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Abstract. The newly developed offline land ecosystem model Terrestrial Ecosystem Model in R (TEMIR) version 1.0 is 

described here. This version of the model simulates plant ecophysiological (e.g., photosynthetic, stomatal) responses to varying 

meteorological conditions and concentrations of CO2 and ground-level ozone (O3) based on prescribed meteorological and 

atmospheric chemical inputs from various sources. Driven by the same meteorological data used in the GEOS-Chem chemical 

transport model, this allows asynchronously coupled experiments with GEOS-Chem simulations with unique coherency for 15 

investigating biosphere-atmosphere chemical interactions. TEMIR agrees well with FLUXNET site-level gross primary 

productivity (GPP) in terms of both the diurnal and monthly cycles (correlation coefficients R2 > 0.85 and R2 > 0.8, 

respectively) for most plant functional types (PFTs). Grass and shrub PFTs have larger biases due to generic model 

representations. The model performs best when driven by local site-level meteorology rather than reanalyzed gridded 

meteorology. Simulation using gridded meteorology agrees well for annual GPP in seasonality and spatial distribution with a 20 

global average of 134 Pg C yr–1. Application of Monin-Obukhov similarity theory to infer canopy conditions from gridded 

meteorology does not improve model performance, predicting a uniform increase of +21% for global GPP. Present-day O3 

concentrations simulated by GEOS-Chem and an O3 damage scheme at high sensitivity show a 2% reduction in global GPP 

with prominent reductions by up to 15% in eastern China and the eastern US. Regional correlations are generally unchanged 

when O3 is present, and biases are reduced especially for regions with high O3 damages. An increase in atmospheric CO2 25 

concentration by 20 ppmv from year-2000 to year-2010 level modestly decreases O3 damage due to reduced stomatal uptake, 

consistent with ecophysiological understanding. Our work showcases the utility of this version of TEMIR for evaluating 

biogeophysical responses of vegetation to changes in atmospheric composition and meteorological conditions. 

https://doi.org/10.5194/egusphere-2023-1287
Preprint. Discussion started: 14 July 2023
c© Author(s) 2023. CC BY 4.0 License.



2 
 

1 Introduction 

Terrestrial vegetation, as an integral part of the global biosphere, plays many vital roles regulating the Earth system. It facilities 

a substantial portion of the global land-atmosphere exchange of energy, momentum and chemical species relevant for climate 

and atmospheric chemistry. It is a major sink for atmospheric carbon, sequestering an estimated 123 ± 8 Pg C of carbon dioxide 

(CO2) from the atmosphere annually through plant photosynthesis (Le Quéré et al., 2015; Beer et al., 2010), albeit with a 5 

relatively large observation-constrained range of 119–175 Pg C yr–1 . This vegetation-mediated process of CO2 sequestration, 

also known as gross primary productivity (GPP), is a key regulator of climate, and forests in particular are one of the largest 

providers of climate services (Bonan, 2008). Even before the industrial revolution, human perturbations of natural vegetation 

for agriculture, timber and other uses have had significant impacts on the natural carbon cycle. About a third of the total 

cumulative CO2 emission to date due to anthropogenic land cover change could have been emitted before the time of 10 

industrialization (Pongratz et al. 2009). Over the 20th century, widespread deforestation was estimated to result in a net warming 

of 0.13–0.15°C due to biogeochemical warming (via carbon emission) partly offset by biogeophysical cooling (via higher 

albedo) (Pongratz et al., 2010). A reversal of historical land use trends, especially in the form of afforestation and careful 

management and preservation of existing forests, has the potential to help mitigate anthropogenic climate change, but the 

future carbon uptake capacity of forests can be substantially altered by an array of biogeochemical feedback mechanisms as 15 

forest ecosystems respond to changing climate and atmospheric composition (Arneth et al., 2010). Various global terrestrial 

ecosystem models have been employed, either standalone or coupled within an earth system model, to estimate future carbon 

budgets in response to global change; a multi-model comparison estimated that over the 21st century, the terrestrial biosphere 

can gain 0.2–1.5 Pg C for 1 part per million by volume (ppmv) increase in CO2 due to fertilization effect, but lose 10–90 Pg C 

per degree increase in global surface temperature as forest ecosystems experience warming and more climatic stress (Arora et 20 

al., 2013). 

 

An emerging research interest is the interactions between the terrestrial biosphere and atmospheric chemistry, and the roles of 

short-lived atmospheric species in modulating terrestrial ecosystem functions. On the one hand, terrestrial ecosystems facilitate 

the removal of air pollutants from the atmosphere via the process of dry deposition, thus providing another important service 25 

for human benefits. The consequent health benefits are substantial: 17.4 million tons of air pollutants equivalent to US$6.8 

billion of public health cost was removed by forests in the contiguous US in 2010 alone (Nowak et al., 2014), which is 6% of 

estimated total health cost of US$109 (EUR145 billion) due to air pollution in the US of 2010 (Im et al., 2018). Globally it is 

estimated that dry deposition onto vegetated surfaces accounts for ~20% of the loss of tropospheric O3 (Wild, 2007), which is 

a major air pollutant detrimental to human health. On the other hand, the depositional uptake of O3 by leaves incurs substantial 30 

damage to vegetation, interfering with ecosystem functions and terrestrial biogeochemical cycling. In the process of dry 

deposition, O3 diffuses via leaf openings known as stomata into the leaf interior, where it impairs plant physiological functions 

and health; stomatal uptake itself is responsible for 30–90% of the deposition sink of O3 (Felzer et al., 2007; Ainsworth et al., 
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2012). O3 can significantly disrupt leaf photosynthesis rates, thereby hindering plant growth and reducing forest and crop 

productivity (Ainsworth et al., 2012). The O3-induced global yield losses for the key staple crops (wheat, rice, maize and 

soybean) for year 2000 were estimated to be worth US$11–26 billion (Van Dingenen et al., 2009; Avnery et al., 2011a). For 

natural vegetation and forests, observed GPP reductions average at ~10% but could regionally be up to 30% (e.g., Fares et al., 

2013; Proietti et al., 2016; Moura et al., 2018). Modeling studies have estimated a 2–12% decrease in GPP due to present-day 5 

O3, with large reductions of more than 20% in the midlatitude regions of North America, Europe and East Asia (Lombardozzi 

et al., 2015; Yue and Unger, 2014; Anav et al., 2011).  O3 damage to plants in turn alters biosphere-atmosphere exchange, with 

ramifications for both climate and air quality. Models have estimated a 2–6% decrease in global transpiration following O3 

damage. The corresponding reductions in latent heat flux can regionally enhance temperature by up to 2–3°C and alter rainfall 

(Li et al., 2016; Sadiq et al., 2017; Zhu et al., 2022). 10 

 

Accurate predictions of both air quality and ecosystem functions, as well as their interactions, thus require proper representation 

of ecophysiological processes in the terrestrial ecosystems, but are obscured by a complex array of nonlinear interactions 

between plant physiology, O3, CO2 and meteorological drivers. Elevated CO2 enhances photosynthesis and also induces 

stomatal closure (reducing stomatal conductance) over various timescales, likely reflecting the adaptation of plants to improve 15 

water use efficiency (e.g., Noormets et al., 2010; Franks et al., 2013). Sanderson et al. (2007) suggested that a doubling of CO2 

could worsen O3 air quality by up to +8 ppbv (parts per billion by volume) due to reduced stomatal conductance and dry 

deposition. O3 damage on vegetation can potentially lead to a decline in leaf area index (LAI) and stomatal uptake, which in 

turn creates a strong positive feedback that further enhances surface O3 by up to +6 ppbv (Sadiq et al., 2017; Zhou et al., 2018; 

Zhu et al., 2022). Furthermore, a higher humidity generally promotes stomatal opening, while drought conditions often inhibit 20 

it (Dermody et al., 2008; Rhea et al., 2010; Monks et al., 2015). A modeling study by Emberson et al. (2013) suggested that 

the extended drought in association with the 2006 European heat wave might have shut down the dry-depositional sink for O3 

as plants closed their stomata to prevent excessive water loss, thereby leading to a greater number of O3-related premature 

human deaths. To complicate the matter further, O3 damage may cause stomata to respond more sluggishly to meteorological 

conditions; under certain prolonged  conditions (e.g., droughts) such a sluggishness of stomatal response may cause them to 25 

be more open than without O3 damage (McLaughlin et al., 2007; Sun et al., 2012; Huntingford et al., 2018). These studies 

highlight the importance of considering the adaptive responses of plants to changing atmospheric composition and 

meteorological conditions in predicting future O3 air quality and ecosystem productivity. Yet, most atmospheric chemistry 

models to date rely on semi-empirical formulations for plant-mediated processes (e.g., dry deposition) without resolving 

ecophysiological processes that may evolve over time; issues may also arise when coupling atmospheric chemistry and 30 

complex ecosystem models due to inconsistent driving inputs and model requirements (Clifton et al., 2020). As interpretation 

of model results depends largely on the underlying physiological processes, in-depth understanding of system behaviors is 

crucial yet lacking (Ganzeveld and Lelieveld, 1995; Hardacre et al., 2015). 
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A number of studies have taken advantage of the Earth system modeling framework (ESMF) to dynamically link dry deposition 

and O3 fluxes in the atmospheric chemistry model to the photosynthetic and stomatal calculations in the land surface model 

(e.g., Ganzeveld et al., 2010; Pacifico et al., 2012; Val Martin et al., 2014; Verbeke et al., 2015; Halladay and Good, 2017; 

Sadiq et al., 2017; Zhu et al., 2022). These studies largely focused on long-term averages and trends rather than variability due 

to climate anomalies. Simulated climate is also often sensitive to land surface changes, and any simulated responses of 5 

meteorological variables to plant ecophysiological changes can further modify O3 through a cascade of feedbacks, potentially 

obscuring the importance and relative contribution from individual plant-mediated pathways. Fully coupled Earth system 

models contain intricate network of interdependencies among climate, atmospheric chemistry and the land surface, thus may 

not be ideal for calibrating specific model processes against observations. Standalone or coupled chemical transport models 

and ecosystem models driven by a consistent set of prescribed “offline” meteorology from observations and reanalysis datasets 10 

would be particularly useful to improve the understanding of O3-vegetation interactions in isolation and enhance model 

capability in predicting air quality under climate anomalies. 

