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Abstract. The radiative effects of clouds make a large contribution to the Earth’s energy balance, and changes in clouds

constitute the dominant source of uncertainty in the global warming response to carbon dioxide forcing. To characterize and

constrain this uncertainty, cloud controlling factor (CCF) analyses have been suggested that estimate sensitivities of clouds

to large-scale environmental changes, typically in cloud-regime specific multiple linear regression frameworks. Here, local

sensitivities of cloud radiative effects to a large number of controlling factors are estimated in a regime-independent framework5

from 20 years (2001–2020) of near-global (60◦N–60◦S) satellite observations and reanalysis data using statistical learning. A

regularized linear regression (ridge regression) is shown to skillfully predict anomalies of shortwave (R2 = 0.63) and longwave

cloud radiative effects (CRE) (R2 = 0.72) in independent test data on the basis of 28 CCFs, including aerosol proxies. The

sensitivity of CRE to selected CCFs is quantified and analyzed. CRE sensitivities to sea-surface temperature and estimated

inversion strength are particularly pronounced in low-cloud regions and generally in agreement with previous studies. The10

analysis of CRE sensitivities to three-dimensional wind field anomalies reflects that CREs in tropical ascent regions are mainly

driven by variability of large-scale vertical velocity in the upper troposphere. In the subtropics, CRE is sensitive to free-

tropospheric zonal and meridional wind anomalies, which are likely to encapsulate information on synoptic variability that

influences subtropical cloud systems by modifying wind shear and thus turbulence and dry-air entrainment in stratocumulus

clouds, as well as variability related to midlatitude cyclones. Different proxies for aerosols are analyzed as CCFs, with satellite-15

derived aerosol proxies showing a larger CRE sensitivity than a proxy from an aerosol reanalysis, likely pointing to satellite

aerosol retrieval biases close to clouds leading to overestimated aerosol sensitivities. Sensitivities of shortwave CRE to all

aerosol proxies indicate a pronounced cooling effect from aerosols in stratocumulus regions that is counteracted to a varying

degree by a longwave warming effect. The analysis may guide the selection of CCFs in future sensitivity analyses aimed at

constraining cloud feedback and climate forcings from aerosol-cloud interactions, using both data from observations and global20

climate models.
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1 Introduction

Clouds are main modulators of the Earth’s energy budget, cooling the Earth by about 20 W m−2 on average. This cooling

is driven by clouds reflecting incoming shortwave solar radiation, therefore reducing the energy uptake of the Earth system

by about 47 W m−2. Clouds increase the Earth atmosphere’s opacity in the infrared, however, absorbing longwave radiation5

emitted by the warmer Earth surface, and emitting less longwave radiation themselves due to the lower cloud-top temperatures.

The combined effect of longwave absorption and emission leads to a warming of around 28 W m−2 (numbers from Forster

et al. (2021)). These effects of clouds on the Earth’s energy budget are called cloud radiative effects (CRE), and are defined

as the difference in radiation between “all-sky” (cloudy and clear-sky) and (hypothetical) “clear-sky” conditions (Ramanathan

et al., 1989). While shortwave CRE (CRESW ) are mainly related to cloud fraction and microphysics (number concentration of10

water/ice particles and the amount of liquid water/ice), longwave CRE (CRELW ) are mainly driven by cloud altitude and thus

cloud-top temperature, but also cloud fraction (Voigt et al., 2021). As such, any changes to cloud patterns, be it occurrence,

microphysics or macrostructure have important implications for the Earth’s energy balance. In a changing climate, clouds

may be altered due to changes in the large-scale environment (cloud feedbacks) or due to a change in aerosol concentration

(aerosol-cloud interactions, both are discussed below). In spite of their importance for the Earth’s climate system, considerable15

uncertainty exists as to how clouds may respond to changes in their environmental controls, ultimately impeding the quantifica-

tion of climate sensitivity, i.e. the global temperature increase following a doubling of the carbon dioxide (CO2) concentration

in the atmosphere compared to preindustrial levels (Zelinka et al., 2020; Forster et al., 2021).

