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Abstract. The newly developed offline land ecosystem
model Terrestrial Ecosystem Model in R (TEMIR) ver-
sion 1.0 is described here. This version of the model simu-
lates plant ecophysiological (e.g., photosynthetic and stom-
atal) responses to varying meteorological conditions and
concentrations of CO2 and ground-level ozone (O3) based
on prescribed meteorological and atmospheric chemical in-
puts from various sources. Driven by the same meteoro-
logical data used in the GEOS-Chem chemical transport
model, this allows asynchronously coupled experiments with
GEOS-Chem simulations with unique coherency for investi-
gating biosphere–atmosphere chemical interactions. TEMIR
agrees well with FLUXNET site-level gross primary pro-
ductivity (GPP) in terms of both the diurnal and monthly
cycles (correlation coefficients R2 > 0.85 and R2 > 0.8, re-
spectively) for most plant functional types (PFTs). Grass and
shrub PFTs have larger biases due to generic model repre-
sentations. The model performs best when driven by local
site-level meteorology rather than reanalyzed gridded mete-
orology. Simulation using gridded meteorology agrees well
for annual GPP in seasonality and spatial distribution with
a global average of 134 Pg C yr−1. Application of Monin–
Obukhov similarity theory to infer canopy conditions from
gridded meteorology does not improve model performance,
predicting a uniform increase of +21 %CE1 for global GPP.
Present-day O3 concentrations simulated by GEOS-Chem
and an O3 damage scheme at high sensitivity show a 2 %

reduction in global GPP with prominent reductions of up to
15 % in eastern China and the eastern USA. Regional correla-
tions are generally unchanged when O3 is present and biases
are reduced, especially for regions with high O3 damage. An
increase in atmospheric CO2 concentration of 20 ppmv from
the level in 2000 to the level in 2010 modestly decreases O3
damage due to reduced stomatal uptake, consistent with eco-
physiological understanding. Our work showcases the utility
of this version of TEMIR for evaluating biogeophysical re-
sponses of vegetation to changes in atmospheric composition
and meteorological conditions.

1 Introduction

Terrestrial vegetation, as an integral part of the global bio-
sphere, plays many vital roles in regulating the earth sys-
tem. It facilities a substantial portion of the global land–
atmosphere exchange of energy, momentum, and chemical
species relevant for climate and atmospheric chemistry. It is a
major sink for atmospheric carbon, sequestering an estimated
123± 8 Pg C of carbon dioxide (CO2) from the atmosphere
annually through plant photosynthesis (Beer et al., 2010; Le
Quéré et al., 2015), albeit with a relatively large observation-
constrained range of 119–175 Pg C yr−1.

This vegetation-mediated process of CO2 sequestration,
also known as gross primary productivity (GPP), is a key
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regulator of climate, and forests in particular are one of the
largest providers of climate services (Bonan, 2008). Even be-
fore the industrial revolution, human perturbations of natural
vegetation for agriculture, timber, and other uses had signifi-
cant impacts on the natural carbon cycle. About a third of the
total cumulative CO2 emission to date that is due to anthro-
pogenic land cover change could have been emitted before
the time of industrialization (Pongratz et al., 2009). Over the
20th century, widespread deforestation was estimated to re-
sult in a net warming of 0.13–0.15 °C due to biogeochemical
warming (via carbon emission) partly offset by biogeophys-
ical cooling (via higher albedo) (Pongratz et al., 2010). A
reversal of historical land use trends, especially in the form
of afforestation as well as careful management and preser-
vation of existing forests, has the potential to help mitigate
anthropogenic climate change, but the future carbon uptake
capacity of forests can be substantially altered by an array
of biogeochemical feedback mechanisms as forest ecosys-
tems respond to changing climate and atmospheric composi-
tion (Arneth et al., 2010). Various global terrestrial ecosys-
tem models have been employed, either stand-alone or cou-
pled within an earth system model, to estimate future carbon
budgets in response to global change. A multi-model com-
parison estimated that over the 21st century, the terrestrial
biosphere can gain 0.2–1.5 Pg C for 1 part per million by vol-
ume (ppmv) increase in CO2 due to fertilization effects but
lose 10–90 Pg C per degree increase in global surface tem-
perature as forest ecosystems experience warming and more
climatic stress (Arora et al., 2013).

An emerging research interest is the interactions between
the terrestrial biosphere and atmospheric chemistry and the
roles of short-lived atmospheric species in modulating ter-
restrial ecosystem functions. On the one hand, terrestrial
ecosystems facilitate the removal of air pollutants from the
atmosphere via the process of dry deposition, thus provid-
ing another important service for human benefits. The conse-
quent health benefits are substantial: 17.4 × 106 t of air pol-
lutants equivalent to USD 6.8 billion of public health cost
were removed by forests in the contiguous USA in 2010
alone (Nowak et al., 2014), which is 6 % of the estimated
total health cost of USD 109 billion (EUR 145 billion) due
to air pollution in the USA in 2010 (Im et al., 2018). Glob-
ally it is estimated that dry deposition onto vegetated surfaces
accounts for ∼ 20 % of the loss of tropospheric O3 (Wild,
2007), which is a major air pollutant detrimental to human
health. On the other hand, the depositional uptake of O3 by
leaves incurs substantial damage to vegetation, interfering
with ecosystem functions and terrestrial biogeochemical cy-
cling. In the process of dry deposition, O3 diffuses via leaf
openings, known as stomata, into the leaf interior, where it
impairs plant physiological functions and health. Stomatal
uptake itself is responsible for 30 %–90 % of the deposition
sink of O3 (Felzer et al., 2007; Ainsworth et al., 2012). O3
can significantly disrupt leaf photosynthesis rates, thereby
hindering plant growth and reducing forest and crop produc-

tivity (Ainsworth et al., 2012). The O3-induced global yield
losses for the key staple crops (wheat, rice, maize, and soy-
bean) for 2000 were estimated to be worth USD 11–26 bil-
lion (Van Dingenen et al., 2009; Avnery et al., 2011). For
natural vegetation and forests, observed GPP reductions av-
erage ∼ 10 % but could regionally be up to 30 % (e.g., Fares
et al., 2013; Proietti et al., 2016; Moura et al., 2018). Model-
ing studies have estimated a 2 %–12 % decrease in GPP due
to present-day O3, with large reductions of more than 20 %
in the midlatitude regions of North America, Europe, and
East Asia (Anav et al., 2011; Yue and Unger, 2014; Lom-
bardozzi et al., 2015). O3 damage to plants in turn alters
biosphere–atmosphere exchange, with ramifications for both
climate and air quality. Models have estimated a 2 %–6 %
decrease in global transpiration following O3 damage. The
corresponding reductions in latent heat flux can regionally
enhance temperature by up to 2–3 °C and alter rainfall (Li et
al., 2016; Sadiq et al., 2017; Zhu et al., 2022).

Accurate predictions of both air quality and ecosystem
functions, as well as their interactions, thus require proper
representation of ecophysiological processes in the terrestrial
ecosystems but are obscured by a complex array of nonlin-
ear interactions between plant physiology, O3, CO2, and me-
teorological drivers. Elevated CO2 enhances photosynthesis
and also induces stomatal closure (reducing stomatal conduc-
tance) over various timescales, likely reflecting the adapta-
tion of plants to improve water use efficiency (Noormets et
al., 2010; Franks et al., 2013). Sanderson et al. (2007) sug-
gested that a doubling of CO2 could worsen O3 air quality
by up to +8 ppbv (parts per billion by volume) due to re-
duced stomatal conductance and dry deposition. O3 damage
to vegetation can potentially lead to a decline in the leaf area
index (LAI) and stomatal uptake, which in turn would create
strong positive feedback that would further enhance surface
O3 by up to +6 ppbv (Sadiq et al., 2017; Zhou et al., 2018;
Zhu et al., 2022). Furthermore, higher humidity generally
promotes stomatal opening, while drought conditions often
inhibit it (Dermody et al., 2008; Rhea et al., 2010; Monks et
al., 2015). A modeling study by Emberson et al. (2013) sug-
gested that the extended drought in association with the 2006
European heatwave might have shut down the dry deposi-
tional sink for O3 as plants closed their stomata to prevent
excessive water loss, thereby leading to a greater number of
O3-related premature human deaths. To complicate the mat-
ter further, O3 damage may cause stomata to respond more
sluggishly to meteorological conditions. Under certain pro-
longed conditions (e.g., droughts) such sluggishness of stom-
atal response may cause them to be more open than without
O3 damage (McLaughlin et al., 2007; Sun et al., 2012; Hunt-
ingford et al., 2018). These studies highlight the importance
of considering the adaptive responses of plants to changing
atmospheric composition and meteorological conditions in
predicting future O3 air quality and ecosystem productivity,
yet most atmospheric chemistry models to date rely on semi-
empirical formulations for plant-mediated processes (e.g.,
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dry deposition) without resolving ecophysiological processes
that may evolve over time. Issues may also arise when cou-
pling atmospheric chemistry and complex ecosystem models
due to inconsistent driving inputs and model requirements
(Clifton et al., 2020). As interpretation of model results de-
pends largely on the underlying physiological processes, in-
depth understanding of system behaviors is crucial yet lack-
ing (Ganzeveld and Lelieveld, 1995; Hardacre et al., 2015).

A number of studies have taken advantage of the Earth
System Modeling Framework (ESMF) to dynamically link
dry deposition and O3 fluxes in atmospheric chemistry mod-
els to the photosynthetic and stomatal calculations in land
surface models (e.g., Ganzeveld et al., 2010; Pacifico et al.,
2012; Val Martin et al., 2014; Verbeke et al., 2015; Halla-
day and Good, 2017; Sadiq et al., 2017; Zhu et al., 2022;
Bhattarai et al., 2023). These studies largely focused on long-
term averages and trends rather than variability due to cli-
mate anomalies. Simulated climate is also often sensitive to
land surface changes, and any simulated responses of meteo-
rological variables to plant ecophysiological changes can fur-
ther modify O3 through a cascade of feedbacks, potentially
obscuring the importance and relative contribution from in-
dividual plant-mediated pathways. Fully coupled earth sys-
tem models contain an intricate network of interdependen-
cies among climate, atmospheric chemistry, and land surface
and thus may not be ideal for calibrating specific model pro-
cesses against observations. Stand-alone or coupled chemical
transport models and ecosystem models driven by a consis-
tent set of prescribed “offline” meteorology from observa-
tions and reanalysis datasets would be particularly useful to
improve the understanding of O3–vegetation interactions in
isolation and enhance model capability in predicting air qual-
ity under climate anomalies.

