interpretation of 

results.  340 

The reference geological structural model is generated starting from the Claudius dataset in the Carnarvon Basin (Western 

Australia, interpreted from WesternGeco seismic data made available by Geoscience Australia). This real world dataset 

is freely available online for benchmarking purposes (https://github.com/Loop3D/ImplicitBenchmark, last accessed on 

30/07/2023) and used as a toy model in the LoopStructural package (Grose et al. 2021a). Here, the Claudius dataset, 

which consists of points sampled from interpreted seismic horizons in 3D, is used for the generation of implicit models 345 

in LoopStructural.  

In this work, we start from an upturned version of the original model (Figure 4a). We assume that two hypothetic 

perpendicular 2D seismic profiles (see their location in Figure 3c) together with general knowledge of the area provide 

sufficient information to build a prior rock model, from which 𝝓𝑝𝑟𝑖𝑜𝑟  is calculated. We assume that these seismic profiles 

and their close neighbourhood can be treated as low uncertainty zones. Low uncertainty areas also comprise the single 350 

shallowest layer of model-cells of the model under the assumption that the top layer can be well-constrained by geological 

field observations such as the nature of directly observable rocks. To convey increasing uncertainty with distance to 

seismic section, we assign 𝑾 with values inversely proportional to the squared distance to the seismic profiles (Figure 

3d), starting from a value of 1 along the profiles. As a consequence, the prior model weight (Figure 3d) decreases rapidly 

https://github.com/Loop3D/ImplicitBenchmark
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with distance to the seismic lines. Inversion is, therefore, mostly free to update the model as 𝑊𝑖𝑗 ≪ 1 in large a portion of 355 

the study area away from the seismic lines while remaining strongly influenced in their vicinity. 

For our testing, we modified the original geological model further with the manual exaggeration of a dome present in the 

original model which affects all units in the synthetic example Figure 3a. The resulting model is shown Figure 4a, where 

it is marked by the red arrow at the intersection of the two vertical slices. It is characterised by a vertical Gaussian 

displacement field with amplitude 500 m and standard deviation 350 m in both horizontal directions, centred around 360 

coordinates Easting = 2,700 m and Northing = 2,125 m. We note from Figure 3b that the added dome constitutes a 

noticeable difference with the starting model.  

 

 

Figure 3. (a) Dome added to the original model, (b) reference model: signed distance field of unit 1 at depth equal to -1000 365 

meters, (c) starting model: signed distance field of unit 1 at depth equal to -1000 meters, (d) weights 𝑾𝒑 assigned to the 

prior model term in Eq. (4). We note that the starting model as shown in (c) also corresponds to the prior model. 

In what follows, we test the capability of level-set based inversion to recover the uplift, both without and with geological 

correction. We use a starting model where the dome is nearly missing (see Figure 3b for the example of Unit 1, and Figure 

4b for a 3D view of the model), simulating the scenario in which little to no indication is present in the 2D seismic and 370 

geological information. In addition to the dome, we increased the discrepancy between the starting model and the reference 

model by subsampling the reference geological dataset generating the starting model. It is obtained by retaining one out 

of every nine points of the original dataset (i.e., points from 2D surfaces) used to generate the reference model in 

LoopStructural. This generates fine-scale variations of the model, as can be seen from the comparison of Figure 3b and 

Figure 3c. From the comparison of the gravity data shown in Figure 4a and Figure 4b, it appears that the perturbations of 375 

the reference model generate a strong starting data misfit for the starting model. We set up inversions such that the starting 

model is equal to 𝝓𝑠𝑡𝑎𝑟𝑡 = 𝝓𝑝𝑟𝑖𝑜𝑟. To define the geological data 𝒅𝑔𝑒𝑜𝑙  used in the calculation of the geological correction 

term as in Eqs. (7-8), we assume only knowledge of the stratigraphic column and of the average orientation of layers. In 

this example, the stratigraphic column is conformable, meaning that all geological layers are represented with one 

continuous relative geological time function. Consequently, the influence of geological correction should be to direct 380 

inversion towards a model of conformable layers arranged following the deposition order encoded in the stratigraphic 

column.  
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Figure 4. Synthetic model for proof-of-concept testing: reference model (a) with the corresponding gravity anomaly 385 

shown in transparency and starting model (b). The location of the seismic sections used to derive the prior model is shown 

by the dashed lines. The red arrow shows the dome location. The two colour bars and their respective palettes are 

common to (a) and (b). Modified and adjusted from Giraud et al. (2022). 

5.1.2. Inversion results and interpretation 

Due to the overall simplicity of the model, the inversion converges in about 10 iterations, taking only a few seconds on a 390 

laptop computer. Inversion results are shown in Figure 5.  

 

 

Figure 5. Inversion results for proof-of-concept: without application of geological correction (a) and using geological 

correction (b). Modified and adjusted from Giraud et al. (2022). 395 

When no geological correction is applied (α = 0 in Eq. 12), the requirement to reduce the data misfit component of Eq. 

(4) (the evolution of which is shown in Figure 4a and Figure 4b) leads the inversion to produce geologically unfeasible 

features (abnormal stratigraphic contacts, Figure 5a). On the contrary, consistent stratigraphic contacts and conformable 

stratigraphic units are obtained when the geological correction is applied with α = 0.5 (Figure 5b). Visually, the recovered 

model looks comparable to the reference model. Because the two recovered models have a different rock type 400 

representation, we consider other indicators to obtain a finer analysis. The value of α = 0.5 was chosen without a rigorous 
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analysis of its impact on the results. A naïve trial and error approach revealed that a value of 0.5 effectively ‘corrected’ 

the course taken by un-corrected geophysical inversion and prevented the appearance of artefacts.  