Cloud feedbacks describe how clouds respond to and feedback on climate warming and are a major uncertainty in climate

science. Many cloud feedbacks have been described in the literature, which relate changes in cloud altitude, phase, albedo, or20

coverage with global warming, typically in cloud-regime specific frameworks (i.e., very few CCFs targeting a specific cloud

type, e.g. Zelinka et al., 2016; Mülmenstädt et al., 2021; Murray et al., 2021; Zelinka et al., 2022). The most extensively studied

shortwave cloud feedback is the (positive) low-cloud feedback (e.g. Klein et al., 2017; Scott et al., 2020; Myers et al., 2021;

Cesana and Del Genio, 2021), which has been shown to be a main cause for the variation in climate sensitivity estimates in

global climate models (Bony and Dufresne, 2005; Zelinka et al., 2020). The longwave or high-cloud feedback is also positive,25

where high clouds rise with warming temperatures, leading to a larger temperature differences between cloud top and the

warming surface (Zelinka and Hartmann, 2010; Gettelman and Sherwood, 2016). Global satellite observations can help reduce

the cloud-feedback related uncertainty in climate sensitivity by constraining cloud feedbacks with observation-based sensitivity

estimates of clouds (and their radiative effects) to changes in their large-scale environmental controls (cloud controlling factors,

CCFs). This is traditionally done in regime-specific cloud-controlling factor analyses, where cloud anomalies are regressed30

upon a small number of local CCF anomalies using a ordinary least squares regression (OLS). Recently, a statistical learning

framework (ridge regression), which allows for robust sensitivity estimation with many co-linear CCFs, have been used to

predict cloudiness and constrain their feedbacks by not only using local CCF anomalies, but also their large-scale patterns
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(Andersen et al., 2020; Ceppi and Nowack, 2021). While regime-specific CCF frameworks are relatively well understood and

thought to include the most relevant large-scale environmental controls of clouds in specific regimes (e.g. Klein et al., 2017),

they do not necessarily include all relevant CCFs that may change in a warmer climate and thus influence the estimation of

cloud feedbacks.

Atmospheric aerosols are another important driver of variability and trends in CRE (Quaas et al., 2022), because aerosols,5

by acting as cloud condensation nuclei (CCN), are drivers of cloud droplet number concentration in liquid water clouds. Un-

der the assumption of a constant liquid water path, this leads to smaller cloud droplets, and an increase in cloud reflectivity

(Twomey, 1977). These instantaneous changes in cloud droplet characteristics may lead to the suppression or delay of pre-

cipitation, which in turn may trigger subsequent adjustments of the cloud field, such as an increase in cloud fraction or liquid

water path (Albrecht, 1989), further altering CRE. Observational and modeling studies on the cloud fraction adjustment mostly10

find positive relationships (Kaufman and Koren, 2006; Gryspeerdt et al., 2016; Andersen et al., 2017; Christensen et al., 2020;

Chen et al., 2022), while the sign of the liquid water path adjustment is still debated (Ackerman et al., 2004; Malavelle et al.,

2017; Gryspeerdt et al., 2019; Rosenfeld et al., 2019; Toll et al., 2019; Manshausen et al., 2022; Zipfel et al., 2022; Wall et al.,

2022). In convective cloud systems, a deepening or invigoration has been suggested, however, this effect is still elusive (Koren

et al., 2005, 2010, 2014; Altaratz et al., 2014; Sarangi et al., 2018; Marinescu et al., 2021). Depending on the ambient air tem-15

perature, aerosols can also act as ice nucleating particles, potentially increasing ice crystal number concentration, and leading

to further cloud adjustments (Hoose and Möhler, 2012; Gryspeerdt et al., 2018; Vergara-Temprado et al., 2018). The processes

by which aerosols influence clouds depend on aerosol properties, ambient meteorology (dynamics and thermodynamics) and

cloud regime (Stevens and Feingold, 2009; Andersen and Cermak, 2015; Andersen et al., 2016; Chen et al., 2016, 2018; Fuchs

et al., 2018; Murray-Watson and Gryspeerdt, 2021; Zipfel et al., 2022). The effective radiative forcing due to aerosol-cloud20

interactions (i.e. the change in the Earth’s net top-of-the-atmosphere energy flux) is estimated to be a cooling of about 1 W m−2

