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Abstract. The newly developed offline land ecosystem model Terrestrial Ecosystem Model in R (TEMIR) version 1.0 is 

described here. This version of the model simulates plant ecophysiological (e.g., photosynthetic, stomatal) responses to varying 

meteorological conditions and concentrations of CO2 and ground-level ozone (O3) based on prescribed meteorological and 

atmospheric chemical inputs from various sources. Driven by the same meteorological data used in the GEOS-Chem chemical 

transport model, this allows asynchronously coupled experiments with GEOS-Chem simulations with unique coherency for 15 

investigating biosphere-atmosphere chemical interactions. TEMIR agrees well with FLUXNET site-level gross primary 

productivity (GPP) in terms of both the diurnal and monthly cycles (correlation coefficients R2 > 0.85 and R2 > 0.8, 

respectively) for most plant functional types (PFTs). Grass and shrub PFTs have larger biases due to generic model 

representations. The model performs best when driven by local site-level meteorology rather than reanalyzed gridded 

meteorology. Simulation using gridded meteorology agrees well for annual GPP in seasonality and spatial distribution with a 20 

global average of 134 Pg C yr–1. Application of Monin-Obukhov similarity theory to infer canopy conditions from gridded 

meteorology does not improve model performance, predicting a uniform increase of +21% for global GPP. Present-day O3 

concentrations simulated by GEOS-Chem and an O3 damage scheme at high sensitivity show a 2% reduction in global GPP 

with prominent reductions by up to 15% in eastern China and the eastern US. Regional correlations are generally unchanged 

when O3 is present, and biases are reduced especially for regions with high O3 damages. An increase in atmospheric CO2 25 

concentration by 20 ppmv from year-2000 to year-2010 level modestly decreases O3 damage due to reduced stomatal uptake, 

consistent with ecophysiological understanding. Our work showcases the utility of this version of TEMIR for evaluating 

biogeophysical responses of vegetation to changes in atmospheric composition and meteorological conditions. 
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1 Introduction 

Terrestrial vegetation, as an integral part of the global biosphere, plays many vital roles regulating the Earth system. It facilities 

a substantial portion of the global land-atmosphere exchange of energy, momentum and chemical species relevant for climate 

and atmospheric chemistry. It is a major sink for atmospheric carbon, sequestering an estimated 123 ± 8 Pg C of carbon dioxide 

(CO2) from the atmosphere annually through plant photosynthesis (Beer et al., 2010; Le Quéré et al., 2015), albeit with a 5 

relatively large observation-constrained range of 119–175 Pg C yr–1 . This vegetation-mediated process of CO2 sequestration, 

also known as gross primary productivity (GPP), is a key regulator of climate, and forests in particular are one of the largest 

providers of climate services (Bonan, 2008). Even before the industrial revolution, human perturbations of natural vegetation 

for agriculture, timber and other uses have had significant impacts on the natural carbon cycle. About a third of the total 

cumulative CO2 emission to date that is due to anthropogenic land cover change could have been emitted before the time of 10 

industrialization (Pongratz et al., 2009). Over the 20th century, widespread deforestation was estimated to result in a net 

warming of 0.13–0.15°C due to biogeochemical warming (via carbon emission) partly offset by biogeophysical cooling (via 

higher albedo) (Pongratz et al., 2010). A reversal of historical land use trends, especially in the form of afforestation and careful 

management and preservation of existing forests, has the potential to help mitigate anthropogenic climate change, but the 

future carbon uptake capacity of forests can be substantially altered by an array of biogeochemical feedback mechanisms as 15 

forest ecosystems respond to changing climate and atmospheric composition (Arneth et al., 2010). Various global terrestrial 

ecosystem models have been employed, either standalone or coupled within an earth system model, to estimate future carbon 

budgets in response to global change; a multi-model comparison estimated that over the 21st century, the terrestrial biosphere 

can gain 0.2–1.5 Pg C for 1 part per million by volume (ppmv) increase in CO2 due to fertilization effect, but lose 10–90 Pg C 

per degree increase in global surface temperature as forest ecosystems experience warming and more climatic stress (Arora et 20 

al., 2013). 

 

An emerging research interest is the interactions between the terrestrial biosphere and atmospheric chemistry, and the roles of 

short-lived atmospheric species in modulating terrestrial ecosystem functions. On the one hand, terrestrial ecosystems facilitate 

the removal of air pollutants from the atmosphere via the process of dry deposition, thus providing another important service 25 

for human benefits. The consequent health benefits are substantial: 17.4 million tons of air pollutants equivalent to US$6.8 

billion of public health cost was removed by forests in the contiguous US in 2010 alone (Nowak et al., 2014), which is 6% of 

estimated total health cost of US$109 (EUR145 billion) due to air pollution in the US of 2010 (Im et al., 2018). Globally it is 

estimated that dry deposition onto vegetated surfaces accounts for ~20% of the loss of tropospheric O3 (Wild, 2007), which is 

a major air pollutant detrimental to human health. On the other hand, the depositional uptake of O3 by leaves incurs substantial 30 

damage to vegetation, interfering with ecosystem functions and terrestrial biogeochemical cycling. In the process of dry 

deposition, O3 diffuses via leaf openings known as stomata into the leaf interior, where it impairs plant physiological functions 

and health; stomatal uptake itself is responsible for 30–90% of the deposition sink of O3 (Felzer et al., 2007; Ainsworth et al., 
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2012). O3 can significantly disrupt leaf photosynthesis rates, thereby hindering plant growth and reducing forest and crop 

productivity (Ainsworth et al., 2012). The O3-induced global yield losses for the key staple crops (wheat, rice, maize and 

soybean) for year 2000 were estimated to be worth US$11–26 billion (Van Dingenen et al., 2009; Avnery et al., 2011). For 

natural vegetation and forests, observed GPP reductions average at ~10% but could regionally be up to 30% (e.g., Fares et al., 

2013; Proietti et al., 2016; Moura et al., 2018). Modeling studies have estimated a 2–12% decrease in GPP due to present-day 5 

O3, with large reductions of more than 20% in the midlatitude regions of North America, Europe and East Asia (Anav et al., 

2011; Yue and Unger, 2014; Lombardozzi et al., 2015). O3 damage to plants in turn alters biosphere-atmosphere exchange, 

with ramifications for both climate and air quality. Models have estimated a 2–6% decrease in global transpiration following 

O3 damage. The corresponding reductions in latent heat flux can regionally enhance temperature by up to 2–3°C and alter 

rainfall (Li et al., 2016; Sadiq et al., 2017; Zhu et al., 2022). 10 

 

Accurate predictions of both air quality and ecosystem functions, as well as their interactions, thus require proper representation 

of ecophysiological processes in the terrestrial ecosystems, but are obscured by a complex array of nonlinear interactions 

between plant physiology, O3, CO2 and meteorological drivers. Elevated CO2 enhances photosynthesis and also induces 

stomatal closure (reducing stomatal conductance) over various timescales, likely reflecting the adaptation of plants to improve 15 

water use efficiency (Noormets et al., 2010; Franks et al., 2013). Sanderson et al. (2007) suggested that a doubling of CO2 

could worsen O3 air quality by up to +8 ppbv (parts per billion by volume) due to reduced stomatal conductance and dry 

deposition. O3 damage on vegetation can potentially lead to a decline in leaf area index (LAI) and stomatal uptake, which in 

turn creates a strong positive feedback that further enhances surface O3 by up to +6 ppbv (Sadiq et al., 2017; Zhou et al., 2018; 

Zhu et al., 2022). Furthermore, a higher humidity generally promotes stomatal opening, while drought conditions often inhibit 20 

it (Dermody et al., 2008; Rhea et al., 2010; Monks et al., 2015). A modeling study by Emberson et al. (2013) suggested that 

the extended drought in association with the 2006 European heat wave might have shut down the dry-depositional sink for O3 

as plants closed their stomata to prevent excessive water loss, thereby leading to a greater number of O3-related premature 

human deaths. To complicate the matter further, O3 damage may cause stomata to respond more sluggishly to meteorological 

conditions; under certain prolonged  conditions (e.g., droughts) such a sluggishness of stomatal response may cause them to 25 

be more open than without O3 damage (McLaughlin et al., 2007; Sun et al., 2012; Huntingford et al., 2018). These studies 

highlight the importance of considering the adaptive responses of plants to changing atmospheric composition and 

meteorological conditions in predicting future O3 air quality and ecosystem productivity. Yet, most atmospheric chemistry 

models to date rely on semi-empirical formulations for plant-mediated processes (e.g., dry deposition) without resolving 

ecophysiological processes that may evolve over time; issues may also arise when coupling atmospheric chemistry and 30 

complex ecosystem models due to inconsistent driving inputs and model requirements (Clifton et al., 2020). As interpretation 

of model results depends largely on the underlying physiological processes, in-depth understanding of system behaviors is 

crucial yet lacking (Ganzeveld and Lelieveld, 1995; Hardacre et al., 2015). 
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A number of studies have taken advantage of the Earth system modeling framework (ESMF) to dynamically link dry deposition 

and O3 fluxes in the atmospheric chemistry model to the photosynthetic and stomatal calculations in the land surface model 

(e.g., Ganzeveld et al., 2010; Pacifico et al., 2012; Val Martin et al., 2014; Verbeke et al., 2015; Halladay and Good, 2017; 

Sadiq et al., 2017; Zhu et al., 2022; Bhattarai et al., 2023). These studies largely focused on long-term averages and trends 

rather than variability due to climate anomalies. Simulated climate is also often sensitive to land surface changes, and any 5 

simulated responses of meteorological variables to plant ecophysiological changes can further modify O3 through a cascade of 

feedbacks, potentially obscuring the importance and relative contribution from individual plant-mediated pathways. Fully 

coupled Earth system models contain intricate network of interdependencies among climate, atmospheric chemistry and the 

land surface, thus may not be ideal for calibrating specific model processes against observations. Standalone or coupled 

chemical transport models and ecosystem models driven by a consistent set of prescribed “offline” meteorology from 10 

observations and reanalysis datasets would be particularly useful to improve the understanding of O3-vegetation interactions 

in isolation and enhance model capability in predicting air quality under climate anomalies. 

 

The Terrestrial Ecosystem Model in R version 1.0 (TEMIR v1.0), described in Sect. 2.2, is a standalone, multi-parameterization 

model designed to simulate important canopy and ecophysiological processes that are relevant for ecosystem exchange and 15 

atmospheric chemistry, including canopy radiative physics and aerodynamics, photosynthesis, stomatal behaviors, and dry 

deposition of different chemical species. It is designed to be entirely consistent with the GEOS-Chem global chemical transport 

model (CTM) in terms of model inputs and land surface representation. Driven by a consistent set of prescribed meteorological 

and surface flux inputs, asynchronously coupled GEOS-Chem-TEMIR experiments can be performed globally or regionally 

to simulate plant ecophysiological responses to changing atmospheric composition arising from, e.g., O3 pollution and rising 20 

CO2, as well as to a changing climate as simulated by climate models that have already been coupled to GEOS-Chem. It can 

also be used with user-defined meteorological and flux inputs (especially those directly from FLUXNET observations; 

https://fluxnet.fluxdata.org) to perform site-level simulations for various purposes, e.g., process investigation, predictions, 

model validation and optimization with different parameterization schemes. Versions of TEMIR with active biogeochemistry 

and crop biophysics are under development and not within the scope of this paper. Validation and application of TEMIR to 25 

simulate O3 dry deposition and flux-based metrics of O3 damage on crops have been presented in several previous studies (i.e., 

Wong et al., 2019; Tai et al., 2021; Sun et al., 2022). 

 

Developing an ecosystem model in the R programming language is beneficial to various ends. R is an increasingly popular 

tool for ecological research (R Core Team, 2022), especially in population and community ecology. Lai et al. (2019) surveyed 30 

more than 60,000 peer-reviewed ecology journal articles, and found that the number of studies reported using R as their primary 

tool in data analysis increased from ~10% in 2008 to ~60% in 2017. However, ecosystem and Earth system models are often 

written in low-level languages such as Fortran, because the field of ecosystem and Earth system modeling has close historical 

ties with geoscientific research due to the importance of representing the land cover and biogeochemical cycles in climate 

https://fluxnet.fluxdata.org/
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models, which are most often written in low-level languages that are less accessible to researchers outside of the field. Having 

a terrestrial ecosystem model in R may help enhance the accessibility to ecosystem modeling for ecological researchers who 

are more familiar with R, generate a common modeling framework across population, community and ecosystem scales, and 

hopefully serve as a bridge between ecological and geoscientific fields to advance interdisciplinarity. Being an entirely free 

and open software as well as a highly versatile and relatively user-friendly programming language, it may also help promote 5 

open science in environmental research and education, allowing the model to be more widely used as a policy-relevant 

assessment tool for practitioners, such as those who need to assess the carbon uptake potential of tree planting or reforestation 

as means to achieve carbon neutrality. 

2 Model description 

2.1 GEOS-Chem model description 10 

GEOS-Chem as a global CTM is widely used in research due to its versatility in tackling a multitude of atmospheric chemistry 

problems. We use GEOS-Chem v12.2.0 (DOI: 10.5281/zenodo.2572887) driven by assimilated meteorological observations 

from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO) 

(http://acmg.seas.harvard.edu/geos/). The driving meteorological data are available in 1-hourly and 3-hourly temporal 

resolutions with the finest horizontal resolution of 0.25° latitude by 0.3125° longitude and 72 hybrid vertical levels extending 15 

from the surface to 0.01 hPa, provided by the GEOS-Forward Processing product (GEOS-FP). Coarser resolutions of the 

reanalysis product Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 

2017) can also be used, which is a historical dataset spanning from 1980 to the present day. GEOS-Chem is equipped with 

detailed O3-NOx-VOC (volatile organic compounds)-aerosol chemical mechanisms that is used for simulating atmospheric 

chemistry, and validated by many studies (e.g., Bey et al., 2001; Parrington et al., 2008; Zhang et al., 2010; Zhang and Wang, 20 

2016; Hu et al., 2018). Anthropogenic missions of many species (e.g., CO, NOx and non-methane VOCs) can be taken from 

global inventories (i.e., Community Emissions Data System, CEDS; Hoesly et al., 2018) and/or regional inventories, through 

the Harmonized Emissions Component (HEMCO) v2.1 (Keller et al., 2014; Lin et al., 2021). Biogenic emissions are calculated 

online with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012). An 

alternative photosynthesis-based isoprene emission (Pacifico et al., 2011) is also available (Lam et al., 2023). In this study, the 25 

meteorological inputs used for global simulations of both GEOS-Chem and TEMIR are the MERRA-2 product at a resolution 

of 2°×2.5° latitude by longitude. The surface O3 concentrations simulated by GEOS-Chem are used as inputs for TEMIR to 

simulate the corresponding vegetation responses under the consistent set of MERRA-2 meteorology. 

2.2 TEMIR model description 

TEMIR computes biogeophysical responses of terrestrial ecosystems to changes in the atmospheric (e.g., [CO2]) and terrestrial 30 

environment. Driven by consistent meteorological, and land surface inputs data as GEOS-Chem, TEMIR is designed to be 
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highly compatible with GEOS-Chem and can be coupled asynchronously with simulated atmospheric composition (e.g., [O3]) 

from GEOS-Chem, which is a vital aspect that allows the biosphere-atmosphere coupling needed for the objectives of this 

study.  

2.2.1 Plant type representation 

Plant type categories considered in TEMIR follows the convention of the Community Land Model version 4.5 (CLM4.5) 5 

(Oleson et al., 2013), embedded within the Community Earth System Model (CESM) version 1.2.2 

(http://www.cesm.ucar.edu/models/clm/). The plant type categories consist of 14 natural vegetation types (including generic 

C3 crops) (Lawrence and Chase, 2007) and 10 rainfed or irrigated crop types (Table S1), giving a total of 24 different plant 

function types (PFTs), and one land type for unvegetated land or bare ground. Each model grid cell consists of a mosaic of 

natural or managed PFTs and/or bare ground, where only the natural PFTs share a single soil column, allowing them 10 

theoretically to compete for soil water. Each PFT or bare ground has a prescribed present-day fractional coverage in each grid 

cell, derived from MODerate resolution Imaging Spectroradiometer (MODIS) satellite data (Lawrence and Chase, 2007) 

according to climatic (temperature- and precipitation-based) rules (see table 3 of Bonan et al., 2002), as well as managed crop 

distribution for non-generic crops (corn, temperate and winter cereals, soybean) (Portmann et al., 2010). Each PFT has their 

own characteristic structural and physiological parameters (Table S2), as detailed in Oleson et al. (2013). The parameters used 15 

to represent vegetation structure include LAI, stem area index (SAI) and canopy height (h). This version of TEMIR lacks a 

full carbon cycle, thus these structural parameters are prescribed as model input data. Monthly PFT-level LAI is derived from 

MODIS using the deaggregation methods described in Lawrence and Chase (2007); PFT-level SAI is derived from LAI with 

the methods of Zeng et al. (2002). PFT-level canopy heights are prescribed following Bonan et al. (2002). Users can specify 

any gridded total LAI input data, whereby the PFT-specific LAI that TEMIR requires is then scaled accordingly. This version 20 

of TEMIR does not dynamically simulate PFT coverage and structural parameters, thus competition among different plant 

strategies or adaptation to environmental changes such as climate change and air pollution is not simulated. The effects of land 

use and land cover change (LULCC) or changing plant type distribution due to adaptation can only be included by user-

modified prescribed PFT fractional coverage or LAI data obtained externally from other models or studies. These input data 

can however be updated every simulation year to represent continuous LULCC over interannual to multidecadal timescales. 25 

Model development for a full carbon cycle for both natural vegetation and crops (Tai et al., 2021) is actively ongoing. 