The Terrestrial Ecosystem Model in R version 1.0
(TEMIR v1.0), described in Sect. 2.2, is a stand-alone,
multi-parameterization model designed to simulate impor-
tant canopy and ecophysiological processes that are relevant
for ecosystem exchange and atmospheric chemistry, includ-
ing canopy radiative physics and aerodynamics, photosyn-
thesis, stomatal behaviors, and dry deposition of different
chemical species. It is designed to be entirely consistent with
the GEOS-Chem global chemical transport model (CTM)
in terms of model inputs and land surface representation.
Driven by a consistent set of prescribed meteorological and
surface flux inputs, asynchronously coupled GEOS-Chem–
TEMIR experiments can be performed globally or region-
ally to simulate plant ecophysiological responses to chang-
ing atmospheric composition arising from, for example, O3
pollution and rising CO2, as well as to simulate a chang-
ing climate as simulated by climate models that have already
been coupled to GEOS-Chem. It can also be used with user-
defined meteorological and flux inputs (especially those di-
rectly from FLUXNET observations; https://fluxnet.fluxdata.
org, last access: 21 March 2024) to perform site-level simu-
lations for various purposes, e.g., process investigation, pre-

dictions, model validation, and optimization with different
parameterization schemes. (Versions of TEMIR with active
biogeochemistry and crop biophysics are under development
and not within the scope of this paper.) Validation and ap-
plication of TEMIR to simulate O3 dry deposition and flux-
based metrics of O3 damage to crops have been presented in
several previous studies (i.e., Wong et al., 2019; Tai et al.,
2021; Sun et al., 2022).

Developing an ecosystem model in the R programming
language is beneficial to various ends. R is an increasingly
popular tool for ecological research (R Core Team, 2022),
especially in population and community ecology. Lai et
al. (2019) surveyed more than 60 000 peer-reviewed ecol-
ogy journal articles and found that the number of studies re-
ported using R as their primary tool in data analysis increased
from∼ 10 % in 2008 to∼ 60 % in 2017. However, ecosystem
and earth system models are often written in low-level lan-
guages, such as Fortran, because the field of ecosystem and
earth system modeling has close historical ties with geoscien-
tific research due to the importance of representing the land
cover and biogeochemical cycles in climate models, which
are most often written in low-level languages that are less ac-
cessible to researchers outside of the field. Having a terres-
trial ecosystem model in R may help enhance the accessibil-
ity to ecosystem modeling for ecological researchers who are
more familiar with R, generate a common modeling frame-
work across population, community, and ecosystem scales,
and hopefully serve as a bridge between ecological and geo-
scientific fields to advance interdisciplinarity. Being an en-
tirely free and open software, as well as a highly versatile
and relatively user-friendly programming language, it may
also help promote open science in environmental research
and education, allowing the model to be more widely used
as a policy-relevant assessment tool for practitioners such as
those who need to assess the carbon uptake potential of tree
planting or reforestation as means to achieve carbon neutral-
ity.

2 Model description

2.1 GEOS-Chem model description

GEOS-Chem as a global CTM is widely used in research
due to its versatility in tackling a multitude of atmo-
spheric chemistry problems. We use GEOS-Chem v12.2.0
(https://doi.org/10.5281/zenodo.2572887, Bey et al., 2001)
driven by assimilated meteorological observations from the
Goddard Earth Observing System (GEOS) of the NASA
Global Modeling Assimilation Office (GMAO). The driving
meteorological data are available in 1-hourly and 3-hourly
temporal resolutions with the finest horizontal resolution of
0.25° latitude by 0.3125° longitude and 72 hybrid vertical
levels extending from the surface to 0.01 hPa, provided by
the GEOS-Forward Processing product (GEOS-FP). Coarser

https://fluxnet.fluxdata.org
https://fluxnet.fluxdata.org
https://doi.org/10.5281/zenodo.2572887
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resolutions of the reanalysis product Modern-Era Retrospec-
tive Analysis for Research and Applications v2 (MERRA-2)
(Gelaro et al., 2017), which is a historical dataset spanning
from 1980 to the present, can also be used. GEOS-Chem
is equipped with detailed O3–NOx–VOC–aerosol chemical
mechanisms (NOx : nitrogen oxides; VOC: volatile organic
compound) that are used for simulating atmospheric chem-
istry and have been validated by many studies (e.g., Bey et
al., 2001; Parrington et al., 2008; Zhang et al., 2010; Zhang
and Wang, 2016; Hu et al., 2018). Anthropogenic missions
of many species (e.g., CO, NOx , and non-methane VOCs)
can be taken from global inventories (e.g., Community Emis-
sions Data System – CEDS; Hoesly et al., 2018) and/or re-
gional inventories through the Harmonized Emissions Com-
ponent (HEMCO) v2.1 (Keller et al., 2014; Lin et al., 2021).
Biogenic emissions are calculated online with the Model of
Emissions of Gases and Aerosols from Nature (MEGAN)
v2.1 (Guenther et al., 2012). An alternative photosynthesis-
based isoprene emission (Pacifico et al., 2011) is also avail-
able (Lam et al., 2023). In this study, the meteorological input
used for global simulations of both GEOS-Chem and TEMIR
is the MERRA-2 product at a resolution of 2°× 2.5° lati-
tude by longitude. The surface O3 concentrations simulated
by GEOS-Chem are used as inputs for TEMIR to simulate
the corresponding vegetation responses under the consistent
set of MERRA-2 meteorology.

2.2 TEMIR description

TEMIR computes biogeophysical responses of terrestrial
ecosystems to changes in the atmospheric (e.g., [CO2]) and
terrestrial environment. Driven by the same consistent me-
teorological and land surface input data as GEOS-Chem,
TEMIR is designed to be highly compatible with GEOS-
Chem and can be coupled asynchronously with simulated
atmospheric composition (e.g., [O3]) from GEOS-Chem,
which is a vital aspect for the objectives of this study.

2.2.1 Plant type representation

Plant type categories considered in TEMIR follow the con-
vention of the Community Land Model v4.5 (CLM4.5) (Ole-
son et al., 2013), embedded within the Community Earth
System Model (CESM) v1.2.2. The plant type categories
consist of 14 natural vegetation types (including generic C3
crops) (Lawrence and Chase, 2007) and 10 rainfed or irri-
gated crop types (Table S1 in the Supplement), giving a total
of 24 different plant function types (PFTs), as well as one
land type for unvegetated land or bare ground. Each model
grid cell consists of a mosaic of natural or managed PFTs
and/or bare ground, where only the natural PFTs share a sin-
gle soil column, allowing them theoretically to compete for
soil water. Each PFT or bare ground has a prescribed present-
day fractional coverage in each grid cell, derived from Mod-
erate Resolution Imaging Spectroradiometer (MODIS) satel-

lite data (Lawrence and Chase, 2007) according to climatic
(temperature- and precipitation-based) rules (see Table 3 of
Bonan et al., 2002), as well as managed crop distribution
for non-generic crops (corn, temperate and winter cereals,
and soybean) (Portmann et al., 2010). Each PFT has its own
characteristic structural and physiological parameters (Ta-
ble S2) as detailed in Oleson et al. (2013). The parameters
used to represent vegetation structure include LAI, stem area
index (SAI), and canopy height (h). This version of TEMIR
lacks a full carbon cycle, and thus these structural parame-
ters are prescribed as model input data. The monthly PFT-
level LAI is derived from MODIS using the deaggregation
methods described in Lawrence and Chase (2007), and the
PFT-level SAI is derived from the LAI using the methods
of Zeng et al. (2002). The PFT-level canopy heights are pre-
scribed following Bonan et al. (2002). Users can specify any
gridded total LAI input data, whereby the PFT-specific LAI
that TEMIR requires is then scaled accordingly. This version
of TEMIR does not dynamically simulate PFT coverage and
structural parameters, and thus competition among different
plant strategies or adaptation to environmental changes, such
as climate change and air pollution, is not simulated. The ef-
fects of land use and land cover change (LULCC) or chang-
ing plant type distribution due to adaptation can only be in-
cluded by user-modified prescribed PFT fractional coverage
or LAI data obtained externally from other models or stud-
ies. These input data can, however, be updated every simula-
tion year to represent continuous LULCC over interannual to
multi-decadal timescales. Model development for a full car-
bon cycle for both natural vegetation and crops (Tai et al.,
2021) is actively ongoing.

2.2.2 Canopy radiative transfer

Each PFT simulated per vegetated grid cell is represented as
a single “big-leaf” canopy of sunlit and shaded leaves. We
implement two alternative canopy radiative transfer schemes
to calculate the sunlit and shaded LAI (LAIsun and LAIsha),
absorbed photosynthetically active radiation (PAR) by sunlit
and shaded leaves (φsun and φsha, in W m−2), canopy light
extinction coefficient (Kb), surface albedo and other radia-
tive variables as functions of direct beam and diffuse inci-
dent PAR reaching the canopy top (Idir and Idiff, in W m−2),
cosine of the solar zenith angle (µ), and other vegetation pa-
rameters. The default scheme follows the two-stream approx-
imation of Dickinson (1983) and Sellers (1985), which con-
siders light attenuation by both leaves and stems. The details
of the scheme are described in Sects. 3.1, 3.3, and 4.1 of Ole-
son et al. (2013). In brief, the absorbed PAR averaged over
the sunlit and shaded canopy per unit plant area (leaf plus
stem area) is
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φsun =
fsun,dirIdir+ fsun,diffIdiff

PAIsun
, (1)

φsha =
fsha,dirIdir+ fsha,diffIdiff

PAIsha
, (2)

where fsun/sha,dir/diff is the fraction of direct or diffuse inci-
dent radiation absorbed by the sunlit or shaded leaves and
stems as calculated by the two-stream approach. The sunlit
and shaded plant area index (PAI = LAI + SAI) is

PAIsun =
1− e−Kb(LAI+SAI)

Kb
, (3)

PAIsha = (LAI+SAI)−PAIsun, (4)

and Kb is calculated following the two-stream approxima-
tion. The sunlit and shaded LAIs ultimately used to calculate
canopy photosynthesis are

LAIsun = PAIsun
LAI

LAI+SAI
, (5)

LAIsha = PAIsha
LAI

LAI+SAI
. (6)

An alternative simplified scheme that accounts for light at-
tenuation by leaves only following the convention of the
Zhang et al. (2002) dry deposition model as modified from
Norman (1982), which is also implemented in TEMIR (see
Sect. 2.2.6), is implemented as follows.

φsha = Idiff exp
(
−0.5LAIa

)
+ 0.07Idir (1.1− 0.1LAI)exp(−µ) (7)

φsun = φsha+KbI
b
dir (8)

Kb =
0.5
µ

(9)

LAIsun =
1− e−KbLAI

Kb
(10)

LAIsha = LAI−LAIsun (11)

Here, exponent a = 0.7 and exponent b = 1 for LAI< 2.5
or downwelling shortwave radiation flux S ↓< 200 W m−2;
otherwise, a = 0.8 and b = 0.8.