(Bellouin et al., 2020; Forster et al., 2021). One of the challenges in working with satellite data to quantify aerosol-cloud in-

teractions is that these observed aerosol-cloud relationships tend to be confounded by meteorological covariates, e.g. relative

humidity or atmospheric stability, which influence both aerosols and clouds. This makes the interpretation of such aerosol-

cloud relationships as causal effects difficult (Bellouin et al., 2020). Past approaches have been developed to account for this25

confounding by statistically accounting for confounders (Gryspeerdt et al., 2016) or including information on confounders in

machine learning frameworks (Andersen et al., 2017). In recent studies, boundary layer sulfate aerosol concentrations from

an aerosol reanalysis have been shown to be a promising alternative to satellite-retrieved columnar aerosol proxies to study

aerosol-cloud interactions (McCoy et al., 2017, 2018; Wall et al., 2022). Wall et al. (2022) used sulfate aerosol concentrations

in a low-cloud controlling factor framework to quantify the forcing from aerosol-cloud interactions, thereby controlling for the30

variability in the meteorological CCFs in their forcing estimate of -1.11 W m−2. By the addition of an aerosol proxy as a CCF

in their analysis, they could predict CRESW anomalies much better in so-called opportunistic experiments (e.g. for Volcanic

eruptions, or in regions of known strong aerosol trends) than without the aerosol proxy. Their findings show that including

additional predictors to traditional CCF frameworks can yield useful insights.
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In this study, conventional regime-specific CCF frameworks are expanded upon, with a single cloud-regime independent

CCF framework that uses a large number of CCFs, including various aerosol proxies from satellite observations and reanalysis.

The CCF framework uses ridge regression as the statistical learning method, which enables robust sensitivity estimation in the

case of many co-linear predictors. The goals of this study are 1) to develop a CCF framework to skillfully predict CRE across

cloud regimes in observations, 2) to quantify and explore the regional sensitivity patterns of CRESW and CRELW to CCFs5

at a global scale, and 3) quantify CRE sensitivity to various aerosol proxies. The resulting spatial patterns of sensitivity are

intended to be used for future evaluations of CRE sensitivities to CCFs in global climate models and for constraining future

cloud feedback estimates.

2 Data and methods

2.1 Data10

All data sets described in the following cover the common time period used in this study of 2001–2020 and are monthly means

regridded to a 5◦ x 5◦ spatial resolution (e.g. Scott et al., 2020; Wall et al., 2022). This is typically done in CCF analyses, as

it can be assumed that at this grid scale clouds are in equilibrium with their large-scale environmental controls (Klein et al.,

1995; Mauger and Norris, 2010). One should note though that this grid scale is at the upper bound of what is recommended for

aerosol-cloud analyses (Grandey and Stier, 2010). Data is used over the oceans (some meteorological CCFs are only sensible15

choices over ocean) between 60◦N and 60◦S. From all data sets, the seasonality (climatological averages of each month) and

linear trends are subtracted. The resulting meteorological and aerosol anomalies are then standardized by removing the mean

and scaling to unit variance as in Scott et al. (2020) and Andersen et al. (2022). The set of CCFs is selected to include the most

relevant drivers of cloud cover, altitude and microphysics (and thus CRESW and CRELW ) across different cloud regimes.

Short-wave and long-wave cloud radiative effects at the top of the atmosphere are calculated from the gridded monthly20

Energy Balanced and Filled (EBAF) level 3b products, edition 4.1 from the Clouds and the Earth’s Radiant Energy System

(CERES) (Loeb et al., 2018) as the difference between top-of-the-atmosphere net fluxes of all-sky and (hypothetical) clear-

sky conditions. The CERES EBAF data are available at a spatial resolution of 1◦ x 1◦. Climatological means and standard

deviations of CRESW and CRELW are shown in Fig. 1. Satellite observations from the polar-orbiting platform Terra are used.

Two commonly used proxies for CCNs are obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS)25

sensor also mounted on the Terra platform: aerosol optical depth (AOD) and aerosol index (AI, calculated as the product of the

AOD and the Ångström exponent). While AOD is sometimes still used as a CCN proxy, AI has been found better approximate

CCN (Stier, 2016), giving more weight to fine mode particles (Nakajima et al., 2001). Both satellite-retrieved aerosol proxies

are column-integrated, hold limited information on cloud-base CCN concentration and are known to lead to spurious aerosol-

cloud relationships due to humidity-induced aerosol swelling and 3D radiative effects in the vicinity of clouds (Grandey et al.,30

2013; Christensen et al., 2017; Schwarz et al., 2017). Despite these limitations, in particular the AI remains a state-of-the art

satellite-based CCN proxy.
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Figure 1. Climatological (2001–2020) mean (top) and standard deviation (bottom) of CRESW (left) and CRELW (right) from the CERES

EBAF data. Pointy ends of the colorbars indicate that not the entire value range is shown in the figure to improve its clarity.