We complement our comparison of inverted models using adjacency relationships introduced in Section 4.4. In a layered 

stratigraphy such as presented here, this can be useful to identify geological contacts violating age relationships. In 405 

addition, it may be an indicator of the ruggedness of surface contact as it measures the overall contact area. To compare 

the recovered models with the reference model, we calculate the difference between their respective adjacency matrices 

(Figure 6). In Figure 6a and Figure 6b, we observe the occurrence of contacts absent from the reference model, where 

adjacency between units only follows the depositional order (the stratigraphic column) (see Figure 6d). Following 

geological rules, the contacts between units 3 and 5 recorded by the adjacency matrices of the starting model (Figure 6a) 410 

and inversion without geological correction (Figure 6a) should be forbidden. The comparison of adjacency matrices 

indicates that, in this case, inversion allows contact between units that are in disagreement with the reference model and 

which violate geological principles. It is interesting to notice, however, that geophysical inversion reduces the number of 

such contacts even in the absence of geological correction.  

 415 

 

Figure 6. Adjacency matrices: differences between the starting model (a), inverted model without geological correction 

(b), and with geological correction used during inversion (c); (d) shows the adjacency matrix of the true model. Adjacency 

relationships are represented using upper triangular adjacency matrices as adjacency relationships are symmetric. The 

diagonal is left empty because we do not record occurrences of a rock in contact with itself.  

Further, the geological correction term reduces the model search space to outcomes in agreement with the geological 420 

knowledge infused during inversion. While it is possible that such contacts come about at intermediate steps of the 

inversion, convergence of the algorithm makes it unlikely for them to persist.  

From the success of this synthetic test, we have developed a structurally more complex model to investigate other features 

of the proposed algorithms and evaluate the limits of the integration method. While analysing the influence of inaccurate 

knowledge of densities in detail is beyond the scope of this paper, it remains important to ensure that inversions are robust 425 

to small errors in density. For this, we refer the reader to Appendix 5 where we simulate errors in the knowledge of unit 

4. Previous works using level inversion have investigated the importance of the starting model in the uncorrected case 

and assume that their conclusions hold. Likewise, we assume robustness of level set inversion to noise in the data as it 

was shown by previous works cited in Sect. 1. To confirm this and for completeness, we performed additional tests, using:  

 Data contaminated with noise relatively high compared to the amplitude of the uncontaminated data (Appendix 430 

3: Robustness to noise); 
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 A degenerate starting model and data contaminated with noise (Appendix 4: Robustness to a degenerate starting 

model) 

 

 A starting model affected by errors in the density of rocks (Appendix 5: Robustness to errors in the density of 435 

rock units). 

A detailed analysis of these tests is beyond the scope of this paper and we refer the reader to these Appendices for more 

detail. In the remainder of this article, we assume that our approach is sufficiently robust to random noise and inaccurate 

starting models. 

5.2. Testing the inversion approaches in the presence of an unconformity 440 

In this section, we investigate a more challenging geological setting and explore the possibility to use automatic geological 

modelling to define a term from the inversion’s objective function. We also test the possibility to combine it with the 

application of geological correction to the model update. Additionally, we examine the possibility to use geological 

correction a posteriori to ensure geological realism (to ‘geologify’) an existing model presenting features that conflict 

with geological principles and/or data.  445 

5.2.1. Survey setup 

We generate a synthetic model to test the proposed approach to recover information about objects others than conformable 

horizons such as unconformities. To this end, we generate a reference model resulting from three main geological events 

occurring in the following order (Fig. 8):  

(1) Deposition of isopach stratigraphy made of 4 units and regional tilting. 450 

(2) Sinistral faulting of these layers. 

(3) Erosion followed by a new depositional episode, leading to the observation of an angular unconformity.  

These geological features can be produced using implicit modelling as follows. As explained above, all units within a 

conformable stratigraphic unit can be modelled using the same scalar field, which can be assimilated to a signed distance 

to some reference horizon. This signed distance represents conformable horizons where the value of the scalar field 455 

corresponds to the cumulative thickness from the base of the modelled series. The stratigraphic column defines the 

horizons based on these cumulative thicknesses. The rock units then correspond to thickness intervals which are associated 

to a rock model, and are associated to density contrasts (Fig. 8a). The orientation of parallel layers is governed by a vector 

indicating the direction towards younger strata (later referred to as the ‘younging’ direction). The unconformity is assumed 

to be planar, so it is fully defined by a normal vector and a location point. This erosion surface separates two groups of 460 

stratigraphic units. For simplicity, we only consider a single rock unit overlying the unconformity (displayed in red in Fig. 

8). The data used to generate the model is given in Appendix 6: Geological data, which provides quantities used in Eqs. 

(7)-(9). A view of the density contrast corresponding to this reference model is shown in Figure 8.  
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Figure 7. Reference geological model and density contrasts: (a) top view, (b) 3D rock unit cube and (c) structural events, 465 

overlayed in (d).  