 

The Terrestrial Ecosystem Model in R version 1.0 (TEMIR v1.0), described in Sect. 2.2, is a standalone, multi-parameterization 

model designed to simulate important canopy and ecophysiological processes that are relevant for ecosystem exchange and 15 

atmospheric chemistry, including canopy radiative physics and aerodynamics, photosynthesis, stomatal behaviors, and dry 

deposition of different chemical species. It is designed to be entirely consistent with the GEOS-Chem global chemical transport 

model (CTM) in terms of model inputs and land surface representation. Driven by a consistent set of prescribed meteorological 

and surface flux inputs, asynchronously coupled GEOS-Chem-TEMIR experiments can be performed globally or regionally 

to simulate plant ecophysiological responses to changing atmospheric composition arising from, e.g., O3 pollution and rising 20 

CO2, as well as to a changing climate as simulated by climate models that have already been coupled to GEOS-Chem. It can 

also be used with user-defined meteorological and flux inputs (especially those directly from FLUXNET observations; 

https://fluxnet.fluxdata.org) to perform site-level simulations for various purposes, e.g., process investigation, predictions, 

model validation and optimization with different parameterization schemes. Versions of TEMIR with active biogeochemistry 

and crop biophysics are under development and not within the scope of this paper. Validation and application of TEMIR to 25 

simulate O3 dry deposition and flux-based metrics of O3 damage on crops have been presented in several previous studies (i.e., 

Wong et al., 2019; Tai et al., 2021; Sun et al., 2022). 

 

Developing an ecosystem model in the R programming language is beneficial to various ends. R is now a popular tool for 

ecological research (R Core Team, 2022), especially in population and community ecology; Lai et al. (2019) surveyed more 30 

than 60,000 peer-reviewed ecology journal articles, and found that the number of studies reported using R as their primary tool 

in data analysis increased from ~10% in 2008 to ~60% in 2017. Ecosystem modeling studies, however, historically have closer 

ties with geoscientific research due to the importance of representing the land cover and biogeochemical cycles in climate 

models, often making use of more low-level languages typical in Earth system modeling such as Fortran. Having a terrestrial 
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ecosystem model in R may help enhance the accessibility to ecosystem modeling for ecological researchers, generate a 

common modeling framework across population, community and ecosystem scales, and hopefully serve as a bridge between 

ecological and geoscientific fields to advance interdisciplinarity. Being an entirely free and open software as well as a highly 

versatile and relatively user-friendly programming language, it may also help promote open science in ecosystem research and 

education, allowing the model to be more widely used as a policy-relevant assessment tool for practitioners. 5 

2 Model description 

2.1 GEOS-Chem model description 

GEOS-Chem as a global CTM is widely used in research due to its versatility in tackling a multitude of atmospheric chemistry 

problems. We use GEOS-Chem v12.2.0 (DOI: 10.5281/zenodo.2572887) driven by assimilated meteorological observations 

from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO) 10 

(http://acmg.seas.harvard.edu/geos/). The driving meteorological data are available in 1-hourly and 3-hourly temporal 

resolutions with the finest horizontal resolution of 0.25° latitude by 0.3125° longitude and 72 hybrid vertical levels extending 

from the surface to 0.01 hPa, provided by the GEOS-Forward Processing product (GEOS-FP). Coarser resolutions of the 

reanalysis product Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 

2017) can also be used, which is a historical dataset spanning from 1980 to the present day. GEOS-Chem is equipped with 15 

detailed O3-NOx-VOC (volatile organic compounds)-aerosol chemical mechanisms that is used for simulating atmospheric 

chemistry, and validated in many studies (e.g., Bey et al., 2001; Parrington et al., 2008; Zhang et al., 2010; Zhang and Wang, 

2016; Hu et al., 2018). Anthropogenic missions of many species (e.g., CO, NOx and non-methane VOCs) can be taken from 

global inventories (i.e., Community Emissions Data System, CEDS; Hoesly et al., 2018) and/or regional inventories, through 

the Harmonized Emissions Component (HEMCO) v2.1 (Keller et al., 2014; Lin et al., 2021). Biogenic emissions are calculated 20 

online with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012). An 

alternative photosynthesis-based isoprene emission (Pacifico et al., 2011) is also available (Lam et al., 2023). In this study, the 

meteorological inputs used for global simulations of both GEOS-Chem and TEMIR are the MERRA-2 product at a resolution 

of 2°×2.5° latitude by longitude. The surface O3 concentrations simulated by GEOS-Chem are used as inputs for TEMIR to 

simulate the corresponding vegetation responses under the consistent set of MERRA-2 meteorology. 25 

2.2 TEMIR model description 

TEMIR computes biogeophysical responses of terrestrial ecosystems to changes in the atmospheric and terrestrial 

environment. Driven by consistent meteorological and land surface inputs data as GEOS-Chem, TEMIR is designed to be 

highly compatible with GEOS-Chem and can be coupled asynchronously with simulated atmospheric composition from 

GEOS-Chem, which is a vital aspect that allows the biosphere-atmosphere coupling needed for the objectives of this study.  30 
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2.2.1 Plant type representation 

Plant type categories considered in TEMIR follows the convention of the Community Land Model version 4.5 (CLM4.5) 

(Oleson and Lawrence, 2013), embedded within the Community Earth System Model (CESM) version 1.2.2 

(http://www.cesm.ucar.edu/models/clm/). The plant type categories consist of unvegetated or bare ground and a total of 24 

different plant function types (PFTs) including 14 natural vegetation types and 10 rainfed or irrigated crop types (Table S1), 5 

each with a prescribed present-day fractional coverage or distribution per model grid cell as derived from MODerate resolution 

Imaging Spectroradiometer (MODIS) satellite data (Lawrence and Chase, 2007), and their own characteristic structural and 

physiological parameters. The parameters used to represent vegetation structure include leaf area index (LAI), stem area index 

(SAI) and canopy height (h). Monthly PFT-level LAI is derived from MODIS using the deaggregation methods described in 

Lawrence and Chase (2007); PFT-level SAI is derived from LAI with the methods of Zeng et al. (2002). PFT-level canopy 10 

heights are prescribed following Bonan et al. (2002). PFT distributional and structural data are regridded to the default 

resolution of MERRA-2 data for TEMIR simulations. Users can specify any grid-level (total) LAI input data; the PFT-level 

data would be scaled accordingly. 

2.2.2 Canopy radiative transfer 

Each PFT simulated per vegetated grid cell is represented as a single “big-leaf” canopy of sunlit and shaded leaves. We 15 

implement two alternative canopy radiative transfer schemes to calculate the sunlit and shaded LAI (LAIsun, LAIsha), absorbed 

photosynthetically active radiation (PAR) by sunlit and shaded leaves (ϕsun, ϕsha, W m–2), canopy light extinction coefficient 

(Kb), surface albedo and other radiative variables as functions of direct beam and diffuse incident PAR reaching the canopy 

top (Idir, Idiff, W m–2), cosine of solar zenith angle (μ) and other vegetation parameters. The default scheme follows the two-

stream approximation of Dickinson (1983) and Sellers (1985) which considers light attenuation by both leaves and stems. The 20 

details of the scheme is described in Sect. 3.1, 3.3 and 4.1 of Oleson et al. (2013). In brief, the absorbed PAR averaged over 

the sunlit and shaded canopy per unit plant area (leaf plus stem area) is  

𝜙sun =
$sun,dir%dir&$sun,diff%diff

PAIsun
           (1) 

𝜙sha =
$sha,dir%dir&$sha,diff%diff

PAIsha
           (2) 

where fsun/sha,dir/diff is the fraction of direct/diffuse incident radiation absorbed by the sunlit/shaded leaves and stems as calculated 25 

by the two-stream approach; the sunlit and shaded plant area index (PAI = LAI + SAI) is 

PAIsun =
,-.+,-(LAI2SAI)

/-
           (3) 

PAIsha = (LAI + SAI) − PAIsun          (4) 

and Kb is calculated following the two-stream approximation. The sunlit and shaded LAI ultimately used to calculate canopy 

photosynthesis are 30 

LAIsun = PAIsun
LAI

LAI&SAI
           (5) 
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LAIsha = PAIsha
LAI

LAI&SAI
           (6) 

 

An alternative, simplified scheme that accounts for light attenuation by leaves only following the convention of the Zhang et 

al. (2002) dry deposition model as modified from Norman (1982), which is also implemented in TEMIR (see Sect. 2.2.6), is 

implemented as follows: 5 

𝜙sha = 𝐼diff exp(−0.5LAI5) + 0.07𝐼dir(1.1 − 0.1LAI) exp(−𝜇)      (7) 

𝜙sun = 𝜙sha +𝐾7𝐼dir7            (8) 

𝐾7 =
8.:
;

             (9) 

LAIsun =
,-.+,-LAI

/-
           (10) 

LAIsha = LAI − LAIsun           (11) 10 

where exponents a = 0.7 and b = 1 for LAI < 2.5 or downwelling shortwave radiation flux S↓ < 200 W m–2, and a = 0.8 and b 

= 0.8 otherwise. 

