
Responses to Reviewers’ Comments on “Terrestrial Ecosystem Model in R (TEMIR) version 1.0: Simulating 
ecophysiological responses of vegetation to atmospheric chemical and meteorological changes” by Tai et al. (MS 
No.: EGUSPHERE-2023-1287) 

We would like to thank the reviewers for the thoughtful and insightful comments. The manuscript has been revised 
accordingly, and our point-by-point responses are provided below. The reviewers’ comments are italicized, our replies are 
in black font, and our new/modified text cited below is highlighted in bold. 

 

Response to Referee #1 

With a background in ecosystem modelling, I find this really appealing. Although I can not fully understand/buy into what 
you are talking about in the introduction regarding the use of R by ecologists. Sure, we in the ecosystem modelling 
community are using lower level computer language, but we are also using R, MATLAB or Python for our analysis. I 
suggest that you re-write that section.  

We thank the reviewer for the comment and recognize the confusing phrasing. We were trying to emphasize most 
Earth system models are written in lower-level computer languages, making these models less accessible to ecologists 
who are more familiar with R, and certainly ecosystem modelers ourselves often use R, Python and other high-level 
languages for analysis. The paragraph is now rewritten to make these points clearer: 

P4 L29: “Developing an ecosystem model in the R programming language is beneficial to various ends. R is an 
increasingly popular tool for ecological research (R Core Team, 2022), especially in population and community 
ecology. Lai et al. (2019) surveyed more than 60,000 peer-reviewed ecology journal articles, and found that the 
number of studies reported using R as their primary tool in data analysis increased from ~10% in 2008 to ~60% in 
2017. However, ecosystem and Earth system models are often written in low-level languages such as Fortran, 
because the field of ecosystem and Earth system modeling has close historical ties with geoscientific research due 
to the importance of representing the land cover and biogeochemical cycles in climate models, which are most often 
written in low-level languages that are less accessible to researchers outside of the field. Having a terrestrial 
ecosystem model in R may help enhance the accessibility to ecosystem modeling for ecological researchers who are 
more familiar with R, generate a common modeling framework across population, community and ecosystem scales, 
and hopefully serve as a bridge between ecological and geoscientific fields to advance interdisciplinarity. Being an 
entirely free and open software as well as a highly versatile and relatively user-friendly programming language, it 
may also help promote open science in environmental research and education, allowing the model to be more 
widely used as a policy-relevant assessment tool for practitioners, such as those who need to assess the carbon 
uptake potential of tree planting or reforestation as means to achieve carbon neutrality.” 

 

Generally, I like your model description, but there are two things that I believe needs a bit more attention. First of all, 
PFT:s (Plant Functional Types), are you really simulating PFT:s? From what I have read, it is more like you are simulating 
different land tiles with monocultures of PFT:s planted on them. There is a mix, in the text, between talking about a PFT 
as plant and PFT as a land-cover/vegetation type. For instance in section 2.2.1. For instance, bare ground can not be a 
PFT.  



We thank the reviewer for raising these issues that may cause confusion. The plant functional types (PFT) description 
was brief and we agree it should be clarified. Indeed, PFTs should be discussed as broad vegetation types that are 
simulated individually (“monoculturally”) per “land tile” for each grid cell, which can consist of multiple such land 
tiles for such PFTs. We have now revised the relevant parts as follows: 

P6 L7: “… The plant type categories consist of 14 natural vegetation types (including generic C3 crops) (Lawrence 
and Chase, 2007b) and 10 rainfed or irrigated crop types (Table S1), giving a total of 24 different plant function 
types (PFTs), and one land type for unvegetated land or bare ground. Each model grid cell consists of a mosaic 
of natural or managed PFTs and/or bare ground, where only the natural PFTs share a single soil column, allowing 
them theoretically to compete for soil water. Each PFT or bare ground has a prescribed present-day fractional 
coverage in each grid cell, derived from MODerate resolution Imaging Spectroradiometer (MODIS) satellite data 
(Lawrence and Chase, 2007b) according to climatic (temperature- and precipitation-based) rules (see table 3 of Bonan 
et al., 2002), as well as managed crop distribution for non-generic crops (corn, temperate and winter cereals, 
soybean) (Portmann et al. (2010). Each PFT has their own characteristic structural and physiological parameters 
(Table S2), as detailed in Oleson et al. (2013). The parameters used to represent vegetation structure include LAI, 
stem area index (SAI) and canopy height (h). This version of TEMIR lacks a full carbon cycle, thus these 
structural parameters are prescribed as model input data. Monthly PFT-level LAI is derived from MODIS using 
the deaggregation methods described in Lawrence and Chase (2007b); PFT-level SAI is derived from LAI with the 
methods of Zeng et al. (2002). PFT-level canopy heights are prescribed following Bonan et al. (2002). Users can 
specify any gridded total LAI input data, whereby the PFT-specific LAI that TEMIR requires is then scaled 
accordingly. … ” 