For our tests using this model, we consider a case where the geological map defines the strike of the unconformity (Figure 

7a) and the fault orientation has been measured (the normal to the fault 𝒏𝑓 is available). However, in this fictitious 

scenario, the dip of the unconformity plane (hence its normal 𝒏𝑢) is not known and needs to be recovered. We assume 

that the erosion is planar, so that there is only a lack of knowledge for dip of the unconformity (equivalently, the vertical 470 

component of 𝒏𝑢). The objective of this simple synthetic test is thus to estimate how accurately the unconformity can be 

modelled, and consequently, to determine whether we can retrieve the vertical component of 𝒏𝑢 and the model that gave 

rise to the observed measurements.  
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Figure 8. Reference model visualised in 3D view, slices, and representation of the unconformity plane.  475 

To test the geological components of inversion introduced in this paper, four geophysical inversion scenarios are 

investigated:  

(1) No use of implicit geological modelling during inversion. 

(2) Geological modelling used to calculate a geological correction term to model updates (Sect. 3.3.1). 

(3) Geological modelling used only to define the prior model term in the cost function of geophysical inversion 480 

(Sect. 3.3.2). 

(4) Geological modelling used in both the definition of the prior model term in the cost function and to calculate a 

geological correction term to model updates. 

For the recovery of the unconformity plane (erosional surface), we separate the rock units into pre-erosional and post-

erosional stratigraphic groups. The location of contacts between these two groups is used for the calculation of a plane 485 

defining the unconformity as detailed in Section 3.2.2. Assuming a complete lack of knowledge about the vertical 

component of 𝒏𝑢, we set it to 0 (i.e., vertical unconformable contact) in the starting model for inversion (Figure 9). We 

run inversion corresponding to the four inversion scenarios proposed above. Inversions stop when reaching 𝐸𝑅𝑅𝑑 = 0.5 

mGal, which corresponds to acceptable values for legacy data (Barnes et al., 2011). The gravity data simulated for the 

reference and starting models are shown in Figure 10. We consider the data produced by the reference model as the field 490 

measurements corresponding to the model we try to recover. We assume zero error to test the ability of the method to 

recover the reference in a perfect data settings (See Appendix 3: Robustness to noise and Appendix 4: Robustness to a 

degenerate starting model for a more realistic case including data errors). 
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 495 

Figure 9. Starting model visualised in 3D view, slices, and representation of the unconformity plane. The black dashed line 

represents the location of reference (or true) unconformity plane.  

 

 

Figure 10. Gravity data simulated for the reference model (left), which we consider as the field data to honour, and for the 500 

starting model (right), which corresponds to the starting point of all inversion scenarios. 

5.2.2. Inversion results  

As a pre-requisite to comparing models, we point out that they are all geophysically equivalent from the point of view of 

the data misfit 𝐸𝑅𝑅𝑑 (Figure 13a). On this basis, the features presented by the recovered models can be assessed from a 

geological and petrophysical perspective. Starting with visual, qualitative interpretation of the results of the four scenarios 505 

listed above, we examine:  

 The 3D model in perspective with the unconformity shown as scattered points in Figure 11; 

 The slices B-A and D-C in Figure 12. 
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 510 

Figure 11. 3D visualisation of Inversion results for cases (1) through (4). The differences between the best fitting planes 

corresponding to the recovered uniformity interface shown here and the reference plane (Fig. 9) amount to 11.9, 3.2, 5.7, 

and 4.6 degrees for cases (1) through (4), respectively. 

The main observation that can be made is that the unconformity boundary is poorly recovered for case (1) in the absence 

of either geological correction or a geological prior model term applied to inversion. This is clearly visible in all images 515 

showing inversion results, be it from the 3D plot of points constituting the non-conformable contact (Figure 11) or slices 

through the model (Figure 12). This observation is further confirmed by the metrics shown in Figure 13. Case (1), which 

considers geophysical data only in the inversion process, stands out for all metrics. For instance, 𝐸𝑅𝑅𝑚 remains notably 

higher when no geological modelling is used in the inversion than for all other cases (Figure 13c). A similar behaviour is 

observed both for 𝑂𝐶 and 𝐸𝑅𝑅𝛷 (Figure 13b and Figure 13d, respectively).  520 

From this preliminary examination of results on a relatively simple geological case, we conclude that using automatic 

geological modelling in inversion can dramatically increase the inversion’s capability, not only to recover models 

consistent with geological data and principles, but also to avoid converging to local minima when the starting model is 

inappropriate. This is true for both the application of a geological correction term or for the definition of a dynamic prior 

model term. Further to this, convergence curves in Figure 13a suggest that inversion considering geophysics alone may 525 

require many more iterations to converge as compared to using appropriate geological correction.  

 



21 

 

Figure 12. Inversion results for cases (1) through (4) along section B-A (a) and D-C (b). In (a)The true location of the 

unconformity is indicated by the black dashed line.  530 
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Figure 13. Inversion metrics for cases (1) through (4): data misfit (a), Overlap Coefficient (b), model misfit (c) and signed-

distance misfit (d). 

Visually comparing models from cases 2, 3 and 4, we notice features largely similar to the reference model, but also some 

fine scale differences. Scenario 2 presents a contact between the non-conformable unit and the sequence that is slightly 535 

better recovered at depth than for scenarios 3 and 4 (Figure 12). Cases 2, 3, and 4 are difficult to distinguish visually 

except in the deeper part of the model, but this may be inconclusive due to the limited geological and geophysical 

sensitivity in this part of the model. Overall, visual inspection suggests that scenario 2 seemingly has a higher degree of 

resemblance with the reference model while converging to a similar geophysical misfit. This is also suggested by the 

calculation of the dip angle of the recovered unconformity plane by automatic interpretation of the best fitting plane. The 540 

difference with the reference model amounts to approximately 11.9, 3.2, 5.7, and 4.6 degrees for cases (1) through (4).  