2.2.3 Canopy photosynthesis and conductance

Leaf photosynthesis of both C3 and C4 plants is repre-
sented by the well-established formulation that relates to
Michaelis–Menten enzyme kinetics and photosynthetic bio-
chemical pathways (Farquhar et al., 1980; von Caemmerer
and Farquhar, 1981; Collatz et al., 1991, 1992), a formula-
tion which considers three limiting regimes as given below.

i. The Rubisco-limited photosynthesis rate (Ac, in
µmol CO2 m−2 s−1) captures the rate of carbon assim-
ilation when substrate availability or enzyme activity is

the limiting factor:

Ac =

 Vcmax
ci−0∗

ci+Kc·
(

1+ oi
Ko

) for C3 plants

Vcmax for C4 plants,
(12)

where ci (in Pa) is the intercellular CO2 partial pres-
sure; Kc and Ko are the Michaelis–Menten constants
for carboxylation and oxygenation (in Pa), respectively;
oi (in Pa) is the intercellular oxygen partial pressure; 0∗
(in Pa) is the CO2 compensation point; and Vcmax (in
µmol CO2 m−2 s−1) is the maximum rate of carboxyla-
tion.

ii. The RuBP-limited photosynthetic rate (Aj , in
µmol CO2 m−2 s−1) defines the photosynthesis rate,
as light intensity and thus RuBP regeneration are the
limiting factors:

Aj =

{
J
4

(
ci0∗

ci+ 20∗

)
for C3 plants

0.23φ for C4 plants,
(13)

where J (in µmol m−2 s−1) is the electron transport rate
and φ (in W m−2) is the absorbed PAR for either sun-
lit (φsun) or shaded (φsha) leaves as calculated by the
canopy radiative transfer model (Sect. 2.2.2). For C3
plants, J is determined by φ as well and is determined
as the smaller of the two roots of the following quadratic
equation:

2PSII J
2
− (IPSII+ Jmax) J + IPSII Jmax = 0, (14)

where Jmax (in µmol m−2 s−1) is the maximum poten-
tial rate of electron transport, 2PSII = 0.7 is the curva-
ture parameter, and IPSII (in µmol m−2 s−1) is the light
utilized in electron transport by photosystem II, deter-
mined by

IPSII = 2.38PSII φ, (15)

where 8PSII = 0.85 is the quantum yield of photosys-
tem II.

iii. The product-limited photosynthetic rate (Ap, in
µmol CO2 m−2 s−1) represents the limitation from the
regeneration rate of photosynthetic phosphate com-
pounds:

Ap =

{
3Tp for C3 plants
kp

ci
Patm

for C4 plants, (16)

where Tp is the triose phosphate utilization rate (in
µmol m−2 s−1), Patm (in Pa) is the ambient atmospheric
pressure, and kp is the initial slope of the CO2 response
curve for C4 plants.
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The model considers co-limitation (Collatz et al., 1991;
Collatz et al., 1992), and the leaf-level gross photosynthesis
rate (A, in µmol CO2 m−2 s−1) is given by the smaller root of
the following equations:

2cjA
2
i −

(
Ac+Aj

)
Ai +AcAj = 0,

2ipA
2
−
(
Ai +Ap

)
A+AiAp = 0. (17)

CE2The net photosynthesis rate (An, in µmol CO2 m−2 s−1)
is then

An = A−Rd

Rd =
0.015Vcmax

fRd (Tv)

fVcmax (Tv)

for C3 plants
0.025Vcmax

(
(1+exp[s1(Tv−s2)])(1+exp[s3(Tv−s4)])

1+exp[s5(Tv−s6)]

)
for C4 plants,

(18)

where Rd (in µmol CO2 m−2 s−1) is the dark respiration rate;
s1, s3, and s5 are 0.3, 0.2, and 1.3 K, respectively; s2, s4, and
s6 are 313.15, 288.15, and 328.15 K−1, respectively; Tv is
leaf temperature (in degrees K); and fRd (Tv) and fVcmax (Tv)

are functions to adjust for variations due to temperature (Bo-
nan et al., 2011). All of the parameters (Vcmax, Jmax, Tp, Rd,
Kc, Ko, 0∗, and kp) are temperature-dependent and scale
with their respective PFT-specific standard values at 25 °C
by different formulations. Temperature acclimation of Vcmax
and Jmax from the previous 10 d, as well as day-length depen-
dence of Vcmax, is implemented as the default option. These
are all detailed in Sects. 8.2 and 8.3 of Oleson et al. (2013).

The calculation of photosynthesis rates described above is
coupled with that of stomatal conductance of water (gs, in
m s−1) following the formulation of Ball et al. (1987) withm
and b being the slope and intercept parameters derived from
empirical data:

gs = α

(
mAn

es
esat
cs
Patm

+ b

)
, (19)

where gs is controlled by the leaf surface CO2 partial
pressure cs (in Pa), leaf surface water vapor pressure es
(in Pa), and temperature-dependent saturation vapor pres-
sure esat (in Pa); m= 9 and b = 10 000 µmol m−2 s−1 for
C3 plants, and m= 4 and b = 40 000 µmol m−2 s−1 for C3
plants; and the factor α converts the unit of conductances
from µmol H2O m−2 s−1, which is more common in eco-
physiology literature, to m s−1, which is common in atmo-
spheric science literature:

α =
10−6Runiθatm

Patm
, (20)

whereRuni = 8.314468 J K−1 mol−1 is the universal gas con-
stant and θatm (in degrees K) is the ambient atmospheric
potential temperature. An alternative stomatal conductance

scheme (Medlyn et al., 2011; Franks et al., 2017) is also im-
plemented:

gs = α

[
1.6

(
1+

m
√

VPD

)
An
cs
Patm

+ b

]
, (21)

where VPD = 0.001(esat− es) (in kPa) is the vapor pres-
sure deficit, m has PFT-specific values consistent with
CLM5.0 (Sect. 9.3 of Lawrence et al., 2020), and b =

100 µmol m−2 s−1. Photosynthesis and stomatal conductance
are further related by the diffusive flux equations for CO2 and
water vapor:

An =
1
α

(
1.4
gb
+

1.6
gs

)−1
ca− ci

Patm
=

gb

1.4α
ca− cs

Patm

=
gs

1.6α
cs− ci

Patm
, (22)

E′ =
1
α

(
1
gb
+

1
gs

)−1
ea− ei

Patm
=
gb

α

ea− es

Patm

=
gs

α

es− ei

Patm
, (23)

where ca (in Pa) and ea (in Pa) are the canopy air CO2 partial
and water vapor pressure, ei (in Pa) is the saturation vapor
pressure at the leaf temperature,E′ (in µmol H2O m−2 s−1) is
the transpiration flux, and gb (in m s−1) is the leaf boundary
layer conductance:

gb = Cv

√
u∗

dl
. (24)

The photosynthesis–stomatal conductance model considers
limitation arising from soil water stress. A soil water stress
factor (βt ) scales the photosynthesis rate and stomatal con-
ductance, being multiplied directly to A, Rd in Eq. (18) and
b in Eq. (19) or Eq. (21) to account for soil water stress (Por-
porato et al., 2001; Verhoef and Egea, 2014). To compute
βt , we consider a two-layer soil model consisting of a top-
soil layer (0–5 cm) and a root zone beneath the top soil (5–
100 cm), consistent with and constrained by the input soil
moisture and model structure of MERRA-2. First, the soil
matric potential in each layer i, ψi (in mm), that represents
water availability in ecophysiological terms is evaluated as a
function of soil wetness (si) and soil type:

ψi = ψsat,is
−Bi
i , (25)

where ψsat,i and Bi refer to the saturated soil matric potential
and soil water characteristic parameter, respectively, both de-
pending on soil texture. A wilting factor, wi , is formulated as
a function of ψi as well as ψc and ψo (Table S2), which refer
to the matric potential at which stomatal closure and stomatal
opening occur to the full extent, respectively:

wi =


1 for ψi >ψo
ψc−ψi
ψc−ψo

for ψc ≤ ψi ≤ ψo

0 for ψi <ψc.

(26)
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The function βt is then the average of the wilting factors
weighted by the PFT-specific root fraction (ri) in each layer:

βt =

2∑
i=1

wiri . (27)

A single-layer bulk soil formulation considering only the root
zone (0–100 cm) is also implemented but is found to be in-
ferior to the two-layer formulation in terms of reproducing
observed GPP in semiarid locations (Lam and Tai, 2020).

The above equations calculate photosynthesis and conduc-
tance at the leaf level only, and appropriate scaling to ac-
count for vertical variation in leaf nitrogen content, light at-
tenuation, and sunlit vs. shaded leaves is needed to obtain
the canopy-level photosynthesis (i.e., GPP) and conductance.
This is done by scaling Vcmax and other parameters as fol-
lows:

Vcmax,sun = Vcmax,top
1− e−(Kn+Kb)LAI

Kn+Kb

1
LAIsun

, (28)

Vcmax,sha =

Vcmax,top

[
1− e−KnLAI

Kn
−

1− e−(Kn+Kb)LAI

Kn+Kb

]
1

LAIsha
, (29)

where Vcmax, sun and Vcmax, sha are the canopy-averaged leaf-
level values for Vcmax for sunlit and shaded leaves, respec-
tively, which are used to compute leaf-level photosynthe-
sis and stomatal conductance for sunlit and shaded leaves
separately (Asun, Asha, gssun, and gssha) from the equations
above. Kn = 0.30 is the canopy decay coefficient for nitro-
gen, calculated and calibrated to match an explicit multi-
layer canopy (Bonan et al., 2012; Oleson et al., 2013).
Vcmax, top is the PFT-specific value for Vcmax for the top of
the canopy. Kb, LAIsun, and LAIsha are computed from the
canopy radiative transfer model (Sect. 2.2.2). Other parame-
ters, i.e., Jmax, Tp, kp, and Rd, scale similarly.

Canopy photosynthesis rate (i.e., GPP, in
µmol CO2 m−2 s−1) and canopy conductance (gcan, in
m s−1) per unit land area of a given PFT are then

GPP= AsunLAIsun+AshaLAIsha, (30)

gcan =

(
1
gb
+

1
gssun

)−1

LAIsun

+

(
1
gb
+

1
gssha

)−1

LAIsha. (31)

The grid-cell-averaged values are obtained by weighting the
PFT-level values by the PFT fractional coverage of the grid
cell.