2.2.3 Canopy photosynthesis and conductance 

Leaf photosynthesis of both C3 and C4 plants is represented by the well-established formulation that relates to Michaelis–

Menten enzyme kinetics and photosynthetic biochemical pathways (Farquhar et al., 1980; von Caemmerer and Farquhar, 1981; 15 

Collatz et al., 1991, 1992), which considers three limiting regimes: 

(i) The Rubisco-limited photosynthesis rate (Ac, μmol CO2 m–2 s–1) captures the rate of carbon assimilation when substrate 

availability or enzyme activity is the limiting factor:  

𝑨𝐜 = 8
𝑽𝐜𝐦𝐚𝐱

𝒄𝐢-𝚪∗
𝒄𝐢&	𝑲𝐜∗E𝟏	&

𝒐𝐢
𝑲𝐨
G

𝐟𝐨𝐫	𝐂𝟑	𝐩𝐥𝐚𝐧𝐭𝐬

𝑽𝐜𝐦𝐚𝐱 𝐟𝐨𝐫	𝐂𝟒	𝐩𝐥𝐚𝐧𝐭𝐬
	         (12) 

where ci (Pa) the intercellular CO2 partial pressure; Kc and Ko are the Michaelis–Menten constants for carboxylation and 20 

oxygenation (Pa), respectively; oi (Pa) is the intercellular oxygen partial pressure; Γ* (Pa) is the CO2 compensation point and 

Vcmax (μmol CO2 m–2 s–1) is the maximum rate of carboxylation. 

(ii) The RuBP-limited photosynthetic rate (Aj, μmol CO2 m–2 s–1) defines the photosynthesis rate as light intensity and thus 

RuBP regeneration are the limiting factor: 

𝐴H = 8
I
J
H K;–	M∗
K;&	NM∗

I for	C3	plants
0.23𝜙 for	C4	plants

	          (13) 25 

where J (μmol m–2 s–1) is the electron transport rate, and ϕ (W m–2) is the absorbed PAR for either sunlit (ϕsun) or shaded (ϕsha) 

leaves as calculated by the canopy radiative transfer model (Sect. 2.2.2). For C3 plants, J is determined by ϕ as well, and is 

determined as the smaller of the two roots of the quadratic equation: 
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ΘPSII	𝐽N − (𝐼PSII + 𝐽max)	𝐽 + 𝐼PSII	𝐽max         (14)  

where Jmax (μmol m–2 s–1) is the maximum potential rate of electron transport; Θ = 0.7 is the curvature parameter; IPSII (μmol 

m–2 s–1) is the light utilized in electron transport by photosystem II, determined by:  

𝐼PSII = 2.3ΦPSII	𝜙            (15)  

where ΦPSII = 0.85 is the quantum yield of photosystem II. 5 

(iii) The product-limited photosynthetic rate (Ap, μmol CO2 m–2 s–1) represents the limitation from the regeneration rate of 

photosynthetic phosphate compounds: 

𝐴Q = 8
3	𝑇Q for	C3	plants
𝑘R

K;
S<=>

for	C4	plants	          (16) 

where Tp is the triose phosphate utilization rate (μmol m–2 s–1), Patm (Pa) is the ambient atmospheric pressure, and kp is the 

initial slope of CO2 response curve for C4 plants. The model considers colimitation as described by (Collatz et al., 1991, 1992), 10 

and the leaf-level gross photosynthesis rate (A, μmol CO2 m–2 s–1) is given by the smaller root of the equations: 

Θcj𝐴iN − [𝐴c + 𝐴j\𝐴i + 𝐴c𝐴j = 0          (17) 

Θip𝐴N − [𝐴i + 𝐴p\𝐴 + 𝐴i𝐴p = 0  

The net photosynthesis rate (An, μmol CO2 m–2 s–1) is then: 

𝐴W = 𝐴 − 𝑅X             (18) 15 

where Rd (μmol CO2 m–2 s–1) is the dark respiration rate. All of the parameters (Vcmax, Jmax, Tp, Rd, Kc, Ko, Γ*, kp) are temperature-

dependent and scale with their respective PFT-specific standard values at 25°C by different formulations. Temperature 

acclimation of Vcmax and Jmax from the previous 10 days as well as daylength dependence of Vcmax is implemented as default 

options. These are all detailed in Sect. 8.2 and 8.3 of Oleson et al. (2013).  

 20 

The calculation of photosynthesis rates described above is coupled with that of stomatal conductance of water (gs, m s–1) 

following the formulation of  Ball et al. (1987) with m and b being the slope and intercept parameters derived from empirical 

data: 

𝑔Y = 𝛼 `𝑚	𝐴W
?@
A@<=
B@

C<=>

+ 𝑏c	           (19) 

where gs is controlled by the leaf surface CO2 partial pressure cs (Pa), leaf surface water vapor pressure es (Pa) and temperature-25 

dependent saturation vapor pressure esat (Pa); m = 9 and b = 10000 μmol m–2 s–1 for C3 plants, and m = 4 and b = 40000 μmol 

m–2 s–1 for C3 plants; the factor α converts the unit of conductances from μmol H2O m–2 s–1, which is more common in 

ecophysiology literature, to m s–1, which is common in atmospheric science literature: 

𝛼 = ,8+DZuni[atm
Satm

            (20) 

where Runi = 8.314468 J K–1 mol–1 is the universal gas constant, and θatm (K) is the ambient atmospheric potential temperature. 30 

An alternative stomatal conductance scheme (Medlyn et al., 2011; Franks et al., 2017) is also implemented: 
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𝑔Y = 𝛼 d1.6 H1 + \
√VPD

I `G
B@

C<=>

+ 𝑏f          (21) 

where VPD = 0.001(esat – es) (kPa) is the vapor pressure deficit, m has PFT-specific values consistent with CLM5.0 (Sect. 9.3 

of Lawrence et al., 2020), and b = 100 μmol m–2 s–1. Photosynthesis and stomatal conductance are further related by the 

diffusive flux equations for CO2 and water vapor: 

𝐴n =
,
a
H,.J
bb
+ ,.c

bs
I
-, Ka-Ki

Satm
= bb

,.Ja
Ka-Ks
Satm

= bs
,.ca

Ks-Ki
Satm

        (22) 5 

𝐸′ = ,
a
H ,
bb
+ ,

bs
I
-, .a-.i

Satm
= bb

a
.a-.s
Satm

= bs
a
.s-.i
Satm

         (23) 

where ca (Pa) and ea (Pa) are the canopy air CO2 partial and water vapor pressure, ei (Pa) is the saturation vapor pressure at the 

leaf temperature, E' (μmol H2O m–2 s–1) is the transpiration flux, and gb (m s–1) is the leaf boundary layer conductance: 

𝑔b = 𝐶vj
f∗
gl

            (24) 

The photosynthesis-stomatal conductance model considers limitation arising from soil water stress. A soil water stress factor 10 

(βt) scales the photosynthesis rate and stomatal conductance, being multiplied directly to A, Rd in Eq. (18) and b in Eq. (19) or 

Eq. (21) above to account for soil water stress (Porporato et al., 2001; Verhoef and Egea, 2014). To compute βt, we consider a 

two-layer soil model consisting of a topsoil layer (0–5 cm) and a root zone beneath the top soil (5–100 cm), consistent with 

and constrained by the data and model structure of MERRA-2. First, the soil matric potential in each layer i, ψi (mm), that 

represents water availability in ecophysiological terms is evaluated as a function of soil wetness (si) and soil type: 15 

𝜓h = 𝜓Yij,h𝑠h-lJ            (25)  

where ψsat,i and Bi refer to the saturated soil matric potential and soil water characteristic parameter, respectively, both 

depending on soil texture. A wilting factor, wi, is formulated as a function of ψi as well as ψc and ψo, which refer to the matric 

potential at which stomatal closure and stomatal opening occur to the full extent, respectively: 

𝑤h = n

1			for	𝜓h > 𝜓m		
nK	-	nJ	
nK	-	nL

		for	𝜓o ≤ 𝜓h ≤ 𝜓m
0			for	𝜓h < 𝜓o

          (26)  20 

The function βt is then the average of the wilting factors weighted by the PFT-specific root fraction (ri) in each layer: 

𝛽p = ∑ 𝑤h𝑟hN
hq,             (27)  

A single-layer bulk soil formulation considering only the root zone (0–100 cm) is also implemented, but is found to be inferior 

to the two-layer formulation in terms of reproducing observed GPP in semiarid locations (Lam and Tai, 2020). 

 25 

The above equations calculate photosynthesis and conductance at the leaf level only, and appropriate scaling to account for 

vertical variation in leaf nitrogen content, light attenuation and sunlit vs. shaded leaves is needed to obtain the canopy-level 

photosynthesis (i.e., GPP) and conductance. This is done by scaling Vcmax and other parameters as follows: 
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𝑉cmax,	sun = 𝑉cmax,	top
,-.+M,N2,-OLAI

/N&/-

,
LAIsun

         (28)  

𝑉cmax,	sha = 𝑉cmax,	top v
,-.+,NLAI

/N
− ,-.+M,N2,-OLAI

/N&/-
w ,
LAIsha

        (29)  

where Vcmax, sun and Vcmax, sha are the canopy-averaged leaf-level values for Vcmax for sunlit and shaded leaves, respectively, 

which are used to compute leaf-level photosynthesis and stomatal conductance for sunlit and shaded leaves separately (Asun, 

Asha, gssun, gssha) from the equations above; Kn = 0.30 is the canopy decay coefficient for nitrogen; Vcmax, top is the PFT-specific 5 

value for Vcmax for the top of the canopy; Kb, LAIsun and LAIsha are computed from the canopy radiative transfer model (Sect. 

2.2.2). Other parameters Jmax, Tp, kp and Rd scale similarly.  

 

Canopy photosynthesis rate (i.e., GPP, μmol CO2 m–2 s–1) and canopy conductance (gcan, m s–1) per unit land area of a given 

PFT are then: 10 

GPP = 𝐴sunLAIsun + 𝐴shaLAIsha          (30)  

𝑔can = H ,
bb
+ ,

bssun
I
-,
LAIsun + H

,
bb
+ ,

bssha
I
-,
LAIsha        (31) 

The grid cell-averaged values are obtained by weighting the PFT-level values by the PFT fractional coverage of the grid cell. 