Information on meteorological CCFs are taken from ERA5 (Hersbach et al., 2020), the newest reanalysis product from the

European Center for Medium-Range Weather Forecasts (ECMWF). The following data are used from the surface layer of the

reanalysis: sea-surface temperature (SST), wind speed at 10 m (WS10), mean surface latent and sensible heat fluxes (MSLHF,

MSSHF), and mean sea-level pressure (MSL) (Wood, 2012; Fuchs et al., 2018; Scott et al., 2020). Data from pressure levels

at 925, 700, 500, and 300 hPa are used for information on relative humidity (RH), air temperature (T), as well as the U, V,5

and vertical pressure velocity (ω) components of wind (Andersen et al., 2017; Fuchs et al., 2018; Ge et al., 2021; Grise and

Kelleher, 2021; Kärcher, 2018; Kelleher and Grise, 2019; Patnaude et al., 2021). Data from pressure levels is referred to as

Xzzz in this paper, where X is the abbreviation of the variable name, and zzz the pressure level (e.g. T925 for air temperature

at 925 hPa). In addition to these CCFs, information on estimated inversion strength (EIS; (Wood and Bretherton, 2006))

and horizontal temperature advection at the surface (Tadv; (Scott et al., 2020)) is derived from ERA5 reanalysis data. The10

set of CCFs therefore expands upon those traditionally used for cloud-regime specific analyses (e.g. low-clouds, cf. (Scott

et al., 2020)), by including information on surface fluxes, and vertically resolved proxies for dynamics (3-dimensional winds),

temperature and humidity profiles to account for mechanisms controlling different cloud types and altitudes. It is assumed that

the observed cloud radiative effects are a response to the CCFs chosen, even though clouds can also feedback to contribute to

CCF variability (e.g. Myers et al., 2018). All data are downloaded as monthly means at the native resolution of 0.25◦ x 0.25◦.15
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Tadv is the exception to this rule, as using the monthly means of the U and V wind components at 10 m (U10, V10) would lead

to an underestimation of the temperature advection (because U and V can be positive and negative and a temporal average is

thus closer to 0). Due to this, Tadv is calculated from hourly U10, V10 and SST data at a spatial resolution of 2.5◦x2.5◦ (which

corresponds to the length scale of 5◦ as centered differencing is used for the calculation of the gradients), and then averaged to

monthly means.5

As satellite-retrieved aerosol proxies are not great proxies for CCN at cloud base (Stier, 2016) and feature the retrieval

biases close to clouds discussed above, aerosol information from the MERRA-2 reanalysis are also used. The MERRA-2

aerosol reanalysis corrects the MODIS aerosol optical depth used for assimilation in the reanalysis for retrieval biases in humid

environments and near clouds (Randles et al., 2017). From MERRA-2, sulfate aerosol concentrations (s) are used as in McCoy

et al. (2017), McCoy et al. (2018) and Wall et al. (2022), by calculating monthly averages from the 3-hourly mean s at 910 hPa.10

The data are available at a spatial resolution of 0.5◦ x 0.626◦. As aerosol-cloud relationships tend to be linear at log-scales, the

base-10 logarithm of s, AOD and AI are used in the statistical model (Wall et al., 2022).

2.2 Ridge regression

CRESW and CRELW anomalies are regressed on n (here: n=28) predictors so that each can be expressed as a linear combination

of the local standardized CCF anomalies X ′i:15

CRE′ =

n∑
i=1

(
δCRE

δXi
) ∗X ′i +Res

with Res describing a catch-all mean-zero random error term. A major challenge when using a high number i of predictors

Xi (in particular when considering a relatively small number of samples) to predict a target variable can be collinearity among

the predictors. In classical statistical techniques (e.g. OLS), collinearity frequently leads to high variance in the regression

parameters (i.e. overfitting). Model variance can be reduced with regularization, which in the case of linear models is done by

shrinking model coefficients towards zero by penalizing their size (Hastie et al., 2001). Ridge regression is a specific regularized20

linear model that has been shown to perform particularly well in the case of collinearity among the predictors (Dormann et al.,

2013). Ridge regression makes use of the L2 penalty: the squared magnitude of the coefficient (β, here: δCREδXi
) value is added

to the loss function, where the shrinkage is controlled by a value λ.