2.2.2 Canopy radiative transfer 

Each PFT simulated per vegetated grid cell is represented as a single “big-leaf” canopy of sunlit and shaded leaves. We 

implement two alternative canopy radiative transfer schemes to calculate the sunlit and shaded LAI (LAIsun, LAIsha), absorbed 

photosynthetically active radiation (PAR) by sunlit and shaded leaves (ϕsun, ϕsha, W m–2), canopy light extinction coefficient 30 

(Kb), surface albedo and other radiative variables as functions of direct beam and diffuse incident PAR reaching the canopy 

top (Idir, Idiff, W m–2), cosine of solar zenith angle (μ) and other vegetation parameters. The default scheme follows the two-

http://www.cesm.ucar.edu/models/clm/


7 
 

stream approximation of Dickinson (1983) and Sellers (1985) which considers light attenuation by both leaves and stems. The 

details of the scheme is described in Sect. 3.1, 3.3 and 4.1 of Oleson et al. (2013). In brief, the absorbed PAR averaged over 

the sunlit and shaded canopy per unit plant area (leaf plus stem area) is  

𝜙sun =
$sun,dir%dir&$sun,diff%diff

PAIsun
           (1) 

𝜙sha =
$sha,dir%dir&$sha,diff%diff

PAIsha
           (2) 5 

where fsun/sha,dir/diff is the fraction of direct/diffuse incident radiation absorbed by the sunlit/shaded leaves and stems as calculated 

by the two-stream approach; the sunlit and shaded plant area index (PAI = LAI + SAI) is 

PAIsun =
,-.+,-(LAI2SAI)

/-
           (3) 

PAIsha = (LAI + SAI) − PAIsun          (4) 

and Kb is calculated following the two-stream approximation. The sunlit and shaded LAI ultimately used to calculate canopy 10 

photosynthesis are 

LAIsun = PAIsun
LAI

LAI&SAI
           (5) 

LAIsha = PAIsha
LAI

LAI&SAI
           (6) 

 

An alternative, simplified scheme that accounts for light attenuation by leaves only following the convention of the Zhang et 15 

al. (2002) dry deposition model as modified from Norman (1982), which is also implemented in TEMIR (see Sect. 2.2.6), is 

implemented as follows: 

𝜙sha = 𝐼diff exp(−0.5LAI5) + 0.07𝐼dir(1.1 − 0.1LAI) exp(−𝜇)      (7) 

𝜙sun = 𝜙sha +𝐾7𝐼dir7            (8) 

𝐾7 =
8.:
;

             (9) 20 

LAIsun =
,-.+,-LAI

/-
           (10) 

LAIsha = LAI − LAIsun           (11) 

where exponents a = 0.7 and b = 1 for LAI < 2.5 or downwelling shortwave radiation flux S↓ < 200 W m–2, otherwise a = 0.8 

and b = 0.8. 

2.2.3 Canopy photosynthesis and conductance 25 

Leaf photosynthesis of both C3 and C4 plants is represented by the well-established formulation that relates to Michaelis–

Menten enzyme kinetics and photosynthetic biochemical pathways (Farquhar et al., 1980; von Caemmerer and Farquhar, 1981; 

Collatz et al., 1991; Collatz et al., 1992), which considers three limiting regimes: 
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(i) The Rubisco-limited photosynthesis rate (Ac, μmol CO2 m–2 s–1) captures the rate of carbon assimilation when substrate 

availability or enzyme activity is the limiting factor:  

𝐴< = 8
𝑉<=>?

@5-A∗
@5&	/7∗D,	&

85
,9
E

for	C3	plants

𝑉<=>? for	C4	plants
	         (12) 

where ci (Pa) the intercellular CO2 partial pressure; Kc and Ko are the Michaelis–Menten constants for carboxylation and 

oxygenation (Pa), respectively; oi (Pa) is the intercellular oxygen partial pressure; Γ* (Pa) is the CO2 compensation point and 5 

Vcmax (μmol CO2 m–2 s–1) is the maximum rate of carboxylation. 

(ii) The RuBP-limited photosynthetic rate (Aj, μmol CO2 m–2 s–1) defines the photosynthesis rate as light intensity and thus 

RuBP regeneration are the limiting factor: 

𝐴F = 8
G
H
F @5–	A∗
@5&	JA∗

G for	C3	plants
0.23𝜙 for	C4	plants

	          (13) 

where J (μmol m–2 s–1) is the electron transport rate, and ϕ (W m–2) is the absorbed PAR for either sunlit (ϕsun) or shaded (ϕsha) 10 

leaves as calculated by the canopy radiative transfer model (Sect. 2.2.2). For C3 plants, J is determined by ϕ as well, and is 

determined as the smaller of the two roots of the quadratic equation: 

ΘPSII	𝐽J − (𝐼PSII + 𝐽max)	𝐽 + 𝐼PSII	𝐽max = 0         (14)  

where Jmax (μmol m–2 s–1) is the maximum potential rate of electron transport; Θ = 0.7 is the curvature parameter; IPSII (μmol 

m–2 s–1) is the light utilized in electron transport by photosystem II, determined by:  15 

𝐼PSII = 2.3ΦPSII	𝜙            (15)  

where ΦPSII = 0.85 is the quantum yield of photosystem II. 

(iii) The product-limited photosynthetic rate (Ap, μmol CO2 m–2 s–1) represents the limitation from the regeneration rate of 

photosynthetic phosphate compounds: 

𝐴M = 8
3	𝑇M for	C3	plants
𝑘N

@5
O:;<

for	C4	plants	          (16) 20 

where Tp is the triose phosphate utilization rate (μmol m–2 s–1), Patm (Pa) is the ambient atmospheric pressure, and kp is the 

initial slope of CO2 response curve for C4 plants. The model considers colimitation (Collatz et al., 1991; Collatz et al., 1992), 

and the leaf-level gross photosynthesis rate (A, μmol CO2 m–2 s–1) is given by the smaller root of the equations: 

Θcj𝐴iJ − N𝐴c + 𝐴jO𝐴i + 𝐴c𝐴j = 0          (17) 

Θip𝐴J − N𝐴i + 𝐴pO𝐴 + 𝐴i𝐴p = 0  25 

The net photosynthesis rate (An, μmol CO2 m–2 s–1) is then: 

𝐴S = 𝐴 − 𝑅T             (18) 
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𝑅T =

⎩
⎪
⎨

⎪
⎧ 0.015	𝑉@U5V

𝑓W=(𝑇X)
𝑓Y7<:>(𝑇X)

for	C3	plants

0.025	𝑉<=>? V
(1 + exp[𝑠,(𝑇X − 𝑠J)])(1 + exp[𝑠Z(𝑇X − 𝑠H)])

1 + exp[𝑠:(𝑇X − 𝑠[)]
Z for	C4	plants

 

where Rd (μmol CO2 m–2 s–1) is the dark respiration rate; s1, s3 and s5 are 0.3, 0.2 and 1.3 K, respectively; s2, s4, and s6 and 

313.15, 288.15, and 328.15 K–1, respectively; Tv is leaf temperature (K); and 𝑓W=(𝑇X) and 𝑓Y7<:>(𝑇X) are functions to adjust for 

variations due to temperature (Bonan et al., 2011). All of the parameters (Vcmax, Jmax, Tp, Rd, Kc, Ko, Γ*, kp) are temperature-

dependent and scale with their respective PFT-specific standard values at 25°C by different formulations. Temperature 5 

acclimation of Vcmax and Jmax from the previous 10 days as well as daylength dependence of Vcmax is implemented as default 

options. These are all detailed in Sect. 8.2 and 8.3 of Oleson et al. (2013). 

 

The calculation of photosynthesis rates described above is coupled with that of stomatal conductance of water (gs, m s–1) 

following the formulation of Ball et al. (1987) with m and b being the slope and intercept parameters derived from empirical 10 

data: 

𝑔\ = 𝛼 V𝑚	𝐴S
?@
A@:;
B@

C:;<

+ 𝑏Z	           (19) 

where gs is controlled by the leaf surface CO2 partial pressure cs (Pa), leaf surface water vapor pressure es (Pa) and temperature-

dependent saturation vapor pressure esat (Pa); m = 9 and b = 10000 μmol m–2 s–1 for C3 plants, and m = 4 and b = 40000 μmol 

m–2 s–1 for C3 plants; the factor α converts the unit of conductances from μmol H2O m–2 s–1, which is more common in 15 

ecophysiology literature, to m s–1, which is common in atmospheric science literature: 

𝛼 = ,8+DWuni]atm
Oatm

            (20) 

where Runi = 8.314468 J K–1 mol–1 is the universal gas constant, and θatm (K) is the ambient atmospheric potential temperature. 

An alternative stomatal conductance scheme (Medlyn et al., 2011; Franks et al., 2017) is also implemented: 

𝑔\ = 𝛼 _1.6 F1 + U
√VPD

G aG
B@

C:;<

+ 𝑏a          (21) 20 

where VPD = 0.001(esat – es) (kPa) is the vapor pressure deficit, m has PFT-specific values consistent with CLM5.0 (Sect. 9.3 

of Lawrence et al., 2020) , and b = 100 μmol m–2 s–1. Photosynthesis and stomatal conductance are further related by the 

diffusive flux equations for CO2 and water vapor: 

𝐴n =
,
b
F,.H
cb
+ ,.[

cs
G
-, @a-@i

Oatm
= cb

,.Hb
@a-@s
Oatm

= cs
,.[b

@s-@i
Oatm

        (22) 

𝐸′ = ,
b
F ,
cb
+ ,

cs
G
-, .a-.i

Oatm
= cb

b
.a-.s
Oatm

= cs
b
.s-.i
Oatm

         (23) 25 

where ca (Pa) and ea (Pa) are the canopy air CO2 partial and water vapor pressure, ei (Pa) is the saturation vapor pressure at the 

leaf temperature, E' (μmol H2O m–2 s–1) is the transpiration flux, and gb (m s–1) is the leaf boundary layer conductance: 
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𝑔b = 𝐶ve
f∗
gl

            (24) 

The photosynthesis-stomatal conductance model considers limitation arising from soil water stress. A soil water stress factor 

(βt) scales the photosynthesis rate and stomatal conductance, being multiplied directly to A, Rd in Eq. (18) and b in Eq. (19) or 

Eq. (21) above to account for soil water stress (Porporato et al., 2001; Verhoef and Egea, 2014). To compute βt, we consider a 

two-layer soil model consisting of a topsoil layer (0–5 cm) and a root zone beneath the top soil (5–100 cm), consistent with 5 

and constrained by the input soil moisture and model structure of MERRA-2. First, the soil matric potential in each layer i, ψi 

(mm), that represents water availability in ecophysiological terms is evaluated as a function of soil wetness (si) and soil type: 

𝜓h = 𝜓\>i,h𝑠h-kJ            (25)  

where ψsat,i and Bi refer to the saturated soil matric potential and soil water characteristic parameter, respectively, both 

depending on soil texture. A wilting factor, wi, is formulated as a function of ψi as well as ψc and ψo (Table S2), which refer to 10 

the matric potential at which stomatal closure and stomatal opening occur to the full extent, respectively: 

𝑤h = h

1			for	𝜓h > 𝜓l		
m7	-	mJ	
m7	-	m9

		for	𝜓< ≤ 𝜓h ≤ 𝜓l
0			for	𝜓h < 𝜓<

          (26)  

The function βt is then the average of the wilting factors weighted by the PFT-specific root fraction (ri) in each layer: 

𝛽n = ∑ 𝑤h𝑟hJ
ho,             (27)  

A single-layer bulk soil formulation considering only the root zone (0–100 cm) is also implemented, but is found to be inferior 15 

to the two-layer formulation in terms of reproducing observed GPP in semiarid locations (Lam and Tai, 2020). 

 

The above equations calculate photosynthesis and conductance at the leaf level only, and appropriate scaling to account for 

vertical variation in leaf nitrogen content, light attenuation and sunlit vs. shaded leaves is needed to obtain the canopy-level 

photosynthesis (i.e., GPP) and conductance. This is done by scaling Vcmax and other parameters as follows: 20 

𝑉cmax,	sun = 𝑉cmax,	top
,-.+K,L2,-MLAI

/L&/-

,
LAIsun

         (28)  

𝑉cmax,	sha = 𝑉cmax,	top o
,-.+,LLAI

/L
− ,-.+K,L2,-MLAI

/L&/-
p ,
LAIsha

        (29)  

where Vcmax, sun and Vcmax, sha are the canopy-averaged leaf-level values for Vcmax for sunlit and shaded leaves, respectively, 

which are used to compute leaf-level photosynthesis and stomatal conductance for sunlit and shaded leaves separately (Asun, 

Asha, gssun, gssha) from the equations above. Kn = 0.30 is the canopy decay coefficient for nitrogen, calculated and calibrated to 25 

match an explicit multi-layer canopy (Bonan et al., 2012; Oleson et al., 2013). Vcmax, top is the PFT-specific value for Vcmax for 

the top of the canopy; Kb, LAIsun and LAIsha are computed from the canopy radiative transfer model (Sect. 2.2.2). Other 

parameters Jmax, Tp, kp and Rd scale similarly. 

 



11 
 

Canopy photosynthesis rate (i.e., GPP, μmol CO2 m–2 s–1) and canopy conductance (gcan, m s–1) per unit land area of a given 

PFT are then: 

GPP = 𝐴sunLAIsun + 𝐴shaLAIsha          (30)  

𝑔can = F ,
cb
+ ,

cssun
G
-,
LAIsun + F

,
cb
+ ,

cssha
G
-,
LAIsha        (31) 

The grid cell-averaged values are obtained by weighting the PFT-level values by the PFT fractional coverage of the grid cell. 5 

 

2.2.4 Canopy and surface layer aerodynamics 

The canopy photosynthesis and conductance calculation above require micrometeorological variables (e.g., temperature T, 

specific humidity q) of the canopy air as inputs. The default approach for global and regional gridded simulations is to use 

reanalyzed meteorological variables at 2 m above the zero-plane displacement height (i.e., T2m, q2m) as the proxies for canopy 10 

air conditions. The default approach for site simulations is to directly use the measured micrometeorological variables 

regardless of the measurement height. We also implement an option to infer canopy air conditions from micrometeorological 

variables at any reference height (zref, m) above the zero-plane displacement height (e.g., zref = 10 m in the MERRA-2 reanalysis 

product) based on Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov, 1954), which relates the stability of the 

surface layer to the generation and suppression of turbulence through the Obuhkov length: 15 

𝐿rstu =
-v@pf∗O]
wcx

            (32)  

where ρ (kg m–3) is the density of moist air (we use the value at zref), θ (K) is the potential temperature (we use T2m as a proxy), 

H (W m–2) is the sensible heat flux, cp (J kg–1 K–1) is the heat capacity of air at constant pressure, k = 0.4 is the von Kármán 

constant, and g = 9.80616 m s–2 is the gravitational acceleration. The friction velocity u* (m s–1) is either provided as input or 

inferred iteratively from the wind speed at the reference height uref (m s–1): 20 

𝑢∗ = 𝑘𝑢ref tln F
zref&z0m
z0m

G − 𝜓m F
zref&z0m
{Obuk

G + 𝜓m F
z0m
{Obuk

Gu
-,

       (33)  

where z0m (m) is the roughness length for momentum, and the function ψm(x) for momentum flux follows the formulation of 

Zeng et al. (1998), consistent with the implementation in CLM4.5. The aerodynamic conductance (gah, m s–1) for heat, water 

vapor and other chemical species (e.g., ozone) between the reference height zref and the surface (treated as the zero-

displacement height and where the canopy air is) is then: 25 

𝑔ah = 𝑘𝑢∗ tln F
zref&z0m
z0h

G − 𝜓h F
zref&z0m
{Obuk

G + 𝜓h F
z0h
{Obuk

Gu
-,

       (34)  

where z0h (m) is the roughness length for heat, water vapor and other chemical species, and the function ψh(x) for heat and 

other material fluxes also follows the formulation of Zeng et al. (1998). Canopy air potential temperature (θa, K) and specific 

humidity (qa, kg kg–1) can then be inferred as: 

𝜃a = 𝜃ref +
x

v@pcah
            (35)  30 
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𝑞a = 𝑞ref +
|

vcah
            (36)  

where θref (K) and qref (kg kg–1) are the potential temperature and specific heat capacity at zref, and E (kg m–2 s–1) is the 

evapotranspiration flux. 

 

For the computation of ozone damage and dry deposition fluxes (Sect. 2.2.5, 2.2.6), gah is also needed and computed either 5 

using the default formulation above, or an alternative formulation that is consistent with the default dry deposition scheme in 

GEOS-Chem (Wesely, 1989; Wang et al., 1998). 

 

2.2.5 Ozone damage  

Two ozone (O3) damage schemes are implemented in TEMIR, which considers the responses of vegetation in terms of 10 

photosynthesis and stomatal conductance. The first O3 damage scheme follows Sitch et al. (2007) and considers two levels of 

O3 sensitivity (high and low) for each of the five major plant groups, namely, “broadleaf”, “needleleaf”, “shrub”, “C3 grass”, 

“C4 grass” as defined by Karlsson et al. (2004) and Pleijel et al. (2004). These groups are mapped to the default TEMIR PFTs 

accordingly. The scheme represents O3 damage by an O3 impact factor (f) that is dependent on the instantaneous stomatal O3 

flux into the leaf interior: 15 

𝑓 = 1 − 𝑎	max oz [O3]
cah
+U&cb

+U&wO3cs
+U − 𝐹crit| , 0p        (37)  

where [O3] (nmol m–3) is the O3 concentration observed or of the lowest atmospheric model layer; the aerodynamic, leaf 

boundary layer and stomatal conductances are calculated using the formulations in the previous sections; kO3 = 1.67 as defined 

by Sitch et al. (2007) is the ratio of the leaf resistance for O3 to that for water vapor; Fcrit represents a critical threshold 

accounting for O3 tolerance, below which instantaneous O3 exposure does not affect photosynthesis, and Fcrit = 1.6 nmol m–2 20 

s–1 for woody PFTs and Fcrit = 5 nmol m–2 s–1 for grass PFTs; the O3 sensitivity parameter a (nmol–1 m2 s) is specific to the 

plant group and to the two levels of O3 sensitivity. Factor f is multiplied directly to the net photosynthesis rate An to represent 

O3 damage, which then indirectly affects gs via the coupling between An and gs; since the calculation of f requires gs, the three 

variables f, An and gs need to be solved together by numerical iterations. Noniterative methods give insignificance differences 

in performance. 25 

The second scheme follows (Lombardozzi et al., 2012; Lombardozzi et al., 2015) scheme and considers three O3 sensitivity 

levels (high, average and low) for each of the three major plant groups, namely, “broadleaf”, “needleleaf” and “grasses and 

crops”, which are mapped to the default TEMIR PFTs accordingly. Unlike the Sitch et al. (2007) scheme, O3 damage is 

characterized by the cumulative uptake of O3 (CUO, mmol m–2) instead of instantaneous O3 uptake, which is parameterized as 

the sum of the instantaneous stomatal O3 flux over the lifetime of the leaf: 30 
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CUO =	10-[∑z [O3]
cah
+U&cb

+U&wO3cs
+U − 𝐹crit| Δ𝑡         (38)  

where ∆t (s) is the model timestep; the critical threshold to account for O3 tolerance is set to be Fcrit = 0.8 nmol m–2 s–1 and 

CUO is only calculated when the LAI of the PFT concerned is larger than 0.5 to avoid unrealistically high CUO (Lombardozzi 

et al., 2012). Another important difference from Sitch et al. (2007) is that O3 damage alter photosynthesis and stomatal 

conductance separately using two different sets of O3 impact factors, fp and fc, respectively: 5 

𝑓M =	𝑎MCUO + 𝑏M           (39)  

𝑓< =	𝑎<CUO + 𝑏<            (40)  

where the intercepts bp, bc and slopes ap, ac are determined empirically for the three plant groups (Lombardozzi et al., 2015). 

Factors fp and fc are multiplied separately to An and gs, respectively, after the iterative calculation of An and gs. 