 

2.2.4 Canopy and surface layer aerodynamics 15 

The canopy photosynthesis and conductance calculation above require micrometeorological variables (e.g., temperature T, 

specific humidity q) of the canopy air as inputs. The default approach for global and regional gridded simulations is to use 

reanalyzed meteorological variables at 2 m above the zero-plane displacement height (i.e., T2m, q2m) as the proxies for canopy 

air conditions. The default approach for site simulations is to directly use the measured micrometeorological variables 

regardless of the measurement height. We also implement an option to infer canopy air conditions from micrometeorological 20 

variables at any reference height (zref, m) above the zero-plane displacement height (e.g., zref = 10 m in the MERRA-2 reanalysis 

product) based on Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov, 1954), which relates the stability of the 

surface layer to the generation and suppression of turbulence through the Obuhkov length: 

𝐿tuvw =
-xKpf∗Q[
ybz

            (32)  

where ρ (kg m–3) is the density of moist air (we use the value at zref), θ (K) is the potential temperature (we use T2m as a proxy), 25 

H (W m–2) is the sensible heat flux, cp (J kg–1 K–1) is the heat capacity of air at constant pressure, k = 0.4 is the von Kármán 

constant, and g = 9.80616 m s–2 is the gravitational acceleration. The friction velocity u* (m s–1) is either provided as input or 

inferred iteratively from the wind speed at the reference height uref (m s–1): 

𝑢∗ = 𝑘𝑢ref {ln H
|ref&|0m
|0m

I − 𝜓m H
|ref&|0m
}Obuk

I + 𝜓m H
|0m
}Obuk

I|
-,

       (33)  
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where z0m (m) is the roughness length for momentum, and the function ψm(x) for momentum flux follows the formulation of 

Zeng et al. (1998), consistent with the implementation in CLM4.5. The aerodynamic conductance (gah, m s–1) for heat, water 

vapor and other chemical species (e.g., ozone) between the reference height zref and the surface (treated as the zero-

displacement height and where the canopy air is) is then: 

𝑔ah = 𝑘𝑢∗ {ln H
|ref&|0m
|0h

I − 𝜓h H
|ref&|0m
}Obuk

I + 𝜓h H
|0h
}Obuk

I|
-,

       (34)  5 

where z0h (m) is the roughness length for heat, water vapor and other chemical species, and the function ψh(x) for heat and 

other material fluxes also follows the formulation of Zeng et al. (1998). Canopy air potential temperature (θa, K) and specific 

humidity (qa, kg kg–1) can then be inferred as: 

𝜃a = 𝜃ref +
z

xKpbah
            (35)  

𝑞a = 𝑞ref +
~

xbah
            (36)  10 

where θref (K) and qref (kg kg–1) are the potential temperature and specific heat capacity at zref, and E (kg m–2 s–1) is the 

evapotranspiration flux. 

 

For the computation of ozone damage and dry deposition fluxes (Sect. 2.2.5, 2.2.6), gah is also needed and computed either 

using the default formulation above, or an alternative formulation that is consistent with the default dry deposition scheme in 15 

GEOS-Chem (Wesely, 1989; Wang et al., 1998). 

 

2.2.5 Ozone damage  

Two ozone (O3) damage schemes are implemented in TEMIR, which considers the responses of vegetation in terms of 

photosynthesis and stomatal conductance. The first O3 damage scheme follows Sitch et al. (2007) and considers two levels of 20 

O3 sensitivity (high and low) for each of the five major plant groups, namely, “broadleaf”, “needleleaf”, “shrub”, “C3 grass”, 

“C4 grass” as defined by Karlsson et al. (2004) and Pleijel et al. (2004). These groups are mapped to the default TEMIR PFTs 

accordingly. The scheme represents O3 damage by an O3 impact factor (f) that is dependent on the instantaneous stomatal O3 

flux into the leaf interior: 

𝑓 = 1 − 𝑎	max v� [O3]
bah
+W&bb

+W&yO3bs
+W − 𝐹crit� , 0w        (37)  25 

where [O3] (nmol m–3) is the O3 concentration observed or of the lowest atmospheric model layer; the aerodynamic, leaf 

boundary layer and stomatal conductances are calculated using the formulations in the previous sections; kO3 = 1.67 as defined 

by Sitch et al. (2007) is the ratio of the leaf resistance for O3 to that for water vapor; Fcrit represents a critical threshold 

accounting for O3 tolerance, below which instantaneous O3 exposure does not affect photosynthesis, and Fcrit = 1.6 nmol m–2 

s–1 for woody PFTs and Fcrit = 5 nmol m–2 s–1 for grass PFTs; the O3 sensitivity parameter a (nmol–1 m2 s) is specific to the 30 

plant group and to the two levels of O3 sensitivity. Factor f is multiplied directly to the net photosynthesis rate An to represent 
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O3 damage, which then indirectly affects gs via the coupling between An and gs; since the calculation of f requires gs, the three 

variables f, An and gs need to be solved together by numerical iterations. Noniterative methods give insignificance differences 

in performance. 

The second scheme follows Lombardozzi et al. (2012, 2015) scheme and considers three O3 sensitivity levels (high, average 

and low) for each of the three major plant groups, namely, “broadleaf”, “needleleaf” and “grasses and crops”, which are 5 

mapped to the default TEMIR PFTs accordingly. Unlike the Sitch et al. (2007) scheme, O3 damage is characterized by the 

cumulative uptake of O3 (CUO, mmol m–2) instead of instantaneous O3 uptake, which is parameterized as the sum of the 

instantaneous stomatal O3 flux over the lifetime of the leaf: 

CUO =	10-c∑� [O3]
bah
+W&bb

+W&yO3bs
+W − 𝐹crit� Δ𝑡         (38)  

where ∆t (s) is the model timestep; the critical threshold to account for O3 tolerance is set to be Fcrit = 0.8 nmol m–2 s–1 and 10 

CUO is only calculated when the LAI of the PFT concerned is larger than 0.5 to avoid unrealistically high CUO (Lombardozzi 

et al., 2012). Another important difference from (Sitch et al., 2007) is that O3 damage alter photosynthesis and stomatal 

conductance separately using two different sets of O3 impact factors, fp and fc, respectively: 

𝑓Q =	𝑎QCUO + 𝑏Q           (39)  

𝑓o =	𝑎oCUO + 𝑏o            (40)  15 

where the intercepts bp, bc and slopes ap, ac are determined empirically for the three plant groups (Lombardozzi et al., 2015). 

Factors fp and fc are multiplied separately to An and gs, respectively, after the iterative calculation of An and gs. 

 

2.2.6 Dry deposition 

We implement two major dry deposition schemes: Zhang et al. (2003) scheme used in several Canadian and American air 20 

quality models, and Wesely (1989) scheme widely used in many chemical transport models including WRF-Chem and GEOS-

Chem. In each of the two schemes, the default stomatal conductance scheme is a semi-empirical formulation that is not coupled 

to plant ecophysiology; the default canopy radiative transfer and aerodynamic conductance also follow formulations that are 

different from the default TEMIR schemes described above. We implement options such that ecophysiology-based stomatal 

conductance (gs) computed from the photosynthesis model above (Sect. 2.2.3), as well as canopy radiative transfer (ϕsun, ϕsha, 25 

LAIsun, LAIsha; Sect. 2.2.2) and aerodynamic conductance (gah; Sect. 2.2.4), can be used to replace the default options in the 

dry deposition schemes. A full evaluation of dry deposition velocities and fluxes computed by TEMIR using different 

combinations of schemes against O3 flux observations has been conducted by Sun et al. (2022). Tai et al. (2021) also evaluated 

how the dry-depositional fluxes of O3 can affect global crop yields by integrating TEMIR with the Deposition of O3 for 

Stomatal Exchange (DO3SE) model (https://www.sei.org/projects-and-tools/tools/do3se-deposition-ozone-stomatal- 30 

exchange/). 
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3 Observational datasets for model evaluation  

3.1 Site-level dataset 

Site-level comparison utilizes the eddy covariance measurements from the flux tower sites of the FLUXNET network 

(https://fluxnet.fluxdata.org). The latest released dataset, FLUXNET2015, contains half-hourly or hourly measurements of 

carbon fluxes and various meteorological observations. Each site is classified to contain one PFT that follows the classes 5 

described in the International Geosphere Biosphere Program Data and Information System (IGBP-DIS) DISCover land cover 

dataset (Loveland and Belward, 1997).  

 

Data after year 2009 from FLUXNET is used for model validation, taking into account data quality using the FLUXNET 

quality flags for each meteorological variable measured. TEMIR follows the PFT classes of CLM4.5, which are defined 10 

differently to the IGBP-DIS scheme, so additional identification and matching of the PFT classes is performed based on the 

forest composition information provided as far as possible in the FLUXNET database, as shown in Table S1 in the 

Supplemental Information. Overall, five sites have mismatched PFTs where the TEMIR outputs do not contain the 

corresponding PFT classes specified by FLUXNET. Thus, a total of 49 sites were used for comparison as listed in Table S2 

whereby most are in the Northern Hemisphere. 14 sites are evergreen needleleaf forests (ENF), 2 are evergreen broadleaf 15 

forests (EBF), 6 are deciduous broadleaf forests (DBF), which together account for almost half of the total number of sites. 