Lossridge = Error(Y − Ŷ )+λ

n∑
1

β2
i

Tuning the parameter λ involves a direct trade off between a more flexible regression model (small penalty, i.e., low λ value)

that may suffer from high-variance issues, and a less flexible regression model (high penalty, high λ) that may have a larger bias.25

When λ is set to 0, the penalty is 0 as well so that the ridge regression is essentially an ordinary least squares regression (Hastie

et al., 2021). A λ greater than 0 helps deal with collinearity by reducing model variance and in the case of many predictors

thus provides more robust sensitivity estimates. Here, the optimal λ value is derived through leave-one-out cross validation by

probing 1000 evenly spaced λ values on a log scale between -3 and 5 in each 5◦ x 5◦ grid box. Leave-one-out cross validation

6



is the default cross-validation strategy for ridge regression, as it is extremely cost efficient for least square regression (Hastie

et al., 2021), and has been found to reliably find the optimal level of regularization in the case of ridge regression (Patil et al.,

2021). The λ values that lead to the best model performance in the cross validation are shown in Fig. 2. To end up with a

consistent regularization, the median λ value chosen in all cross validations (median λ = 12 for both CRESW and CRELW )

is set fixed. This means that the final regularized models are not optimized locally, but that a representative λ value is chosen5

from the cross-validations to achieve comparable model coefficients across all regions. The differences between the predictive

skill in the locally optimized and λ = 12 settings have been found to be negligible, even in regions where optimal λ has been

found to be > 50. The data are split into a training (2001–2015) and a test (2016–2020) set. Cross-validation and training are

done based on the training data, and the model performance is evaluated based on the test data. While the skill to predict CRE

in the test is only marginally improved when using ridge regression instead of an ordinary least squares regression (OLS), the10

OLS tends to fit very large, spatially noisy coefficients that are physically inconsistent (see supplementary Fig. A1).

(a)

0 10 20 30 40 50
 chosen in cross validation in CRESW framework

(b)

0 10 20 30 40 50
 chosen in cross validation in CRELW framework

Figure 2. Spatial patterns of the λ chosen in the cross validation at each grid box. The spatial median of λ is chosen as the regularization

strength for each grid box in the final model training. To achieve comparable sensitivity estimates across different regions, the median λ

value of 12 is chosen for the following analysis.

Three separate CCF frameworks are trained for CRESW and CRELW , respectively, using a different aerosol parameter

each time. The meteorological sensitivities presented in this study refer to those derived from the log10s setup. The regression

coefficients of the ridge regression represent the sensitivity of CRE to a one standard deviation change in the local monthly

anomalies in each CCF with all other local meteorological conditions held fixed, and are thus given as W m−2 σ−1(for15

sensitivity). As total CRE are used as a predictand (rather than specific cloud properties or CRE of a specific cloud type), the

sensitivities are a top-down estimate of the total radiative response by all clouds to changes in CCFs within each grid box. In

general, positive CRESW sensitivities mean that an increase in a CCF is connected to a reduction in the shortwave cooling

effect of clouds from reflected solar radiation (e.g. by reducing of cloud amount or reflectivity), whereas positive CRELW

sensitivities relate the increase in a CCF to a stronger longwave warming effect of clouds (more clouds or higher/colder20

clouds that effectively trap more LW radiation from surfaces below than they emit). As such, one can expect that CRESW and
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CRELW sensitivity patterns are generally anticorrelated. Sensitivities of radiative effects of undetected very thin clouds and

the transition zone between aerosols and clouds can obviously not be captured, though (Eytan et al., 2020; Jahani et al., 2021).