 10 

2.2.6 Dry deposition 

We implement two major dry deposition schemes: Zhang et al. (2003) scheme used in several Canadian and American air 

quality models, and Wesely (1989) scheme widely used in many chemical transport models including WRF-Chem and GEOS-

Chem. In each of the two schemes, the default stomatal conductance scheme is a semi-empirical formulation that is not coupled 

to plant ecophysiology; the default canopy radiative transfer and aerodynamic conductance also follow formulations that are 15 

different from the default TEMIR schemes described above. We implement options such that ecophysiology-based stomatal 

conductance (gs) computed from the photosynthesis model above (Sect. 2.2.3), as well as canopy radiative transfer (ϕsun, ϕsha, 

LAIsun, LAIsha; Sect. 2.2.2) and aerodynamic conductance (gah; Sect. 2.2.4), can be used to replace the default options in the 

dry deposition schemes. A full evaluation of dry deposition velocities and fluxes computed by TEMIR using different 

combinations of schemes against O3 flux observations has been conducted by Sun et al. (2022). Tai et al. (2021) also evaluated 20 

how the dry-depositional fluxes of O3 can affect global crop yields by integrating TEMIR with the Deposition of O3 for 

Stomatal Exchange (DO3SE) model (https://www.sei.org/projects-and-tools/tools/do3se-deposition-ozone-stomatal- 

exchange/). 

3 Observational datasets for model evaluation  

3.1 Site-level dataset 25 

Site-level comparison utilizes the eddy covariance measurements from the flux tower sites of the FLUXNET network 

(https://fluxnet.fluxdata.org). The latest released dataset, FLUXNET2015, contains half-hourly or hourly measurements of 

carbon fluxes and various meteorological observations. Each site is classified to contain one PFT that follows the classes 

described in the International Geosphere Biosphere Program Data and Information System (IGBP-DIS) DISCover land cover 

dataset (Loveland and Belward, 1997). 30 

https://fluxnet.fluxdata.org/
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Data after year 2009 from FLUXNET is used for model validation, taking into account data quality using the FLUXNET 

quality flags for each meteorological variable measured. TEMIR follows the PFT classes of CLM4.5, which are defined 

differently to the IGBP-DIS scheme, so additional identification and matching of the PFT classes is performed based on the 

forest composition information provided as far as possible in the FLUXNET database, as shown in Table S1 in the 5 

Supplemental Information. Overall, five sites have mismatched PFTs where the TEMIR outputs do not contain the 

corresponding PFT classes specified by FLUXNET. Thus, a total of 49 sites were used for comparison as listed in Table S3 

whereby most are in the Northern Hemisphere. 14 sites are evergreen needleleaf forests (ENF), 2 are evergreen broadleaf 

forests (EBF), 6 are deciduous broadleaf forests (DBF), which together account for almost half of the total number of sites. 

The rest of the 27 sites are 1 open shrubland (OSH), 16 grasslands (GRA) and 10 croplands (CRO). The GPP products provided 10 

by FLUXNET are derived by partitioning from the net ecosystem exchange (NEE) that is directly measured by the flux towers, 

using two partitioning methods: one utilizing daytime data only as described by Lasslop et al. (2010) and the other utilizing 

the nighttime approach according to Reichstein et al. (2005). A major difference in the GPP products partitioned using these 

two methods is that the nighttime approach for some extreme events such as droughts gives negative GPP, which is not 

physical. The NEE of the dataset is also produced using two methods that consider constant vs. variable friction velocity 15 

thresholds to filter NEE accordingly. The FLUXNET GPP product used in our comparison is the mean GPP product partitioned 

using the daytime method with the variable friction velocity threshold denoted as GPP_DT_VUT_MEAN in the FLUXNET 

database. 

 

3.2 Global-scale dataset 20 

We use the solar-induced induced chlorophyll fluorescence (SIF) inferred GPP product derived by Li and Xiao (2019) for 

global validation. SIF-based GPP products rely on the correlation of SIF with GPP where there is a  good representation (e.g., 

Shekhar et al., 2022). The global GPP dataset derived by Li and Xiao (2019) is based on the global SIF product from Orbiting 

Carbon Observatory-2 (OCO-2), namely GOSIF, and on the relationships between SIF and site-level observed GPP (Li et al., 

2018). The resulting dataset has a spatial resolution of 0.05° and a monthly temporal resolution. For model validation, GOSIF 25 

GPP is regridded to a resolution of 2°×2.5° and grid cells with zero GPP are excluded. 

4 Model and simulation setup  

4.1 Site-level simulations with TEMIR 

For each of the 49 FLUXNET sites (Table S3) beginning from year 2009, simulations shown in Table 1 are conducted for 

model-observation comparison, with ambient CO2 concentration kept constant at 390 ppmv. The first is to use the default 30 

surface meteorological fields prescribed from MERRA-2 at 2°×2.5° horizontal resolution consistent with the GEOS-Chem 
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simulations described above. We also test turning on and off the option of using MOST to infer in-canopy micrometeorological 

variables from the prescribed meteorology at 2 m above displacement height, as described in Sect. 2.2.4. The second set is to 

use direct micrometeorological measurements available from the FLUXNET site towers as the driving meteorology and the 

default MERRA-2 meteorology used only to replace any missing or low-quality data. The results simulated are most relevant 

for evaluating model performance in reproducing the observed diurnal and seasonal cycle of GPP from each FLUXNET site. 5 

 
Table 1: TEMIR simulation settings for selected FLUXNET sites. 

Simulation Meteorology Monin-Obukhov (MOST) Setting 

TEMIR_FLUX FLUXNET Off 

TEMIR_MO_off MERRA-2 Off 

TEMIR_MO_on MERRA-2 On 

 

4.2 Global simulations with TEMIR 

Global simulations from 2010 to 2015 are conducted under the same general setup as the site-level simulations, with ambient 10 

CO2 concentration fixed at 390 ppmv and driven by 2°×2.5° MERRA-2 surface meteorology. A full list of MERRA-2 variables 

required for running gridded simulations of TEMIR is shown in Table S5. Functionalities of the model are tested for 

performance, as shown in Table 2, the MOST option to infer in-canopy conditions and the Sitch O3 damage scheme with low 

and high sensitivity to assess the global O3 impact on vegetation. We use GEOS-Chem (Sect. 2.1) to simulate tropospheric O3, 

starting from year 2009 to 2015 whereby the first year of simulation is considered as spin-up. The simulation uses the 15 

comprehensive chemistry scheme “tropchem”, which has tropospheric O3-NOx-VOC-aerosol chemistry accompanied by the 

default emission inventories (i.e., anthropogenic emissions from CEDS, Hoesly et al., 2018; and biogenic emissions from 

MEGAN, Guenther et al., 2012). The reanalyzed meteorological fields used are from MERRA-2 supplied by GMAO at 2°×2.5° 

horizontal resolution, which are the identical meteorological inputs used in TEMIR. Simulated O3 concentrations at the lowest 

surface level are then fed into TEMIR as inputs accordingly. The results produced from these simulations (Table 2) are used 20 

to validate the spatial variability of seasonal and annual averages across the whole world against the GOSIF GPP dataset (Sect. 

3.2). To retain representative results from all simulations (Table 2), grid cells with LAI < 0.5 are excluded. Transient LAI 

dataset for the simulation is from MODIS satellite data (Lawrence and Chase, 2007) and assimilated by Yuan et al. (2011). 

PFT distributional and structural data are regridded to the resolution of MERRA-2 data for TEMIR simulations. We also note 

that as the model mechanisms are essentially resolution-independent, the model can be straightforwardly modified to conduct 25 

simulations at higher resolutions as long as the corresponding input data are provided. 

 
Table 2: TEMIR simulation settings for global simulation for years 2010–2015. 
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Simulation Sitch O3 Damage Scheme Sensitivity Monin-Obukhov (MOST) Setting 

TEMIR_MO_off Off Off 
TEMIR_MO_on Off On 

TEMIR_Sl Low Off 

TEMIR_Sh High Off 

 

4.2.1 Global CO2-O3 factorial simulations with TEMIR 

We perform factorial simulations (Table 3) to investigate the effects of CO2 fertilization, O3 damage and their interactions on 

global primary productivity as an example to showcase the utility of the model. Global O3 surface concentrations of year 2000 

are simulated using GEOS-Chem (Sect. 2.1) with year 1999 used as spin up; other settings are as described in Sect. 4.2. CO2 5 

concentrations are changed in TEMIR as required for each simulation (Table 3) with reference to year-2000 and year-2010 

concentrations (Dlugokencky and Tans, 2022). Sitch O3 damage scheme with high sensitivity is used for TEMIR simulations 

(Table 3) when global surface O3 concentrations are used as inputs; otherwise no O3 damage scheme is used. Year-2000 

meteorological fields MERRA-2 are used for all GEOS-Chem and TEMIR simulations. LAI is fixed at year 2000 from MODIS 

for all GEOS-Chem and TEMIR simulations. 10 

 
Table 3: Factorial simulation settings. “N/A” for O3 year indicates that no O3 damage scheme is used. 

Simulation CO2 (ppmv) O3 Year Meteorology Year 

C0_O0 370 N/A 

2000 
C1_O0 390 N/A 

C0_O1 370 2000 

C1_O1 390 2000 

5 Model evaluation  

Statistics used for model validation are the adjusted coefficient of determination R2, the modified Nash–Sutcliffe model 

efficiency coefficient N and the normalized mean bias B. R2 is a commonly used metric with a range of 0 to 1 (or 0–100%) 15 

that represents the fraction of variability of observations that can be replicated by the model, whereby 1 indicates perfect 

correlation and 0 indicates no correlation. N addresses the sensitivity issues of R2 documented by Legates and McCabe (1999). 

With values from negative infinity to 1, it is a measure of the suitability of the model as a predictor instead of using the mean 

of the observations. When N = 1, it indicates that the model perfectly replicates observations, and no preference is observed 

between the model and the mean of the observations as a predictor. Negative values in turn signify the incapability of the 20 
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model in predicting system behaviors. B gives the relative difference of the magnitude of model results from the observations. 

The equations to compute these statistics are shown in Table 4 below. 

 
Table 4: Statistical metrics for TEMIR model validation, where M and O respectively represent the simulated dataset and 
observational dataset, each containing n data points. M̄ and Ō represent the means of the datasets in question. 5 

Metric Mathematical equation Range 

Coefficient of Determination R2 𝑅J =

⎝

⎛ ∑ (𝑀h −𝑀�)(𝑂h − 𝑂�)�
ho,

e∑ (𝑀h −𝑀�)J�
ho, ∑ (𝑂h − 𝑂�)J�

ho, ⎠

⎞

J

 
0	to	1 

(0	to	100%) 

Modified Nash–Sutcliffe Model 

Efficiency Coefficient N 
𝑁 = 1 −

∑ |𝑂h −𝑀h|�
ho,

∑ |𝑂h − 𝑂�|�
ho,

 −∞	to	1 

Normalized Mean Bias B 𝐵 =
𝑀�
𝑂�
− 1 −∞	to	∞ 

 

5.1 Site-level validation 

5.1.1 Validation on summer diurnal cycle  

Figure 1 shows the statistical metrics (Table 4) used to perform model-observation comparison for the diurnal GPP cycle 

calculated for each FLUXNET site taken from the second summer month of year 2012, which corresponds to the month of 10 

July for sites in the Northern Hemisphere and January in the Southern Hemisphere (Table S3). Comparing between the 

simulations with FLUXNET local meteorology and MERRA-2 meteorology (Figure 1), statistical metrics generally do not 

differ substantially, but some significant differences can exist for some sites (e.g., CH-Cha, CH-Dav; see Figure 3) where 

results from simulations with FLUXNET local meteorology show higher correlations. For simulations solely driven by 

MERRA-2 meteorology, inferring in-canopy meteorology using Monin-Obukhov similarity theory (Figure 1(c)) gives 15 

insignificant differences for all sites. 
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Figure 1: Statistical metrics (Table 4) for model-observation comparison for diurnal gross primary product (GPP) from simulations 
(a) TEMIR_FLUX, (b) TEMIR_MO_off and (c) TEMIR_MO_on as described in Table 1. 

 

Figure 2 shows the statistical metrics (Table 4) for model-observation comparison for the simulations using FLUXNET local 5 

meteorology as the driving meteorological input for different PFTs. The average correlations per PFT between observed and 

simulated GPP (Figure 2) are high (R2 > 0.88), except for open shrubland (R2 » 0.7). B shows a large variability due to various 

limitations of the model for each PFT. For forest sites, B generally has a smaller range and lower absolute mean values in 

comparison to the other PFTs, showcasing the better performance of TEMIR for forests. N shows similar behaviors, namely, 

the prediction for forest sites is satisfactory with mean values of N larger than 0.55, whereas N is mostly negative for grasslands, 10 

croplands and open shrublands. All plots of diurnal cycles are shown in the Supplementary Materials, with relevant figures 

also included in the following discussion. 

 

 

 15 
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Figure 2: Statistical metrics (Table 4) for model-observation comparison for diurnal gross primary product (GPP) from 
TEMIR_FLUX simulation (Table 1) for each plant functional type (PFT) listed in Table S1: (a) evergreen needleleaf forest (ENF), 
(b) evergreen broadleaf forest (EBF), (c) deciduous broadleaf forest (DBF), (d) open shrubland (OSH), (e) grassland (GRA), (f) 
cropland (CRO). 5 
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We find that the correlations are above 90% (Figure 2(e)) for all grassland sites (e.g. AU-How, Figure 3(a); IT-MBo, Figure 

3(b); CZ-wet, Figure 3(c)). Yet the spread of B is large, where we see absolute B values greater than +0.6 for six of the 16 

sites, and the rest with absolute B less than 0.3. Overestimation of CH-Cha (Figure 3(d)) is similar under FLUXNET 

meteorology, which is likely due to disturbances from intensive site management (i.e., cutting, slurry application and grazing, 5 

Imer et al., 2013; Merbold et al., 2014), which is a shortcoming of simplistic model representation for crops. A possible 

explanation for the high B values is the fire-prone nature of these sites (i.e., AU-Stp, Figure 3(e)) (Beringer et al., 2007; 

Beringer et al., 2011; Hutley et al., 2011; Haverd et al., 2013) whereby the model is incapable of resolving such complexities 

as turnover and local disturbances. Another cause of overestimation is the simplistic and generic PFT classification for such 

biomes, which are usually sparsely populated yet with much diversity, as in the open shrubland site ES-LJu (Figure 3(f)) 10 

(Serrano-Ortiz et al., 2009). Such generalization can also cause systematic inaccuracies in parameterization, where model 

parameters are better suited for European semiarid vegetation (e.g., CH-Fru, Imer et al. (2013); IT-MBo, Figure 3(b), Marcolla 

et al. (2011); CZ-wet, Figure 3(c), Dušek et al. (2012)) than similar sites of other regions (e.g., AU-Dry, Hutley et al. (2011); 

RU-Sam, Figure 3(g), Boike et al. (2013); US-SRG, Scott et al. (2015)). 

 15 

Simulated results for forest PFTs compare very well with observations, where N values are often greater than 0.5. TEMIR 

performs particularly well for evergreen needleleaf forests as seen in sites DE-Tha (Figure 3(h)), FI-Hyy (Figure 3(i)) and NL-

Loo (Figure 3(j)), which are mostly populated by mature Scots pine forests of over 70 years old. Sites CA-TP1 (Figure 3(k)), 

CA-TP3 (Peichl et al., 2010; Arain et al., 2022) and DE-Lkb (Lindauer et al., 2014) are overestimated by the model as these 

forests are dominated by eastern white pine and Norway spruce that are less than 20 years old, so optimal productivity might 20 

not have been achieved. In comparison, the neighboring site CA-TP4 (Figure 3(l); Peichl et al. (2010)) with over 70-year-old 

eastern white pine is better replicated by the model. The model has better performance with respect to site observations when 

using FLUXNET local meteorology (e.g., CH-Dav, Figure 3(m); Zielis et al. (2014)), though the differences are insignificant 

for most sites. For deciduous broadleaf forest sites, although represented well overall, there is a systematic underestimation 

(e.g., FR-Fon, Figure 3(n)), most likely due to inaccurate parameterization overcompensating for the uncertainties of satellite-25 

derived LAI for broadleaf trees. The multi-year drought in the US over the 2010s, which hinders plant productivity (Wolf et 

al., 2016; Xu et al., 2020), appears to improve model agreement by reducing the discrepancy (i.e., US-Oho and US-UMB) and 

even giving a positive model bias (i.e., US-MMS, Figure 3(o); Yi et al. (2017)). 

 

The correlation for croplands is high but there is a spread in B giving varying N values. The range of model performance 30 

among cropland sites shows the limitation of the simplistic crop representation used in this version of TEMIR, whereby site-

level settings such as planting seasons and agricultural management (e.g., fertilizer usage, irrigation and possible rotations 

between crop types and cultivars) are not considered. The generic crop representation fails to capture the maximum 

photosynthetic capacity of the planted crops. For example, site US-Ne1 has irrigated maize that has much higher GPP 
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compared to the simulated generic crop as shown in Figure 3(p); site DE-Kli (Figure 3(q)) has a 5-year crop rotation with 

occasional fertilizer application (Prescher et al., 2010) and has higher productivity than simulated by the model. 

 

 
Figure 3: Diurnal averaged gross primary productivity of selected sites representative of their respective vegetation types (a) AU-5 
How, (b) IT-MBo, (c) CZ-wet, (d) CH-Cha, (e) AU-Stp, (f) ES-LJu, (g) RU-Sam, (h) DE-Tha, (i) FI-Hyy, (j) NL-Loo, (k) CA-TP1, 
(l) CA-TP4, (m) CH-Dav, (n) FR-Fon, (o) US-MMS, (p) US-Ne1, and (q) DE-Kli from simulations described in Table 1 with relevant 
site information annotated. More details of these sites are given in Table S3. 
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5.1.2 Validation on seasonal cycle 

Figure 4 shows the statistical metrics (Table 4) for monthly GPP averages of 2009–2013 to examine the model performance 

in seasonal GPP cycle. All plots of monthly cycles are shown in the Supplementary Materials, with plots of selected sites 

included in the following discussion. The model generally performs worse in capturing the seasonal cycle than the diurnal 

cycle. Between the different settings of meteorology used for simulations (Figure 4), the differences in statistics are small. 5 

MERRA-2 meteorology shows good utility for most sites, with in-canopy meteorology inferred using Monin-Obukhov 

similarity theory improving correlation for some sites. FLUXNET local meteorology gives the smallest range of biases with 

performance similar to MERRA-2 meteorology simulations. 

 

 10 
Figure 4: Statistical metrics (Table 4) of monthly gross primary product (GPP) from simulations (a) TEMIR_FLUX, (b) 
TEMIR_MO_off and (c) TEMIR_MO_on as described in Table 1. 