Taken together, our results using this example suggest that: 

 The use of geological modelling to define either a dynamic prior model or a correction term greatly increases the 

geological realism of the final model;  

 Inversion using a geological prior model term converges faster than otherwise; 545 

 The use of a geological correction term may provide slightly better recovered unconformity planes. 

5.3. Improving the geological realism of a pre-existing model 

In this section, we investigate the possibility of increasing the geological realism of a pre-existing model provided a priori 

from, e.g., already performed inversion or classification of inversion results. To simulate this, we first start from the model 

inverted with the level set method without geological correction as obtained in Section 5.1 (Figure 14b), and run inversion 550 
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with geological correction applied. The inverted model obtained in this fashion is shown in Figure 14a. An animation 

showing the evolution of the inverted model together with geological inconsistences is shown in supplementary material 

provided by Giraud and Caumon (2023). The application of geological correction manages to remove a number of 

unrealistic features present in the starting model. However, the effect of the geological correction seems visually smaller 

than in the application of geological correction from the onset of inversion (Figure 14c). On this premise, if large 555 

unrealistic features appear, we recommend to run geological correction from the beginning of inversion instead of as an 

ad-hoc process. We note that in the transition between Figure 14a and Figure 14b by application of geological correction, 

all models are geophysically equivalent or nearly equivalent in that they present similar geophysical data misfit values. 

This suggests that, for this dataset, a continuum of models exists fitting the geophysical data to a similar level while 

presenting different degrees of geological realism. In what follows, we investigate this possibility further using the 560 

synthetic dataset presented in Sect. 5.2 

 

 

 
Figure 14. Comparison of inversion results with (a) geological correction starting from inverted model obtained without 565 

geological correction, as shown in (b); results with geological correction (c) and reference model (d). 

 The starting model we consider for improving the geological realism (Figure 15a) shows a very convoluted geometry for 

the unconformity and significant thickness variations in the pre-erosional sequence, while presenting a geophysical data 

misfit value 𝐸𝑅𝑅𝑑 close to the objective data misfit value of 0.5 mGal (dashed line in Figure 13a). In real world studies, 

this could correspond to the results of rock type classification obtained a posteriori from geophysical inversion only or 570 

legacy inversion. We will further refer to this case scenario as case 5. As can be seen in Figure 15a, the starting model 

corresponding to case 5 is in strong disagreement with the reference model (Figure 8) from a structural geological point 

of view as shown, for instance, by the high starting 𝑂𝐶 value (Figure 16b). In particular, the unconformity is poorly 

recovered and the expected planar contact is significantly distorted. In contrast, the layered stratigraphy is well resolved.  

 575 
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Figure 15. (a) starting model and (b) inverted model. From left to right, the views are the same as displayed in Figure 11, 

and Figure 12, respectively.  

We use this model as a starting model for inversion applying geological correction only (Section 3.3.1, Eq. 4 and flow ① 

in Figure 2). We use this scenario to evaluate the capability of our method to restore geological consistency between 580 

inversion results and geological observation while maintaining geophysical data fit within prescribed levels. As in the 

previous case study, we focus the analysis on the unconformity since it is the main feature targeted by the inversion in 

this example.  

Visual inspection of inverted models shown in Figure 16b indicates that the application of geological correction effectively 

drives the optimization process towards models in better agreement with the unconformity observed in the geological 585 

map. However, the thickness variations in the pre-erosional sequence are only partly resolved. Nonetheless, the resulting 

model is in a region of the model space considerably closer to geologically plausible scenarios than the starting model. 

This is illustrated by the metrics used to monitor the inversion, which show an overall increase in 𝑂𝐶 and a decrease in 

model misfit (Figure 16b and Figure 16c, respectively). This implies that using a geological correction term may reduce 

the risk of geophysical inversion converging to geologically unrealistic local minima of the cost function.  590 

 

Figure 16. Comparison of inversion metrics for cases 1-4 with case 5. 

In terms of geophysical data misfit, the data error ERRd presents a plateau decreasing only after iteration 40 (Figure 16a), 

indicating gradual deformation of models with similar ERRd values. This shows that inversion navigates a region of the 

model space comprising models that are equivalent in terms of geophysical data misfit but which are gradually more 595 

consistent with the available geological data. This implies that the proposed approach may be effectively used to navigate 

the space of geophysically equivalent models. We note that the exploration of geophysically equivalent models can be 

performed using null-space shuttles to modify an already existing model while maintaining a nearly constant geophysical 
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data misfit (Deal and Nolet, 1996; Muñoz and Rath, 2006; Fichtner and Zunino, 2019). In our case, it could be achieved 

by gradual deformation of the starting model to accommodate geological information. On these premises, the use of 600 

geological correction as performed in this section may opens up avenues to:  

 Derive models not proposed by implicit geological modelling or geophysical inversion alone but combining 

them instead. 

 Infuse geological data and principles into pre-existing inverted models derived without the knowledge or 

capability to integrate them. 605 

6. Discussion  

6.1. Proposed work in the context of geoscientific exploration  

In the last decade, the sampling of models from regions of the geological solution space to fit geological field observations 

has gained traction. The models proposed by these methods are usually derived from the interpolation of geological 

observations (Wellmann and Caumon, 2018). The inversion algorithm we proposed here can be used in conjunction with 610 

this strategy to modify such models using geophysical inversion. As geophysical inversion may be sensitive to features 

geological modelling has little to no sensitivity to, geophysical inversion can be used to explore different regions of the 

solution space. This may be achieved with little development using models representative of families sampled from the 

geological model space, e.g., from topological analysis (Pakyuz-Charrier et al., 2019) or a similarity distance (Suzuki et 

al., 2008) to select starting models for inversion. Following the same idea, it may be possible to use deep learning for 3D 615 

geological structure inversion results (Jessell et al., 2022; Guo et al., 2021) as starting points to run series of inversions 

using the method presented here.  