2.3 Cloud regimes

While the regression models are trained to predict CRE with the same set of CCFs independently of the region (and thus dom-

inant cloud regime) considered, climatological cloud-regime regions are used to analyze the resulting sensitivities specifically5

for four regions: stratocumulus (Sc), trade cumulus (Tc), tropical ascending (Ta), and mid latitudes (Ml). This is done to sum-

marize sensitivities in climate regimes with similar cloud types, which are expected to be driven by different mechanisms and

related to different cloud feedbacks (e.g. low cloud feedback mainly in Sc vs. high cloud feedback in Ta). The cloud regimes

are defined based on climatological (2001–2020) EIS and ω700 thresholds similar to (Scott et al., 2020), based on Medeiros

and Stevens (2011). The thresholds are given in Tab. 1, and lead to the cloud regime regions shown in Fig. 3.10

Table 1. Thresholds to determine the cloud regime regions shown in Fig. 3.

Cloud regime EIS (K) ω700 (hPa day−1)

Stratocumulus (Sc) > 1 > 15

Trade cumulus (Tc) < 1 > 0

Tropical ascending (Ta) - < 0

Mid latitudes (Ml) > 1 < 15

Sc Tc Ta Ml

Figure 3. Cloud regimes derived from the EIS and ω700 thresholds described in Tab. 1.
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3 Results and discussion

3.1 Skill of the regression models

Fig. 4 shows the skill of the ridge regression models to predict CRESW (left) and CRELW (right) in the independent test data

(2016–2020). The models are able to capture about two thirds of the temporal variability in CRE anomalies in the independent

test data, with slightly better model performance for predicting CRELW than CRESW (global weighted average R2 of 0.725

vs. 0.63, standard deviation of 0.13 and 0.21, respectively). The skill is thus markedly higher than the low-cloud frameworks

from Scott et al. (2020) (0.37, or 0.51 when information on upper-level clouds are included), and Wall et al. (2022) (0.42). This

shows that the added CCFs increase the predictive performance of the model, and could indicate that they may help capture

processes relevant to determine CRE, and may therefore allow for tighter constraints for cloud feedbacks and aerosol-cloud

interactions than prior studies. The spatial pattern in the prediction skill of CRESW shows particularly good skill in the regions10

of the ascending tropical cloud regime (mean R2 = 0.81), and poorer performance in the mid latitudes (mean R2 = 0.40),

especially over the Southern Ocean. The comparably poor skill in the Southern Ocean is notable, as numerical models also

have large uncertainties and biases in modeling radiative fluxes and clouds here (Gjermundsen et al., 2021; McFarquhar et al.,

2021). The poor model performance may be linked to the low quality of reanalysis data sets found in this region due to the

limited amount of measurements available for the assimilation (Mallet et al., 2022). A second possible reason for the low skill15

in this region maybe that the CCFs may not adequately capture the influence of the large day-to-day variability of synoptic-

scale dynamics on clouds of this region (Kelleher and Grise, 2019) at the monthly time scale. This is supported by findings

from Jia et al. (2023), who use a machine learning framework to predict marine low cloud cover with a similar set of predictors

at a daily time scale and achieve a notably high skill over the Southern Ocean. In the Sc regime the average prediction skill

of CRESW is 0.55, which seems to be markedly higher than in Scott et al. (2020) and Wall et al. (2022), even though the20

exact regime-specific skill is not reported in their studies. The skill in predicting CRELW is also highest in the tropics (mean

R2 = 0.79) and trade cumulus regions (mean R2 = 0.77), and lower in the stratocumulus and Southern Ocean regions. This

makes sense, as there is little CRELW variability in those regions due to the dominance of low clouds, and hence only a small

signal for the regression model to learn (see Fig. 1). Over the Southern Ocean, the assumed lower quality of the reanalysis

data and the large influence of transient weather systems not being captured adequately at the monthly time scale may also25

contribute to the lower skill.

There is a significant (p-value < 0.01) negative correlation between the prediction skill of the ridge models (Fig. 4) and the

regularization strength λ chosen in cross-validation (-0.34 for CRESW and -0.31 for CRELW ). The regularization strength that

optimizes model performance is higher in regions where model performance is comparatively low. This is an indication that in

these regions where the predictors do not explain the CRE variability well, the regression coefficients are less certain and model30

variance is higher, and that the increase in the model bias when the coefficients are nudged towards 0 (thereby predicting less

CRE variability) is relatively small. Coefficients of selected CCFs estimated by the ridge regression are described in the follow-

ing, with the focus on 1) SST and EIS as well-known low-cloud CCFs important for the low-cloud feedback, 2) 3-dimensional
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(a)
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Test skill [R2] in predicting CRESW

(b)
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Test skill [R2] in predicting CRELW

Figure 4. Skill (R2 score) of the ridge regression models to predict CRESW (a) and CRELW (b) in the independent test data (2016–2020).

winds at different pressure levels for information on large-scale dynamics that are often not part of CCF frameworks and 3)

aerosol proxies, as a way of analyzing aerosol-cloud interactions in a CCF framework.