2.2.4 Canopy and surface layer aerodynamics

The canopy photosynthesis and conductance calculations
above require micrometeorological variables (e.g., temper-
ature T and specific humidity q) of the canopy air as in-
puts. The default approach for global and regional gridded

simulations is to use reanalyzed meteorological variables at
2 m above the zero-plane displacement height (i.e., T2 m and
q2 m) as the proxies for canopy air conditions. The default ap-
proach for site simulations is to directly use the measured mi-
crometeorological variables regardless of the measurement
height. We also implement an option to infer canopy air con-
ditions from micrometeorological variables at any reference
height (zref, in m) above the zero-plane displacement height
(e.g., zref = 10 m in the MERRA-2 reanalysis product) based
on Monin–Obukhov similarity theory (MOST) (Monin and
Obukhov, 1954), which relates the stability of the surface
layer to the generation and suppression of turbulence through
the Obukhov length:

LObuk =
−ρcpu

3
∗θ

kgH
, (32)

where ρ (in kg m−3) is the density of moist air (we use
the value at zref), θ (in degrees K) is the potential temper-
ature (we use T2 m as a proxy), H (in W m−2) is the sensible
heat flux, cp (in J kg−1 K−1) is the heat capacity of air at
constant pressure, k = 0.4 is the von Kármán constant, and
g = 9.80616 m s−2 is the gravitational acceleration. The fric-
tion velocity u∗ (in m s−1) is either provided as input or in-
ferred iteratively from the wind speed at the reference height
uref (in m s−1):

u∗ = kuref

[
ln
(
zref+ z0m

z0m

)
−ψm

(
zref+ z0m

LObuk

)
+ψm

(
z0m

LObuk

)]−1

, (33)

where z0m (in m) is the roughness length for momentum
and the function ψm(x) for momentum flux follows the for-
mulation of Zeng et al. (1998), consistent with the imple-
mentation in CLM4.5. The aerodynamic conductance (gah,
in m s−1) for heat, water vapor, and other chemical species
(e.g., ozone) between the reference height zref and the sur-
face (treated as the zero-displacement height and where the
canopy air is) is then

gah = ku∗

[
ln
(
zref+ z0m

z0h

)
−ψh

(
zref+ z0m

LObuk

)
+ψh

(
z0h

LObuk

)]−1

, (34)

where z0h (m) is the roughness length for heat, water va-
por, and other chemical species, and the function ψh(x) for
heat and other material fluxes also follows the formulation of
Zeng et al. (1998). Canopy air potential temperature (θa, in
degrees K) and specific humidity (qa, in kg kg−1) can then be
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inferred as

θa = θref+
H

ρcpgah
, (35)

qa = qref+
E

ρgah
, (36)

where θref (in degrees K) and qref (in kg kg−1) are the poten-
tial temperature and specific heat capacity at zref, and E (in
kg m−2 s−1) is the evapotranspiration flux.

For the computation of ozone damage and dry deposition
fluxes (Sects. 2.2.5 and 2.2.6), gah is also needed and com-
puted either using the default formulation above or an alter-
native formulation that is consistent with the default dry de-
position scheme in GEOS-Chem (Wesely, 1989; Wang et al.,
1998).

2.2.5 Ozone damage

Two ozone damage schemes are implemented in TEMIR,
which considers the responses of vegetation in terms of pho-
tosynthesis and stomatal conductance. The first O3 dam-
age scheme follows Sitch et al. (2007) and considers two
levels of O3 sensitivity (high and low) for each of the
five major plant groups, namely, “broadleaf”, “needleleaf”,
“shrub”, “C3 grass”, and “C4 grass”, as defined by Karls-
son et al. (2004) and Pleijel et al. (2004). These groups are
mapped to the default TEMIR PFTs accordingly. The scheme
represents O3 damage by an O3 impact factor (f ) that is de-
pendent on the instantaneous stomatal O3 flux into the leaf
interior:

f = 1− amax

[(
[O3]

g−1
ah + g

−1
b + kO3g

−1
s
−Fcrit

)
, 0

]
, (37)

where [O3] (in nmol m−3) is the O3 concentration observed
or of the lowest atmospheric model layer; the aerodynamic,
leaf boundary layer, and stomatal conductances are calcu-
lated using the formulations in the previous sections; kO3 =

1.67 as defined by Sitch et al. (2007) is the ratio of the
leaf resistance for O3 to that for water vapor; Fcrit repre-
sents a critical threshold accounting for O3 tolerance, be-
low which instantaneous O3 exposure does not affect photo-
synthesis, and Fcrit = 1.6 nmol m−2 s−1 for woody PFTs and
Fcrit = 5 nmol m−2 s−1 for grass PFTs; and the O3 sensitivity
parameter a (in nmol−1 m2 s) is specific to the plant group
and to the two levels of O3 sensitivity. Factor f is multi-
plied directly to the net photosynthesis rate An to represent
O3 damage, which then indirectly affects gs via the coupling
betweenAn and gs. Since the calculation of f requires gs, the
three variables, i.e., f , An, and gs, need to be solved together
by numerical iterations. Noniterative methods give insignifi-
cant differences in performance.

The second scheme follows Lombardozzi et al. (2012,
2015) and considers three O3 sensitivity levels (high, av-
erage, and low) for each of the three major plant groups,

namely, broadleaf, needleleaf, and grasses and crops, which
are mapped to the default TEMIR PFTs accordingly. Unlike
the Sitch et al. (2007) scheme, O3 damage is characterized by
the cumulative uptake of O3 (CUO, in mmol m−2) instead of
instantaneous O3 uptake, which is parameterized as the sum
of the instantaneous stomatal O3 flux over the lifetime of the
leaf:

CUO= 10−6
∑(

[O3]

g−1
ah + g

−1
b + kO3g

−1
s
−Fcrit

)
1t, (38)

where 1t (in s) is the model time step, the critical threshold
to account for O3 tolerance is set to Fcrit = 0.8 nmol m−2 s−1,
and CUO is only calculated when the LAI of the PFT con-
cerned is larger than 0.5 to avoid unrealistically high CUO
(Lombardozzi et al., 2012). Another important difference
from Sitch et al. (2007) is that O3 damage alters photosynthe-
sis and stomatal conductance separately using two different
sets of O3 impact factors, fp and fc, respectively:

fp = apCUO+ bp, (39)
fc = acCUO+ bc, (40)

where the intercepts bp and bc, as well as the slopes ap and ac,
are determined empirically for the three plant groups (Lom-
bardozzi et al., 2015). Factors fp and fc are multiplied sepa-
rately toAn and gs, respectively, after the iterative calculation
of An and gs.

2.2.6 Dry deposition

We implement two major dry deposition schemes: the
Zhang et al. (2003) scheme used in several Canadian and
American air quality models and the Wesely (1989) scheme
widely used in many chemical transport models including
WRF-Chem and GEOS-Chem. In each of the two schemes,
the default stomatal conductance scheme is a semi-empirical
formulation that is not coupled to plant ecophysiology.
The default canopy radiative transfer and aerodynamic
conductance also follow formulations that are different from
the default TEMIR schemes described above. We implement
options such that ecophysiology-based stomatal conduc-
tance (gs) computed from the photosynthesis model above
(Sect. 2.2.3), as well as canopy radiative transfer (φsun,
φsha, LAIsun, and LAIsha; Sect. 2.2.2) and aerodynamic
conductance (gah; Sect. 2.2.4), can be used to replace the
default options in the dry deposition schemes. A full eval-
uation of dry deposition velocities and fluxes computed by
TEMIR using different combinations of schemes against O3
flux observations has been conducted by Sun et al. (2022).
Tai et al. (2021) also evaluated how the dry depositional
fluxes of O3 can affect global crop yields by integrating
TEMIR with the Deposition of O3 for Stomatal Exchange
(DO3SE) model (https://www.sei.org/projects-and-tools/
tools/do3se-deposition-ozone-stomatal-exchange/, last
access: 31 March 2024).

https://www.sei.org/projects-and-tools/tools/do3se-deposition-ozone-stomatal-exchange/
https://www.sei.org/projects-and-tools/tools/do3se-deposition-ozone-stomatal-exchange/
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3 Observational datasets for model evaluation

3.1 Site-level dataset

Site-level comparison utilizes the eddy covariance measure-
ments from the flux tower sites of the FLUXNET network
(https://fluxnet.fluxdata.org, last access: 21 November 2018).
The latest released dataset, FLUXNET2015, contains half-
hourly or hourly measurements of carbon fluxes and various
meteorological observations. Each site is classified to contain
one PFT that follows the classes described in the Interna-
tional Geosphere Biosphere Program Data and Information
System (IGBP-DIS) DISCover land cover dataset (Loveland
and Belward, 1997).

Data after 2009 from FLUXNET are used for model vali-
dation, taking into account data quality using the FLUXNET
quality flags for each meteorological variable measured.
TEMIR follows the PFT classes of CLM4.5, which are de-
fined differently to the IGBP-DIS scheme, so additional iden-
tification and matching of the PFT classes are performed
based on the forest composition information provided as far
as possible in the FLUXNET database, as shown in Table S1.
Overall, five sites have mismatched PFTs where the TEMIR
outputs do not contain the corresponding PFT classes spec-
ified by FLUXNET. Thus, a total of 49 sites were used
for comparison as listed in Table S3 whereby most are in
the Northern Hemisphere. Of these sites, 14 are evergreen
needleleaf forests (ENF), 2 are evergreen broadleaf forests
(EBF), and 6 are deciduous broadleaf forests (DBF), which
together account for almost half of the total number of sites.
The rest of the 27 sites are 1 open shrubland (OSH), 16 grass-
lands (GRA), and 10 croplands (CRO). The GPP products
provided by FLUXNET are derived by partitioning from the
net ecosystem exchange (NEE) that is directly measured by
the flux towers, using two partitioning methods: one utiliz-
ing daytime data only as described by Lasslop et al. (2010)
and the other utilizing the nighttime approach according to
Reichstein et al. (2005). A major difference in the GPP prod-
ucts partitioned using these two methods is that the nighttime
approach for some extreme events, such as droughts, gives
negative GPP, which is not physical. The NEE of the dataset
is also produced using two methods that consider constant
vs. variable friction velocity thresholds to filter NEE accord-
ingly. The FLUXNET GPP product used in our compari-
son is the mean GPP product partitioned using the daytime
method with the variable friction velocity threshold denoted
as GPP_DT_VUT_MEAN in the FLUXNET database.

3.2 Global-scale dataset

We use the solar-induced chlorophyll-fluorescence-inferred
(SIF-inferred) GPP product derived by Li and Xiao (2019)
for global validation. SIF-based GPP products rely on the
correlation of SIF with GPP where there is a good represen-
tation (e.g., Shekhar et al., 2022). The global GPP dataset de-

Table 1. TEMIR simulation settings for selected FLUXNET sites.

Simulation Meteorology Monin–Obukhov
(MOST) setting

TEMIR_FLUX FLUXNET Off
TEMIR_MO_off MERRA-2 Off
TEMIR_MO_on MERRA-2 On

rived by Li and Xiao (2019) is based on the global SIF prod-
uct from Orbiting Carbon Observatory-2 (OCO-2), namely
GOSIF, and on the relationships between SIF and site-level
observed GPP (Li et al., 2018). The resulting dataset has a
spatial resolution of 0.05° and a monthly temporal resolution.
For model validation, GOSIF GPP is regridded to a resolu-
tion of 2°× 2.5° and grid cells with zero GPP are excluded.