 

Comparing Figure 2 and Figure 5, model-observation comparison of monthly averages gives lower values of R2 for all sites in 

general. On the other hand, biases are distributed more evenly across the range with smaller extreme values compared to the 15 

biases from diurnal simulations. In terms of N, the model is less adept in reproducing seasonal variations (due to the reductions 

in correlation) regardless of the driving meteorology chosen. Figure 5(c) shows that deciduous broadleaf sites (e.g., US-MMS; 

Figure 6(a)) gives R2 > 0.85 with the maximum absolute B = +0.54, and minimum N = 0.42 with a mean of 0.9. Monthly 

performance of forest sites shows a smaller range in B and lower absolute mean values of B in comparison to the other PFTs 

(Figure 5). The prediction for forest sites is satisfactory with mean values of N larger than 0.65 (e.g., RU-Fyo in Figure 6(b); 20 

CA-TP4 in Figure 6(c)), and monthly GPP inaccuracies for forest sites can be explained with similar reasoning as discussed 

in Sect. 5.1.1. 

 

The correlation for grasslands is above 75% for most sites (e.g., DE-Akm in Figure 6(d); IT-MBo in Figure 6(e)) while sites 

AU-How (Figure 6(f)) and AU-Stp have R2 below 0.4. These sites are known to have fires occurring in the dry winter and 25 
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spring from May to October, which corresponds to the low productivities (Beringer et al., 2007; Beringer et al., 2011; Hutley 

et al., 2011; Haverd et al., 2013). Moreover, such disturbances on LAI with vegetation regrowth are complex and often 

overlooked by the model as shown in simulation of site AU-How with minimal productivity. 

 

The simulation of monthly GPP of croplands shows most clearly the limitations of the generic model approach, as no site-5 

specific crop phenology is available in this version of the model. The simulated seasonal cycle shows a typical annual peak 

usually in summer as dictated by meteorology that in general can yield good correlation (e.g., DE-Geb, Figure 6(g)); yet as 

many sites are intensively managed, the observed GPPs do not follow such simplistic cycle, giving low correlations (e.g., IT-

BCi, Figure 6(h)). The parameters for generic crop usually fail to represent the actual crop planted at the sites, and therefore 

large biases exist in the simulated GPP (e.g., BE-Lon in Figure 6(i)); FR-Gri in Figure 6(j)). GPP is more commonly 10 

underestimated in the US sites (e.g., US-Ne1 in Figure 6(k)) where maize is usually planted and is more productive in 

comparison to other crops. 
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Figure 5: Statistical metrics (Table 4) of monthly averaged gross primary product (GPP) from TEMIR_FLUX simulation (Table 1) 
for each plant functional type (PFT) listed in Table S1: (a) evergreen needleleaf forest (ENF), (b) evergreen broadleaf forest (EBF), 
(c) deciduous broadleaf forest (DBF), (d) open shrubland (OSH), (e) grassland (GRA), (f) cropland (CRO). 
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Figure 6: Monthly averaged gross primary productivity of selected sites representative of their respective vegetation types: (a) US-
MMS, (b) RU-Fyo, (c) CA-TP4, (d) DE-Akm, (e) IT-MBo, (f)  AU-How, (g) DE-Geb, (h) IT-BCi, (i) BE-Lon, (j) FR-Gri, and (k) US-5 
Ne1 from simulations described in Table 1 with relevant site information annotated. 
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5.2 Global validation 

Figure 7 shows that simulated annual averaged GPP of years 2010–2015 is 134.7 Pg C yr–1 from the simulation using MERRA-

2 meteorology (TEMIR_MO_off) (Figure 7(b)), and the simulation with in-canopy meteorology inferred using MOST 

(TEMIR_MO_on) gives GPP over the same period to be 144.7 Pg C yr–1 (Figure 7(c)). Comparing to the satellite-derived 

dataset (GOSIF GPP; Sect. 3.2) where annual GPP of the same period being 128.4 Pg C yr–1 (Figure 7(a)), TEMIR 5 

overestimates global GPP by ~5–10% depending on the input meteorology (Table 5). TEMIR performance is well within and 

leans toward the middle of the observation-constrained range in the literature of 119–175 Pg C yr–1. TEMIR closely agrees 

with models of similar design objectives, e.g., the Yale Interactive terrestrial Biosphere (YIBs) with GPP at 125 ± 3 Pg C yr–1 

(Yue and Unger, 2015) and JULES land surface model estimating GPP at 141 Pg C yr–1 (Slevin et al., 2017). TEMIR can 

largely reproduce the spatial distribution of GPP with respect to GOSIF GPP (Figure 7), with grid cells with mixed savanna 10 

and forests showing larger discrepancies. 

 
Table 5: Gross primary product (GPP) simulated and relevant simulations details of global TEMIR simulations described in Table 

2 and Table 3 (“N/A” for O3 year indicates that no O3 damage scheme is used). 

Simulation Simulation Year(s) CO2 (ppmv) O3 Year GPP (Pg C yr-1) 

TEMIR_MO_off 

2010–2015 

390 N/A 134.7 

TEMIR_MO_on 390 N/A 144.7 

TEMIR_Sl 390 2000 133.6 

TEMIR_Sh 390 2000 131.8 

C0_O0 

2000 

370 N/A 135.2 

C1_O0 390 N/A 138.6 

C0_O1 370 2000 132.7 

C1_O1 390 2000 136.2 

 15 

Figure 8 shows model-observation statistics (Table 4) for the model outputs of Figure 7 in 12 regions. Global correlation of 

6-year averaged GPP is around 83% (Figure 8(b)). In general, correlations are lower for regions closer to the equator, where 

correlations for tropical regions are below 70%, but otherwise above 70% with correlation for Siberia close to 90%. 

Correlation for Tropical Americas is ~75%, which is higher than other equatorial regions. Temperate North America shows a 

correlation of ~60%, which is slower than other regions at midlatitudes. We also see that GPP is underestimated in the grid 20 

cells with high crop density (Figure 7(b)), which, as discussed in Sect. 5.1, is likely due to the generic crop representation of 

the TEMIR version giving poor model performance for this region. Simulated GPP driven by meteorology inferred with 

MOST gives small increases or decreases in regional correlation (e.g., correlation for North Africa and Middle East drops 

from 48% to 45% and correlation for Temperate South America increases from 75% to 78%). 
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Figure 7: (a) Average global gross primary product (GPP) of year 2010 to 2015 from GOSIF GPP product and differences in 
simulated GPP from simulations (b) TEMIR_MO_off or (c) TEMIR_MO_on (Table 1) of year 2010 to 2015 compared to the GOSIF 
product. 5 

 

Absolute biases are mostly within 25% except for North Africa and Middle East and Sub-Saharan Africa (except Central 

Africa) when the driving meteorology is inferred from MOST. Simulated GPP driven by in-canopy meteorology inferred 

with MOST gives more positive biases for all regions, generally around +10%. GPP for 6 of the 12 regions are overestimated 

by TEMIR and otherwise underestimated (Figure 8(b)). Thus, in-canopy meteorology inferred with MOST results in 10 

regional bias changes from underestimation to overestimation for East and South Asia, Europe, Temperate North America, 

and Tropical Americas. The bias for Europe is –6.2% and +1.19% when driving meteorology is inferred with MOST. The 

bias of +1.19% is the smallest absolute bias of any region, which shows the possibility of in-canopy meteorology inferred 

with MOST improving GPP predictions for some but not all regions. 
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Figure 8: (a) Regional division relevant for this study largely following Chen et al. (2017), and (b) the corresponding regional 
statistical metrics (Table 4) of averaged gross primary product (GPP) for years 2010–2015 from TEMIR simulations (Table 2). 
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5.3 Effects of O3 and CO2 on global primary productivity  

Figure 9 shows the simulated results where the Sitch O3 scheme (Sect. 2.2.5) of low sensitivity (Sl) and high sensitivity (Sh) 

are implemented for the years 2010–2015 using MERRA-2 meteorology. Figure 9(a) shows the mean daily 8-hour averaged 

O3 concentration (MDA8), a common surface O3 metric, derived from the simulated hourly O3 concentration at the lowest 

model level affecting global vegetation under the Sitch O3 damage scheme. Global GPP are 133.6 Pg C yr–1 and 131.8 Pg C 5 

yr–1 for Sitch O3 scheme at low and high sensitivity, respectively (Table 5), both of which are smaller than the 134.7 Pg C yr–

1 from the simulation without O3 damage (Figure 7(b)). These global GPP reductions are seemingly small (<1% to ~2%) and 

conceal larger regional changes. Figure 9(c) shows that the Sitch O3 damage scheme at high sensitivity leads to an up to 15% 

reduction in GPP whereas low sensitivity shows modest reductions of about half of those magnitudes. Particularly large O3-

induced damages are in highly populated regions (e.g., eastern US, Europe, central Africa, northern India and East Asia) 10 

associated with high anthropogenic emissions (NOx in particular). Many of these regions also contain arable lands, and thus 

O3 exposure can also affect food security (Feng et al., 2008; Avnery et al., 2011; Emberson et al., 2018; Ainsworth et al., 2020; 

Tai et al., 2021; Leung et al., 2022; Roberts et al., 2022). 

 

Figure 8(b) shows the statistics of Table 4 per region (Figure 8(a)) for simulations with O3 damage. The presence of O3 does 15 

not affect the model-observation correlations significantly for any region; when compared to the correlations of 

TEMIR_MO_off simulation results, correlations from O3 damaged GPP show small differences. O3 damage reduces the model 

overestimation with respect to GOSIF GPP. In particular, for eastern China and Central Africa, implementing O3 damage 

reduces the positive model biases as seen in Figure 7. Underestimation is worsened for the regions of Temperate North America 

and East and South Asia where there is strong O3 damage (Figure 9). 20 
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Figure 9: Mean daily 8-hour averaged (MDA8) O3 concentration of the lowest model layer averaged over years 2010 to 2015; and 
percentage differences in average global GPP of years 2010 to 2015 of the simulated results with Sitch O3 damage scheme at (b) low 
and (c) high sensitivity from the simulation TEMIR_MO_off (Table 2). 

 5 

Figure 10 shows the comparisons between simulations (Table 3) displaying the interplay of CO2 fertilization effects and O3 

damage on GPP. CO2 fertilization (from 370 to 390 ppmv), shown in Figure 10(b), promotes regional productivity by up to 

7%. Global GPP enhancement is ~2% (Table 5), thus simulations estimate rising atmospheric CO2 concentration results in 

global GPP increase of 0.126% ppmv-1. Seen in Figure 10(c), O3-induced regional reductions are up to 15% under the Sitch 

O3 damage scheme at high sensitivity, whereby results are similar to that in Figure 9(c). Figure 10(d) shows the differences in 10 

percentage O3 damage of GPP of the simulation with O3 damage at a CO2 concentration of 390 ppmv from that at 370 ppmv 

(i.e., Fig. 9(c)). The positive values in Fig. 9(d) indicates that the O3-induced GPP reduction is smaller at a higher CO2 

concentration, reflecting the additional benefits of CO2 fertilization from the reduced stomatal conductance, which improves 

water use efficiency and also decreases stomatal O3 uptake thus lessening O3-induced impacts. 

 15 
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Figure 10: Plots showing results from simulations of Table 3: (a) gross primary product (GPP) modeled for year 2000 at a CO2 
concentration of 370 ppmv (C0_O0), (b) percentage changes in GPP showing CO2 fertilization effects of year-2010 CO2 concentration 
at 390 ppm (100% ´ (C1_O0 – C0_O0)/C0_O0), (c) percentage changes in GPP due to O3 damage at high sensitivity of the Sitch O3 
damage scheme for year-2000 modeled O3 concentration and CO2 concentration of 370 ppmv (100% ´ (C0_O1– C0_O0)/C0_O0), 5 
and (d) differences in percentage O3 damage at a CO2 concentration of 390 ppmv from that at 370 ppmv (100% ´ (C1_O1 – 
C1_O0)/C1_O0 – 100% ´ (C0_O1 – C0_O0)/C0_O0), whereby positive values indicate a reduction in percentage O3 damage. 

6 Discussion and conclusions 

In this paper we provide detailed model description of the newly developed Terrestrial Ecosystem Model in R (TEMIR) version 

1.0, which simulates ecophysiological processes and functions (most importantly, photosynthesis and GPP) of terrestrial 10 

ecosystems as represented by different PFTs, driven by prescribed meteorological conditions and atmospheric chemical 

composition. We specifically include the multiple parameterization schemes for stomatal O3 uptake and O3 damage on plants, 

and showcase the utility of TEMIR in evaluating the responses of global primary productivity (GPP) to O3 damage, CO2 

fertilization and their interactions. The productivity simulated at site and global levels reproduces the observed diurnal and 

seasonal cycles well for evergreen needleleaf and deciduous broadleaf forests (especially those that are mature), with an annual 15 

average GPP of 134.7 Pg C yr–1 for years 2010–2015 and a global reduction of up to 2% when O3 damage is considered. This 

is validated against the productivity from the 49 FLUXNET sites and GOSIF GPP. 
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TEMIR-simulated global GPP lies well within the accepted range but the associated large uncertainty is well acknowledged 

in the field (Bonan et al., 2011; Baldocchi et al., 2016; Zhang et al., 2017; Li and Xiao, 2019; Bi et al., 2022; Wild et al., 2022; 

Zhang and Ye, 2022), hence limiting the validity of global GPP model-observation comparison in this study (Sect. 5.2). Site-

level validation may lend more credence by isolating certain PFTs for comparison, albeit being more limited in scope and scale 

unlike global comparisons. Our investigation suggests that possible PFT systematic biases exist generally for diurnal 5 

productivity, which reflect the limitations of having a set prescribed parameters for generalized classes of plant functions 

(Harrison et al., 2021; Seiler et al., 2022; Liu et al., 2023; Wu et al., 2023a). For instance, there is a systematic underestimation 

for deciduous broadleaf forests, though it can be explained by the uncertainties of LAI datasets (Liu et al., 2018; Yang et al., 

2023), and some regions show distinctive physiology and phenology of grasses and shrubs. Particularly for semiarid regions 

where the range of productivity is large, the model shows variable accuracy. In general, variability in prescribed LAI can be 10 

an important source of uncertainty of the model results. Single-site sensitivity simulations show that GPP generally linearly 

increases with LAI at low LAI, but as LAI becomes larger, GPP would increase less than proportionately due to canopy shading 

effect. Such nonlinearity of GPP responses to LAI changes is less important for small perturbations of LAI (e.g., less than 

20%). 

 15 

Simulating crops in ecosystem modeling remains particularly challenging (Deryng et al., 2016; Chopin et al., 2019; Muller 

and Martre, 2019; Boas et al., 2021), as it combines the nuances in phenology, physiology, coverage, and active human 

management with high spatiotemporal variations (Monfreda et al., 2008; Emberson et al., 2018; Ahmed et al., 2022; Gleason 

et al., 2022; Corcoran et al., 2023), which already exist for natural vegetation to a lesser degree. One particular crucial aspect 

for improvement is to get crop LAI correct, which is typically more challenging to measure than trees with large canopies and 20 

often varies to greater extents with leaf orientations for different crops. More long-term ground-based and/or remote-sensing 

measurements of crop LAI for different crop types across the world are particularly recommended, not only as input data but 

also for model validation in future development. For especially site-level simulations, locally relevant crop physiological and 

structural parameters should also be measured and used. Ongoing development has already been attempting to enhance crop 

representation in a version of TEMIR with active crop biogeochemistry (Tai et al., 2021) to improve and reconcile model 25 

inaccuracies. 

 

Incorporating site-level meteorology in simulations can improve performance for a few selected sites but otherwise comparable 

to results from simulations with gridded assimilated meteorology as input. This highlights that generalization and the coarse 

resolution of the MERRA-2 dataset used (due to computational limitation and necessary consistency with other input datasets) 30 

can drastically overlook regional and small-scale nuances. Furthermore, CO2 concentration was kept constant and spatially 

uniform in all simulations, which enables direct comparison with other modeling studies, but ignores possible spatiotemporal 

variability of CO2 concentration (Cheng et al., 2022). Though such effects are usually minor on simulated GPP magnitudes 

(Lee et al., 2018; Tian et al., 2021), uncertainties should be minimized anyhow, thus users are recommended to use the 
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measured CO2 concentration, if available, as input for especially site-level simulations. Users are also recommended to 

recalibrate relevant model parameters with site observations and available datasets (e.g., of higher resolutions), such as LAI, 

Vcmax, PFT fractional coverage, etc., to yield the most accurate results. The nondynamic representation of vegetation cover and 

parametrization is a shortcoming of TEMIR, thus simulations overlook intricate and transient impacts of LULCC on land-

atmosphere exchange (Ganzeveld et al., 2010; Pongratz et al., 2010; Prescher et al., 2010; Chen et al., 2018; Bastos et al., 5 

2020; Hou et al., 2022). With the capacity of the current version of TEMIR, our simulations address these aspects by changing 

the input data of LAI and PFT fractions derived from LULCC, for yearly and higher frequencies. LULCC can drive large 

regional changes, though recent LULCC mostly reduces GPP (due to urbanization, agricultural expansion, and deforestation), 

counteracted partly by CO2 fertilization effects (Wu et al., 2023b), thus the validity of our results is likely unchanged. The 

assumption of sufficient nitrogen availability is a limitation (Sandor et al., 2018) as most non-tropical biomes experience 10 

varying nitrogen limitation (Davies-Barnard et al., 2022; Kou‐Giesbrecht and Arora, 2023), whereby affecting photosynthetic 

capacities (Mason et al., 2022; Wang et al., 2022) and resource allocations in plants and soil (Zhang et al., 2020; Feng et al., 

2023; Lu et al., 2023). Some models have N cycling (Yang et al., 2009; Gerber et al., 2010; Wiltshire et al., 2021; Hidy et al., 

2022) but effects remains minor (Jain et al., 2009; O'Sullivan et al., 2019; Lin et al., 2023) in the recent decade and more 

relevant for assessing future global changes (Tharammal et al., 2018; Franz and Zaehle, 2021). All being said, TEMIR has 15 

great skill in capturing annual and seasonal GPP at the global scale and some productive regions and PFTs, whereby correlation 

is high in the range of 80–90%, showcasing the utility of TEMIR at scales in accordance with the model design. Caution should 

be taken with good knowledge of model preferences and the underlying theoretical assumptions for any given research 

question, especially when concerning multifactor land-atmosphere interactions and vegetation responses to various 

environmental stresses (Kimmins et al., 2008; Zhao et al., 2022; Blanco and Lo, 2023; Rahman et al., 2023). Further 20 

development and validation of the model with detailed observations are crucial to provide more accurate vegetation 

parametrization for specific applications, e.g., to investigate vegetation responses to droughts and heatwaves composition (e.g., 

Yan et al., 2022), especially at the regional and site levels. 