The rest of the 27 sites are 1 open shrubland (OSH), 16 grasslands (GRA) and 10 croplands (CRO). The GPP products provided 

by FLUXNET are derived by partitioning from the net ecosystem exchange (NEE) that is directly measured by the flux towers, 

using two partitioning methods: one utilizing daytime data only as described by Lasslop et al. (2010) and the other utilizing 

the nighttime approach according to Reichstein et al. (2005). A major difference in the GPP products partitioned using these 20 

two methods is that the nighttime approach for some extreme events such as droughts gives negative GPP, which is not 

physical. The NEE of the dataset is also produced using two methods that consider constant vs. variable friction velocity 

thresholds to filter NEE accordingly. The FLUXNET GPP product used in our comparison is the mean GPP product partitioned 

using the daytime method with the variable friction velocity threshold denoted as GPP_DT_VUT_MEAN in the FLUXNET 

database. 25 

 

3.2 Global-scale dataset 

We use the solar-induced induced chlorophyll fluorescence (SIF) inferred GPP product derived by Li and Xiao (2019) for 

global validation. SIF-based GPP products rely on the correlation of SIF with GPP where there is a  good representation (e.g., 

Shekhar et al., 2022). The global GPP dataset derived by Li and Xiao (2019) is based on the global SIF product from Orbiting 30 

Carbon Observatory-2 (OCO-2), namely GOSIF, and on the relationships between SIF and site-level observed GPP (Li et al., 
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2018). The resulting dataset has a spatial resolution of 0.05° and a monthly temporal resolution. For model validation, GOSIF 

GPP is regridded to a resolution of 2°×2.5° and grid cells with zero GPP are excluded. 

4 Model and simulation setup  

4.1 Site-level simulations with TEMIR 

For each of the 49 FLUXNET sites (Table S2) beginning from year 2009, simulations shown in Table 1 are conducted for 5 

model-observation comparison, with ambient CO2 concentration kept constant at 390 ppmv. The first is to use the default 

meteorological fields prescribed from MERRA-2 at 2°×2.5° horizontal resolution consistent with the GEOS-Chem simulations 

described above. We also test turning on and off the option of using MOST to infer in-canopy micrometeorological variables 

from the prescribed meteorology at 2 m above displacement height, as described in Sect. 2.2.4. The second set is to use direct 

micrometeorological measurements available from the FLUXNET site towers as the driving meteorology and the default 10 

MERRA-2 meteorology used only to replace any missing or low-quality data. The results simulated are most relevant for 

evaluating model performance in reproducing the observed diurnal and seasonal cycle of GPP from each FLUXNET site. 

 
Table 1: TEMIR simulation settings for selected FLUXNET sites. 

Simulation Meteorology Monin-Obukhov (MOST) Setting 

TEMIR_FLUX FLUXNET Off 

TEMIR_MO_off MERRA-2 Off 

TEMIR_MO_on MERRA-2 On 

 15 

4.2 Global simulations with TEMIR 

Global simulations from 2010 to 2015 are conducted under the same general setup as the site-level simulations, with ambient 

CO2 concentration fixed at 390 ppmv and driven by 2°×2.5° MERRA-2 meteorology. Functionalities of the model are tested 

for performance, as shown in Table 2, the MOST option to infer in-canopy conditions and the Sitch O3 damage scheme with 

low and high sensitivity to assess the global O3 impact on vegetation. We use GEOS-Chem (Sect. 2.1) to simulate tropospheric 20 

O3, starting from year 2009 to 2015 whereby the first year of simulation is considered as spin-up. The simulation uses the 

comprehensive chemistry scheme “tropchem”, which has tropospheric O3-NOx-VOC-aerosol chemistry accompanied by the 

default emission inventories (i.e., anthropogenic emissions from CEDS; Hoesly et al., 2018, and biogenic emissions from 

MEGAN; Guenther et al., 2012). The reanalyzed meteorological fields used are from the Modern Era-Retrospective Analysis 

for Research and Applications version 2 (MERRA-2) supplied by the Global Modeling and Assimilation Office (GMAO) at 25 

2°×2.5° horizontal resolution, which are the identical meteorological inputs used in TEMIR. Simulated O3 concentrations at 
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the lowest surface level are then fed into TEMIR as inputs accordingly. The results produced from these simulations (Table 2) 

are used to validate the spatial variability of seasonal and annual averages across the whole world against the GOSIF GPP 

dataset (Sect. 3.2). To retain representative results from all simulations (Table 2) , grid cells with LAI < 0.5 are excluded. LAI 

dataset for the simulation is from MODerate resolution Imaging Spectroradiometer (MODIS) satellite data (Lawrence and 

Chase, 2007) and assimilated by Yuan et al. (2011). 5 

 
Table 2: TEMIR simulation settings for global simulation for years 2010–2015. 

Simulation Sitch O3 Damage Scheme Sensitivity Monin-Obukhov (MOST) Setting 

TEMIR_MO_off Off Off 
TEMIR_MO_on Off On 

TEMIR_Sl Low Off 

TEMIR_Sh High Off 

 

4.2.1 Global CO2-O3 factorial simulations with TEMIR 

We perform factorial simulations (Table 3) to investigate the effects of CO2 fertilization, O3 damage and their interactions on 10 

global primary productivity as an example to showcase the utility of the model. Global O3 surface concentrations of year 2000 

are simulated using GEOS-Chem (Sect. 2.1) with year 1999 used as spin up; other settings are as described in Sect. 4.2. CO2 

concentrations are changed in TEMIR as required for each simulation (Table 3) with reference to year-2000 and year-2010 

concentrations (Dlugokencky and Tans, 2022). Sitch O3 damage scheme with high sensitivity is used for TEMIR simulations 

(Table 3) when global surface O3 concentrations are used as inputs; otherwise no O3 damage scheme is used. Year-2000 15 

meteorological fields MERRA-2 are used for all GEOS-Chem and TEMIR simulations. LAI is fixed at year 2000 from MODIS 

for all GEOS-Chem and TEMIR simulations. 

 
Table 3: Factorial simulation settings. “N/A” for O3 year indicates that no O3 damage scheme is used. 

Simulation CO2 (ppmv) O3 Year Meteorology Year 

C0_O0 370 N/A 

2000 
C1_O0 390 N/A 

C0_O1 370 2000 

C1_O1 390 2000 
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5 Model evaluation  

Statistics used for model validation are the adjusted coefficient of determination R2, the modified Nash–Sutcliffe model 

efficiency coefficient N and the normalized mean bias B. R2 is a commonly used metric with a range of 0 to 1 (or 0–100%) 

that represents the fraction of variability of observations that can be replicated by the model, whereby 1 indicates perfect 

correlation and 0 indicates no correlation. N addresses the sensitivity issues of R2 documented by Legates and McCabe (1999). 5 

With values from negative infinity to 1, it is a measure of the suitability of the model as a predictor instead of using the mean 

of the observations. When N = 1, it indicates that the model perfectly replicates observations, and no preference is observed 

between the model and the mean of the observations as a predictor. Negative values in turn signify the incapability of the 

model in predicting system behaviors. B gives the relative difference of the magnitude of model results from the observations. 

The equations to compute these statistics are shown in Table 4 below. 10 

 
Table 4: Statistical metrics for TEMIR model validation, where M and O respectively represent the simulated dataset and 
observational dataset, each containing n data points. M̄ and Ō represent the means of the datasets in question. 

Metric Mathematical equation Range 

Coefficient of Determination R2 𝑅N =

⎝

⎛ ∑ (𝑀h −𝑀�)(𝑂h − 𝑂�)�
hq,

j∑ (𝑀h −𝑀�)N�
hq, ∑ (𝑂h − 𝑂�)N�

hq, ⎠

⎞

N

 
0	to	1 

(0	to	100%) 

Modified Nash–Sutcliffe Model 

Efficiency Coefficient N 
𝑁 = 1 −

∑ |𝑂h −𝑀h|�
hq,

∑ |𝑂h − 𝑂�|�
hq,

 −∞	to	1 

Normalized Mean Bias B 𝐵 =
𝑀�
𝑂�
− 1 −∞	to	∞ 

 

5.1 Site-level validation 15 

5.1.1 Validation on summer diurnal cycle  

Figure 1 shows the statistical metrics (Table 4) used to perform model-observation comparison for the diurnal GPP cycle 

calculated for each FLUXNET site taken from the second summer month of year 2012, which corresponds to the month of 

July for sites in the Northern Hemisphere and January in the Southern Hemisphere (Table S2). Comparing between the 

simulations with FLUXNET local meteorology and MERRA-2 meteorology (Figure 1), statistical metrics generally do not 20 

differ substantially, but some significant differences can exist for some sites (e.g., CH-Cha, CH-Dav; see Figure 3) where 

results from simulations with FLUXNET local meteorology show higher correlations. For simulations solely driven by 
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MERRA-2 meteorology, inferring in-canopy meteorology using Monin-Obukhov similarity theory (Figure 1(c)) gives 

insignificant differences for all sites. 

 

 
Figure 1: Statistical metrics (Table 4) for model-observation comparison for diurnal gross primary product (GPP) from simulations 5 
(a) TEMIR_FLUX, (b) TEMIR_MO_off and (c) TEMIR_MO_on as described in Table 1. 