In some cases, geological modelling and geophysical inversion are difficult to reconcile. This may indicate that the 

modelling of geology is not sufficiently well informed by the available geological measurements and/or that hypotheses 

about the area need to be revisited. Under these circumstances, the geological model space might not contain a sufficiently 620 

good representation of the subsurface to fit the geophysical data. It could be the case, for instance, when structures are 

invisible to the available geological observations but can be sensed by geophysical data. In such cases, geophysical 

inversion as performed here could be used as a tool to adjust these models and to infer the presence of unseen geological 

features. 

As mentioned above, our inversion algorithm enables estimating the magnitude of adjustments required to reconcile 625 

geological models with geophysical measurements not only by comparing the forward response of given models but also, 

more importantly, by adjusting the model’s geometry to fit geophysical data. For scenario testing, the parameter 

controlling the amplitude of perturbation of interfaces between two successive iterations, 𝝉, can be set accordingly with 

uncertainty information. For instance, it can be set arbitrarily small in locations of low uncertainty such as the vicinity of 

boreholes, outcrops, or high resolution seismic. Following the same idea, 𝝉 could also be set using uncertainty about 630 

domain boundaries derived using the implicit approach of Fouedjio et al. (2021). Further considerations of uncertainty 

may be required to better evaluate and understand inversion results. For instance, the approach of Wei and Sun, 2022, 

who generate series of inverted models by varying their deterministic inversions’ hyperparameters could be a source of 

inspiration for uncertainty estimation. Likewise, the scalar field perturbation of Henrion et al. (2010), Clausolles et al., 

(2023) or Yang et al. (2019) could be transposed to the modelling approach we propose here. 635 



26 

We note that while experienced interpreters may be able to interpret geologically unrealistic inversion results ‘correctly’, 

it is nonetheless safer to ensure geological principles are not violated by inversion. It evacuates an important source of 

uncertainty, and it reduces the impact of human bias and ambiguous interpretation while ensuring that results can be 

robustly passed on to the next stage of modelling. More fundamentally, adding constraints essentially reduces the non-

uniqueness of the inverse problem by making the search space smaller. In practice, however, more studies should be 640 

performed to assess whether the geological constraints change the “landscape”, or rugosity, or the objective function, and 

whether it always helps optimization methods to avoid convergence to local minima.  

Finally, the approach presented here belongs to a family of inversion approaches that could be referred to as ‘geometry 

driven’. That is, the main driver for fitting the geophysical data is the geometry of the subsurface model. One of our 

working assumptions is that geological data used to derive structural geological models  are complemented by geophysical 645 

data, with the possibility to alter the shape of geological models. Another ‘geometry driven’ approach, consists in sampling 

points controlling the interpolated geological models within uncertainty and to integrate their forward geophysical 

response to the calculation of a posterior distribution (Güdük et al., 2021, Liang et al., 2023). This method is very elegant 

as it uses a unique geological level set parameterization, but it does not explicitly address the integration of spatial 

geological data as provided by, e.g., drillholes. In contrast, our method can honour (up to discretization errors) spatial 650 

data. The mapping of the geophysical signed distances 𝝓 onto their geological counterparts through 𝑓𝑔𝑒𝑜𝑙  makes it 

challenging to derive sensitivities directly as in Liang et al (2023), but it probably makes it possible to explore a larger 

model space by possibly departing from geological acceptable solutions during the non-linear iterations. Although further 

tests and comparisons between the two approaches are probably needed, this feature could be useful to prevent the 

optimization from converging to local minima and could possibly be used in the future for stochastic inversions.  655 

6.2. Limitations of the method and potential weaknesses 

A potential limitation of the proposed approach that is inherent to the use of geological constraints pertains to the 

projection of an implicit rock model realisation onto the discrete mesh used to model geophysical data. Quoting Scalzo et 

al. (2021): “Naively exporting voxelised geology […] can easily produce a poor approximation to the true geophysical 

[response]”. While it can be alleviated with the appropriate material averaging approach, aliasing can affect the 660 

geophysical response of the geological model projected onto the aforementioned mesh. This consideration is absent from 

our investigations, but it may be important to address in real world case studies where stakes are higher than in the work 

presented here.  

A clear limitation of this work, which is intrinsic to level-set inversion, is the discreteness of physical properties inverted 

for, which probably makes this kind of inversion one of the most parsimonious approaches. It presupposes accurate 665 

knowledge of the density of rock units and/or that they can be described by constant densities, neglecting geological and 

petrophysical phenomena leading, for instance, to lateral facies variations, compaction, and alteration. It is therefore 

possible for several rock types from the same stratigraphy to fall under the same ‘unit’ in the modelling approach that we 

follow. Polynomials describing properties could be used instead of constant values. This limitation precludes application 

of the method in certain scenarios. This may also call for integration with more advanced statistical rock physics and 670 

geostatistical modelling, using, for instance, the approach of Phelps (2016) to generate densities using a geostatistical 

approach. Additionally, porting the continuous-value inversion component of the shape optimization workflow of Dahlke 

et al. (2020) to 3D potential field inversion may help to generalise the potential use of level set inversion. Alternatively, 
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the mapping from signed distances to a fixed density value used here could be replaced by a mapping to an interval 

defining bounds constraints enforced during inversion using the same approach as, e.g., Ogarko et al. (2021). 675 

Finally, as mentioned in several places in the paper, further considerations on uncertainty are also required to better 

understand inversion results and find a set of admissible models, both geologically and geophysically. 