 

The initial motivation and one of the most relevant applications of TEMIR is to address the impacts of O3 pollution and 25 

exposure on terrestrial ecosystem productivity, whereby an active Sitch O3 damage scheme improves model performance with 

respect to GPP. Concerning O3 damage on GPP, there is a good agreement with previous studies in terms of both magnitudes 

and spatial variations (e.g., Lombardozzi et al., 2015; Sitch et al., 2007). For instance, the OCN model (Franz et al., 2017; 

Franz and Zaehle, 2021) simulated that O3 reduces GPP in Europe by ~8% and the JULES land surface model (Slevin et al., 

2017) in the range of 10–20% (Oliver et al., 2018). The Yale Interactive terrestrial Biosphere (YIBs) model (Yue and Unger, 30 

2015) simulated that O3 reduces global GPP by 2–5% with East Asia experiencing damage of 4–10%. Yue and Unger (2014) 

also showed GPP reductions of 4–8% in the eastern US with high episodes giving a higher range to 11–17%. YIBs has the 

capability of synchronous coupling (e.g., GEOS-Chem-YIBs; Lei et al., 2020), which reported similar ranges of GPP 

reductions, globally by 1.5–3.6% and extremes of 11–14% in the eastern US and eastern China. This lends credence to the 
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comparable performance of TEMIR v1.0 that has a more simplistic terrestrial ecosystem with prescribed ecosystem structure 

(noting that active biogeochemistry is in development).  

 

O3 influences in the current version of TEMIR are limited to vegetation physiological and productivity responses. Intra- and 

interspecies differential sensitivity to O3 can cause competition (Agathokleous et al., 2020), affecting some species more than 5 

others in terms of biomass, flowering and seed development, and thus impacting community composition, PFT fractional 

coverage and biodiversity (Calvete-Sogo et al., 2016; Fuhrer et al., 2016; Emberson, 2020). This can also be seen among 

functional groups; e.g., perennial species retains more aboveground biomass than annuals, and angiosperms are more prone to 

O3 damage than gymnosperms, thus giving possible long-term biodiversity effects (Agathokleous et al., 2020). Such effects 

are further also complicated by soil conditions (e.g., water and nitrogen content), and spatial heterogeneity whereby regional 10 

strategies might differ within functional groups requires more studies to obtain observation-based parameterization. 

 

Moreover, synchronous model coupling between a CTM or climate model and a fully prognostic biosphere model with active 

biogeochemistry is particularly suitable for examining O3-vegetation feedbacks (Danabasoglu et al., 2020; Franklin et al., 

2020; Lam et al., 2023), especially for timescales long enough (e.g., multidecadal) for ecosystem structure to co-evolve with 15 

the atmosphere. For instance, Sadiq et al. (2017) and Gong et al. (2021) showed that dynamic O3-vegetation interactions can 

lead to a long-term ecosystem decline and a positive feedback on O3 concentration in China and worldwide, respectively, 

worsening air quality. Zhu et al. (2022) and Jin et al. (2023) found similar positive O3-vegetation feedbacks in China with the 

coupled framework using WRF-Chem and Noah-MP. Yue et al. (2017) also investigated O3-aerosol-vegetation interactions in 

China. TEMIR can only be asynchronously coupled with GEOS-Chem and is not the best tool for investigating two-way O3-20 

vegetation interactions, especially when such interactions relevantly happen within a model time step, but it is particularly 

suitable for estimating first-order effects of O3 pollution on vegetation in a computationally efficient manner. Zhou et al. (2018) 

indeed found that second-order effects of O3 pollution (i.e., additional effects of modified O3 concentrations after feedbacks 

are accounted for) on vegetation are negligible. Moreover, asynchronous coupling between TEMIR and GEOS-Chem, for 

example, and conducting factorial experiments with them can help disentangle complex pathways and feedbacks that are often 25 

convoluted in fully coupled models. 

 

We recognize that the O3 damage scheme in TEMIR does not account for sluggishness in stomatal responses (e.g., Clifton et 

al., 2020; Huntingford et al., 2018), which may modify further O3 uptake, although such effect is expected to be small at the 

resolution relevant for this study. O3 sensitivities also have crop-related inaccuracies due to the generic crop representation in 30 

this version of TEMIR. Such is a common practice in global-scale biosphere models, and Leung et al. (2020) suggested that if 

a study focuses on crop yields, species-specific calibration is required to reduce uncertainty and likely inaccuracies for the 

crops concerned. TEMIR v1.0 on a global scale is not suitable for any crop-focused investigations, but one may use the version 

of TEMIR implemented with additional crop functionalities such as the calculation of phytotoxic O3 dose, taking advantage 
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of the stomatal calculation in TEMIR, and the subsequent estimation of O3-crop impacts (Tai et al., 2021). The utility of 

TEMIR in examining vegetation-mediated dry-depositional sinks of O3 has also been demonstrated (Sun et al., 2022).  

 

Mechanistic representations allow modeling for various meteorological conditions and is invaluable to evaluate 

ecophysiological responses to a changing climate and intermittent climate extremes (e.g., Bonan, 2008, 2016; Cai and Prentice, 5 

2020; Gang et al., 2022). Ciais et al. (2005) estimated a 30% GPP reduction in Europe following the heatwave in year 2003 

and vegetation there became a net carbon source, attributable to the rainfall deficit and extreme summer heat. This was also 

found by Bamberger et al. (2017), whereby heat and drought impacts alter photosynthesis and vegetation state. More extreme 

events are projected for a future climate, which various models (e.g., O-CN, YIBs) have shown to decrease productivity (e.g., 

Franz and Zaehle, 2021; Yan et al., 2022). He et al. (2022), using models, showed that climate variability is the main factor 10 

controlling interannual GPP variability of grasslands in China. Such effect is the most prominent in the summer, which is 

responsible for more than 40% of decadal GPP variability in Chinese grasslands and the largest in comparison to effects from 

CO2 fertilization and nitrogen deposition. Similar to the case for O3-vegetation coupling discussed above, fully coupled 

climate-biosphere models can be particularly useful for examining two-way interactions and feedbacks, and also long-term 

(multi-decadal to multi-centurial) co-evolution of climate and the biosphere. However, the embedded complex interactions 15 

may obscure the relative importance of different factors, making it a lot more difficult to attribute changes to specific factors. 

Offline modes such as TEMIR are therefore particularly useful for investigating and attributing biospheric variability and 

changes to prescribed changes in climatic variables. 

 

In addition, we have demonstrated the utility of TEMIR in examining the direct and interactive effects of multiple atmospheric 20 

chemical species on global vegetation (i.e., CO2 and O3 concentrations). CO2 fertilization in TEMIR results in strong GPP 

enhancement as seen in many studies (e.g., Schimel et al., 2015; Cai and Prentice, 2020; Chen et al., 2022; Yang et al., 2022). 

Our simulations estimate that CO2 fertilization increases global GPP by 0.126% ppmv-1, which is comparable to the value of 

0.138% ± 0.007% ppmv–1 reported by Ueyama et al. (2020). It is noteworthy that some studies (e.g., Lee et al., 2018) suggested 

that overlooking spatiotemporal variability of atmospheric CO2 can lead to inaccuracies for seasonal and regional GPP 25 

estimation but only minor influence on global GPP. Additional crop functionalities of TEMIR (Tai et al., 2021) can also 

address the CO2 fertilization effects on crops, although studies have also found that the resulted productivity increase gives 

larger yield quantity but does not necessarily translate to increased yield quality (Myers et al., 2014; Ebi et al., 2021; Xia et 

al., 2021). The competing effects of CO2 fertilization and O3 damage on vegetation have been well documented in field 

experiments, although magnitudes vary and are species-dependent (e.g., Oikawa and Ainsworth, 2016; Proietti et al., 2016; 30 

Karlsson et al., 2017; Moura et al., 2018; Zhang et al., 2018; Ainsworth et al., 2020; Xia et al., 2021). TEMIR shows that CO2 

fertilization can reduce the percentage O3 damage on vegetation (~1% globally), which is generally comparable to 1–2% found 

by Oliver et al. (2018), whereas Sitch et al. (2007) simulated a higher range of 6–9%. We note that while comparisons among 

models are useful, we must be mindful of the differences in model designs and setups (as mentioned in Sect. 1). Miner et al. 
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(2017) cautioned that stomatal responses to CO2 can be highly species-dependent and variable under different soil conditions, 

adding more uncertainty to the parameterization of CO2-O3-vegetation interactions. The changing nitrogen deposition due to 

anthropogenic activities may likewise influence the interactions between vegetation, CO2 and O3 (Zhao et al., 2017; Liu et al., 

2021), whereby nitrogen can limit CO2-promoted growth (Wang et al., 2020) or modify vegetation responses (e.g., for gs; Hu 

et al., 2021) with further implications on soil and nutrient cycling (Terrer et al., 2021). As atmospheric composition rapidly 5 

changes in the next century, these interactive mechanisms should be considered for modelers to more representatively and 

accurately model the future Earth system (e.g., Bytnerowicz et al., 2007; Pu et al., 2017; Sicard et al., 2017; Franz and Zaehle, 

2021; Leung et al., 2022). 

 

All in all, the high adaptability of TEMIR, written in an freely open-source, widely used and easy-to-learn programming 10 

language (R Core Team, 2022), is expected to facilitate fruitful contribution to research at various spatiotemporal scales on 

biosphere-atmosphere interaction. It also provides a readily available tool for policy makers, practitioners and other 

stakeholders to assess the ecosystem services provided by vegetation in different regions or cities, as well as their sensitivities 

to future atmospheric changes, possibly enhancing the translational value of ecological and geoscientific research. 

7 Code availability 15 

The Terrestrial Ecosystem Model in R (version 1.0) source code is licensed and publicly available in the repository: 

https://doi.org/10.5281/zenodo.8215332; as well as on GitHub: https://github.com/amospktai/TEMIR. 

8 Data availability 

The input dataset required to run Terrestrial Ecosystem Model in R (version 1.0) is licensed and publicly available in the 

repository: https://doi.org/10.5281/zenodo.8215152. 20 

9 Author contribution 

APKT conceived the study. APKT developed the TEMIR model. DHYY developed additional model codes and performed 

the simulations and analysis. APKT and DHYY prepared the paper. TL developed multilayer soil representation and 

contributed to relevant sections of the paper. 

 25 

10 Acknowledgements 

https://doi.org/10.5281/zenodo.8215332
https://github.com/amospktai/TEMIR
https://doi.org/10.5281/zenodo.8215152


37 
 

This work was supported by the National Natural Science Foundation of China (NSFC)/Research Grants Council (RGC) Joint 

Research Scheme (reference #: N_CUHK440/20, 42061160479) awarded to A. P. K. Tai and Z. Feng, as well as the 

Collaborative Research Fund (reference #: C5062-21GF) from RGC, Hong Kong, China. 

 

11 Competing interests 5 

The authors declare no competing interests. 

References 

Agathokleous, E., Feng, Z., Oksanen, E., Sicard, P., Wang, Q., Saitanis, C. J., Araminiene, V., Blande, J. D., Hayes, F., 
Calatayud, V., Domingos, M., Veresoglou, S. D., Peñuelas, J., Wardle, D. A., Marco, A. D., Li, Z., Harmens, H., Yuan, X., 
Vitale, M., and Paoletti, E.: Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and 10 
biodiversity, Science Advances, 6, eabc1176, 10.1126/sciadv.abc1176, 2020. 

Ahmed, Z., Gui, D., Qi, Z., Liu, Y., Liu, Y., and Azmat, M.: Agricultural system modeling: current achievements, innovations, 
and future roadmap, Arabian Journal of Geosciences, 15, 10.1007/s12517-022-09654-7, 2022. 

Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The Effects of Tropospheric Ozone on Net 
Primary Productivity and Implications for Climate Change, Annual Review of Plant Biology, 63, 637-661, 10.1146/annurev-15 
arplant-042110-103829, 2012. 

Ainsworth, E. A., Lemonnier, P., and Wedow, J. M.: The influence of rising tropospheric carbon dioxide and ozone on plant 
productivity, Plant Biol J, 22, 5-11, 10.1111/plb.12973, 2020. 

Anav, A., Menut, L., Khvorostyanov, D., and Viovy, N.: Impact of tropospheric ozone on the Euro-Mediterranean vegetation, 
Global Change Biology, 17, 2342-2359, 10.1111/j.1365-2486.2010.02387.x, 2011. 20 

Arain, M. A., Xu, B., Brodeur, J. J., Khomik, M., Peichl, M., Beamesderfer, E., Restrepo-Couple, N., and Thorne, R.: Heat 
and drought impact on carbon exchange in an age-sequence of temperate pine forests, Ecol Process, 11, 7, 10.1186/s13717-
021-00349-7, 2022. 

Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S., Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., 
O'Donnell, D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeochemical feedbacks in the climate system, Nature 25 
Geoscience, 3, 525-532, 10.1038/ngeo905, 2010. 

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, 
P., Hajima, T., Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon–Concentration and Carbon–Climate Feedbacks in 
CMIP5 Earth System Models, Journal of Climate, 26, 5289-5314, 10.1175/JCLI-D-12-00494.1, 2013. 

Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop yield reductions due to surface ozone exposure: 1. 30 
Year 2000 crop production losses and economic damage, Atmospheric Environment, 45, 2284-2296, 
10.1016/j.atmosenv.2010.11.045, 2011. 

Baldocchi, D., Ryu, Y., and Keenan, T.: Terrestrial Carbon Cycle Variability, F1000Research, 5, 2371, 
10.12688/f1000research.8962.1, 2016. 



38 
 

Ball, J. T., Woodrow, I. E., and Berry, J. A.: A Model Predicting Stomatal Conductance and its Contribution to the Control of 
Photosynthesis under Different Environmental Conditions, in: Progress in Photosynthesis Research, edited by: Biggins, J., and 
Biggins, J., Dordrecht, 221-224, 1987. 

Bamberger, I., Ruehr, N. K., Schmitt, M., Gast, A., Wohlfahrt, G., and Arneth, A.: Isoprene emission and photosynthesis 
during heatwaves and drought in black locust, Biogeosciences, 14, 3649-3667, 10.5194/bg-14-3649-2017, 2017. 5 

Bastos, A., O'Sullivan, M., Ciais, P., Makowski, D., Sitch, S., Friedlingstein, P., Chevallier, F., Rödenbeck, C., Pongratz, J., 
Luijkx, I. T., Patra, P. K., Peylin, P., Canadell, J. G., Lauerwald, R., Li, W., Smith, N. E., Peters, W., Goll, D. S., Jain, A. K., 
Kato, E., Lienert, S., Lombardozzi, D. L., Haverd, V., Nabel, J. E. M. S., Poulter, B., Tian, H., Walker, A. P., and Zaehle, S.: 
Sources of Uncertainty in Regional and Global Terrestrial CO2 Exchange Estimates, Global Biogeochemical Cycles, 34, 
10.1029/2019gb006393, 2020. 10 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, 
G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, 
O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: 
Global Distribution and Covariation with Climate, Science, 329, 834-838, 10.1126/science.1184984, 2010. 

Beringer, J., Hutley, L. B., Tapper, N. J., and Cernusak, L. A.: Savanna fires and their impact on net ecosystem productivity 15 
in North Australia, Global Change Biology, 13, 990-1004, 10.1111/j.1365-2486.2007.01334.x, 2007. 

Beringer, J., Hutley, L. B., Hacker, J. M., Neininger, B., and Paw U, K. T.: Patterns and processes of carbon, water and energy 
cycles across northern Australian landscapes: From point to region, Agricultural and Forest Meteorology, 151, 1409-1416, 
10.1016/j.agrformet.2011.05.003, 2011. 

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, 20 
M. G.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal 
of Geophysical Research: Atmospheres, 106, 23073-23095, 10.1029/2001JD000807, 2001. 

Bhattarai, H., Tai, A. P. K., Martin, M. V., and Yung, D. H. Y.: Impacts of changes in climate, land use, and emissions on 
global ozone air quality by mid-21st century following selected Shared Socioeconomic Pathways, Sci Total Environ, 167759, 
10.1016/j.scitotenv.2023.167759, 2023. 25 

Bi, W., He, W., Zhou, Y., Ju, W., Liu, Y., Liu, Y., Zhang, X., Wei, X., and Cheng, N.: A global 0.05° dataset for gross primary 
production of sunlit and shaded vegetation canopies from 1992 to 2020, Scientific Data, 9, 213, 10.1038/s41597-022-01309-
2, 2022. 

Blanco, J. A., and Lo, Y.-H.: Latest Trends in Modelling Forest Ecosystems: New Approaches or Just New Methods?, Current 
Forestry Reports, 9, 219-229, 10.1007/s40725-023-00189-y, 2023. 30 

Boas, T., Bogena, H., Grünwald, T., Heinesch, B., Ryu, D., Schmidt, M., Vereecken, H., Western, A., and Hendricks Franssen, 
H.-J.: Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0, Geoscientific Model 
Development, 14, 573-601, 10.5194/gmd-14-573-2021, 2021. 

Boike, J., Kattenstroth, B., Abramova, K., Bornemann, N., Chetverova, A., Fedorova, I., Fröb, K., Grigoriev, M., Grüber, M., 
Kutzbach, L., Langer, M., Minke, M., Muster, S., Piel, K., Pfeiffer, E. M., Stoof, G., Westermann, S., Wischnewski, K., Wille, 35 
C., and Hubberten, H. W.: Baseline characteristics of climate, permafrost, and land cover from a new permafrost observatory 
in the Lena River Delta, Siberia (1998−2011), Biogeosciences, 10, 2105-2128, 10.5194/bg-10-2105-2013, 2013. 



39 
 

Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as patches of plant functional types: An integrating 
concept for climate and ecosystem models, Global Biogeochemical Cycles, 16, 5-1-5-23, 10.1029/2000gb001360, 2002. 

Bonan, G. B.: Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests, Science, 320, 1444-
1449, 10.1126/science.1155121, 2008. 

Bonan, G. B., Lawrence, P. J., Oleson, K. W., Levis, S., Jung, M., Reichstein, M., Lawrence, D. M., and Swenson, S. C.: 5 
Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred 
from FLUXNET data, Journal of Geophysical Research, 116, 10.1029/2010JG001593, 2011. 

Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., and Reichstein, M.: Reconciling leaf physiological traits and canopy 
flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4, Journal of Geophysical 
Research: Biogeosciences, 117, n/a-n/a, 10.1029/2011jg001913, 2012. 10 

Bonan, G. B.: Forests, Climate, and Public Policy: A 500-Year Interdisciplinary Odyssey, Annual Review of Ecology, 
Evolution, and Systematics, 47, 97-121, 10.1146/annurev-ecolsys-121415-032359, 2016. 

Bytnerowicz, A., Omasa, K., and Paoletti, E.: Integrated effects of air pollution and climate change on forests: A northern 
hemisphere perspective, Environmental Pollution, 147, 438-445, 10.1016/j.envpol.2006.08.028, 2007. 

Cai, W., and Prentice, I. C.: Recent trends in gross primary production and their drivers: analysis and modelling at flux-site 15 
and global scales, Environmental Research Letters, 15, 124050, 10.1088/1748-9326/abc64e, 2020. 