4 Model and simulation setup

4.1 Site-level simulations with TEMIR

For each of the 49 FLUXNET sites (Table S3) beginning
from 2009, simulations shown in Table 1 are conducted for
model–observation comparison, with ambient CO2 concen-
tration kept constant at 390 ppmv. The first set is to use
the default surface meteorological fields prescribed from
MERRA-2 at 2°× 2.5° horizontal resolution consistent with
the GEOS-Chem simulations described above. We also test
turning on and off the option of using MOST to infer in-
canopy micrometeorological variables from the prescribed
meteorology at 2 m above displacement height, as described
in Sect. 2.2.4. The second set is to use direct micrometeo-
rological measurements available from the FLUXNET site
towers as the driving meteorology and the default MERRA-2
meteorology used only to replace any missing or low-quality
data. The results simulated are most relevant for evaluating
model performance in reproducing the observed diurnal and
seasonal cycle of GPP from each FLUXNET site.

4.2 Global simulations with TEMIR

Global simulations from 2010 to 2015 are conducted under
the same general setup as the site-level simulations, with
ambient CO2 concentration fixed at 390 ppmv and driven
by 2°× 2.5° MERRA-2 surface meteorology. A full list of
MERRA-2 variables required for running gridded simula-
tions of TEMIR is shown in Table S5. Functionalities of the
model are tested for performance, as shown in Table 2, with
the MOST option to infer in-canopy conditions and the Sitch
O3 damage scheme with low and high sensitivity to assess
the global O3 impact on vegetation. We use GEOS-Chem
(Sect. 2.1) to simulate tropospheric O3, starting from 2009
to 2015 whereby the first year of simulation is considered
as spin-up. The simulation uses the comprehensive chem-

https://fluxnet.fluxdata.org
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Table 2. TEMIR simulation settings for global simulation for 2010–
2015.

Simulation Sitch O3 damage Monin–Obukhov
scheme sensitivity (MOST) setting

TEMIR_MO_off Off Off
TEMIR_MO_on Off On
TEMIR_Sl Low Off
TEMIR_Sh High Off

istry scheme “tropchem”, which has tropospheric O3–NOx–
VOC–aerosol chemistry accompanied by the default emis-
sion inventories (i.e., anthropogenic emissions from CEDS,
Hoesly et al., 2018; and biogenic emissions from MEGAN,
Guenther et al., 2012). The reanalyzed meteorological fields
used are from MERRA-2 supplied by GMAO at 2°× 2.5°
horizontal resolution, which are the identical meteorologi-
cal inputs used in TEMIR. Simulated O3 concentrations at
the lowest surface level are then fed into TEMIR as inputs
accordingly. The results produced from these simulations
(Table 2) are used to validate the spatial variability in sea-
sonal and annual averages across the whole world against the
GOSIF GPP dataset (Sect. 3.2). To retain representative re-
sults from all simulations (Table 2), grid cells with LAI< 0.5
are excluded. The transient LAI dataset for the simulation
is from MODIS satellite data (Lawrence and Chase, 2007)
and assimilated by Yuan et al. (2011). PFT distributional and
structural data are regridded to the resolution of MERRA-
2 data for TEMIR simulations. We also note that as the
model mechanisms are essentially resolution-independent,
the model can be straightforwardly modified to conduct sim-
ulations at higher resolutions as long as the corresponding
input data are provided.

4.2.1 Global CO2–O3 factorial simulations with
TEMIR

We perform factorial simulations (Table 3) to investigate the
effects of CO2 fertilization, O3 damage, and their interac-
tions on global primary productivity as an example to show-
case the utility of the model. Global O3 surface concen-
trations of the year 2000 are simulated using GEOS-Chem
(Sect. 2.1) with 1999 used as spin-up, and other settings are
as described in Sect. 4.2. CO2 concentrations are changed in
TEMIR as required for each simulation (Table 3) with refer-
ence to concentrations for 2000 and 2010 (Dlugokencky and
Tans, 2022). The Sitch O3 damage scheme with high sensi-
tivity is used for TEMIR simulations (Table 3) when global
surface O3 concentrations are used as inputs; otherwise, no
O3 damage scheme is used. Meteorological fields for 2000 in
MERRA-2 are used for all GEOS-Chem and TEMIR simu-
lations. The LAI is fixed at the year 2000 from MODIS for
all GEOS-Chem and TEMIR simulations.

Table 3. Factorial simulation settings. “N/A” for O3 year indicates
that no O3 damage scheme is used.

Simulation CO2 O3 Meteorology
(ppmv) year year

C0_O0 370 N/A

2000
C1_O0 390 N/A
C0_O1 370 2000
C1_O1 390 2000

5 Model evaluation

Statistics used for model validation are the adjusted co-
efficient of determination R2, the modified Nash–Sutcliffe
model efficiency coefficient N , and the normalized mean
bias B. R2 is a commonly used metric with a range of 0
to 1 (or 0 %–100 %) that represents the fraction of vari-
ability in observations that can be replicated by the model,
whereby 1 indicates perfect correlation and 0 indicates no
correlation. N addresses the sensitivity issues of R2 docu-
mented by Legates and McCabe (1999). With values from
negative infinity to 1, it is a measure of the suitability of
the model as a predictor instead of using the mean of the
observations. When N = 1, it indicates that the model per-
fectly replicates observations, and no preference is observed
between the model and the mean of the observations as a pre-
dictor. Negative values in turn signify the incapability of the
model in predicting system behaviors. B gives the relative
difference of the magnitude of model results from the obser-
vations. The equations to compute these statistics are shown
in Table 4.

5.1 Site-level validation

5.1.1 Validation on summer diurnal cycle

Figure 1 shows the statistical metrics (Table 4) used to per-
form a model–observation comparison for the diurnal GPP
cycle calculated for each FLUXNET site taken from the sec-
ond summer month of 2012, which corresponds to the month
of July for sites in the Northern Hemisphere and January in
the Southern Hemisphere (Table S3). Comparing the sim-
ulations with FLUXNET local meteorology and MERRA-
2 meteorology (Fig. 1), statistical metrics generally do not
differ substantially, but some significant differences can ex-
ist for some sites (e.g., CH-Cha and CH-Dav; see Fig. 3)
where results from simulations with FLUXNET local me-
teorology show higher correlations. For simulations solely
driven by MERRA-2 meteorology, inferring in-canopy me-
teorology using Monin–Obukhov similarity theory (Fig. 1c)
gives insignificant differences for all sites.

Figure 2 shows the statistical metrics (Table 4) for model–
observation comparison for the simulations using FLUXNET
local meteorology as the driving meteorological input for dif-
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Table 4. Statistical metrics for TEMIR validation, where M and O respectively represent the simulated dataset and observational dataset,
each containing n data points. M̄ and Ō represent the means of the datasets in question.

Metric Mathematical equation Range

Coefficient of determination (R2) R2
=


n∑
i=1

(
Mi−M̄

)(
Oi−Ō

)
√

n∑
i=1

(
Mi−M̄

)2 n∑
i=1

(
Oi−Ō

)2


2

0− 1
(0 %–100%)

Modified Nash–Sutcliffe model
efficiency coefficient (N )

N = 1−

n∑
i=1
|Oi−Mi |

n∑
i=1

∣∣Oi−Ō∣∣ −∞ to 1

Normalized mean bias (B) B = M̄

Ō
− 1 −∞ to∞

Figure 1. Statistical metrics (see Table 4) for model–observation comparison for the diurnal gross primary productivity from simulations
(a) TEMIR_FLUX, (b) TEMIR_MO_off, and (c) TEMIR_ MO_on as described in Table 1.

ferent PFTs. The average correlations per PFT between ob-
served and simulated GPP (Fig. 2) are high (R2 > 0.88), ex-
cept for open shrubland (R2

≈ 0.7). B shows a large vari-
ability due to various limitations of the model for each PFT.
For forest sites, B generally has a smaller range and lower
absolute mean values in comparison with the other PFTs,
showcasing the better performance of TEMIR for forests.
N shows similar behaviors, namely, the prediction for forest
sites is satisfactory with mean values of N larger than 0.55,
whereas N is mostly negative for grasslands, croplands, and
open shrublands. All plots of diurnal cycles are shown in the
Supplement, with relevant figures also included in the fol-
lowing discussion.

We find that the correlations are above 90 % (Fig. 2e)
for all grassland sites (e.g., AU-How in Fig. 3a, IT-MBo in
Fig. 3b, and CZ-wet in Fig. 3c). Yet the spread of B is large,
where we see absolute B values greater than +0.6 for 6 of
the 16 sites, and the rest with absolute B less than 0.3. Over-
estimation of CH-Cha (Fig. 3d) is similar under FLUXNET
meteorology, which is likely due to disturbances from inten-
sive site management (i.e., cutting, slurry application, and
grazing; Imer et al., 2013; Merbold et al., 2014); this is a
shortcoming of simplistic model representation for crops. A

possible explanation for the high B values is the fire-prone
nature of these sites (i.e., AU-Stp in Fig. 3e) (Beringer et
al., 2007, 2011; Hutley et al., 2011; Haverd et al., 2013)
whereby the model is incapable of resolving such complex-
ities as turnover and local disturbances. Another cause of
overestimation is the simplistic and generic PFT classifica-
tion for such biomes, which are usually sparsely populated
yet with much diversity, as in the open shrubland site ES-
LJu (Fig. 3f) (Serrano-Ortiz et al., 2009). Such generaliza-
tion can also cause systematic inaccuracies in parameteriza-
tion, where model parameters are better suited for European
semiarid vegetation (e.g., CH-Fru, Imer et al., 2013; IT-MBo,
Fig. 3b, Marcolla et al., 2011; CZ-wet, Fig. 3c;, Dušek et al.,
2012) than similar sites in other regions (e.g., AU-Dry, Hut-
ley et al., 2011; RU-Sam, Fig. 3g, Boike et al., 2013; US-
SRG, Scott et al., 2015).