 

Depending on your answer to the question above, if you are truly simulating different PFT:s in a tile, then competition 
needs to be presented. If not, then clearly state that you are not simulating competition between different strategies, and 
that the spatial extent of these strategies is fixed. Something that I was missing from the discussion as well. How is that 
affecting your results, that you have a fixed fraction of strategies? 

I would claim that for instance having different sensitiveness to ozone would affect the composition if [O3] will change in 
the future.  

We thank the reviewer for comments on competition, adaptation and composition, in particular the O3-related 
composition changes (Calvete-Sogo et al., 2016; Fuhrer et al., 2016; Emberson, 2020). These are active research areas 
with many developing model implementations (Lawrence et al., 2019; Franklin et al., 2020; Franz and Zaehle, 2021). 
TEMIR v1.0 lacks a prognostic carbon cycle, and thus cannot simulate compositional or distributional changes (e.g., 
due to adaptation) at model timesteps. While model development for a full carbon cycle is ongoing, we focus here in 
this version the shorter-timescale biosphere-atmosphere interactions with prescribed plant type distribution and 
structure. Yet, at the capacity of TEMIR v1.0, we can address distributional changes by changing the input of PFT 
fractional coverage, which is currently updated in the simulations yearly and can be modified for higher frequencies. 
This has now been stated more clearly here: 

P6 L20: “… This version of TEMIR does not dynamically simulate PFT coverage and structural parameters, 
thus competition among different plant strategies or adaptation to environmental changes such as climate 
change and air pollution is not simulated. The effects of land use and land cover change (LULCC) or changing 



plant type distribution due to adaptation can only be included by user-modified prescribed PFT fractional 
coverage or LAI data obtained externally from other models or studies. These input data can however be 
updated every simulation year to represent continuous LULCC over interannual to multidecadal timescales. 
Model development for a full carbon cycle for both natural vegetation and crops (Tai et al. (2021) is actively 
ongoing.” 

More specifically regarding the competition due to O3 (Agathokleous et al., 2020), we have now extended the 
discussion here:  

P34 L4: “O3 influences in the current version of TEMIR are limited to vegetation physiological and productivity 
responses. Intra- and interspecies differential sensitivity to O3 can cause competition (Agathokleous et al., 
2020), affecting some species more than others in terms of biomass, flowering and seed development, and thus 
impacting community composition, PFT fractional coverage and biodiversity (Calvete-Sogo et al., 2016; 
Fuhrer et al., 2016; Emberson, 2020). This can also be seen among functional groups; e.g., perennial species 
retains more aboveground biomass than annuals, and angiosperms are more prone to O3 damage than 
gymnosperms, thus giving possible long-term biodiversity effects (Agathokleous et al., 2020). Such effects are 
further also complicated by soil conditions (e.g., water and nitrogen content), and spatial heterogeneity 
whereby regional strategies might differ within functional groups requires more studies to obtain observation-
based parameterization.” 

 

Some specific corrections:  

line 10, page 2; there is a missing "is" on that line. 

Eq. 14 is missing something  

We thank the reviewer for noticing the places in need of corrections, and changes are made accordingly as shown:  

P2 L9: “… About a third of the total cumulative CO2 emission to date that is due to anthropogenic land cover 
change could have been emitted before the time of industrialization (Pongratz et al., 2009). … ” 

P8 L13: “ 𝚯PSII	𝑱𝟐 − (𝑰PSII + 𝑱max)	𝑱 + 𝑰PSII	𝑱max = 𝟎 ” 

 

Response to Referee #2 

(1) Is the spatial distribution and fractional coverage of PFTs fixed during the simulation period? Does it mean that the 
model doesn’t consider land use change effect? If so, it is necessary to discuss the effect of lacking LULCC change on GPP 
estimation. 