Calvete-Sogo, H., Gonzalez-Fernandez, I., Sanz, J., Elvira, S., Alonso, R., Garcia-Gomez, H., Ibanez-Ruiz, M. A., and 
Bermejo-Bermejo, V.: Heterogeneous responses to ozone and nitrogen alter the species composition of Mediterranean annual 
pastures, Oecologia, 181, 1055-1067, 10.1007/s00442-016-3628-z, 2016. 

Chen, C., Riley, W. J., Prentice, I. C., and Keenan, T. F.: CO2 fertilization of terrestrial photosynthesis inferred from site to 20 
global scales, Proceedings of the National Academy of Sciences, 119, e2115627119, 10.1073/pnas.2115627119, 2022. 

Chen, L., Dirmeyer, P. A., Guo, Z., and Schultz, N. M.: Pairing FLUXNET sites to validate model representations of land-
use/land-cover change, Hydrology and Earth System Sciences, 22, 111-125, 10.5194/hess-22-111-2018, 2018. 

Cheng, W., Dan, L., Deng, X., Feng, J., Wang, Y., Peng, J., Tian, J., Qi, W., Liu, Z., Zheng, X., Zhou, D., Jiang, S., Zhao, H., 
and Wang, X.: Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios, 25 
Sci Data, 9, 83, 10.1038/s41597-022-01196-7, 2022. 

Chopin, P., Bergkvist, G., and Hossard, L.: Modelling biodiversity change in agricultural landscape scenarios - A review and 
prospects for future research, Biological Conservation, 235, 1-17, 10.1016/j.biocon.2019.03.046, 2019. 

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., 
Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, 30 
G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., 
Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala, T., and Valentini, R.: Europe-wide reduction in primary productivity 
caused by the heat and drought in 2003, Nature, 437, 529-533, 10.1038/nature03972, 2005. 

Clifton, O. E., Fiore, A. M., Massman, W. J., Baublitz, C. B., Coyle, M., Emberson, L., Fares, S., Farmer, D. K., Gentine, P., 
Gerosa, G., Guenther, A. B., Helmig, D., Lombardozzi, D. L., Munger, J. W., Patton, E. G., Pusede, S. E., Schwede, D. B., 35 
Silva, S. J., Sörgel, M., Steiner, A. L., and Tai, A. P. K.: Dry Deposition of Ozone Over Land: Processes, Measurement, and 
Modeling, Rev. Geophys., 58, 10.1029/2019RG000670, 2020. 



40 
 

Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and environmental regulation of stomatal conductance, 
photosynthesis and transpiration: a model that includes a laminar boundary layer, Agricultural and Forest Meteorology, 54, 
107-136, 10.1016/0168-1923(91)90002-8, 1991. 

Collatz, G. J., Ribas-Carbo, M., and Berry, J.: Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants, 
Functional Plant Biology, 19, 10.1071/PP9920519, 1992. 5 

Corcoran, E., Afshar, M., Curceac, S., Lashkari, A., Raza, M. M., Ahnert, S., Mead, A., and Morris, R.: Current data and 
modeling bottlenecks for predicting crop yields in the United Kingdom, Front. Sustain. Food Syst., 7, 
10.3389/fsufs.2023.1023169, 2023. 

Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., 
Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., 10 
Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Oleson, K. W., Otto‐Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., 
van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox‐Kemper, B., Kay, J. E., Kinnison, D., 
Kushner, P. J., Larson, V. E., Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J., and Strand, 
W. G.: The Community Earth System Model Version 2 (CESM2), Journal of Advances in Modeling Earth Systems, 12, 
10.1029/2019ms001916, 2020. 15 

Davies-Barnard, T., Zaehle, S., and Friedlingstein, P.: Assessment of the impacts of biological nitrogen fixation structural 
uncertainty in CMIP6 earth system models, Biogeosciences, 19, 3491-3503, 10.5194/bg-19-3491-2022, 2022. 

Dermody, O., Long, S. P., McConnaughay, K., and DeLucia, E. H.: How do elevated CO2 and O3 affect the interception and 
utilization of radiation by a soybean canopy?, Global Change Biology, 14, 556-564, 10.1111/j.1365-2486.2007.01502.x, 2008. 

Deryng, D., Elliott, J., Folberth, C., Müller, C., Pugh, T. A. M., Boote, K. J., Conway, D., Ruane, A. C., Gerten, D., Jones, J. 20 
W., Khabarov, N., Olin, S., Schaphoff, S., Schmid, E., Yang, H., and Rosenzweig, C.: Regional disparities in the beneficial 
effects of rising CO2 concentrations on crop water productivity, Nature Climate Change, 6, 786-790, 10.1038/nclimate2995, 
2016. 

Dickinson, R. E.: Land Surface Processes and Climate—Surface Albedos and Energy Balance, in: Advances in Geophysics, 
305-353, 1983. 25 

Dlugokencky, E., and Tans, P.: Trends in atmospheric carbon dioxide, National Oceanic and Atmospheric Administration, 
Earth System Research Laboratory (NOAA/ESRL), 2022. 

Dušek, J., Čížková, H., Stellner, S., Czerný, R., and Květ, J.: Fluctuating water table affects gross ecosystem production and 
gross radiation use efficiency in a sedge-grass marsh, Hydrobiologia, 692, 57-66, 10.1007/s10750-012-0998-z, 2012. 

Ebi, K. L., Anderson, C. L., Hess, J. J., Kim, S.-H., Loladze, I., Neumann, R. B., Singh, D., Ziska, L., and Wood, R.: Nutritional 30 
quality of crops in a high CO2 world: an agenda for research and technology development, Environmental Research Letters, 
16, 064045, 10.1088/1748-9326/abfcfa, 2021. 

Emberson, L.: Effects of ozone on agriculture, forests and grasslands, Philos Trans A Math Phys Eng Sci, 378, 20190327, 
10.1098/rsta.2019.0327, 2020. 

Emberson, L. D., Kitwiroon, N., Beevers, S., Büker, P., and Cinderby, S.: Scorched Earth: how will changes in the strength of 35 
the vegetation sink to ozone deposition affect human health and ecosystems?, Atmospheric Chemistry and Physics, 13, 6741-
6755, 10.5194/acp-13-6741-2013, 2013. 



41 
 

Emberson, L. D., Pleijel, H., Ainsworth, E. A., van den Berg, M., Ren, W., Osborne, S., Mills, G., Pandey, D., Dentener, F., 
Büker, P., Ewert, F., Koeble, R., and Van Dingenen, R.: Ozone effects on crops and consideration in crop models, European 
Journal of Agronomy, 100, 19-34, 10.1016/j.eja.2018.06.002, 2018. 

Fares, S., Vargas, R., Detto, M., Goldstein, A. H., Karlik, J., Paoletti, E., and Vitale, M.: Tropospheric ozone reduces carbon 
assimilation in trees: estimates from analysis of continuous flux measurements, Global Change Biology, 19, 2427-2443, 5 
10.1111/gcb.12222, 2013. 

Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of 
C3 species, Planta, 149, 78-90, 10.1007/BF00386231, 1980. 

Felzer, B. S., Cronin, T., Reilly, J. M., Melillo, J. M., and Wang, X.: Impacts of ozone on trees and crops, Comptes Rendus 
Geoscience, 339, 784-798, 10.1016/j.crte.2007.08.008, 2007. 10 

Feng, H., Guo, J., Peng, C., Kneeshaw, D., Roberge, G., Pan, C., Ma, X., Zhou, D., and Wang, W.: Nitrogen addition promotes 
terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis, Glob Chang Biol, 29, 3970-3989, 
10.1111/gcb.16731, 2023. 

Feng, Z., Kobayashi, K., and Ainsworth, E. A.: Impact of elevated ozone concentration on growth, physiology, and yield of 
wheat (Triticum aestivum L.): a meta-analysis, Global Change Biology, 14, 2696-2708, 10.1111/j.1365-2486.2008.01673.x, 15 
2008. 

Franklin, O., Harrison, S. P., Dewar, R., Farrior, C. E., Brannstrom, A., Dieckmann, U., Pietsch, S., Falster, D., Cramer, W., 
Loreau, M., Wang, H., Makela, A., Rebel, K. T., Meron, E., Schymanski, S. J., Rovenskaya, E., Stocker, B. D., Zaehle, S., 
Manzoni, S., van Oijen, M., Wright, I. J., Ciais, P., van Bodegom, P. M., Penuelas, J., Hofhansl, F., Terrer, C., Soudzilovskaia, 
N. A., Midgley, G., and Prentice, I. C.: Organizing principles for vegetation dynamics, Nat Plants, 6, 444-453, 10.1038/s41477-20 
020-0655-x, 2020. 

Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., 
Lloyd, J., McDowell, N., Norby, R. J., Tissue, D. T., and von Caemmerer, S.: Sensitivity of plants to changing atmospheric 
CO2 concentration: from the geological past to the next century, New Phytologist, 197, 1077-1094, 10.1111/nph.12104, 2013. 

Franks, P. J., Berry, J. A., Lombardozzi, D. L., and Bonan, G. B.: Stomatal Function across Temporal and Spatial Scales: 25 
Deep-Time Trends, Land-Atmosphere Coupling and Global Models, Plant Physiology, 174, 583-602, 10.1104/pp.17.00287, 
2017. 

Franz, M., Simpson, D., Arneth, A., and Zaehle, S.: Development and evaluation of an ozone deposition scheme for coupling 
to a terrestrial biosphere model, Biogeosciences, 14, 45-71, 10.5194/bg-14-45-2017, 2017. 

Franz, M., and Zaehle, S.: Competing effects of nitrogen deposition and ozone exposure on northern hemispheric terrestrial 30 
carbon uptake and storage, 1850–2099, Biogeosciences, 18, 3219-3241, 10.5194/bg-18-3219-2021, 2021. 

Fuhrer, J., Val Martin, M., Mills, G., Heald, C. L., Harmens, H., Hayes, F., Sharps, K., Bender, J., and Ashmore, M. R.: Current 
and future ozone risks to global terrestrial biodiversity and ecosystem processes, Ecol Evol, 6, 8785-8799, 10.1002/ece3.2568, 
2016. 

Gang, C., Wang, Z., You, Y., Liu, Y., Xu, R., Bian, Z., Pan, N., Gao, X., Chen, M., and Zhang, M.: Divergent responses of 35 
terrestrial carbon use efficiency to climate variation from 2000 to 2018, Global and Planetary Change, 208, 103709, 
10.1016/j.gloplacha.2021.103709, 2022. 



42 
 

Ganzeveld, L., and Lelieveld, J.: Dry deposition parameterization in a chemistry general circulation model and its influence 
on the distribution of reactive trace gases, Journal of Geophysical Research, 100, 20999, 10.1029/95JD02266, 1995. 

Ganzeveld, L., Bouwman, L., Stehfest, E., van Vuuren, D. P., Eickhout, B., and Lelieveld, J.: Impact of future land use and 
land cover changes on atmospheric chemistry-climate interactions, Journal of Geophysical Research, 115, 
10.1029/2010JD014041, 2010. 5 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., 
Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, 
G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. 
D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 
(MERRA-2), Journal of Climate, 30, 5419-5454, 10.1175/JCLI-D-16-0758.1, 2017. 10 

Gerber, S., Hedin, L. O., Oppenheimer, M., Pacala, S. W., and Shevliakova, E.: Nitrogen cycling and feedbacks in a global 
dynamic land model, Global Biogeochemical Cycles, 24, n/a-n/a, 10.1029/2008gb003336, 2010. 

Gleason, S. M., Barnard, D. M., Green, T. R., Mackay, S., Wang, D. R., Ainsworth, E. A., Altenhofen, J., Brodribb, T. J., 
Cochard, H., Comas, L. H., Cooper, M., Creek, D., DeJonge, K. C., Delzon, S., Fritschi, F. B., Hammer, G., Hunter, C., 
Lombardozzi, D., Messina, C. D., Ocheltree, T., Stevens, B. M., Stewart, J. J., Vadez, V., Wenz, J., Wright, I. J., Yemoto, K., 15 
and Zhang, H.: Physiological trait networks enhance understanding of crop growth and water use in contrasting environments, 
Plant Cell Environ, 45, 2554-2572, 10.1111/pce.14382, 2022. 

Gong, C., Liao, H., Yue, X., Ma, Y., and Lei, Y.: Impacts of Ozone‐Vegetation Interactions on Ozone Pollution Episodes in 
North China and the Yangtze River Delta, Geophysical Research Letters, 48, 10.1029/2021GL093814, 2021. 

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of 20 
Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling 
biogenic emissions, Geoscientific Model Development, 5, 1471-1492, 10.5194/gmd-5-1471-2012, 2012. 

Halladay, K., and Good, P.: Non-linear interactions between CO2 radiative and physiological effects on Amazonian 
evapotranspiration in an Earth system model, Climate Dynamics, 49, 2471-2490, 10.1007/s00382-016-3449-0, 2017. 

Hardacre, C., Wild, O., and Emberson, L.: An evaluation of ozone dry deposition in global scale chemistry climate models, 25 
Atmospheric Chemistry and Physics, 15, 6419-6436, 10.5194/acp-15-6419-2015, 2015. 

Harrison, S. P., Cramer, W., Franklin, O., Prentice, I. C., Wang, H., Brannstrom, A., de Boer, H., Dieckmann, U., Joshi, J., 
Keenan, T. F., Lavergne, A., Manzoni, S., Mengoli, G., Morfopoulos, C., Penuelas, J., Pietsch, S., Rebel, K. T., Ryu, Y., Smith, 
N. G., Stocker, B. D., and Wright, I. J.: Eco-evolutionary optimality as a means to improve vegetation and land-surface models, 
New Phytol, 231, 2125-2141, 10.1111/nph.17558, 2021. 30 

Haverd, V., Raupach, M. R., Briggs, P. R., Canadell, J. G., Isaac, P., Pickett-Heaps, C., Roxburgh, S. H., van Gorsel, E., 
Viscarra Rossel, R. A., and Wang, Z.: Multiple observation types reduce uncertainty in Australia's terrestrial carbon and water 
cycles, Biogeosciences, 10, 2011-2040, 10.5194/bg-10-2011-2013, 2013. 

He, P., Ma, X., and Sun, Z.: Interannual variability in summer climate change controls GPP long-term changes, Environmental 
Research, 212, 113409, 10.1016/j.envres.2022.113409, 2022. 35 

Hidy, D., Barcza, Z., Hollós, R., Dobor, L., Ács, T., Zacháry, D., Filep, T., Pásztor, L., Incze, D., Dencső, M., Tóth, E., 
Merganičová, K., Thornton, P., Running, S., and Fodor, N.: Soil-related developments of the Biome-BGCMuSo v6.2 terrestrial 
ecosystem model, Geoscientific Model Development, 15, 2157-2181, 10.5194/gmd-15-2157-2022, 2022. 



43 
 

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J., 
Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-i., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. 
R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community 
Emissions Data System (CEDS), Geoscientific Model Development, 11, 369-408, 10.5194/gmd-11-369-2018, 2018. 

Hou, H., Zhou, B. B., Pei, F., Hu, G., Su, Z., Zeng, Y., Zhang, H., Gao, Y., Luo, M., and Li, X.: Future Land Use/Land Cover 5 
Change Has Nontrivial and Potentially Dominant Impact on Global Gross Primary Productivity, Earth's Future, 10, 
10.1029/2021ef002628, 2022. 

Hu, L., Keller, C. A., Long, M. S., Sherwen, T., Auer, B., Da Silva, A., Nielsen, J. E., Pawson, S., Thompson, M. A., Trayanov, 
A. L., Travis, K. R., Grange, S. K., Evans, M. J., and Jacob, D. J.: Global simulation of tropospheric chemistry at 12.5km 
resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth System 10 
Model (GEOS-5 ESM), Geoscientific Model Development Discussions, 1-32, 10.5194/gmd-2018-111, 2018. 

Hu, Y., Schäfer, K. V. R., Zhu, L., Zhao, P., Zhao, X., Ni, G., Zhang, Y., Ye, H., Zhao, W., Shen, W., and Fu, S.: Impacts of 
Canopy and Understory Nitrogen Additions on Stomatal Conductance and Carbon Assimilation of Dominant Tree Species in 
a Temperate Broadleaved Deciduous Forest, Ecosystems, 24, 1468-1484, 10.1007/s10021-020-00595-4, 2021. 

Huntingford, C., Oliver, R. J., Mercado, L. M., and Sitch, S.: Technical Note: A simple theoretical model framework to 15 
describe plant stomatal "sluggishness" in response to elevated ozone concentrations, Biogeosciences, 5415-5422, 10.5194/bg-
15-5415-2018, 2018. 

Hutley, L. B., Beringer, J., Isaac, P. R., Hacker, J. M., and Cernusak, L. A.: A sub-continental scale living laboratory: Spatial 
patterns of savanna vegetation over a rainfall gradient in northern Australia, Agricultural and Forest Meteorology, 151, 1417-
1428, 10.1016/j.agrformet.2011.03.002, 2011. 20 

Im, U., Brandt, J., Geels, C., Hansen, K. M., Christensen, J. H., Andersen, M. S., Solazzo, E., Kioutsioukis, I., Alyuz, U., 
Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., 
Jimenez-Guerrero, P., Kitwiroon, N., Liang, C.-K., Nopmongcol, U., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, 
R., Tuccella, P., Unal, A., Vivanco, M. G., West, J., Yarwood, G., Hogrefe, C., and Galmarini, S.: Assessment and economic 
valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble 25 
in the framework of AQMEII3, Atmospheric Chemistry and Physics, 18, 5967-5989, 10.5194/acp-18-5967-2018, 2018. 

Imer, D., Merbold, L., Eugster, W., and Buchmann, N.: Temporal and spatial variations of soil CO2, CH4 and N2O fluxes at 
three differently managed grasslands, Biogeosciences, 10, 5931-5945, 10.5194/bg-10-5931-2013, 2013. 

Jain, A., Yang, X., Kheshgi, H., McGuire, A. D., Post, W., and Kicklighter, D.: Nitrogen attenuation of terrestrial carbon cycle 
response to global environmental factors, Global Biogeochemical Cycles, 23, 10.1029/2009gb003519, 2009. 30 

Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li, S., and Zhuang, B.: Effects of Elevated Ozone Exposure 
on Regional Meteorology and Air Quality in China Through Ozone‐Vegetation Coupling, Journal of Geophysical Research: 
Atmospheres, 128, 10.1029/2022jd038119, 2023. 

Karlsson, P. E., Uddling, J., Braun, S., Broadmeadow, M., Elvira, S., Gimeno, B. S., Le Thiec, D., Oksanen, E., Vandermeiren, 
K., Wilkinson, M., and Emberson, L.: New critical levels for ozone effects on young trees based on AOT40 and simulated 35 
cumulative leaf uptake of ozone, Atmospheric Environment, 38, 2283-2294, 10.1016/j.atmosenv.2004.01.027, 2004. 