3.2 Sensitivity of CRESW and CRELW to SST and EIS

SST and EIS are the two main drivers of the marine low-cloud feedback (Myers and Norris, 2016; Myers et al., 2021; Klein

et al., 2017; Cesana and Del Genio, 2021), and are thus discussed first. Fig. 5 shows the spatial patterns of the sensitivity of5

CRESW (left) and CRELW (right) to SST (top) and EIS (bottom). The overall sensitivity of CRE to SST is dominated by

the positive sensitivity of CRESW (global weighted mean = 1.11 W m−2 σ−1, compared to -0.12 W m−2 σ−1for CRELW ).

The CRESW sensitivity is particularly high in the stratocumulus regime (1.64 W m−2 σ−1), which is to be expected, as these

clouds are more strongly coupled to surface processes than e.g. cumulus clouds in the trades (Wood, 2012; Cesana et al.,

2019; Scott et al., 2020; Cesana and Del Genio, 2021). SST can influence low clouds via different mechanisms. Surface latent10

heat fluxes increase with SST, which enhances the buoyancy within the marine boundary layer and deepens it, leading to an

increased entrainment of dry free-tropospheric air and thus evaporation of cloud water (Rieck et al., 2012; Qu et al., 2015). Also,

increases in SST can lead to a stronger vertical moisture gradient, making dry-air entrainment more efficient in evaporating

cloud (as the entrained air is relatively drier compared to the marine boundary layer air, (Qu et al., 2015; van der Dussen et al.,

2015)), which has been shown to be the main cause of the recent decrease in low clouds off the coast of California (Andersen15

et al., 2022) where the SST-CRESW sensitivity is found to be largest. These findings generally agree with those of Scott et al.

(2020) who specifically analyze low-cloud induced changes in radiative fluxes, although their average sensitivity estimate is

lower and not positive in all regions, which may point to an underestimation of the positive low cloud feedback found by Myers

et al. (2021). CRELW sensitivities are in general negligible for the stratocumulus cloud regime, as their warm cloud tops only

induce a minor CRELW . There is a systematic negative CRELW -SST sensitivity in the Tc regime (-0.29 W m−2 σ−1), which is20

outweighed by the positive CRESW -SST sensitivity in that regime, though (1.08 W m−2 σ−1). Still, a negative CRELW -SST

sensitivity in the Tc regime suggests that the overall (weak) low cloud feedback in the Tc regime might be further reduced by

the longwave effect partly balancing the shortwave effect. In the tropics, there is a band of moderate positive CRELW -SST

10



sensitivity, indicative of more frequent or higher-reaching convection in cases of higher SSTs. As the CRESW sensitivity is

only slightly negative in some of these regions, the results suggest that most of this positive CRELW sensitivity is driven by

cloud altitude/temperature and not high cloud cover. While such local effects of SST on deep convection have been noted in

the past (Zhang, 1993), non-local pattern effects of SST on deep convective CRE (Fueglistaler, 2019) cannot be captured with

our approach.5

(a)

3 2 1 0 1 2 3
CRESW sensitivity to SST (W m 2 1)

(b)

3 2 1 0 1 2 3
CRELW sensitivity to SST (W m 2 1)

(c)

3 2 1 0 1 2 3
CRESW sensitivity to EIS (W m 2 1)

(d)

3 2 1 0 1 2 3
CRELW sensitivity to EIS (W m 2 1)

Figure 5. Sensitivity of CRESW (left) and CRELW (right) to SST (top) and EIS (bottom).