Simulated results for forest PFTs compare very well with
observations, where N values are often greater than 0.5.
TEMIR performs particularly well for evergreen needleleaf
forests as seen in sites DE-Tha (Fig. 3h), FI-Hyy (Fig. 3i),
and NL-Loo (Fig. 3j), which are mostly populated by ma-
ture Scots pine forests of over 70 years old. Sites CA-TP1
(Fig. 3k), CA-TP3 (Peichl et al., 2010; Arain et al., 2022),
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Figure 2. Statistical metrics (see Table 4) for model–observation comparison for the diurnal gross primary productivity from the
TEMIR_FLUX simulation (see Table 1) for each plant functional type listed in Table S1: (a) evergreen needleleaf forest (ENF), (b) ev-
ergreen broadleaf forest (EBF), (c) deciduous broadleaf forest (DBF), (d) open shrubland (OSH), (e) grassland (GRA), and (f) cropland
(CRO).

and DE-Lkb (Lindauer et al., 2014) are overestimated by the
model as these forests are dominated by eastern white pine
and Norway spruce that are less than 20 years old, so opti-
mal productivity might not have been achieved. In compari-
son, the neighboring site CA-TP4 (Fig. 3l; Peichl et al., 2010)
with over 70-year-old eastern white pine is better replicated
by the model. The model has better performance with respect
to site observations when using FLUXNET local meteorol-
ogy (e.g., CH-Dav in Fig. 3m; Zielis et al., 2014), though
the differences are insignificant for most sites. For decidu-
ous broadleaf forest sites, although represented well over-
all, there is a systematic underestimation (e.g., FR-Fon in

Fig. 3n), most likely due to inaccurate parameterization over-
compensating for the uncertainties in satellite-derived LAI
for broadleaf trees. The multi-year drought in the USA dur-
ing the 2010s, which hinders plant productivity (Wolf et al.,
2016; Xu et al., 2020), appears to improve model agreement
by reducing the discrepancy (i.e., US-Oho and US-UMB)
and even giving a positive model bias (i.e., US-MMS in
Fig. 3o; Yi et al., 2017).

The correlation for croplands is high, but there is a spread
in B giving varying N values. The range of model perfor-
mance among cropland sites shows the limitation of the sim-
plistic crop representation used in this version of TEMIR,
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whereby site-level settings, such as planting seasons and
agricultural management (e.g., fertilizer usage, irrigation,
and possible rotations between crop types and cultivars), are
not considered. The generic crop representation fails to cap-
ture the maximum photosynthetic capacity of the planted
crops. For example, site US-Ne1 has irrigated maize that has
much higher GPP compared with the simulated generic crop
as shown in Fig. 3p. Site DE-Kli (Fig. 3q) has a 5-year crop
rotation with occasional fertilizer application (Prescher et al.,
2010) and has higher productivity than that simulated by the
model.

5.1.2 Validation on seasonal cycle

Figure 4 shows the statistical metrics (Table 4) for monthly
GPP averages of 2009–2013 to examine the model perfor-
mance in seasonal GPP cycle. All plots of monthly cycles
are shown in the Supplement, with plots of selected sites
included in the following discussion. The model generally
performs worse in capturing the seasonal cycle than the di-
urnal cycle. Between the different settings of meteorology
used for simulations (Fig. 4), the differences in statistics are
small. MERRA-2 meteorology shows good utility for most
sites, with in-canopy meteorology inferred using Monin–
Obukhov similarity theory improving correlation for some
sites. FLUXNET local meteorology gives the smallest range
of biases with performance similar to MERRA-2 meteorol-
ogy simulations.

Comparing Figs. 2 and 5, model–observation comparison
of monthly averages gives lower values of R2 for all sites
in general. On the other hand, biases are distributed more
evenly across the range with smaller extreme values com-
pared with the biases from diurnal simulations. In terms of
N , the model is less adept in reproducing seasonal varia-
tions (due to the reductions in correlation) regardless of the
driving meteorology chosen. Figure 5c shows that deciduous
broadleaf sites (e.g., US-MMS in Fig. 6a) give R2 > 0.85
with the maximum absolute B =+0.54 and minimum N =

0.42 with a mean of 0.9. Monthly performance of forest sites
shows a smaller range in B and lower absolute mean val-
ues of B in comparison with the other PFTs (Fig. 5). The
prediction for forest sites is satisfactory with mean values
of N larger than 0.65 (e.g., RU-Fyo in Fig. 6b; CA-TP4 in
Fig. 6c), and monthly GPP inaccuracies for forest sites can be
explained with similar reasoning as discussed in Sect. 5.1.1.

The correlation for grasslands is above 75 % for most sites
(e.g., DE-Akm in Fig. 6d; IT-MBo in Fig. 6e), while sites
AU-How (Fig. 6f) and AU-Stp have an R2 below 0.4. These
sites are known to have fires occurring in the dry winter
and spring from May to October, which corresponds to the
low productivities (Beringer et al., 2007, 2011; Hutley et al.,
2011; Haverd et al., 2013). Moreover, such disturbances on
LAI with vegetation regrowth are complex and often over-
looked by the model as shown in the simulation of the site
AU-How with minimal productivity.

Table 5. Gross primary productivity (GPP) product simulated and
relevant simulation details of global TEMIR simulations described
in Tables 2 and 3. “N/A” for O3 year indicates that no O3 damage
scheme is used.

Simulation Simulation CO2 O3 GPP
year(s) (ppmv) year (Pg C yr−1)

TEMIR_MO_off

2010–2015

390 N/A 134.7
TEMIR_MO_on 390 N/A 144.7
TEMIR_Sl 390 2000 133.6
TEMIR_Sh 390 2000 131.8

C0_O0

2000

370 N/A 135.2
C1_O0 390 N/A 138.6
C0_O1 370 2000 132.7
C1_O1 390 2000 136.2

The simulation of monthly GPP of croplands most clearly
shows the limitations of the generic model approach, as no
site-specific crop phenology is available in this version of
the model. The simulated seasonal cycle shows a typical
annual peak usually in summer as dictated by meteorology
that in general can yield good correlation (e.g., DE-Geb in
Fig. 6g); yet, as many sites are intensively managed, the ob-
served GPPs do not follow such a simplistic cycle, giving
low correlations (e.g., IT-BCi in Fig. 6h). The parameters for
a generic crop usually fail to represent the actual crop planted
at the sites, and therefore large biases exist in the simulated
GPP (e.g., BE-Lon in Fig. 6i; FR-Gri in Fig. 6j). GPP is more
commonly underestimated at the US sites (e.g., US-Ne1 in
Fig. 6k) where maize is usually planted and is more produc-
tive in comparison with other crops.

5.2 Global validation

Figure 7 shows that the simulated annual averaged GPP
for 2010–2015 is 134.7 Pg C yr−1 from the simulation using
MERRA-2 meteorology (TEMIR_MO_off) (Fig. 7b), and
the simulation with in-canopy meteorology inferred using
MOST (TEMIR_MO_on) gives GPP over the same period
as 144.7 Pg C yr−1 (Fig. 7c). Compared with the satellite-
derived dataset (GOSIF GPP; Sect. 3.2) where the annual
GPP of the same period is 128.4 Pg C yr−1 (Fig. 7a), TEMIR
overestimates global GPP by ∼ 5 %–10 % depending on the
input meteorology (Table 5). TEMIR performance is well
within, and leans toward, the middle of the observation-
constrained range in the literature of 119–175 Pg C yr−1.
TEMIR closely agrees with models of similar design objec-
tives, e.g., the Yale Interactive terrestrial Biosphere (YIBs)
with GPP at 125± 3 Pg C yr−1 (Yue and Unger, 2015) and
JULES land surface model estimating GPP at 141 Pg C yr−1

(Slevin et al., 2017). TEMIR can largely reproduce the spa-
tial distribution of GPP with respect to GOSIF GPP (Fig. 7),
with grid cells with mixed savanna and forests showing larger
discrepancies.
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Figure 3. Diurnal averaged gross primary productivity of selected sites representative of their respective vegetation types from simulations
described in Table 1, with relevant site information annotated: (a) AU-How, (b) IT-MBo, (c) CZ-wet, (d) CH-Cha, (e) AU-Stp, (f) ES-LJu,
(g) RU-Sam, (h) DE-Tha, (i) FI-Hyy, (j) NL-Loo, (k) CA-TP1, (l) CA-TP4, (m) CH-Dav, (n) FR-Fon, (o) US-MMS, (p) US-Ne1, and
(q) DE-Kli. More details of these sites are given in Table S3.

Figure 4. Statistical metrics (see Table 4) of the monthly gross primary productivity from simulations (a) TEMIR_FLUX,
(b) TEMIR_MO_off, and (c) TEMIR_MO_on as described in Table 1.

Figure 8 shows model–observation statistics (Table 4) for
the model outputs of Fig. 7 in 12 regions. Global correlation
of 6-year averaged GPP is around 83 % (Fig. 8b). In gen-
eral, correlations are lower for regions closer to the Equator,
where correlations for tropical regions are below 70 % but

otherwise above 70 %, with correlation for Siberia close to
90 %. Correlation for the tropical Americas is∼ 75 %, which
is higher than other equatorial regions. Temperate North
America shows a correlation of ∼ 60 %, which is lower than
other regions at midlatitudes. We also see that GPP is under-



A. P. K. Tai et al.: Terrestrial Ecosystem Model in R (TEMIR) version 1.0 15

Figure 5. Statistical metrics (see Table 4) of the monthly averaged gross primary productivity from the TEMIR_FLUX simulation (see
Table 1) for each plant functional type listed in Table S1: (a) evergreen needleleaf forest (ENF), (b) evergreen broadleaf forest (EBF),
(c) deciduous broadleaf forest (DBF), (d) open shrubland (OSH), (e) grassland (GRA), and (f) cropland (CRO).

estimated in the grid cells with high crop density (Fig. 7b),
which, as discussed in Sect. 5.1, is likely due to the generic
crop representation of the TEMIR version giving poor model
performance for this region. Simulated GPP driven by me-
teorology inferred with MOST gives small increases or de-
creases in regional correlation (e.g., correlation for North
Africa and the Middle East drops from 48 % to 45 %, and cor-
relation for temperate South America increases from 75 % to
78 %).

Absolute biases are mostly within 25 % except for North
Africa, the Middle East, and sub-Saharan Africa (except cen-
tral Africa) when the driving meteorology is inferred from
MOST. Simulated GPP driven by in-canopy meteorology

inferred with MOST gives more positive biases for all re-
gions, generally around +10 %. GPP for 6 of the 12 re-
gions is overestimated by TEMIR and otherwise underesti-
mated (Fig. 8b). Thus, in-canopy meteorology inferred with
MOST results in regional bias changes from underestimation
to overestimation for East and South Asia, Europe, temper-
ate North America, and the tropical Americas. The bias for
Europe is −6.2 % and +1.19 % when driving meteorology
is inferred with MOST. The bias of +1.19 % is the smallest
absolute bias of any region, which shows the possibility of
in-canopy meteorology inferred with MOST improving GPP
predictions for some but not all regions.
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Figure 6. Monthly averaged gross primary productivity of selected sites representative of their respective vegetation types from simulations
described in Table 1, with relevant site information annotated: (a) US-MMS, (b) RU-Fyo, (c) CA-TP4, (d) DE-Akm, (e) IT-MBo, (f) AU-
How, (g) DE-Geb, (h) IT-BCi, (i) BE-Lon, (j) FR-Gri, and (k) US-Ne1.