Karlsson, P. E., Klingberg, J., Engardt, M., Andersson, C., Langner, J., Karlsson, G. P., and Pleijel, H.: Past, present and future 
concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe, Science of 
The Total Environment, 576, 22-35, 10.1016/j.scitotenv.2016.10.061, 2017. 



44 
 

Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S., and Jacob, D. J.: HEMCO v1.0: a versatile, ESMF-
compliant component for calculating emissions in atmospheric models, Geoscientific Model Development, 7, 1409-1417, 
10.5194/gmd-7-1409-2014, 2014. 

Kimmins, J. P., Blanco, J. A., Seely, B., Welham, C., and Scoullar, K.: Complexity in modelling forest ecosystems: How much 
is enough?, Forest Ecology and Management, 256, 1646-1658, 10.1016/j.foreco.2008.03.011, 2008. 5 

Kou‐Giesbrecht, S., and Arora, V. K.: Compensatory Effects Between CO2, Nitrogen Deposition, and Nitrogen Fertilization 
in Terrestrial Biosphere Models Without Nitrogen Compromise Projections of the Future Terrestrial Carbon Sink, Geophysical 
Research Letters, 50, 10.1029/2022gl102618, 2023. 

Lai, J., Lortie, C. J., Muenchen, R. A., Yang, J., and Ma, K.: Evaluating the popularity of R in ecology, Ecosphere, 10, 
10.1002/ecs2.2567, 2019. 10 

Lam, J. C. Y., Tai, A. P. K., Ducker, J. A., and Holmes, C. D.: Development of an ecophysiology module in the GEOS-Chem 
chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality, Geoscientific 
Model Development, 16, 2323-2342, 10.5194/gmd-16-2323-2023, 2023. 

Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., and Wohlfahrt, G.: Separation of net 
ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global 15 
evaluation, Global Change Biology, 16, 187-208, 10.1111/j.1365-2486.2009.02041.x, 2010. 

Lawrence, D., Rosie, F., Charles, K., Keith, O., Sean, S., Mariana, V., Ben, A., Gordon, B., Bardan, G., Leo van, K., Daniel, 
K., Erik, K., Ryan, K., Peter, L., Fang, L., Hongyi, L., Danica, L., Yaqiong, L., Justin, P., William, R., William, S., Mingjie, 
S., Will, W., Chonggang, X., Ashehad, A., Andrew, B., Gautam, B., Patrick, B., Michael, B., Jonathan, B., Martyn, C., Tony, 
C., Kyla, D., Beth, D., Louisa, E., Josh, F., Mark, F., Pierre, G., Jan, L., Sam, L., Leung, L. R., William, L., Jon, P., Daniel, 20 
M. R., Ben, S., Jacquelyn, S., Andrew, S., Zachary, S., Jinyun, T., Ahmed, T., Quinn, T., Simone, T., Francis, V., and Xubin, 
Z.: Technical Description of version 5.0 of the Community Land Model (CLM), 350, 2020. 

Lawrence, P. J., and Chase, T. N.: Representing a new MODIS consistent land surface in the Community Land Model (CLM 
3.0), Journal of Geophysical Research, 112, G01023, 10.1029/2006JG000168, 2007. 

Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., Andres, 25 
R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp, 
L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain, 
A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima, 
I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., Nabel, J. E. M. S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, 
T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, 30 
R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I. T., van der Werf, G. R., 
van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015, Earth System 
Science Data, 7, 349-396, 10.5194/essd-7-349-2015, 2015. 

Lee, E., Zeng, F.-W., Koster, R. D., Weir, B., Ott, L. E., and Poulter, B.: The impact of spatiotemporal variability in 
atmospheric CO2 concentration on global terrestrial carbon fluxes, Biogeosciences, 15, 5635-5652, 10.5194/bg-15-5635-2018, 35 
2018. 

Legates, D. R., and McCabe, G. J.: Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model 
validation, Water Resources Research, 35, 233-241, 10.1029/1998WR900018, 1999. 



45 
 

Lei, Y., Yue, X., Liao, H., Gong, C., and Zhang, L.: Implementation of Yale Interactive terrestrial Biosphere model v1.0 into 
GEOS-Chem v12.0.0: a tool for biosphere–chemistry interactions, Geoscientific Model Development, 13, 1137-1153, 
10.5194/gmd-13-1137-2020, 2020. 

Leung, F., Williams, K., Sitch, S., Tai, A. P. K., Wiltshire, A., Gornall, J., Ainsworth, E. A., Arkebauer, T., and Scoby, D.: 
Calibrating soybean parameters in JULES 5.0 from the US-Ne2/3 FLUXNET sites and the SoyFACE-O3 experiment, 5 
Geoscientific Model Development, 13, 6201-6213, 10.5194/gmd-13-6201-2020, 2020. 

Leung, F., Sitch, S., Tai, A. P. K., Wiltshire, A. J., Gornall, J. L., Folberth, G. A., and Unger, N.: CO2 fertilization of crops 
offsets yield losses due to future surface ozone damage and climate change, Environmental Research Letters, 17, 074007, 
10.1088/1748-9326/ac7246, 2022. 

Li, J., Mahalov, A., and Hyde, P.: Simulating the impacts of chronic ozone exposure on plant conductance and photosynthesis, 10 
and on the regional hydroclimate using WRF/Chem, Environmental Research Letters, 11, 114017, 10.1088/1748-
9326/11/11/114017, 2016. 

Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., Emmel, C., Hollinger, D. Y., Krasnova, A., Mammarella, 
I., Noe, S. M., Ortiz, P. S., Rey‐Sanchez, A. C., Rocha, A. V., and Varlagin, A.: Solar‐induced chlorophyll fluorescence is 
strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO‐2 and flux 15 
tower observations, Global Change Biology, 24, 3990-4008, 10.1111/gcb.14297, 2018. 

Li, X., and Xiao, J.: Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution 
Dataset of Gross Primary Production Derived from OCO-2, Remote Sensing, 11, 2563, 10.3390/rs11212563, 2019. 

Lin, H., Jacob, D. J., Lundgren, E. W., Sulprizio, M. P., Keller, C. A., Fritz, T. M., Eastham, S. D., Emmons, L. K., Campbell, 
P. C., Baker, B., Saylor, R. D., and Montuoro, R.: Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions 20 
component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-
Aerosol, and NOAA UFS models, Geoscientific Model Development, 14, 5487-5506, 10.5194/gmd-14-5487-2021, 2021. 

Lin, S., Hu, Z., Wang, Y., Chen, X., He, B., Song, Z., Sun, S., Wu, C., Zheng, Y., Xia, X., Liu, L., Tang, J., Sun, Q., Joos, F., 
and Yuan, W.: Underestimated Interannual Variability of Terrestrial Vegetation Production by Terrestrial Ecosystem Models, 
Global Biogeochemical Cycles, 37, 10.1029/2023gb007696, 2023. 25 

Lindauer, M., Schmid, H. P., Grote, R., Mauder, M., Steinbrecher, R., and Wolpert, B.: Net ecosystem exchange over a non-
cleared wind-throw-disturbed upland spruce forest—Measurements and simulations, Agricultural and Forest Meteorology, 
197, 219-234, 10.1016/j.agrformet.2014.07.005, 2014. 

Liu, S., Yan, Z., Wang, Z., Serbin, S., Visser, M., Zeng, Y., Ryu, Y., Su, Y., Guo, Z., Song, G., Wu, Q., Zhang, H., Cheng, K. 
H., Dong, J., Hau, B. C. H., Zhao, P., Yang, X., Liu, L., Rogers, A., and Wu, J.: Mapping foliar photosynthetic capacity in 30 
sub-tropical and tropical forests with UAS-based imaging spectroscopy: Scaling from leaf to canopy, Remote Sensing of 
Environment, 293, 10.1016/j.rse.2023.113612, 2023. 

Liu, X., Tai, A. P. K., and Fung, K. M.: Responses of surface ozone to future agricultural ammonia emissions and subsequent 
nitrogen deposition through terrestrial ecosystem changes, Atmospheric Chemistry and Physics, 21, 17743-17758, 
10.5194/acp-21-17743-2021, 2021. 35 

Liu, Y., Xiao, J., Ju, W., Zhu, G., Wu, X., Fan, W., Li, D., and Zhou, Y.: Satellite-derived LAI products exhibit large 
discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes, Remote Sensing of Environment, 
206, 174-188, 10.1016/j.rse.2017.12.024, 2018. 



46 
 

Lombardozzi, D., Levis, S., Bonan, G., and Sparks, J. P.: Predicting photosynthesis and transpiration responses to ozone: 
decoupling modeled photosynthesis and stomatal conductance, Biogeosciences, 9, 3113-3130, 10.5194/bg-9-3113-2012, 2012. 

Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The Influence of Chronic Ozone Exposure on Global 
Carbon and Water Cycles, Journal of Climate, 28, 292-305, 10.1175/JCLI-D-14-00223.1, 2015. 

Loveland, T. R., and Belward, A. S.: The IGBP-DIS global 1km land cover data set, DISCover: First results, International 5 
Journal of Remote Sensing, 18, 3289-3295, 10.1080/014311697217099, 1997. 

Lu, X., Gilliam, F. S., Yue, X., Wang, B., and Kuang, Y.: Shifts in Above‐ Versus Below‐Ground Carbon Gains to Terrestrial 
Ecosystems Carbon Sinks Under Excess Nitrogen Inputs, Global Biogeochemical Cycles, 37, 10.1029/2022gb007638, 2023. 

Marcolla, B., Cescatti, A., Manca, G., Zorer, R., Cavagna, M., Fiora, A., Gianelle, D., Rodeghiero, M., Sottocornola, M., and 
Zampedri, R.: Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of 10 
an alpine meadow, Agricultural and Forest Meteorology, 151, 1233-1243, 10.1016/j.agrformet.2011.04.015, 2011. 

Mason, R. E., Craine, J. M., Lany, N. K., Jonard, M., Ollinger, S. V., Groffman, P. M., Fulweiler, R. W., Angerer, J., Read, 
Q. D., Reich, P. B., Templer, P. H., and Elmore, A. J.: Evidence, causes, and consequences of declining nitrogen availability 
in terrestrial ecosystems, Science, 376, eabh3767, 10.1126/science.abh3767, 2022. 

McLaughlin, S. B., Wullschleger, S. D., Sun, G., and Nosal, M.: Interactive effects of ozone and climate on water use, soil 15 
moisture content and streamflow in a southern Appalachian forest in the USA, New Phytologist, 174, 125-136, 10.1111/j.1469-
8137.2007.01970.x, 2007. 

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., 
Freeman, M., and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Global 
Change Biology, 17, 2134-2144, 10.1111/j.1365-2486.2010.02375.x, 2011. 20 

Merbold, L., Eugster, W., Stieger, J., Zahniser, M., Nelson, D., and Buchmann, N.: Greenhouse gas budget (CO2, CH4 and 
N2O) of intensively managed grassland following restoration, Glob Chang Biol, 20, 1913-1928, 10.1111/gcb.12518, 2014. 

Miner, G. L., Bauerle, W. L., and Baldocchi, D. D.: Estimating the sensitivity of stomatal conductance to photosynthesis: a 
review: The sensitivity of conductance to photosynthesis, Plant, Cell & Environment, 40, 1214-1238, 10.1111/pce.12871, 
2017. 25 

Monfreda, C., Ramankutty, N., and Foley, J. A.: Farming the planet: 2. Geographic distribution of crop areas, yields, 
physiological types, and net primary production in the year 2000, Global Biogeochemical Cycles, 22, 10.1029/2007gb002947, 
2008. 

Monin, A. S., and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, Tr. Akad. Nauk 
SSSR Geofiz Inst., 24, 163-187, 1954. 30 

Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. 
E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: 
Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, 
Atmospheric Chemistry and Physics, 15, 8889-8973, 10.5194/acp-15-8889-2015, 2015. 

Moura, B. B., Alves, E. S., Marabesi, M. A., de Souza, S. R., Schaub, M., and Vollenweider, P.: Ozone affects leaf physiology 35 
and causes injury to foliage of native tree species from the tropical Atlantic Forest of southern Brazil, Science of The Total 
Environment, 610-611, 912-925, 10.1016/j.scitotenv.2017.08.130, 2018. 



47 
 

Muller, B., and Martre, P.: Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics, J 
Exp Bot, 70, 2339-2344, 10.1093/jxb/erz175, 2019. 

Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D. B., Bloom, A. J., Carlisle, E., Dietterich, L. H., Fitzgerald, 
G., Hasegawa, T., Holbrook, N. M., Nelson, R. L., Ottman, M. J., Raboy, V., Sakai, H., Sartor, K. A., Schwartz, J., Seneweera, 
S., Tausz, M., and Usui, Y.: Increasing CO2 threatens human nutrition, Nature, 510, 139-142, 10.1038/nature13179, 2014. 5 

Noormets, A., Kull, O., Sôber, A., Kubiske, M. E., and Karnosky, D. F.: Elevated CO2 response of photosynthesis depends 
on ozone concentration in aspen, Environmental Pollution, 158, 992-999, 10.1016/j.envpol.2009.10.009, 2010. 

Norman, J. M.: Simulation of microclimates, in: Biometeorology and Integrated Pest Management, 65–99, 1982. 

Nowak, D., Hirabayashi, S., Bodine, A., and Greenfield, E.: Tree and forest effects on air quality and human health in the 
United States, USDA Forest Service / UNL Faculty Publications, 2014. 10 

O'Sullivan, M., Spracklen, D. V., Batterman, S. A., Arnold, S. R., Gloor, M., and Buermann, W.: Have Synergies Between 
Nitrogen Deposition and Atmospheric CO2 Driven the Recent Enhancement of the Terrestrial Carbon Sink?, Global 
Biogeochem Cycles, 33, 163-180, 10.1029/2018GB005922, 2019. 

Oikawa, S., and Ainsworth, E. A.: Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an 
ozone concentration gradient, Environmental Pollution, 215, 347-355, 10.1016/j.envpol.2016.05.005, 2016. 15 

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Levis, S., Li, F., Riley, W. J., Swenson, S. C., 
Thornton, P. E., Bozbiyik, A., Fisher, R., Heald, C. L., Kluzek, E., Lamarque, F., Lawrence, P. J., Leung, L. R., Muszala, S., 
Ricciuto, D. M., Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of version 4.5 of the Community Land 
Model (CLM), 434, 2013. 

Oliver, R. J., Mercado, L. M., Sitch, S., Simpson, D., Medlyn, B. E., Lin, Y.-S., and Folberth, G. A.: Large but decreasing 20 
effect of ozone on the European carbon sink, Biogeosciences, 15, 4245-4269, 10.5194/bg-15-4245-2018, 2018. 

Pacifico, F., Harrison, S. P., Jones, C. D., Arneth, A., Sitch, S., Weedon, G. P., Barkley, M. P., Palmer, P. I., Serça, D., 
Potosnak, M., Fu, T. M., Goldstein, A., Bai, J., and Schurgers, G.: Evaluation of a photosynthesis-based biogenic isoprene 
emission scheme in JULES and simulation of isoprene emissions under present-day climate conditions, Atmospheric 
Chemistry and Physics, 11, 4371-4389, 10.5194/acp-11-4371-2011, 2011. 25 

Pacifico, F., Folberth, G. A., Jones, C. D., Harrison, S. P., and Collins, W. J.: Sensitivity of biogenic isoprene emissions to 
past, present, and future environmental conditions and implications for atmospheric chemistry, Journal of Geophysical 
Research: Atmospheres, 117, 10.1029/2012JD018276, 2012. 

Parrington, M., Jones, D. B. A., Bowman, K. W., Horowitz, L. W., Thompson, A. M., Tarasick, D. W., and Witte, J. C.: 
Estimating the summertime tropospheric ozone distribution over North America through assimilation of observations from the 30 
Tropospheric Emission Spectrometer, Journal of Geophysical Research, 113, 10.1029/2007JD009341, 2008. 

Peichl, M., Brodeur, J. J., Khomik, M., and Arain, M. A.: Biometric and eddy-covariance based estimates of carbon fluxes in 
an age-sequence of temperate pine forests, Agricultural and Forest Meteorology, 150, 952-965, 
10.1016/j.agrformet.2010.03.002, 2010. 

Pleijel, H., Danielsson, H., Ojanperä, K., Temmerman, L. D., Högy, P., Badiani, M., and Karlsson, P. E.: Relationships between 35 
ozone exposure and yield loss in European wheat and potato—a comparison of concentration- and flux-based exposure indices, 
Atmospheric Environment, 38, 2259-2269, 10.1016/j.atmosenv.2003.09.076, 2004. 



48 
 

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Effects of anthropogenic land cover change on the carbon cycle of 
the last millennium, Global Biogeochemical Cycles, 23, GB4001, 10.1029/2009GB003488, 2009. 

Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M.: Biogeophysical versus biogeochemical climate response to historical 
anthropogenic land cover change, Geophysical Research Letters, 37, 10.1029/2010GL043010, 2010. 

Porporato, A., Laio, F., Ridol, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic 5 
processes and response to water stress III. Vegetation water stress, Advances in Water Resources, 20, 2001. 

Portmann, F. T., Siebert, S., and Döll, P.: MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: 
A new high-resolution data set for agricultural and hydrological modeling, Global Biogeochemical Cycles, 24, n/a-n/a, 
10.1029/2008gb003435, 2010. 

Prescher, A.-K., Grünwald, T., and Bernhofer, C.: Land use regulates carbon budgets in eastern Germany: From NEE to NBP, 10 
Agricultural and Forest Meteorology, 150, 1016-1025, 10.1016/j.agrformet.2010.03.008, 2010. 

Proietti, C., Anav, A., De Marco, A., Sicard, P., and Vitale, M.: A multi-sites analysis on the ozone effects on Gross Primary 
Production of European forests, Science of The Total Environment, 556, 1-11, 10.1016/j.scitotenv.2016.02.187, 2016. 

Pu, X., Wang, T. J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D. K., and Poupkou, A.: Enhanced surface ozone during 
the heat wave of 2013 in Yangtze River Delta region, China, Science of The Total Environment, 603-604, 807-816, 15 
10.1016/j.scitotenv.2017.03.056, 2017. 

R Core Team: R: A language and environment for statistical computing. Vienna, Austria, 2022. 

Rahman, M. H. u., Ahrends, H. E., Raza, A., and Gaiser, T.: Current approaches for modeling ecosystem services and 
biodiversity in agroforestry systems: Challenges and ways forward, Frontiers in Forests and Global Change, 5, 
10.3389/ffgc.2022.1032442, 2023. 20 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., 
Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., 
Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., 
Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation 
and ecosystem respiration: review and improved algorithm, Global Change Biology, 11, 1424-1439, 10.1111/j.1365-25 
2486.2005.001002.x, 2005. 

Rhea, L., King, J., Kubiske, M., Saliendra, N., and Teclaw, R.: Effects of elevated atmospheric CO2 and tropospheric O3 on 
tree branch growth and implications for hydrologic budgeting, Environmental Pollution, 158, 1079-1087, 
10.1016/j.envpol.2009.08.038, 2010. 