6.3. Future research avenues  

We formulate and solve the inverse problem in the least-squares sense using Tikhonov regularisation to stabilise the 

inversion and to infuse geological information. The regularisation functional we employ addresses only the difference 680 

between the proposed model and a given model. It is straightforward to consider other regularisation terms such as a 

gradient or Laplacian minimization to encode geological information. Another avenue could be to use the same 

parametrisation for the geophysical and geological modelling, and to solve for all information simultaneously.  

In addition, the flexibility offered by the least-squares framework allows for the design of constraint terms specific to the 

use of signed distances to enforce physical principles. For instance, one can think of maintaining the sum of the updates 685 

of signed distances to zero in each model-cell, such that, for the ith model-cell, ∑ 𝛿𝜙𝑘
𝑖𝑁

𝑘=1 = 0. This would preserve the 

signed-distance properties of 𝝓 at each iteration, thereby eliminating the need to reinitialise the signed-distance fields at 

each iteration using the fast-marching method.  

The available geological information to constrain geophysical inversion can take many forms ranging from sparse 

information about rocks properties to dense borehole data and seismic interpretations (Grana et al., 2012). We have 690 

explored the possibility to constrain a geophysical inverse model using surface geological data and seismic sections. 

Borehole information can, without doubt be considered in the same manner, and that there is no restriction to the use of 

other sources of information such as modelling of other geophysical techniques (e.g., depth-to-basement from 

electromagnetic methods, reflectors from passive seismics, etc).  

An obvious and straightforward extension of this work is to extend it to magnetic data, the inversion of which shares many 695 

features with gravity inversion.  

Finally, extensions of our method may allow for null-space exploration and the mitigation of some of the limitations 

identified in the previous subsection. This paper investigates the importance of geological information in level set 

inversion. Previous work focusing on level set inversion following an approach similar to ours have investigated the 

importance of accurate knowledge on the geometry and the number of rock units a priori (Giraud et al., 2021a). Giraud et 700 

al., 2021a, and Rashidifard et al., 2021, suggest that inversion is somewhat robust to errors in the starting model geometry 

and in the petrophysics of the rock units. Nonetheless, relatively small deviations between scenarios 2 and 5 illustrate that 

the proposed methodology is not sufficient to address the ill-posedness of the potential field problem. Moreover, results 

from Giraud et al., 2021a, suggest that level-set inversion “presents limitations when an important geologic unit is missing 

from the initial model”. To alleviate this, ways to generate the ‘birth’ of new geological units for inversion to consider 705 

geological bodies previously not accounted due to lack of information may be devised. One possibility could be to use 

the sensitivity of geophysical data to changes in physical property. This may be useful, for instance, to model intrusions 

invisible to surface geology. Further to this, starting from a discrete model resulting from level-set inversion, it is possible 

to explore regions of the model space with intra rock unit variations (lateral facies variations, compaction, etc.) simply 

through usage of the null-space shuttles as proposed by Deal and Nolet (1996) and Fichtner and Zunino (2019). We believe 710 

that these two possibilities are sides of the same coin that constitute a promising area of research for future work on 

uncertainty quantification. 
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7. Conclusions 

We have introduced two novel approaches towards unification of geological modelling and geophysical inversion into a 

deterministic inversion algorithm. They consist of: 715 

 The application of a geological correction term to the geophysical inversion’s model update, and 

 The integration of automated geological modelling in a dedicated term of the objective function governing 

geophysical inversion, 

and allow to obtain inverse models that are consistent with geological principles and data.  

These developments were motivated by the need to remediate some of the limitations inherent to geological and 720 

geophysical modelling taken separately. We have shown that our framework is general in nature and can be applied in 

different contexts. We have tested the proposed approaches and demonstrated their potential using two synthetic examples, 

each representing a specific exploration scenario:  

 to constrain the modelling of a conformable stratigraphy, which relates to the deposition order of sediments,  

 to recover the parameters of a tilted unconformity, which relates to tectonic history.  725 

In both cases, geological information used to derive constraints is sparse, and separate geological or geophysical modelling 

do not suffice to recover the reference model. We have shown experimentally that, in contrast, the integration of the two 

sources of information as proposed here provides the capability to recover models much closer to the reference structures 

and reduces the effect of the ill-posedness affecting each method. Our investigations also suggest that the methodology 

we propose can be applied with different goals in mind, including: 730 

 Complementing geological sampling techniques by automatically tuning implicit geological models to fit 

geophysical data.  

 Deriving models as starting points to navigate the joint geology-geophysics null-space. 

 ‘Geologifying’ pre-existing models and exploring the geophysical space of equivalent models. 