 

Figure 2 shows the statistical metrics (Table 4) for model-observation comparison for the simulations using FLUXNET local 

meteorology as the driving meteorological input for different PFTs. The average correlations per PFT between observed and 

simulated GPP (Figure 2) are high (R2 > 0.88), except for open shrubland (R2 » 0.7). B shows a large variability due to various 10 

limitations of the model for each PFT. For forest sites, B generally has a smaller range and lower absolute mean values in 

comparison to the other PFTs, showcasing the better performance of TEMIR for forests. N shows similar behaviors, namely, 

the prediction for forest sites is satisfactory with mean values of N larger than 0.55, whereas N is mostly negative for grasslands, 

croplands and open shrublands. All plots of diurnal cycles are shown in the Supplementary Materials, with relevant figures 

also included in the following discussion. 15 
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Figure 2: Statistical metrics (Table 4) for model-observation comparison for diurnal gross primary product (GPP) from 
TEMIR_FLUX simulation (Table 1) for each plant functional type (PFT) listed in Table S1: (a) evergreen needleleaf forest (ENF), 
(b) evergreen broadleaf forest (EBF), (c) deciduous broadleaf forest (DBF), (d) open shrubland (OSH), (e) grassland (GRA), (f) 
cropland (CRO). 5 
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We find that the correlations are above 90% (Figure 2(e)) for all grassland sites (e.g. AU-How, Figure 3(a); IT-MBo, Figure 

3(b); CZ-wet, Figure 3(c)) except for CH-Cha (Figure 3(d)) where FLUXNET meteorology gives R2 = 0.49, likely due to 

disturbances from intensive site management (Imer et al., 2013). Yet the spread of B is large, where we see absolute B values 

greater than +0.6 and the rest with absolute B less than 0.3 for six of the 16 sites. A possible explanation for the high B values 5 

is the fire-prone nature of these sites (i.e., AU-Stp, Figure 3(e)) (Beringer et al., 2007, 2011; Hutley et al., 2011; Haverd et al., 

2013) whereby the model is incapable of resolving such complexities as turnover and local disturbances. Another cause of 

overestimation is the simplistic and generic PFT classification for such biomes, which are usually sparsely populated yet with 

much diversity, as in the open shrubland site ES-LJu (Figure 3(f)) (Serrano-Ortiz et al., 2009). Such generalization can also 

cause systematic inaccuracies in parameterization, where model parameters are better suited for European semiarid vegetation 10 

(e.g., CH-Fru (Imer et al., 2013); IT-MBo, Figure 3(b) (Marcolla et al., 2011); CZ-wet, Figure 3(c) (Dušek et al., 2012)) than 

similar sites of other regions (e.g., AU-Dry (Hutley et al., 2011); RU-Sam, Figure 3(g) (Boike et al., 2013); US-SRG (Scott et 

al., 2015)). 

 

Simulated results for forest PFTs compare very well with observations, where N values are often greater than 0.5. TEMIR 15 

performs particularly well for evergreen needleleaf forests as seen in sites DE-Tha (Figure 3(h)), FI-Hyy (Figure 3(i)) and NL-

Loo (Figure 3(j)), which are mostly populated by mature Scots pine forests of over 70 years old. Sites CA-TP1 (Figure 3(k)), 

CA-TP3 (Peichl et al., 2010; Arain et al., 2022) and DE-Lkb (Lindauer et al., 2014) are overestimated by the model as these 

forests are dominated by eastern white pine and Norway spruce that are less than 20 years old, so optimal productivity might 

not have been achieved. In comparison, the neighboring site CA-TP4 (Figure 3(l); Peichl et al., 2010) with over 70-year-old 20 

eastern white pine is better replicated by the model. The model has better performance with respect to site observations when 

using FLUXNET local meteorology (e.g., CH-Dav, Figure 3(m); Zielis et al., 2014), though the differences are insignificant 

for most sites. For deciduous broadleaf forest sites, although represented well overall, there is a systematic underestimation 

(e.g., FR-Fon, Figure 3(n)), most likely due to inaccurate parameterization overcompensating for the uncertainties of satellite-

derived LAI for broadleaf trees. The multi-year drought in the US over the 2010s, which hinders plant productivity (Wolf et 25 

al., 2016; Xu et al., 2020), appears to improve model agreement by reducing the discrepancy (i.e., US-Oho and US-UMB) and 

even giving a positive model bias (i.e., US-MMS, Figure 3(o); Yi et al., 2017). 

 

The correlation for croplands is high but there is a spread in B giving varying N values. The range of model performance 

among cropland sites shows the limitation of the simplistic crop representation used in this version of TEMIR, whereby site-30 

level settings such as planting seasons and agricultural management (e.g., fertilizer usage, irrigation and possible rotations 

between crop types and cultivars) are not considered. The generic crop representation fails to capture the maximum 

photosynthetic capacity of the planted crops. For example, site US-Ne1 has irrigated maize that has much higher GPP 
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compared to the simulated generic crop as shown in Figure 3(p); site DE-Kli (Figure 3(q)) has a 5-year crop rotation with 

occasional fertilizer application (Prescher et al., 2010) and has higher productivity than simulated by the model. 

 

 
Figure 3: Diurnal averaged gross primary productivity of selected sites representative of their respective vegetation types (a) AU-5 
How, (b) IT-MBo, (c) CZ-wet, (d) CH-Cha, (e) AU-Stp, (f) ES-LJu, (g) RU-Sam, (h) DE-Tha, (i) FI-Hyy, (j) NL-Loo, (k) CA-TP1, 
(l) CA-TP4, (m) CH-Dav, (n) FR-Fon, (o) US-MMS, (p) US-Ne1, and (q) DE-Kli from simulations described in Table 1 with relevant 
site information annotated. More details of these sites are given in Table S2. 
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5.1.2 Validation on seasonal cycle 

Figure 4 shows the statistical metrics (Table 4) for monthly GPP averages of 2009–2013 to examine the model performance 

in seasonal GPP cycle. All plots of monthly cycles are shown in the Supplementary Materials, with plots of selected sites 

included in the following discussion. The model generally performs worse in capturing the seasonal cycle than the diurnal 

cycle. Between the different settings of meteorology used for simulations (Figure 4), the differences in statistics are small. 5 

MERRA-2 meteorology shows good utility for most sites, with in-canopy meteorology inferred using Monin-Obukhov 

similarity theory improving correlation for some sites. FLUXNET local meteorology gives the smallest range of biases with 

performance similar to MERRA-2 meteorology simulations. 

 

 10 
Figure 4: Statistical metrics (Table 4) of monthly gross primary product (GPP) from simulations (a) TEMIR_FLUX, (b) 
TEMIR_MO_off and (c) TEMIR_MO_on as described in Table 1. 

 

Comparing Figure 2 and Figure 5, model-observation comparison of monthly averages gives lower values of R2 for all sites in 

general. On the other hand, biases are distributed more evenly across the range with smaller extreme values compared to the 15 

biases from diurnal simulations. In terms of N, the model is less adept in reproducing seasonal variations (due to the reductions 

in correlation) regardless of the driving meteorology chosen. Figure 5(c) shows that deciduous broadleaf sites (e.g., US-MMS; 

Figure 6(a)) gives R2 > 0.85 with the maximum absolute B = +0.54, and minimum N = 0.42 with a mean of 0.9. Monthly 

performance of forest sites shows a smaller range in B and lower absolute mean values of B in comparison to the other PFTs 

(Figure 5). The prediction for forest sites is satisfactory with mean values of N larger than 0.65 (e.g., RU-Fyo in Figure 6(b); 20 

CA-TP4 in Figure 6(c)), and monthly GPP inaccuracies for forest sites can be explained with similar reasoning as discussed 

in Sect. 5.1.1. 

 

The correlation for grasslands is above 75% for most sites (e.g., DE-Akm in Figure 6(d); IT-MBo in Figure 6(e)) while sites 

AU-How (Figure 6(f)) and AU-Stp have R2 below 0.4. These sites are known to have fires occurring in the dry winter and 25 
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spring from May to October, which corresponds to the low productivities (Beringer et al., 2007, 2011; Hutley et al., 2011; 

Haverd et al., 2013). Moreover, such disturbances on LAI with vegetation regrowth are complex and often overlooked by the 

model as shown in simulation of site AU-How with minimal productivity. 

 

The simulation of monthly GPP of croplands shows most clearly the limitations of the generic model approach, as no site-5 

specific crop phenology is available in this version of the model. The simulated seasonal cycle shows a typical annual peak 

usually in summer as dictated by meteorology that in general can yield good correlation (e.g., DE-Geb, Figure 6(g)); yet as 

many sites are intensively managed, the observed GPPs do not follow such simplistic cycle, giving low correlations (e.g., IT-

BCi, Figure 6(h)). The parameters for generic crop usually fail to represent the actual crop planted at the sites, and therefore 

large biases exist in the simulated GPP (e.g., BE-Lon in Figure 6(i)); FR-Gri in Figure 6(j)). GPP is more commonly 10 

underestimated in the US sites (e.g., US-Ne1 in Figure 6(k)) where maize is usually planted and is more productive in 

comparison to other crops. 
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Figure 5: Statistical metrics (Table 4) of monthly averaged gross primary product (GPP) from TEMIR_FLUX simulation (Table 1) 
for each plant functional type (PFT) listed in Table S1: (a) evergreen needleleaf forest (ENF), (b) evergreen broadleaf forest (EBF), 
(c) deciduous broadleaf forest (DBF), (d) open shrubland (OSH), (e) grassland (GRA), (f) cropland (CRO). 
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Figure 6: Monthly averaged gross primary productivity of selected sites representative of their respective vegetation types: (a) US-
MMS, (b) RU-Fyo, (c) CA-TP4, (d) DE-Akm, (e) IT-MBo, (f)  AU-How, (g) DE-Geb, (h) IT-BCi, (i) BE-Lon, (j) FR-Gri, and (k) US-5 
Ne1 from simulations described in Table 1 with relevant site information annotated. 
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5.2 Global validation 

Figure 7 shows that simulated annual averaged GPP of years 2010–2015 is 134.7 Pg C yr–1 from the simulation using MERRA-

2 meteorology (TEMIR_MO_off) (Figure 7(b)), and the simulation with in-canopy meteorology inferred using MOST 

(TEMIR_MO_on) gives GPP over the same period to be 144.7 Pg C yr–1 (Figure 7(c)). Comparing to the satellite-derived 

dataset (GOSIF GPP; Sect. 3.2) where annual GPP of the same period being 128.4 Pg C yr–1 (Figure 7(a)), TEMIR 5 

overestimates global GPP by ~5–10% depending on the input meteorology (Table 5). TEMIR performance is well within and 

leans toward the middle of the observation-constrained range in the literature of 119–175 Pg C yr–1. TEMIR closely agrees 

with models of similar design objectives, e.g., the Yale Interactive terrestrial Biosphere (YIBs) with GPP at 125 ± 3 Pg C yr–1 

(Yue and Unger, 2015) and JULES land surface model estimating GPP at 141 Pg C yr–1 (Slevin et al., 2017). TEMIR can 

largely reproduce the spatial distribution of GPP with respect to GOSIF GPP (Figure 7), with grid cells with mixed savanna 10 

and forests showing larger discrepancies. 