Roberts, H. R., Dodd, I. C., Hayes, F., and Ashworth, K.: Chronic tropospheric ozone exposure reduces seed yield and quality 30 
in spring and winter oilseed rape, Agricultural and Forest Meteorology, 316, 108859, 10.1016/j.agrformet.2022.108859, 2022. 

Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–vegetation coupling on surface ozone air 
quality via biogeochemical and meteorological feedbacks, Atmospheric Chemistry and Physics, 17, 3055-3066, 10.5194/acp-
17-3055-2017, 2017. 

Sanderson, M. G., Collins, W. J., Hemming, D. L., and Betts, R. A.: Stomatal conductance changes due to increasing carbon 35 
dioxide levels: Projected impact on surface ozone levels, Tellus B: Chemical and Physical Meteorology, 59, 404-411, 
10.1111/j.1600-0889.2007.00277.x, 2007. 



49 
 

Sandor, R., Ehrhardt, F., Brilli, L., Carozzi, M., Recous, S., Smith, P., Snow, V., Soussana, J. F., Dorich, C. D., Fuchs, K., 
Fitton, N., Gongadze, K., Klumpp, K., Liebig, M., Martin, R., Merbold, L., Newton, P. C. D., Rees, R. M., Rolinski, S., and 
Bellocchi, G.: The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands, 
Sci Total Environ, 642, 292-306, 10.1016/j.scitotenv.2018.06.020, 2018. 

Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO2 on the terrestrial carbon cycle, Proceedings of the 5 
National Academy of Sciences, 112, 436-441, 10.1073/pnas.1407302112, 2015. 

Scott, R. L., Biederman, J. A., Hamerlynck, E. P., and Barron‐Gafford, G. A.: The carbon balance pivot point of southwestern 
U.S. semiarid ecosystems: Insights from the 21st century drought, Journal of Geophysical Research: Biogeosciences, 120, 
2612-2624, 10.1002/2015JG003181, 2015. 

Seiler, C., Melton, J. R., Arora, V. K., Sitch, S., Friedlingstein, P., Anthoni, P., Goll, D., Jain, A. K., Joetzjer, E., Lienert, S., 10 
Lombardozzi, D., Luyssaert, S., Nabel, J. E. M. S., Tian, H., Vuichard, N., Walker, A. P., Yuan, W., and Zaehle, S.: Are 
Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?, Journal of Advances in Modeling Earth 
Systems, 14, 10.1029/2021ms002946, 2022. 

Sellers, P. J.: Canopy reflectance, photosynthesis and transpiration, International Journal of Remote Sensing, 6, 1335-1372, 
10.1080/01431168508948283, 1985. 15 

Serrano-Ortiz, P., Domingo, F., Cazorla, A., Were, A., Cuezva, S., Villagarcía, L., Alados-Arboledas, L., and Kowalski, A. 
S.: Interannual CO2 exchange of a sparse Mediterranean shrubland on a carbonaceous substrate, Journal of Geophysical 
Research, 114, G04015, 10.1029/2009JG000983, 2009. 

Shekhar, A., Buchmann, N., and Gharun, M.: How well do recently reconstructed solar-induced fluorescence datasets model 
gross primary productivity?, Remote Sensing of Environment, 283, 113282, 10.1016/j.rse.2022.113282, 2022. 20 

Sicard, P., Anav, A., De Marco, A., and Paoletti, E.: Projected global ground-level ozone impacts on vegetation under different 
emission and climate scenarios, Atmospheric Chemistry and Physics, 17, 12177-12196, 10.5194/acp-17-12177-2017, 2017. 

Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects 
on the land-carbon sink, Nature, 448, 791-794, 10.1038/nature06059, 2007. 

Slevin, D., Tett, S. F. B., Exbrayat, J.-F., Bloom, A. A., and Williams, M.: Global evaluation of gross primary productivity in 25 
the JULES land surface model v3.4.1, Geoscientific Model Development, 10, 2651-2670, 10.5194/gmd-10-2651-2017, 2017. 

Sun, G., McLaughlin, S. B., Porter, J. H., Uddling, J., Mulholland, P. J., Adams, M. B., and Pederson, N.: Interactive influences 
of ozone and climate on streamflow of forested watersheds, Global Change Biology, 18, 3395-3409, 10.1111/j.1365-
2486.2012.02787.x, 2012. 

Sun, S., Tai, A. P. K., Yung, D. H. Y., Wong, A. Y. H., Ducker, J. A., and Holmes, C. D.: Influence of plant ecophysiology 30 
on ozone dry deposition: comparing between multiplicative and photosynthesis-based dry deposition schemes and their 
responses to rising CO<sub>2</sub> level, Biogeosciences, 19, 1753-1776, 10.5194/bg-19-1753-2022, 2022. 

Tai, A. P. K., Sadiq, M., Pang, J. Y. S., Yung, D. H. Y., and Feng, Z.: Impacts of Surface Ozone Pollution on Global Crop 
Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2, Front. Sustain. Food Syst., 5, 
534616, 10.3389/fsufs.2021.534616, 2021. 35 

Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van Groenigen, K. J., Keenan, T. F., 
Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini, A. F. A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. 



50 
 

B., Van Sundert, K., Vicca, S., and Jackson, R. B.: A trade-off between plant and soil carbon storage under elevated CO(2), 
Nature, 591, 599-603, 10.1038/s41586-021-03306-8, 2021. 

Tharammal, T., Bala, G., Narayanappa, D., and Nemani, R.: Potential roles of CO2 fertilization, nitrogen deposition, climate 
change, and land use and land cover change on the global terrestrial carbon uptake in the twenty-first century, Climate 
Dynamics, 52, 4393-4406, 10.1007/s00382-018-4388-8, 2018. 5 

Tian, J., Zhang, Y., and Zhang, X.: Impacts of heterogeneous CO2 on water and carbon fluxes across the global land surface, 
International Journal of Digital Earth, 14, 1175-1193, 10.1080/17538947.2021.1937352, 2021. 

Ueyama, M., Ichii, K., Kobayashi, H., Kumagai, T. o., Beringer, J., Merbold, L., Euskirchen, E. S., Hirano, T., Marchesini, L. 
B., Baldocchi, D., Saitoh, T. M., Mizoguchi, Y., Ono, K., Kim, J., Varlagin, A., Kang, M., Shimizu, T., Kosugi, Y., Bret-
Harte, M. S., Machimura, T., Matsuura, Y., Ohta, T., Takagi, K., Takanashi, S., and Yasuda, Y.: Inferring CO2 fertilization 10 
effect based on global monitoring land-atmosphere exchange with a theoretical model, Environmental Research Letters, 15, 
084009, 10.1088/1748-9326/ab79e5, 2020. 

Val Martin, M., Heald, C. L., and Arnold, S. R.: Coupling dry deposition to vegetation phenology in the Community Earth 
System Model: Implications for the simulation of surface O<sub>3</sub>, Geophysical Research Letters, 41, 2988-2996, 
10.1002/2014GL059651, 2014. 15 

Van Dingenen, R., Dentener, F. J., Raes, F., Krol, M. C., Emberson, L., and Cofala, J.: The global impact of ozone on 
agricultural crop yields under current and future air quality legislation, Atmospheric Environment, 43, 604-618, 
10.1016/j.atmosenv.2008.10.033, 2009. 

Verbeke, T., Lathière, J., Szopa, S., and de Noblet-Ducoudré, N.: Impact of future land-cover changes on HNO3 and O3 surface 
dry deposition, Atmospheric Chemistry and Physics, 15, 13555-13568, 10.5194/acp-15-13555-2015, 2015. 20 

Verhoef, A., and Egea, G.: Modeling plant transpiration under limited soil water: Comparison of different plant and soil 
hydraulic parameterizations and preliminary implications for their use in land surface models, Agricultural and Forest 
Meteorology, 191, 22-32, 10.1016/j.agrformet.2014.02.009, 2014. 

von Caemmerer, S., and Farquhar, G. D.: Some relationships between the biochemistry of photosynthesis and the gas exchange 
of leaves, Planta, 153, 376-387, 10.1007/BF00384257, 1981. 25 

Wang, S., Zhang, Y., Ju, W., Chen, J. M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I. A., Wu, M., Berry, J. A., Campbell, 
E., Fernández-Martínez, M., Alkama, R., Sitch, S., Friedlingstein, P., Smith, W. K., Yuan, W., He, W., Lombardozzi, D., 
Kautz, M., Zhu, D., Lienert, S., Kato, E., Poulter, B., Sanders, T. G. M., Krüger, I., Wang, R., Zeng, N., Tian, H., Vuichard, 
N., Jain, A. K., Wiltshire, A., Haverd, V., Goll, D. S., and Peñuelas, J.: Recent global decline of CO<sub>2</sub> fertilization 
effects on vegetation photosynthesis, Science, 370, 1295-1300, 10.1126/science.abb7772, 2020. 30 

Wang, X., Chen, J. M., Ju, W., and Zhang, Y.: Seasonal Variations in Leaf Maximum Photosynthetic Capacity and Its 
Dependence on Climate Factors Across Global FLUXNET Sites, Journal of Geophysical Research: Biogeosciences, 127, 
10.1029/2021jg006709, 2022. 

Wang, Y., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 3. Origin of 
tropospheric ozone and effects of nonmethane hydrocarbons, Journal of Geophysical Research: Atmospheres, 103, 10757-35 
10767, 10.1029/98JD00156, 1998. 

Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, 
Atmospheric Environment, 23, 1293-1304, 1989. 



51 
 

Wild, B., Teubner, I., Moesinger, L., Zotta, R.-M., Forkel, M., van der Schalie, R., Sitch, S., and Dorigo, W.: VODCA2GPP 
– a new, global, long-term (1988–2020) gross primary production dataset from microwave remote sensing, Earth System 
Science Data, 14, 1063-1085, 10.5194/essd-14-1063-2022, 2022. 

Wild, O.: Modelling the global tropospheric ozone budget: Exploring the variability in current models, Atmos. Chem. Phys., 
7, 2643–2660, 10.5194/acp-7-2643-2007, 2007. 5 

Wiltshire, A. J., Burke, E. J., Chadburn, S. E., Jones, C. D., Cox, P. M., Davies-Barnard, T., Friedlingstein, P., Harper, A. B., 
Liddicoat, S., Sitch, S., and Zaehle, S.: JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1), Geoscientific 
Model Development, 14, 2161-2186, 10.5194/gmd-14-2161-2021, 2021. 

Wolf, S., Keenan, T. F., Fisher, J. B., Baldocchi, D. D., Desai, A. R., Richardson, A. D., Scott, R. L., Law, B. E., Litvak, M. 
E., Brunsell, N. A., Peters, W., and van der Laan-Luijkx, I. T.: Warm spring reduced carbon cycle impact of the 2012 US 10 
summer drought, Proceedings of the National Academy of Sciences, 113, 5880-5885, 10.1073/pnas.1519620113, 2016. 

Wong, A. Y. H., Geddes, J. A., Tai, A. P. K., and Silva, S. J.: Importance of dry deposition parameterization choice in global 
simulations of surface ozone, Atmospheric Chemistry and Physics, 19, 14365-14385, 10.5194/acp-19-14365-2019, 2019. 

Wu, Q., Chen, S., Zhang, Y., Song, C., Ju, W., Wang, L., and Jiang, J.: Improved Estimation of the Gross Primary Production 
of Europe by Considering the Spatial and Temporal Changes in Photosynthetic Capacity from 2001 to 2016, Remote Sensing, 15 
15, 10.3390/rs15051172, 2023a. 

Wu, Q., Wang, X., Chen, S., Wang, L., and Jiang, J.: Land Surface Greening and CO2 Fertilization More than Offset the Gross 
Carbon Sequestration Decline Caused by Land Cover Change and the Enhanced Vapour Pressure Deficit in Europe, Remote 
Sensing, 15, 10.3390/rs15051372, 2023b. 

Xia, L., Lam, S. K., Kiese, R., Chen, D., Luo, Y., van Groenigen, K. J., Ainsworth, E. A., Chen, J., Liu, S., Ma, L., Zhu, Y., 20 
and Butterbach-Bahl, K.: Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles, One Earth, 4, 1752-1763, 
10.1016/j.oneear.2021.11.009, 2021. 

Xu, B., Arain, M. A., Black, T. A., Law, B. E., Pastorello, G. Z., and Chu, H.: Seasonal variability of forest sensitivity to heat 
and drought stresses: A synthesis based on carbon fluxes from North American forest ecosystems, Global Change Biology, 
26, 901-918, 10.1111/gcb.14843, 2020. 25 

Yan, M., Yue, X., Zhou, B., Sun, X., and Xin, N.: Projected changes of ecosystem productivity and their responses to extreme 
heat events in northern asia, Front. Earth Sci., 10, 970296, 10.3389/feart.2022.970296, 2022. 

Yang, R., Wang, J., Zeng, N., Sitch, S., Tang, W., McGrath, M. J., Cai, Q., Liu, D., Lombardozzi, D., Tian, H., Jain, A. K., 
and Han, P.: Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products, 
Earth Syst. Dynam., 13, 833-849, 10.5194/esd-13-833-2022, 2022. 30 

Yang, X., Wittig, V., Jain, A. K., and Post, W.: Integration of nitrogen cycle dynamics into the Integrated Science Assessment 
Model for the study of terrestrial ecosystem responses to global change, Global Biogeochemical Cycles, 23, 
10.1029/2009gb003474, 2009. 

Yang, X., Chen, X., Ren, J., Yuan, W., Liu, L., Liu, J., Chen, D., Xiao, Y., Song, Q., Du, Y., Wu, S., Fan, L., Dai, X., Wang, 
Y., and Su, Y.: A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical 35 
evergreen broadleaved forests, Earth System Science Data, 15, 2601-2622, 10.5194/essd-15-2601-2023, 2023. 



52 
 

Yi, K., Dragoni, D., Phillips, R. P., Roman, D. T., and Novick, K. A.: Dynamics of stem water uptake among isohydric and 
anisohydric species experiencing a severe drought, Tree Physiol, treephys;tpw126v121, 10.1093/treephys/tpw126, 2017. 

Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing the MODIS Leaf Area Index products for land surface 
and climate modelling, Remote Sensing of Environment, 115, 1171-1187, 10.1016/j.rse.2011.01.001, 2011. 

Yue, X., and Unger, N.: Ozone vegetation damage effects on gross primary productivity in the United States, Atmospheric 5 
Chemistry and Physics, 14, 9137-9153, 10.5194/acp-14-9137-2014, 2014. 

Yue, X., and Unger, N.: The Yale Interactive terrestrial Biosphere model version 1.0: description, evaluation and 
implementation into NASA GISS ModelE2, Geoscientific Model Development, 8, 2399-2417, 10.5194/gmd-8-2399-2015, 
2015. 

Yue, X., Unger, N., Harper, K., Xia, X., Liao, H., Zhu, T., Xiao, J., Feng, Z., and Li, J.: Ozone and haze pollution weakens net 10 
primary productivity in China, Atmospheric Chemistry and Physics, 17, 6073-6089, 10.5194/acp-17-6073-2017, 2017. 

Zeng, X., Zhao, M., and Dickinson, R. E.: Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea 
Surface Fluxes Using TOGA COARE and TAO Data, Journal of Climate, 11, 2628-2644, 10.1175/1520-
0442(1998)011<2628:IOBAAF>2.0.CO;2, 1998. 

Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E., and Myneni, R.: Coupling of the Common Land Model to the NCAR 15 
Community Climate Model, JOURNAL OF CLIMATE, 15, 23, 2002. 

Zhang, L., Moran, M. D., Makar, P. A., Brook, J. R., and Gong, S.: Modelling gaseous dry deposition in AURAMS: a unified 
regional air-quality modelling system, Atmospheric Environment, 36, 537-560, 10.1016/S1352-2310(01)00447-2, 2002. 

Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. 
Chem. Phys., 16, 2003. 20 

Zhang, L., Jacob, D. J., Liu, X., Logan, J. A., Chance, K., Eldering, A., and Bojkov, B. R.: Intercomparison methods for 
satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. 
Phys., 15, 2010. 

Zhang, L., Hoshika, Y., Carrari, E., Burkey, K. O., and Paoletti, E.: Protecting the photosynthetic performance of snap bean 
under free air ozone exposure, Journal of Environmental Sciences, 66, 31-40, 10.1016/j.jes.2017.05.009, 2018. 25 

Zhang, X., Ward, B. B., and Sigman, D. M.: Global Nitrogen Cycle: Critical Enzymes, Organisms, and Processes for Nitrogen 
Budgets and Dynamics, Chem Rev, 120, 5308-5351, 10.1021/acs.chemrev.9b00613, 2020. 

Zhang, Y., and Wang, Y.: Climate-driven ground-level ozone extreme in the fall over the Southeast United States, Proceedings 
of the National Academy of Sciences, 113, 10025-10030, 10.1073/pnas.1602563113, 2016. 

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., and Dong, J.: A global moderate resolution dataset of gross primary 30 
production of vegetation for 2000–2016, Scientific Data, 4, 170165, 10.1038/sdata.2017.165, 2017. 

Zhang, Y., and Ye, A.: Improving global gross primary productivity estimation by fusing multi-source data products, Heliyon, 
8, e09153, 10.1016/j.heliyon.2022.e09153, 2022. 

Zhao, J., Liu, D., Zhu, Y., Peng, H., and Xie, H.: A review of forest carbon cycle models on spatiotemporal scales, Journal of 
Cleaner Production, 339, 10.1016/j.jclepro.2022.130692, 2022. 35 



53 
 

Zhao, Y., Zhang, L., Tai, A. P. K., Chen, Y., and Pan, Y.: Responses of surface ozone air quality to anthropogenic nitrogen 
deposition in the Northern Hemisphere, Atmospheric Chemistry and Physics, 17, 9781-9796, 10.5194/acp-17-9781-2017, 
2017. 

Zhou, S. S., Tai, A. P. K., Sun, S., Sadiq, M., Heald, C. L., and Geddes, J. A.: Coupling between surface ozone and leaf area 
index in a chemical transport model: Strength of feedback and implications for ozone air quality and vegetation health, 5 
Atmospheric Chemistry and Physics Discussions, 1-23, 10.5194/acp-2018-351, 2018. 

Zhu, J., Tai, A. P. K., and Hung Lam Yim, S.: Effects of ozone–vegetation interactions on meteorology and air quality in China 
using a two-way coupled land–atmosphere model, Atmospheric Chemistry and Physics, 22, 765-782, 10.5194/acp-22-765-
2022, 2022. 

Zielis, S., Etzold, S., Zweifel, R., Eugster, W., Haeni, M., and Buchmann, N.: NEP of a Swiss subalpine forest is significantly 10 
driven not only by current but also by previous year's weather, Biogeosciences, 11, 1627-1635, 10.5194/bg-11-1627-2014, 
2014. 
 