We thank the reviewer for the comments. We have now clarified the representation of land use and land cover change 
in this version of TEMIR here: 



P6 L11: “… Each PFT or bare ground has a prescribed present-day fractional coverage in each grid cell, derived 
from MODerate resolution Imaging Spectroradiometer (MODIS) satellite data (Lawrence and Chase, 2007b) 
according to climatic (temperature- and precipitation-based) rules (see table 3 of Bonan et al., 2002), as well as 
managed crop distribution for non-generic crops (corn, temperate and winter cereals, soybean; Portmann et al. (2010)). 
Each PFT has their own characteristic structural and physiological parameters (Table S2), as detailed in Oleson et 
al. (2013). The parameters used to represent vegetation structure include LAI, stem area index (SAI) and canopy 
height (h). This version of TEMIR lacks a full carbon cycle, thus these structural parameters are prescribed as 
model input data. Monthly PFT-level LAI is derived from MODIS using the deaggregation methods described in 
Lawrence and Chase (2007b); PFT-level SAI is derived from LAI with the methods of Zeng et al. (2002). PFT-level 
canopy heights are prescribed following Bonan et al. (2002). Users can specify any gridded total LAI input data, 
whereby the PFT-specific LAI that TEMIR requires is then scaled accordingly. This version of TEMIR does 
not dynamically simulate PFT coverage and structural parameters, thus competition among different plant 
strategies or adaptation to environmental changes such as climate change and air pollution is not simulated. 
The effects of land use and land cover change (LULCC) or changing plant type distribution due to adaptation 
can only be included by user-modified prescribed PFT fractional coverage or LAI data obtained externally 
from other models or studies. These input data can however be updated every simulation year to represent 
continuous LULCC over interannual to multidecadal timescales. Model development for a full carbon cycle 
for both natural vegetation and crops (Tai et al. (2021) is actively ongoing.” 

Land use and land cover change (LULCC) would undoubtedly have large regional effects on vegetation, soil and thus 
GPP, especially in the productive tropical regions (Hou et al., 2022). As the reviewer rightly noticed, LULCC is 
mostly represented by PFT fractional changes; our study does not dynamically simulate LULCC effects as PFT 
coverage inputs are fixed, as explained above. As studies mostly found that LULCC reduces GPP for the 2010s (due 
to urbanization, agricultural expansion, and deforestation (Hou et al., 2022), it is likely that our results may 
overestimate GPP; however, under CO2 effect, global influences of LULCC may be small (~2%) for the coming 
century. We now discuss these aspects more here: 

P33 L3: “… The nondynamic representation of vegetation cover and parametrization is a shortcoming of TEMIR, 
thus simulations overlook intricate and transient impacts of LULCC on land-atmosphere exchange (Ganzeveld 
et al., 2010; Pongratz et al., 2010; Prescher et al., 2010; Chen et al., 2018; Bastos et al., 2020; Hou et al., 2022). 
With the capacity of the current version of TEMIR, our simulations address these aspects by changing the 
input data of LAI and PFT fractions derived from LULCC, for yearly and higher frequencies. LULCC can 
drive large regional changes, though recent LULCC mostly reduces GPP (due to urbanization, agricultural 
expansion, and deforestation), counteracted partly by CO2 fertilization effects (Wu et al., 2023), thus the 
validity of our results is likely unchanged. The assumption of sufficient nitrogen availability is a limitation…” 

(2) Please elaborate what MODIS product did you use to derive PFTs distribution maps. And how did you separate C3 
and C4 crops, since MODIS products don’t have such information. 

Input data and classifications are based on the Community Land Model version 4.5 (Lawrence et al., 2019), with more 
specifics in Bonan et al. (2002) and Lawrence and Chase (2007a). Generic crops are all C3, and otherwise specific 
crops are separate PFTs; this is now clarified in the text: 

P6 L7: “… The plant type categories consist of 14 natural vegetation types (including generic C3 crops) (Lawrence 
and Chase, 2007b) and 10 rainfed or irrigated crop types (Table S1), giving a total of 24 different plant function 