 
Table 5: Gross primary product (GPP) simulated and relevant simulations details of global TEMIR simulations described in Table 

2 and Table 3 (“N/A” for O3 year indicates that no O3 damage scheme is used). 

Simulation Simulation Year(s) CO2 (ppmv) O3 Year GPP (Pg C yr-1) 

TEMIR_MO_off 

2010–2015 

390 N/A 134.7 

TEMIR_MO_on 390 N/A 144.7 

TEMIR_Sl 390 2000 133.6 

TEMIR_Sh 390 2000 131.8 

C0_O0 

2000 

370 N/A 135.2 

C1_O0 390 N/A 138.6 

C0_O1 370 2000 132.7 

C1_O1 390 2000 136.2 

 15 

Figure 8 shows model-observation statistics (Table 4) for the model outputs of Figure 7 in 12 regions. Global correlation of 

6-year averaged GPP is around 83% (Figure 8(b)). In general, correlations are lower for regions closer to the equator, where 

correlations for tropical regions are below 70%, but otherwise above 70% with correlation for Siberia close to 90%. 

Correlation for Tropical Americas is ~75%, which is higher than other equatorial regions. Temperate North America shows a 

correlation of ~60%, which is slower than other regions at midlatitudes. We also see that GPP is underestimated in the grid 20 

cells with high crop density (Figure 7(b)), which, as discussed in Sect. 5.1, is likely due to the generic crop representation of 

the TEMIR version giving poor model performance for this region. Simulated GPP driven by meteorology inferred with 

MOST gives small increases or decreases in regional correlation (e.g., correlation for North Africa and Middle East drops 

from 48% to 45% and correlation for Temperate South America increases from 75% to 78%). 
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Figure 7: (a) Average global gross primary product (GPP) of year 2010 to 2015 from GOSIF GPP product and differences in 
simulated GPP from simulations (b) TEMIR_MO_off or (c) TEMIR_MO_on (Table 1) of year 2010 to 2015 compared to the GOSIF 
product. 5 

 

Absolute biases are mostly within 25% except for North Africa and Middle East and Sub-Saharan Africa (except Central 

Africa) when the driving meteorology is inferred from MOST. Simulated GPP driven by in-canopy meteorology inferred 

with MOST gives more positive biases for all regions, generally around +10%. GPP for 6 of the 12 regions are overestimated 

by TEMIR and otherwise underestimated (Figure 8(b)). Thus, in-canopy meteorology inferred with MOST results in 10 

regional bias changes from underestimation to overestimation for East and South Asia, Europe, Temperate North America, 

and Tropical Americas. The bias for Europe is –6.2% and +1.19% when driving meteorology is inferred with MOST. The 

bias of +1.19% is the smallest absolute bias of any region, which shows the possibility of in-canopy meteorology inferred 

with MOST improving GPP predictions for some but not all regions. 
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Figure 8: (a) Regional division relevant for this study largely following Chen et al. (2017), and (b) the corresponding regional 
statistical metrics (Table 4) of averaged gross primary product (GPP) for years 2010–2015 from TEMIR simulations (Table 2). 
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5.3 Effects of O3 and CO2 on global primary productivity  

Figure 9 shows the simulated results where the Sitch O3 scheme (Sect. 2.2.5) of low sensitivity (Sl) and high sensitivity (Sh) 

are implemented for the years 2010–2015 using MERRA-2 meteorology. Figure 9(a) shows the mean daily 8-hour averaged 

O3 concentration (MDA8), a common surface O3 metric, derived from the simulated hourly O3 concentration at the lowest 

model level affecting global vegetation under the Sitch O3 damage scheme. Global GPP are 133.6 Pg C yr–1 and 131.8 Pg C 5 

yr–1 for Sitch O3 scheme at low and high sensitivity, respectively (Table 5), both of which are smaller than the 134.7 Pg C yr–

1 from the simulation without O3 damage (Figure 7(b)). These global GPP reductions are seemingly small (<1% to ~2%) and 

conceal larger regional changes. Figure 9(c) shows that the Sitch O3 damage scheme at high sensitivity leads to an up to 15% 

reduction in GPP whereas low sensitivity shows modest reductions of about half of those magnitudes. Particularly large O3-

induced damages are in highly populated regions (e.g., eastern US, Europe, central Africa, northern India and East Asia) 10 

associated with high anthropogenic emissions (NOx in particular). Many of these regions also contain arable lands, and thus 

O3 exposure can also affect food security (Feng et al., 2008; Avnery et al., 2011b; Emberson et al., 2018; Ainsworth et al., 

2020; Tai et al., 2021; Leung et al., 2022; Roberts et al., 2022). 

 

Figure 8(b) shows the statistics of Table 4 per region (Figure 8(a)) for simulations with O3 damage. The presence of O3 does 15 

not affect the model-observation correlations significantly for any region; when compared to the correlations of 

TEMIR_MO_off simulation results, correlations from O3 damaged GPP show small differences. O3 damage reduces the model 

overestimation with respect to GOSIF GPP. In particular, for eastern China and Central Africa, implementing O3 damage 

reduces the positive model biases as seen in Figure 7. Underestimation is worsened for the regions of Temperate North America 

and East and South Asia where there is strong O3 damage (Figure 9). 20 
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Figure 9: Mean daily 8-hour averaged (MDA8) O3 concentration of the lowest model layer averaged over years 2010 to 2015; and 
percentage differences in average global GPP of years 2010 to 2015 of the simulated results with Sitch O3 damage scheme at (b) low 
and (c) high sensitivity from the simulation TEMIR_MO_off (Table 2). 

 5 

Figure 10 shows the comparisons between simulations (Table 3) displaying the interplay of CO2 fertilization effects and O3 

damage on GPP. CO2 fertilization (from 370 to 390 ppmv), shown in Figure 10(b), promotes regional productivity by up to 

7%. Global GPP enhancement is ~2% (Table 5), thus simulations estimate rising atmospheric CO2 concentration results in 

global GPP increase of 0.126% ppmv-1. Seen in Figure 10(c), O3-induced regional reductions are up to 15% under the Sitch 

O3 damage scheme at high sensitivity, whereby results are similar to that in Figure 9(c). Figure 10(d) shows the differences in 10 

percentage O3 damage of GPP of the simulation with O3 damage at a CO2 concentration of 390 ppmv from that at 370 ppmv 

(i.e., Fig. 9(c)). The positive values in Fig. 9(d) indicates that the O3-induced GPP reduction is smaller at a higher CO2 

concentration, reflecting the additional benefits of CO2 fertilization from the reduced stomatal conductance, which improves 

water use efficiency and also decreases stomatal O3 uptake thus lessening O3-induced impacts. 

 15 
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Figure 10: Plots showing results from simulations of Table 3: (a) gross primary product (GPP) modeled for year 2000 at a CO2 
concentration of 370 ppmv (C0_O0), (b) percentage changes in GPP showing CO2 fertilization effects of year-2010 CO2 concentration 
at 390 ppm (100% ´ (C1_O0 – C0_O0)/C0_O0), (c) percentage changes in GPP due to O3 damage at high sensitivity of the Sitch O3 
damage scheme for year-2000 modeled O3 concentration and CO2 concentration of 370 ppmv (100% ´ (C0_O1– C0_O0)/C0_O0), 5 
and (d) differences in percentage O3 damage at a CO2 concentration of 390 ppmv from that at 370 ppmv (100% ´ (C1_O1 – 
C1_O0)/C1_O0 – 100% ´ (C0_O1 – C0_O0)/C0_O0), whereby positive values indicate a reduction in percentage O3 damage. 

6 Discussion and conclusions 

In this paper we provide detailed model description of the newly developed Terrestrial Ecosystem Model in R (TEMIR) version 

1.0, which simulates ecophysiological processes and functions (most importantly, photosynthesis and GPP) of terrestrial 10 

ecosystems as represented by different PFTs, driven by prescribed meteorological conditions and atmospheric chemical 

composition. We specifically include the multiple parameterization schemes for stomatal O3 uptake and O3 damage on plants, 

and showcase the utility of TEMIR in evaluating the responses of global primary productivity (GPP) to O3 damage, CO2 

fertilization and their interactions. The productivity simulated at site and global levels reproduces the observed diurnal and 

seasonal cycles well for evergreen needleleaf and deciduous broadleaf forests (especially those that are mature), with an annual 15 

average GPP of 134.7 Pg C yr–1 for years 2010–2015 and a global reduction of up to 2% when O3 damage is considered. This 

is validated against the productivity from the 49 FLUXNET sites and GOSIF GPP. 
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TEMIR-simulated global GPP lies well within the accepted range but the associated large uncertainty is well acknowledged 

in the field (Bonan et al., 2011; Baldocchi et al., 2016; Zhang et al., 2017; Li and Xiao, 2019; Wild et al., 2021; Bi et al., 2022; 

Zhang and Ye, 2022), hence limiting the validity of global GPP model-observation comparison in this study (Sect. 5.2). Site-

level validation may lend more credence by isolating certain PFTs for comparison, albeit being more limited in scope and scale 

unlike global comparisons. Our investigation suggests that possible PFT systematic biases exist generally for diurnal 5 

productivity, which reflect the limitations of having a set prescribed parameters for generalized classes of plant functions. For 

instance, there is a systematic underestimation for deciduous broadleaf forests though it can be explained by the uncertainties 

of LAI datasets (Liu et al., 2018), and some regions show distinctive physiology and phenology of grasses and shrubs. 