5.3 Effects of O3 and CO2 on global primary
productivity

Figure 9 shows the simulated results where the Sitch O3
schemes (Sect. 2.2.5) of low sensitivity (Sl) and high sensi-
tivity (Sh) are implemented for 2010–2015 using MERRA-2
meteorology. Figure 9a shows the mean daily 8 h averaged
O3 concentration (MDA8), a common surface O3 metric, de-
rived from the simulated hourly O3 concentration at the low-
est model level affecting global vegetation under the Sitch
O3 damage scheme. The global GPP values are 133.6 and
131.8 Pg C yr−1 for the Sitch O3 scheme at low and high sen-
sitivity, respectively (Table 5), both of which are smaller than
the 134.7 Pg C yr−1 from the simulation without O3 damage
(Fig. 7b). These global GPP reductions are seemingly small
(< 1 % to ∼ 2 %) and conceal larger regional changes. Fig-
ure 9c shows that the Sitch O3 damage scheme at high sensi-
tivity leads to an up to 15 % reduction in GPP, whereas low
sensitivity shows modest reductions of about half of those
magnitudes. Particularly large O3-induced damage occurs in

highly populated regions (e.g., the eastern USA, Europe, cen-
tral Africa, northern India, and East Asia) associated with
high anthropogenic emissions (NOx in particular). Many of
these regions also contain arable lands, and thus O3 exposure
can also affect food security (Feng et al., 2008; Avnery et al.,
2011; Emberson et al., 2018; Ainsworth et al., 2020; Tai et
al., 2021; Leung et al., 2022; Roberts et al., 2022).

Figure 8b shows the statistics of Table 4 per region
(Fig. 8a) for simulations with O3 damage. The presence of
O3 does not affect the model–observation correlations signif-
icantly for any region. When compared with the correlations
of TEMIR_MO_off simulation results, correlations from O3-
damaged GPP show small differences. O3 damage reduces
the model overestimation with respect to GOSIF GPP. In
particular, for eastern China and central Africa, implement-
ing O3 damage reduces the positive model biases as seen in
Fig. 7. Underestimation is worsened for the regions of tem-
perate North America as well as East and South Asia where
there is strong O3 damage (Fig. 9).
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Figure 7. Panel (a) shows the average global gross primary productivity for 2010–2015 from the GOSIF GPP product and differences in the
simulated GPP from simulations. Panel (b) shows TEMIR_MO_off and (c) shows TEMIR_MO_on (see Table 1) for 2010–2015 compared
with the GOSIF product.

Figure 10 shows the comparisons between simulations
(Table 3) displaying the interplay of CO2 fertilization ef-
fects and O3 damage to GPP. CO2 fertilization (from 370
to 390 ppmv), shown in Fig. 10b, promotes regional pro-
ductivity by up to 7 %. Global GPP enhancement is ∼ 2 %
(Table 5), and thus simulations estimate that rising atmo-
spheric CO2 concentration results in a global GPP increase
of 0.126 % ppmv−1. As seen in Fig. 10c, O3-induced regional
reductions are up to 15 % under the Sitch O3 damage scheme
at high sensitivity, whereby results are similar to those in
Fig. 9c. Figure 10d shows the differences in percentage of
O3 damage to GPP of the simulation with O3 damage at a
CO2 concentration of 390 ppmv from that at 370 ppmv (i.e.,
that of Fig. 9c). The positive values in Fig. 10d indicate that
the O3-induced GPP reduction is smaller at a higher CO2
concentration, reflecting the additional benefits of CO2 fer-
tilization from the reduced stomatal conductance, which im-
proves water use efficiency and also decreases stomatal O3
uptake thus lessening O3-induced impacts.

6 Discussion and conclusions

In this paper we provide a detailed model description of the
newly developed Terrestrial Ecosystem Model in R (TEMIR)
version 1.0, which simulates ecophysiological processes and
functions (most importantly, photosynthesis and global pri-

mary productivity) of terrestrial ecosystems as represented
by different PFTs, driven by prescribed meteorological con-
ditions and atmospheric chemical composition. We specif-
ically include the multiple parameterization schemes for
stomatal O3 uptake and O3 damage to plants, as well as
showcasing the utility of TEMIR in evaluating the responses
of GPP to O3 damage, CO2 fertilization, and their interac-
tions. The productivity simulated at site and global levels re-
produces the observed diurnal and seasonal cycles well for
evergreen needleleaf and deciduous broadleaf forests (espe-
cially those that are mature), with an annual average GPP
of 134.7 Pg C yr−1 for 2010–2015 and a global reduction of
up to 2 % when O3 damage is considered. This is validated
against the productivity from the 49 FLUXNET sites and
GOSIF GPP.

TEMIR-simulated global GPP lies well within the ac-
cepted range, but the associated large uncertainty is well ac-
knowledged in the field (Bonan et al., 2011; Baldocchi et al.,
2016; Zhang et al., 2017; Li and Xiao, 2019; Bi et al., 2022;
Wild et al., 2022; Zhang and Ye, 2022), thus limiting the va-
lidity of global GPP model–observation comparison in this
study (Sect. 5.2). Site-level validation may lend more cre-
dence by isolating certain PFTs for comparison, albeit being
more limited in scope and scale unlike global comparisons.
Our investigation suggests that possible PFT systematic bi-
ases exist generally for diurnal productivity, which reflect the
limitations of having a set of prescribed parameters for gener-
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Figure 8. Panel (a) shows regional division relevant for this study largely following Chen et al. (2017), and (b) shows the corresponding
regional statistical metrics (see Table 4) of the averaged gross primary productivity for 2010–2015 from TEMIR simulations (see Table 2).

alized classes of plant functions (Harrison et al., 2021; Seiler
et al., 2022; Liu et al., 2023; Wu et al., 2023a). For instance,
there is a systematic underestimation for deciduous broadleaf
forests, though it can be explained by the uncertainties in LAI
datasets (Liu et al., 2018; Yang et al., 2023), and some re-
gions show distinctive physiology and phenology of grasses
and shrubs. Particularly for semiarid regions where the range
of productivity is large, the model shows variable accuracy.
In general, variability in prescribed LAI can be an important
source of uncertainty in the model results. Single-site sensi-
tivity simulations show that GPP generally linearly increases
with LAI at low LAI, but as LAI becomes larger, GPP in-
creases less than proportionately due to the canopy shading
effect. Such nonlinearity of GPP responses to LAI changes is
less important for small perturbations of LAI (e.g., < 20 %).

Simulating crops in ecosystem modeling remains particu-
larly challenging (Deryng et al., 2016; Chopin et al., 2019;
Muller and Martre, 2019; Boas et al., 2021), as it com-
bines the nuances in phenology, physiology, coverage, and
active human management with high spatiotemporal varia-
tions (Monfreda et al., 2008; Emberson et al., 2018; Ahmed
et al., 2022; Gleason et al., 2022; Corcoran et al., 2023),
which already exist for natural vegetation to a lesser de-
gree. One particularly crucial aspect for improvement is to
get crop LAI correct, which is typically more challenging
to measure than trees with large canopies and often varies
to greater extents with leaf orientations for different crops.
More long-term ground-based and/or remote sensing mea-
surements of crop LAI for different crop types across the
world are particularly recommended, not only as input data
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Figure 9. Mean daily 8 h averaged (MDA8) O3 concentration of the lowest model layer averaged over 2010–2015 and percentage differences
in average global GPP for 2010–2015 of the simulated results with the Sitch O3 damage scheme at (b) low sensitivity and (c) high sensitivity
from the simulation TEMIR_MO_off (see Table 2).

Figure 10. Plots showing results from simulations of Table 3: (a) gross primary productivity modeled for 2000 at a CO2 concentration
of 370 ppmv (C0_O0), (b) percentage changes in GPP showing CO2 fertilization effects of year-2010 CO2 concentration at 390 ppm
(100 %× (C1_O0 − C0_O0)/C0_O0), (c) percentage changes in GPP due to O3 damage at high sensitivity of the Sitch O3 damage
scheme for year-2000 modeled O3 concentration and CO2 concentration of 370 ppmv (100 %× (C0_O1 − C0_O0)/C0_O0), and (d) dif-
ferences in percentage of O3 damage at a CO2 concentration of 390 ppmv from that at 370 ppmv (100 %× (C1_O1 − C1_O0)/C1_O0 −
100 %× (C0_O1 − C0_O0)/C0_O0), whereby positive values indicate a reduction in percentage of O3 damage.
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but also for model validation in future development. Espe-
cially for site-level simulations, locally relevant crop physi-
ological and structural parameters should also be measured
and used. Ongoing development has already been attempting
to enhance crop representation in a version of TEMIR with
active crop biogeochemistry (Tai et al., 2021) to improve and
reconcile model inaccuracies.

Incorporating site-level meteorology in simulations can
improve performance for a few selected sites but otherwise is
comparable to results from simulations with gridded assimi-
lated meteorology as input. This highlights the fact that gen-
eralization and the coarse resolution of the MERRA-2 dataset
used (due to computational limitations and necessary consis-
tency with other input datasets) can drastically overlook re-
gional and small-scale nuances. Furthermore, CO2 concen-
tration was kept constant and spatially uniform in all simu-
lations, which enables direct comparison with other model-
ing studies but ignores possible spatiotemporal variability in
CO2 concentration (Cheng et al., 2022). Though such effects
are usually minor on simulated GPP magnitudes (Lee et al.,
2018; Tian et al., 2021), uncertainties should be minimized
in any case; thus, it is recommended that users use the mea-
sured CO2 concentration, if available, as input, especially for
site-level simulations. It is also recommended that users re-
calibrate relevant model parameters with site observations
and available datasets (e.g., those of higher resolutions),
such as LAI, Vcmax, PFT fractional coverage, and others, to
yield the most accurate results. The non-dynamic representa-
tion of vegetation cover and parameterization is a shortcom-
ing of TEMIR, and thus simulations overlook intricate and
transient impacts of LULCC on land–atmosphere exchange
(Ganzeveld et al., 2010; Pongratz et al., 2010; Prescher et
al., 2010; Chen et al., 2018; Bastos et al., 2020; Hou et al.,
2022). With the capacity of the current version of TEMIR,
our simulations address these aspects by changing the input
data of LAI and PFT fractions, derived from LULCC, for
yearly and higher frequencies. LULCC can drive large re-
gional changes, though recent LULCC mostly reduces GPP
(due to urbanization, agricultural expansion, and deforesta-
tion), counteracted partly by CO2 fertilization effects (Wu et
al., 2023b), and thus the validity of our results is likely un-
changed. The assumption of sufficient nitrogen availability is
a limitation (Sandor et al., 2018) as most non-tropical biomes
experience varying nitrogen limitation (Davies-Barnard et
al., 2022; Kou-Giesbrecht and Arora, 2023), thereby affect-
ing photosynthetic capacities (Mason et al., 2022; Wang et
al., 2022) and resource allocations in plants and soil (Zhang
et al., 2020; Feng et al., 2023; Lu et al., 2023). Some mod-
els have N cycling (Yang et al., 2009; Gerber et al., 2010;
Wiltshire et al., 2021; Hidy et al., 2022), but effects remains
minor (Jain et al., 2009; O’Sullivan et al., 2019; Lin et al.,
2023) in the recent decade and more relevant for assessing
future global changes (Tharammal et al., 2018; Franz and Za-
ehle, 2021). Overall, TEMIR has great skill in capturing an-
nual and seasonal GPP at the global scale as well as for some

productive regions and certain PFTs, whereby the correla-
tion is high in the range of 80 %–90 %, showcasing the utility
of TEMIR at different scales. Caution should be taken with
good knowledge of model preferences and the underlying
theoretical assumptions for any given research question, es-
pecially when concerning multi-factor land–atmosphere in-
teractions and vegetation responses to various environmen-
tal stresses (Kimmins et al., 2008; Zhao et al., 2022; Blanco
and Lo, 2023; Rahman et al., 2023). Further development
and validation of the model with detailed observations are
crucial to provide more accurate vegetation parameterization
for specific applications, e.g., to investigate vegetation re-
sponses to droughts and heatwave composition (e.g., Yan et
al., 2022), especially at the regional and site levels.