types (PFTs), and one land type for unvegetated land or bare ground. Each model grid cell consists of a mosaic 
of natural or managed PFTs and/or bare ground, where only the natural PFTs share a single soil column, allowing 
them theoretically to compete for soil water. Each PFT or bare ground has a prescribed present-day fractional 
coverage in each grid cell, derived from MODerate resolution Imaging Spectroradiometer (MODIS) satellite data 
(Lawrence and Chase, 2007b) according to climatic (temperature- and precipitation-based) rules (see table 3 of Bonan 
et al., 2002), as well as managed crop distribution for non-generic crops (corn, temperate and winter cereals, 
soybean) (Portmann et al., 2010). Each PFT has their own characteristic structural and physiological parameters 
(Table S2), as detailed in Oleson et al. (2013). The parameters used to represent vegetation structure include LAI, 
stem area index (SAI) and canopy height (h). This version of TEMIR lacks a full carbon cycle, thus these 
structural parameters are prescribed as model input data. Monthly PFT-level LAI is derived from MODIS using 
the deaggregation methods described in Lawrence and Chase (2007b); PFT-level SAI is derived from LAI with the 
methods of Zeng et al. (2002). PFT-level canopy heights are prescribed following Bonan et al. (2002). Users can 
specify any gridded total LAI input data, whereby the PFT-specific LAI that TEMIR requires is then scaled 
accordingly. … ” 

 
 
(3) MERRA-2 has a native resolution of 0.5° x 0.625°, why didn’t you conduct simulations at this relative high resolution? 

We thank the reviewer for pointing this out. Modeling time and computing costs will be a lot higher if the model is 
run at the said native resolution for global simulations, and therefore for the current version the inputs are consistently 
restricted to 2°×2.5°, which is also the commonly used resolution for GEOS-Chem global simulations. As a primary 
goal of this model development is to couple with GEOS-Chem output, 2°×2.5° was first used, but the model is in 
essence resolution-independent; as long as the input data all share the same resolution, the model can be easily 
modified to run at a higher resolution. In fact, we have run at said MERRA-2 native resolution and much higher with 
assimilated local meteorology for regional studies (e.g., Hong Kong), which are currently in preparation (e.g., Figure 
1, Tao et al., in prep; Lam et al., in prep). More on this is now discussed: 

P15 L24: “… We also note that as the model mechanisms are essentially resolution-independent, the model can 
be straightforwardly modified to conduct simulations at higher resolutions as long as the corresponding input 
data are provided.” 

P32 L29: “… This highlights that generalization and the coarse resolution of the MERRA-2 dataset used (due 
to computational limitation and necessary consistency with other input datasets) can drastically overlook 
regional and small-scale nuances. …” 



 

Figure 1: MODIS LAI (left panel) and TEMIR simulated annual NPP (right panel) averaged over 2009–2015 for 
Hong Kong. 

 
 
(4) Please elaborate how is the dark respiration (Rd) rate calculated in the model. 

 
We thank the reviewer for the comment, and have now added to the model description accordingly in P9 L1: 
“…  

𝑹𝐝 =

⎩
⎪
⎨

⎪
⎧ 𝟎. 𝟎𝟏𝟓	𝑽𝒄𝒎𝒂𝒙
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𝟏 + 𝐞𝐱𝐩[𝒔𝟓(𝑻𝐯 − 𝒔𝟔)]
H 𝐟𝐨𝐫	𝐂𝟒	𝐩𝐥𝐚𝐧𝐭𝐬

 

where Rd (μmol CO2 m–2 s–1) is the dark respiration rate; s1, s3 and s5 are 0.3, 0.2 and 1.3 K, respectively; s2, 
s4, and s6 and 313.15, 288.15, and 328.15 K–1, respectively; Tv is leaf temperature (K); and 𝒇𝑹𝐝(𝑻𝐯) and 
𝒇𝑽𝐜𝐦𝐚𝐱(𝑻𝐯) are functions to adjust for variations due to temperature (Bonan et al., 2011). All of the parameters 
(Vcmax, Jmax, Tp, Rd, Kc, Ko, Γ*, kp) are temperature-dependent and scale with their respective PFT-specific 
standard values at 25°C by different formulations. Temperature acclimation of Vcmax and Jmax from the 
previous 10 days as well as daylength dependence of Vcmax is implemented as default options. These are all 
detailed in Sect. 8.2 and 8.3 of Oleson et al. (2013).” 

 
(5) The TEMIR contains a two-layer soil model. Does this soil model have carbon cycling and water transport processes? 

TEMIR v1.0 of this study does not have soil carbon cycling, nor soil water transport. Soil water is prescribed from 
MERRA-2; this is now described in in P10 L5: “… consistent with and constrained by the input soil moisture and 
model structure of MERRA-2. … ” 

Soil carbon cycling is under development, which compliments the corresponding carbon cycling in natural vegetation. 
Currently, a newer version of TEMIR has carbon cycling for crops (Tai et al., 2021). We thank the reviewer for the 
comment, and have now explained this more clearly: 

P6 L20: “… This version of TEMIR lacks a full carbon cycle, thus these structural parameters are prescribed 
as model input data. … Model development for a full carbon cycle for both natural vegetation and crops (Tai 
et al., 2021) is actively ongoing.” 