Particularly for semiarid regions where the range of productivity is large, the model shows variable accuracy. Incorporating 

site-level meteorology in simulations can improve performance for a few selected sites but otherwise comparable to results 10 

from simulations with gridded assimilated meteorology as input. This highlights the generalization and coarse resolution that 

can drastically overlook regional and small-scale nuances. All being said, TEMIR has great skill in capturing annual and 

seasonal GPP at the global scale and some productive regions and PFTs, whereby correlation is high in the range of 80–90%, 

showcasing the utility of TEMIR at scales in accordance with the model design. Caution should be taken with good knowledge 

of model preferences and its underlying theoretical assumptions for any given research question, especially when concerning 15 

multifactor land-atmosphere interactions and vegetation responses to various environmental stresses. Further development and 

validation of the model with detailed observations are crucial to provide more accurate vegetation parametrization for specific 

applications, e.g., to investigate vegetation responses to droughts and heatwaves composition (e.g., Yan et al., 2022), especially 

at the regional and site levels. For any specific site, users are recommended to recalibrate relevant model parameters and inputs 

with site observations, such as LAI, Vcmax, PFT, etc., to yield the most accurate results. 20 

 

The initial motivation and one of the most relevant applications of TEMIR is to address the impacts of O3 pollution and 

exposure on terrestrial ecosystem productivity, whereby an active Sitch O3 damage scheme improves model performance with 

respect to GPP. Concerning O3 damage on GPP, there is a good agreement with previous studies in terms of both magnitudes 

and spatial variations (e.g., Sitch et al., 2007; Lombardozzi et al., 2015). For instance, the OCN model (Franz et al., 2017; 25 

Franz and Zaehle, 2021) simulated that O3 reduces GPP in Europe by ~8% and the JULES land surface model (Slevin et al., 

2017) in the range of 10–20% (Oliver et al., 2018). The Yale Interactive terrestrial Biosphere (YIBs) model (Yue and Unger, 

2015) simulated that O3 reduces global GPP by 2–5% with East Asia experiencing damage of 4–10%. Yue and Unger (2014) 

also showed GPP reductions of 4–8% in the eastern US with high episodes giving a higher range to 11–17%. YIBs has the 

capability of synchronous coupling (e.g., GEOS-Chem-YIBs; Lei et al., 2020), which reported similar ranges of GPP 30 

reductions, globally by 1.5–3.6% and extremes of 11–14% in the eastern US and eastern China. This lends credence to the 

comparable performance of TEMIR v1.0 that has a more simplistic terrestrial ecosystem with prescribed ecosystem structure 

(noting that active biogeochemistry is in development). Synchronous model coupling between a CTM or climate model and a 

fully prognostic biosphere model with active biogeochemistry is particularly suitable for examining O3-vegetation feedbacks, 

https://doi.org/10.5194/egusphere-2023-1287
Preprint. Discussion started: 14 July 2023
c© Author(s) 2023. CC BY 4.0 License.



32 
 

especially for timescales long enough (e.g., multidecadal) for ecosystem structure to co-evolve with the atmosphere. For 

instance, Gong et al. (2021) and Sadiq et al. (2017) showed that dynamic O3-vegetation interactions can lead to a long-term 

ecosystem decline and a positive feedback on O3 concentration in China and worldwide, respectively, worsening air quality. 

Zhu et al. (2022) found similar positive O3-vegetation feedbacks in China with the coupled framework using WRF-Chem and 

Noah-MP. Yue et al. (2017) also investigated O3-aerosol-vegetation interactions in China. TEMIR can only be asynchronously 5 

coupled with GEOS-Chem and is not the best tool for investigating two-way O3-vegetation interactions, especially when such 

interactions relevantly happen within a model time step, but it is particularly suitable for estimating first-order effects of O3 

pollution on vegetation in a computationally efficient manner. Zhou et al. (2018) indeed found that second-order effects of O3 

pollution (i.e., additional effects of modified O3 concentrations after feedbacks are accounted for) on vegetation are negligible. 

Moreover, asynchronous coupling between TEMIR and GEOS-Chem, for example, and conducting factorial experiments with 10 

them can help disentangle complex pathways and feedbacks that are often convoluted in fully coupled models. 

 

We recognize that the O3 damage scheme in TEMIR does not account for sluggishness in stomatal responses (e.g., Huntingford 

et al., 2018; Clifton et al., 2020), which may modify further O3 uptake, although such effect is expected to be small at the 

resolution relevant for this study. O3 sensitivities also have crop-related inaccuracies due to the generic crop representation in 15 

this version of TEMIR. Such is a common practice in global-scale biosphere models, and Leung et al. (2020) suggested that if 

a study focuses on crop yields, species-specific calibration is required to reduce uncertainty and likely inaccuracies for the 

crops concerned. TEMIR v1.0 on a global scale is not suitable for any crop-focused investigations, but one may use the version 

of TEMIR implemented with additional crop functionalities such as the calculation of phytotoxic ozone dose, taking advantage 

of the stomatal calculation in TEMIR, and the subsequent estimation of ozone-crop impacts (Tai et al., 2021). The utility of 20 

TEMIR in examining vegetation-mediated dry-depositional sinks of O3 has also been demonstrated (Sun et al., 2022).  

 

Mechanistic representations allow modeling for various meteorological conditions and is invaluable to evaluate 

ecophysiological responses to a changing climate and intermittent climate extremes (e.g., Bonan, 2008, 2016; Cai and Prentice, 

2020; Gang et al., 2022). Ciais et al. (2005) estimated a 30% GPP reduction in Europe following the heatwave in year 2003 25 

and vegetation there became a net carbon source, attributable to the rainfall deficit and extreme summer heat. This was also 

shown by Bamberger et al. (2017), whereby heat and drought impacts alter photosynthesis and vegetation state. More extreme 

events are projected for a future climate, which various models (e.g., O-CN, YIBs) have shown to decrease productivity (e.g., 

Franz and Zaehle, 2021; Yan et al., 2022). He et al. (2022), using models, showed that climate variability is the main factor 

controlling interannual GPP variability of grasslands in China. Such effect is the most prominent in the summer, which is 30 

responsible for more than 40% of decadal GPP variability in Chinese grasslands and the largest in comparison to effects from 

CO2 fertilization and nitrogen deposition. Similar to the case for O3-vegetation coupling discussed above, fully coupled 

climate-biosphere models can be particularly useful for examining two-way interactions and feedbacks, and also long-term 

(multi-decadal to multi-centurial) co-evolution of climate and the biosphere. However, the embedded complex interactions 
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may obscure the relative importance of different factors, making it a lot more difficult to attribute changes to specific factors. 

Offline modes such as TEMIR are therefore particularly useful for investigating and attributing biospheric variability and 

changes to prescribed changes in climatic variables. 

 

In addition, we have demonstrated the utility of TEMIR in examining the direct and interactive effects of multiple atmospheric 5 

chemical species on global vegetation (i.e., CO2 and O3 concentrations). CO2 fertilization in TEMIR results in strong GPP 

enhancement as seen in many studies (e.g., Schimel et al., 2015; Cai and Prentice, 2020; Chen et al., 2022; Yang et al., 2022). 

Our simulations estimate that CO2 fertilization increases global GPP by 0.126% ppmv-1, which is comparable to the value of 

0.138% ± 0.007% ppmv–1 reported by Ueyama et al. (2020). It is noteworthy that some studies (e.g., Lee et al., 2018) suggested 

that overlooking spatiotemporal variability of atmospheric CO2 can lead to inaccuracies for seasonal and regional GPP 10 

estimation but only minor influence on global GPP. Additional crop functionalities of TEMIR (Tai et al., 2021) can also 

address the CO2 fertilization effects on crops, although studies have also found that the resulted productivity increase gives 

larger yield quantity but does not necessarily translate to increased yield quality (Myers et al., 2014; Ebi et al., 2021; Xia et 

al., 2021). The competing effects of CO2 fertilization and O3 damage on vegetation have been well documented in field 

experiments, although magnitudes vary and are species-dependent (e.g., Oikawa and Ainsworth, 2016; Proietti et al., 2016; 15 

Karlsson et al., 2017; Moura et al., 2018; Zhang et al., 2018; Ainsworth et al., 2020; Xia et al., 2021). TEMIR shows that CO2 

fertilization can reduce the percentage O3 damage on vegetation (~1% globally), which is generally comparable to 1–2% found 

by Oliver et al. (2018), whereas Sitch et al. (2007) simulated a higher range of 6–9%. We note that while comparisons among 

models are useful, we must be mindful of the differences in model designs and setups (as mentioned in Sect. 1). Miner et al. 

(2017) cautioned that stomatal responses to CO2 can be highly species-dependent and variable under different soil conditions, 20 

adding more uncertainty to the parameterization of CO2-O3-vegetation interactions. The changing nitrogen deposition due to 

anthropogenic activities may likewise influence the interactions between vegetation, CO2 and O3 (e.g., Zhao et al., 2017; Liu 

et al., 2021). As atmospheric composition rapidly changes in the next century, these interactive mechanisms should be 

considered for modelers to more representatively and accurately model the future Earth system (e.g., Bytnerowicz et al., 2007; 

Pu et al., 2017; Sicard et al., 2017; Franz and Zaehle, 2021; Leung et al., 2022). 25 

 

All in all, the high adaptability of TEMIR, written in an freely open-source, widely used and easy-to-learn programming 

language (R Core Team, 2022), is expected to facilitate fruitful contribution to research at various spatiotemporal scales on 

biosphere-atmosphere interaction. It also provides a readily available tool for policy makers, practitioners and other 

stakeholders to assess the ecosystem services provided by vegetation in different regions or cities, as well as their sensitivities 30 

to future atmospheric changes, possibly enhancing the translational value of ecological and geoscientific research. 
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7 Code availability 

The Terrestrial Ecosystem Model in R (version 1.0) source code is publicly available at the repository:  

https://doi.org/10.5281/zenodo.6380828. 
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