The initial motivation and one of the most relevant appli-
cations of TEMIR is to address the impacts of O3 pollution
and exposure on terrestrial ecosystem productivity, whereby
an active Sitch O3 damage scheme improves model perfor-
mance with respect to GPP. Concerning O3 damage to GPP,
there is good agreement with previous studies in terms of
both magnitudes and spatial variations (e.g., Lombardozzi et
al., 2015; Sitch et al., 2007). For instance, the OCN model
(Franz et al., 2017; Franz and Zaehle, 2021) simulated O3
as reducing GPP in Europe by ∼ 8 % and the JULES land
surface model (Slevin et al., 2017) in the range of 10 %–
20 % (Oliver et al., 2018). The Yale Interactive terrestrial
Biosphere (YIBs) model (Yue and Unger, 2015) simulated
O3 as reducing global GPP by 2 %–5 % with East Asia ex-
periencing damage of 4 %–10 %. Yue and Unger (2014) also
showed GPP reductions of 4 %–8 % in the eastern USA with
high episodes giving a higher range of 11 %–17 %. YIBs has
the capability of synchronous coupling (e.g., GEOS-Chem–
YIBs; Lei et al., 2020), which reported similar ranges in GPP
reductions: globally by 1.5 %–3.6 % and extremes of 11 %–
14 % in the eastern USA and eastern China. This lends cre-
dence to the comparable performance of TEMIR v1.0, which
has a more simplistic terrestrial ecosystem with prescribed
ecosystem structure (noting that active biogeochemistry is in
development).

O3 influences in the current version of TEMIR are lim-
ited to vegetation physiological and productivity responses.
Intra- and interspecies differential sensitivity to O3 can cause
competition (Agathokleous et al., 2020), affecting some
species more than others in terms of biomass, flowering, and
seed development, thus impacting community composition,
PFT fractional coverage, and biodiversity (Calvete-Sogo et
al., 2016; Fuhrer et al., 2016; Emberson, 2020). This can
also be seen among functional groups. For example, peren-
nial species retain more aboveground biomass than annual
species, and angiosperms are more prone to O3 damage than
gymnosperms, thus giving possible long-term biodiversity
effects (Agathokleous et al., 2020). Such effects are further
complicated by soil conditions (e.g., water and nitrogen con-
tent) and also spatial heterogeneity, whereby regional strate-
gies might differ within functional groups, although this re-
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quires more studies to obtain observation-based parameteri-
zation.

Moreover, synchronous model coupling between a CTM
or climate model and a fully prognostic biosphere model with
active biogeochemistry is particularly suitable for examining
O3–vegetation feedbacks (Danabasoglu et al., 2020; Franklin
et al., 2020; Lam et al., 2023), especially for timescales long
enough (e.g., multi-decadal) for ecosystem structure to co-
evolve with the atmosphere. For instance, Sadiq et al. (2017)
and Gong et al. (2021) showed that dynamic O3–vegetation
interactions can lead to a long-term ecosystem decline and a
positive feedback on O3 concentration in China and world-
wide, respectively, worsening air quality. Zhu et al. (2022)
and Jin et al. (2023) found similar positive O3–vegetation
feedbacks in China with the coupled framework using WRF-
Chem and Noah-MP. Yue et al. (2017) also investigated O3–
aerosol–vegetation interactions in China. TEMIR can only
be asynchronously coupled with GEOS-Chem and is not the
best tool for investigating two-way O3–vegetation interac-
tions, especially when such interactions relevantly happen
within a model time step, but it is particularly suitable for
estimating first-order effects of O3 pollution on vegetation
in a computationally efficient manner. Zhou et al. (2018) in-
deed found that second-order effects of O3 pollution (i.e.,
additional effects of modified O3 concentrations after feed-
backs are accounted for) on vegetation are negligible. More-
over, asynchronous coupling between TEMIR and GEOS-
Chem, for example, and conducting factorial experiments
with them, can help disentangle complex pathways and feed-
backs that are often convoluted in fully coupled models.

We recognize that the O3 damage scheme in TEMIR does
not account for sluggishness in stomatal responses (e.g.,
Clifton et al., 2020; Huntingford et al., 2018), which may
modify further O3 uptake, although such effect is expected
to be small at the resolution relevant for this study. O3 sensi-
tivities also have crop-related inaccuracies due to the generic
crop representation in this version of TEMIR. Such is a com-
mon practice in global-scale biosphere models, and Leung et
al. (2020) suggested that if a study focuses on crop yields,
species-specific calibration is required to reduce uncertainty
and likely inaccuracies for the crops concerned. TEMIR v1.0
on a global scale is not suitable for any crop-focused investi-
gations, but one may use the version of TEMIR implemented
with additional crop functionalities, such as the calculation of
phytotoxic O3 dose, taking advantage of the stomatal calcu-
lation in TEMIR and the subsequent estimation of O3–crop
impacts (Tai et al., 2021). The utility of TEMIR in exam-
ining vegetation-mediated dry depositional sinks of O3 has
also been demonstrated (Sun et al., 2022).

Mechanistic representations allow modeling for various
meteorological conditions and are extremely useful to eval-
uate ecophysiological responses to a changing climate and
intermittent climate extremes (e.g., Bonan, 2008, 2016; Cai
and Prentice, 2020; Gang et al., 2022). Ciais et al. (2005)
estimated a 30 % GPP reduction in Europe following the

heatwave in 2003 and vegetation there became a net carbon
source, attributable to the rainfall deficit and extreme sum-
mer heat. This was also found by Bamberger et al. (2017),
whereby heat and drought impacts alter photosynthesis and
vegetation state. More extreme events are projected for a fu-
ture climate, which various models (e.g., O-CN and YIBs)
have shown to decrease productivity (e.g., Franz and Za-
ehle, 2021; Yan et al., 2022). He et al. (2022), using mod-
els, showed that climate variability is the main factor con-
trolling interannual GPP variability in grasslands in China.
Such effect is the most prominent in summer, which is re-
sponsible for more than 40 % of decadal GPP variability in
Chinese grasslands and the largest in comparison with ef-
fects from CO2 fertilization and nitrogen deposition. Similar
to the case for O3–vegetation coupling discussed above, fully
coupled climate–biosphere models can be particularly useful
for examining two-way interactions and feedbacks and also
long-term (multi-decadal to multi-centurial) co-evolution of
climate and the biosphere. However, the embedded complex
interactions may obscure the relative importance of different
factors, making it a lot more difficult to attribute changes to
specific factors. Offline modes, such as TEMIR, are there-
fore particularly useful for investigating and attributing bio-
spheric variability and changes to prescribed changes in cli-
matic variables.

In addition, we have demonstrated the utility of TEMIR
in examining the direct and interactive effects of mul-
tiple atmospheric chemical species on global vegetation
(i.e., CO2 and O3 concentrations). CO2 fertilization in
TEMIR results in strong GPP enhancement as seen in
many studies (e.g., Schimel et al., 2015; Cai and Pren-
tice, 2020; Chen et al., 2022; Yang et al., 2022). Our
simulations estimate that CO2 fertilization increases global
GPP by 0.126 % ppmv−1, which is comparable to the
value of 0.138 %± 0.007 % ppmv−1 reported by Ueyama et
al. (2020). It is noteworthy that some studies (e.g., Lee et al.,
2018) suggest that overlooking spatiotemporal variability in
atmospheric CO2 can lead to inaccuracies in seasonal and re-
gional GPP estimation but only a minor influence on global
GPP. Additional crop functionalities of TEMIR (Tai et al.,
2021) can also address the CO2 fertilization effects on crops,
although studies have also found that the resultant productiv-
ity increase gives larger yield quantity but does not necessar-
ily translate to increased yield quality (Myers et al., 2014;
Ebi et al., 2021; Xia et al., 2021). The competing effects
of CO2 fertilization and O3 damage to vegetation have been
well documented in field experiments, although magnitudes
vary and are species-dependent (e.g., Oikawa and Ainsworth,
2016; Proietti et al., 2016; Karlsson et al., 2017; Moura et
al., 2018; Zhang et al., 2018; Ainsworth et al., 2020; Xia et
al., 2021). TEMIR shows that CO2 fertilization can reduce
the percentage of O3 damage to vegetation (∼ 1 % globally),
which is generally comparable to 1 %–2 % found by Oliver
et al. (2018), whereas Sitch et al. (2007) simulated a higher
range of 6 %–9 %. We note that while comparisons among
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models are useful, we must be mindful of the differences in
model designs and setups (as mentioned in Sect. 1). Miner
et al. (2017) cautioned that stomatal responses to CO2 can
be highly species-dependent and variable under different soil
conditions, adding more uncertainty to the parameterization
of CO2–O3–vegetation interactions. The changing nitrogen
deposition due to anthropogenic activities may likewise in-
fluence the interactions between vegetation, CO2, and O3
(Zhao et al., 2017; Liu et al., 2021), whereby nitrogen can
limit CO2-promoted growth (Wang et al., 2020) or modify
vegetation responses (e.g., for gs; Hu et al., 2021) with fur-
ther implications on soil and nutrient cycling (Terrer et al.,
2021). As atmospheric composition rapidly changes in the
next century, these interactive mechanisms should be con-
sidered for modelers to more representatively and accurately
model the future earth system (e.g., Bytnerowicz et al., 2007;
Pu et al., 2017; Sicard et al., 2017; Franz and Zaehle, 2021;
Leung et al., 2022).

All in all, the high adaptability of TEMIR, written in an
freely open-source, widely used, and easy-to-learn program-
ming language (R Core Team, 2022), is expected to facilitate
fruitful contribution to research, at various spatiotemporal
scales, on biosphere–atmosphere interaction. It also provides
a readily available tool for policymakers, practitioners, and
other stakeholders to assess the ecosystem services provided
by vegetation in different regions or cities, as well as their
sensitivities to future atmospheric changes, possibly enhanc-
ing the translational value of ecological and geoscientific re-
search.
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