 
(6) The canopy decay coefficient for nitrogen Kn is 0.30 in the model. How was this number determined? Shouldn’t it vary 
with leaf nitrogen content or nitrogen availability? It seems that the current version of TEMIR doesn’t have an explicit 
nitrogen cycle. If so, it is necessary to discuss how does lack of considering nitrogen cycle affect GPP estimation. 

We thank the reviewer for the comments. TEMIR v1.0 does not have dynamic nitrogen cycle. The canopy decay 
coefficient Kn = 0.30 is calculated and calibrated to match an explicit multi-layer canopy, following exactly the 
formulation in CLM4.5 (Bonan et al., 2012; Oleson et al., 2013). For the effect of a lack of nitrogen cycle, the 
discussion is now modified as follows: 

P36 L3: “… The changing nitrogen deposition due to anthropogenic activities may likewise influence the interactions 
between vegetation, CO2 and O3 (Zhao et al., 2017; Liu et al., 2021), whereby nitrogen can limit CO2-promoted 
growth (Wang et al., 2020) or modify vegetation responses (e.g., for gs; Hu et al., 2021) with further implications 
on soil and nutrient cycling (Terrer et al., 2021). As atmospheric composition rapidly changes in the next century, 
these interactive mechanisms should be considered for modelers to more representatively and accurately model the 
future Earth system (e.g., Bytnerowicz et al., 2007; Pu et al., 2017; Sicard et al., 2017; Franz and Zaehle, 2021; Leung 
et al., 2022).” 

 
(7) The model doesn’t perform well at several crop sites. Could you add one paragraph discussing the potential measures 
to improve model performance for crops? 

Crop type simulations underperform in comparison to other vegetation types, and we agree very much that more 
discussion is needed, as now included in the following:  

P32 L16: “Simulating crops in ecosystem modeling remains particularly challenging (Deryng et al., 2016; 
Chopin et al., 2019; Muller and Martre, 2019; Boas et al., 2021), as it combines the nuances in phenology, 
physiology, coverage, and active human management with high spatiotemporal variations (Monfreda et al., 
2008; Emberson et al., 2018; Ahmed et al., 2022; Gleason et al., 2022; Corcoran et al., 2023), which already 
exist for natural vegetation to a lesser degree. One particular crucial aspect for improvement is to get crop LAI 
correct, which is typically more challenging to measure than trees with large canopies and often varies to 
greater extents with leaf orientations for different crops. More long-term ground-based and/or remote-sensing 
measurements of crop LAI for different crop types across the world are particularly recommended, not only 
as input data but also for model validation in future development. For especially site-level simulations, locally 
relevant crop physiological and structural parameters should also be measured and used. Ongoing 
development has already been attempting to enhance crop representation in a version of TEMIR with active 
crop biogeochemistry (Tai et al., 2021) to improve and reconcile model inaccuracies.” 

 
(8) For the site-level simulation, why did you fix CO2 concentration at the level of 390 ppmv, rather than using the actual 
CO2 concentration during the study period? 

The reviewer has correctly pointed out that we only used a constant CO2 concentration of 2010 (Dlugokencky and 
Tans, 2022; Lan et al., 2023). We recognize the possible inaccuracy as modelled productivity is sensitive to CO2 



concentrations, which has been explored using TEMIR in another study (Yung et al, in prep). We also note that spatial 
variability of CO2 concentration can also contribute to this issue (Cheng et al., 2022), though it is generally found to 
be minor (Lee et al., 2018; Tian et al., 2021). Moreover, as similar modeling studies often treated CO2 concentration 
as spatially and temporally uniform, and for direct comparison with literature, this study followed such practice. We 
now note these limitations more extensively, which we believe do not interfere with the utility of the model (since 
CO2 can easily be adjusted) for this model development paper: 

P32 L31: “… Furthermore, CO2 concentration was kept constant and spatially uniform in all simulations, 
which enables direct comparison with other modeling studies, but ignores possible spatiotemporal variability 
of CO2 concentration (Cheng et al., 2022). Though such effects are usually minor on simulated GPP magnitudes 
(Lee et al., 2018; Tian et al., 2021), uncertainties should be minimized anyhow, thus users are recommended to 
use the measured CO2 concentration, if available, as input for especially site-level simulations. Users are also 
recommended to recalibrate relevant model parameters with site observations and available datasets (e.g., of 
higher resolutions), such as LAI, Vcmax, PFT fractional coverage, etc., to yield the most accurate results. …” 

 
(9) For the site CH-Cha, can you explain why the model performance is good using reanalysis meteorological input data? 