 Recovering geological parameters and models in sparse data scenarios.  735 

8. Data and code availability  

LoopStructural was made publicly available by Grose et al. (2020); the latest version is available at: 

https://github.com/Loop3D/LoopStructural (last accessed on 30/07/2023). The geological data used to generate models 

and models shown here are provided in Giraud et al. (2023). The inversion used here is a prototype under development 

that will be released in the future. Supplementary material is made available by Giraud (2023) and Giraud and Caumon  740 

(2023). 
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13. Appendices  

13.1. Appendix 1: Building the least-squares system of equations 

We derive the system of equations solved in the level-set inversion scheme used here. Writing 𝒅𝑐𝑎𝑙𝑐 = 𝑺𝑚𝒎(𝝓), the 

system of equations corresponding to Eq. (4) is given as:  

[
𝑺𝑚𝒎(𝝓)

𝜆𝑝
2𝑾𝑝𝝓

] = [
𝒅𝑜𝑏𝑠

𝜆𝑝
2𝑾𝑝𝝓

𝑝𝑟𝑖𝑜𝑟], 
(18) 

At each iteration, the system is linearised around the current model. Solving for updates of the signed distances 𝛿𝝓, we 920 

obtain, for the kth iteration:  

[
𝑺𝑚

𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘

𝜆𝑝
2𝑾𝑝

] 𝛿𝝓 = −[
𝑺𝑚𝒎(𝝓𝑘) − 𝒅𝑜𝑏𝑠

𝜆𝑝
2𝑾𝑝(𝝓

𝑘 −𝝓𝑝𝑟𝑖𝑜𝑟)
]. (19) 

Using the chain rule as in Eq. (5), we can rewrite the first element of the left hand side of Eq. (23) as follows and obtain 

the sensitivity matrix of the gravity data to changes of 𝝓:  

𝑺𝜙 = 𝑺𝑚
𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
=

𝜕𝒅

𝜕𝒎(𝝓𝑘)

𝜕𝒎(𝝓𝑘)

𝜕𝝓𝑘
. (20) 

𝑺𝜙, which relates the perturbation of signed distances to geophysical data, can be calculated from Eq. (2-3) (see Giraud 

et al., 2021a, for details about this derivation). Using Eq. (20), the system of equations in Eqs. (18-19) rewrites as:  925 

[
𝑺𝜙

𝜆𝑝
2𝑾𝑝

] 𝛿𝝓 = − [
𝑺𝑚𝒎(𝝓𝑘) − 𝒅𝑜𝑏𝑠

𝑾𝑝(𝝓
𝑘 −𝝓𝑝𝑟𝑖𝑜𝑟)

]. (21) 

 

𝑾𝑝 is given as:  
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𝑾𝑝 = 

[
 
 
 
 𝑾𝑝

𝜙1 𝟎 𝟎 𝟎

𝟎 𝑾𝑝
𝜙2 𝟎 𝟎

𝟎 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝑾𝑝

𝜙𝑛𝑟
]
 
 
 
 

, (22) 

where 𝑾𝑝
𝜙𝑘  is a diagonal matrix of dimensions 𝑛𝑚 × 𝑛𝑚 locally adjusting the amount of change allowed to the signed-

distance updates of the different model-cells.  

It is calculated as: 930 

𝑾𝑝
𝜙𝑘 = 𝜮𝑝 ∙ (𝟙𝜏(𝝓

𝑘))𝑇 , (23) 

where 𝜮𝑝 is a diagonal matrix containing uncertainty information derived from prior information. It can be used to control 

where the model updates are prioritised over other locations. In the absence of such prior information, 𝜮𝑝 may be set as 

the identity matrix; 𝟙𝜏(𝝓𝑘) is the indicator vector of 𝝉𝑖  applied to 𝝓𝑘. For the ith model cell, it is calculated as: 

(𝟙𝜏(𝝓𝑘))𝑖 = {
𝟏 𝑖𝑓 |(𝝓𝑘)𝑖| ≤ 𝝉𝑖
𝟎 𝑖𝑓|(𝝓𝑘)𝒊| >  𝝉𝑖

 (24) 

As a consequence, 𝑾𝑝
𝜙𝑘  is equal to 0 for all cells not part of the inversion’s domain (i.e., cells where 𝟙𝜏(𝝓𝑘) is null) and 

to 1 for all cells considered at any given iteration.  935 

13.2. Appendix 2: Estimating the best fitting plane of a contact under constraints 

In this Appendix, we detail the calculation of the vector determining the orientation of an erosion plane as mentioned in 

section 3.2.2. It is calculated from the location of the contacts between rock units making up the modelled unconformity. 

Let us define a plane by its normal vector 𝒏 = [𝑛𝑥 , 𝑛𝑦, 𝑛𝑧] and a real number 𝑠 such that 𝒏𝒙 + 𝑠 = 0, where 𝒙 is a 

coordinate vector in three-dimensional space. The best fitting plane approximating the contact between two units or groups 940 

of units is obtained by solving a linear equality-constrained least squares problem formalised as follows:  

minimise ‖𝑾𝑨𝒏 −𝑾𝒃‖2
2

s. t. 𝑪𝒏 = 𝒅,
 

(25) 

where 𝒃 is a column vector of ones and 𝑾 is a diagonal matrix. It contains weights controlling the relative importance 

given to the different values in 𝑨, which contains the spatial coordinates of the points constituting the interface to be 

approximated as a planar contact. The matrix 𝑪 contains the location of contacts measured, e.g., at surface level from 

geological observations or from borehole data, which are used to define the equality constraints; 𝒅 is a vector of ones. In 945 

our implementation, we solve Eq. (25) using the open-source linear algebra library LAPACK proposed by Anderson et 

al. (1999), to which we refer the reader for further details.  

In practice, 𝑾 can be set according to the sensitivity of geophysical data to variations in physical property (sensitivity 

matrix 𝑺) in the model-cells considered. To constrain the horizontal component of the normal vector calculated using the 

system of equations in Eq. (25), 2 points located at surface level suffice. In this situation, we obtain an estimate of the 950 

third component of the normal vector to the plane, 𝑛𝑧.  

After obtaining the normal vector approximating the orientation of the plane, 𝑠 can be determined from a location that the 

plane is known to cross (i.e., at the modelled interface) using the definition of the plane as 𝒏𝒙 + 𝑠 = 0. 
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13.3. Appendix 3: Robustness to noise  

We investigate the robustness of inversion with geological correction to random Gaussian noise, using the synthetic 955 

dataset introduced in Sect. 5.1. 

We add noise with zero mean and a standard deviation equal to 0.075 mGal. This corresponds to 8% of the absolute 

difference between the lowest and highest gravity anomaly value in the simulated dataset. We note that this value is 

superior to the case for a ‘carefully acquired and corrected’ land survey, where a value of 0.05 mGal is acceptable (Barnes 

et al., 2011). The dataset with noise contamination, the forward da ta corresponding to the inverted model, their difference 960 

(i.e., the misfit map), and the noise that was added to the data are shown Figure 17. 

While the patterns that are visible in the difference map seem to be largely random, there might be a non-random 

component to the difference map possibly due to the incomplete deformation of geological interfaces. We do not 

reproduce the resulting model as it is visually largely similar to the case without noise in Figure 5b.  

 965 

 

Figure 17. Simulation of noisy data. From left to right: data contaminated by noise, calculated data from the inverted 

model, difference between inverted and calculated data with histogram and noise that was added to the data.. 

13.4. Appendix 4: Robustness to a degenerate starting model with noisy data 

In this appendix we are interested in testing the robustness of the method to changes in the starting model. For this, we 970 

use the same noisy dataset as in Appendix 3: Robustness to noise and simulate a degenerate starting model. For this, we 

rotate the starting model by 180 degrees around the vertical axis. The so-obtained starting model and inverted model are 

shown in Figure 18a and Figure 18b, respectively. The starting data corresponding to this starting model is shown in 

Figure 18c. When compared with the simulated field data (Figure 18d), it is clear that this starting model is degenerate 

and present an extreme scenario. Nevertheless, inversion converges to a stable solution and manages to recover some of 975 

the features of the true model. However, the difference between the data inverted for (Figure 18d) and the calculated data 

(Figure 18d) shows non-random patterns (Figure 18f). This indicates that the inversion might be stuck in a local minimum 

and is unable to fit the data appropriately. Notwithstanding, this confirms that our approach is robust to errors in the 

starting model and to the presence of noise in the data. This also shows that in this example, the interaction between 

geological modelling and geophysical level set inversion leads to a reasonable solution with some realistic features, even 980 

though it is not sufficient to completely disambiguate the geophysical inverse problem. 
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Figure 18. Simulation of a degenerate case. Top row: starting (a) and inverted model (b). Bottom row: starting data (c), 

data contaminated by noise (d), calculated data from the inverted model (e), and difference between inverted and 

calculated data (f). 985 

13.5. Appendix 5: Robustness to errors in the density of rock units 

In this appendix, we investigate the impact of inaccurate estimations of the density of rock units using the synthetic model 

presented in Sect. 5.1. We generate two starting models, considering the density contrast of unit 4 (dark blue unit in Figure 

4 and all Figures showing this model): 

 In the first starting model, the absolute density contrast value of is overestimated by 15 kg/m3.  990 

 In the second starting model, the absolute density contrast is underestimated by 15 kg/m3.  

This leads to using density contrasts of -75 kg/m3 and -45 kg/m3, respectively, instead of -60 kg/m3. In this example, we 

use gravity data without noise contamination. Results are shown in Figure 19, where we also remind, for comparison, the 

results obtained for the other tests we performed using this model. Figure 19b shows the inverted model using -75 kg/m3 

for unit 4, which leads to a reduced overall volume of rock for unit 4. Figure 19b shows the inverted model with -45 995 

kg/m3, which leads to an increased overall volume of rock for unit 4. In both cases, the overall geometry of the rock units 

are preserved when compared to the other cases and the reference model.  

We note that this observation is in line with Giraud et al., 2021a, who do not consider the case with no geological 

correction. This experiment suggests that: overestimating (underestimating) the difference in density of a rock unit with 

its true values leads to underestimating (overestimating) its volume, by increasing (decreasing) its overall volume while 1000 

maintaining its overall shape. 
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Figure 19. Comparison of inversion results with (a) geological correction starting from inverted model obtained without 1005 

geological correction, as shown in (d); results with geological correction at each iteration with underestimated density 

contrast (c), overestimated density contrast (d) for unit 4. The case with accurate density contrast for all units unit and the 

reference model are show in (d) and (e), respectively. 

13.6. Appendix 6: Geological data 

Table A 1. Geological data used to build the reference geological model  1010 

Stratigraphic column Stratigraphic ‘younging’ vector 

Rock unit Min. thickness Max. thickness 0 √2/2 √2/2 

(a) -Inf 0 Contact between unconformity and stratigraphy 

(b) 0 km 2.1 km X (m) Y (m) Z (m) 

(c) 2.1 km 6 km 0 -5000 0 

(d) 6 km Inf Coordinates of vector normal to the fault plane 

Coordinates of vector normal to unconformity  X (m) Y (m) Z (m) 

X (m) Y (m) Z (m) 0.5 -0.5 -0.5 

0.5 -0.5 0.5 Fault slip vector 

Fault displacement length (m) X (m) Y (m) Z (m) 

3.75 km  0 1 0 

 