We thank the reviewer for astutely noticing and raising the issue of the site CH-Cha. We revisited all our site 
simulation results and noticed issues only with CH-Cha. The relative humidity provided by FLUXNET is incredibly 
low (mostly 0%) for July 2012 and the whole 2012. This is unrealistic and simulations should have used gap-filled 
(i.e., MERRA2) relative humidity instead. Hence, graphs for site CH-Cha are updated with new results, and analysis 
and discussion are edited accordingly, as in: 

P20 L4: “… Overestimation of CH-Cha (Error! Reference source not found.(d)) is similar under FLUXNET 
meteorology, which is likely due to disturbances from intensive site management (i.e., cutting, slurry 
application and grazing, Imer et al., 2013; Merbold et al., 2014), which is a shortcoming of simplistic model 
representation for crops. … ”  

 
(10) You explained that the underestimation of GPP at the FR-Fon site is most likely due to inaccurate parameterization 
overcompensating for the uncertainties of satellite derived LAI. Have you tried to quantify how uncertainties in LAI affect 
GPP estimation. Maybe you can compare the difference using tow simulations: one use MODIS LAI as input, one use 
observed LAI as input. 

We thank the reviewer for the suggestions, which is particularly relevant for site simulations. Undeniably, the choice 
of LAI product to use can affect GPP predictions and variability (Lin et al., 2023; Wu et al., 2023), yet investigations 
are limited by local data availability. We have conducted a sensitivity study by perturbing LAI on sites FR-Fon and 
CA-TP4 to investigate the uncertainty of LAI on evergreen needleleaf forests (ENF) and deciduous broadleaf forests 
(DBF) respectively. Site-level sensitivity simulations have shown, in Figure 2, that small perturbations around a given 
LAI gives an almost linear response of GPP (e.g., a 10% increase in LAI gives a roughly 2–4% increase in GPP). 
Nonlinear responses start to kick in for larger perturbations (e.g., more than 20%), especially at a high given LAI due 
to canopy shading effect, resulting in diminishing returns. Indeed, we are currently using TEMIR to investigate how 
interannual changes in LAI may affect global GPP (Yung et al, in prep), which essentially serves the same purpose. 



We would like to reserve the results of the ongoing study for inclusion in a future scientific paper. Here we have 
discussed more extensively how LAI changes and biases may contribute to uncertainties of the estimated GPP: 

P32 L7: “… For instance, there is a systematic underestimation for deciduous broadleaf forests, though it can be 
explained by the uncertainties of LAI datasets (Liu et al., 2018; Yang et al., 2023), and some regions show distinctive 
physiology and phenology of grasses and shrubs. Particularly for semiarid regions where the range of productivity is 
large, the model shows variable accuracy. In general, variability in prescribed LAI can be an important source 
of uncertainty of the model results. Single-site sensitivity simulations show that GPP generally linearly 
increases with LAI at low LAI, but as LAI becomes larger, GPP would increase less than proportionately due 
to canopy shading effect. Such nonlinearity of GPP responses to LAI changes is less important for small 
perturbations of LAI (e.g., less than 20%).” 

 

Figure 2: Changes of simulated annual mean gross primary product (GPP) 
under perturbation of leaf area index (LAI) for sites CA-TP4 and FR-Fon. 

 
(11) I suggest the author add a paragraph describing what meteorological variables are needed to drive the TEMIR. 

For better comprehension, we have now included the full list of MERRA-2 surface meteorological variables required 
to drive TEMIR in the supplementary materials (Table S5), and referred to accordingly in the text: 

P15 L10: “… Global simulations from 2010 to 2015 are conducted under the same general setup as the site-level 
simulations, with ambient CO2 concentration fixed at 390 ppmv and driven by 2°×2.5° MERRA-2 surface 
meteorology. A full list of MERRA-2 variables required for running gridded simulations of TEMIR is shown 
in Table S5. … ” 

 
(12) Please add one table listing the key parameters for different PFTs. 



A table is now added to the supplementary materials (Table S2) and mentioned here: 

P6 L14: “… Each PFT has their own characteristic structural and physiological parameters (Table S2), detailed 
in Oleson et al. (2013). …” 
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