The sensitivity of CRE to EIS is dominated by the negative CRESW sensitivity (global weighted mean = -1.57 W m−2 σ−1),

which is also particularly strong in the Sc regime (-2.33 W m−2 σ−1) and the Ml (-1.97 W m−2 σ−1) and smallest for the

Ta regime (-0.91 W m−2 σ−1). The results agree remarkably well with those found by Scott et al. (2020) both in overall

magnitude and spatial/regime patterns. EIS modifies low clouds by controlling the amount of dry-entrainment from the free

troposphere into the marine boundary layer, where a strong inversion limits this entrainment and leads to a shallower marine10

boundary layer effectively trapping moisture. This has been observed particularly in the Sc and Southern Ocean regimes (Klein

and Hartmann, 1993; Wood and Bretherton, 2006; Kelleher and Grise, 2019; Scott et al., 2020). There is only a limited, mainly

positive sensitivity of CRELW to EIS, which is largest in the Tc regime (0.24 W m−2 σ−1). This is due to the moderate LW

warming exerted by an increase in Tc clouds. The overall low magnitude of the CRELW to EIS is expected, as similar to SST,

EIS mainly drives low-cloud variability.15

11



  

300 500 700 925

2

1

0

1

2
M

ea
n 

CR
E 

se
ns

iti
vi

ty
 (W

 m
2  

1 )
(a)

Sc
Tc
Ta
Ml

(b)

No Yes
300 has largest absolute coefficient

Figure 6. (a): Mean CRE sensitivity to ω at different pressure levels and for different cloud regime regions (denoted by the color). CRE

sensitivities that are positive are always from CRESW , negative ones from CRELW . The error bars denote the standard error of the mean

value (σ/
√
n) with n = sample size. (b): Map showing the regions where ω300 has the largest absolute coefficient for CRESW .

3.3 Sensitivity of CRESW and CRELW to large-scale circulation

Variability in large-scale circulation and dynamics are mainly approximated by anomalies in the 3-dimensional winds at dif-

ferent pressure levels (300, 500, 700, and 925 hPa). The sensitivity of CRE to variations in the vertical pressure velocity ω

is largest at 300 hPa, which is the strongest predictor for CRE in general in the ascending tropics (Fig. 6). The sensitivity of

CRESW and CRELW are nearly balanced for ω300, but less so for ω925, where ω within the boundary layer mostly influences5

low clouds and thus CRESW . In the free troposphere at 700 hPa, ω is only a minor control of CRE variability. The sensitivity

patterns of CRESW and CRELW to ω300 (Fig. 7) closely follow the regions of tropical ascent, and reach maximum values in

the tropical warm pool region. In the Ta regime, ω300 anomalies are shown to lead to a strong cooling from the CRESW (2.51

W m−2 σ−1) that is nearly completely balanced by a strong warming from the CRELW (-2.01 W m−2 σ−1) by the increase in

upper-level clouds. While the nearly exact opposite mirroring of the CRE sensitivity patterns to ω300 (correlation coefficient10

= -0.86 globally and -0.81 in the Ta regime) can partly be explained by the overall balance of CRESW and CRELW in this

region (Fig. 1), it is noteworthy, since the cancellation of CRESW and CRELW is the result of a mixing of various cloud types

with very specific CRE signatures (Hartmann and Berry, 2017; Wall et al., 2019). This seems to confirm that ω300 is a strong

predictor for the occurrence of most (deep) convective and cirrus clouds that dominate the CRE in the Ta regime (Ge et al.,

2021).15

CRE sensitivity to variability in zonal and meridional winds is most pronounced at 700 hPa and in the subtropics. The

sensitivities to U700 and V700 anomalies (Fig. 8) are not trivial to understand, as they can be related to a change in wind speed

or direction, dependent on the sign and climatological average of the wind component. In the following, these controlling

factors are therefore explored in more detail.

CRESW is markedly sensitive to U700 in the core stratocumulus regions (mean Sc 1.05 W m−2 σ−1), where clouds are20

typically below that level (Zuidema et al., 2009). As the stratocumulus clouds do not have a marked CRELW , this pattern only
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CRESW sensitivity to 300 (W m 2 1) 

(b)
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CRELW sensitivity to 300 (W m 2 1) 

Figure 7. Sensitivity of CRESW (a) and CRELW (b) to ω300.

(a)

2 1 0 1 2
CRESW sensitivity to U700 (W m 2 1) 

(b)

2 1 0 1 2
CRELW sensitivity to U700 (W m 2 1) 

(c)

2 1 0 1 2
CRESW sensitivity to V700 (W m 2 1) 

(d)

2 1 0 1 2
CRELW sensitivity to V700 (W m 2 1) 

Figure 8. Sensitivity of CRESW and CRELW to U700 (a and b, respectively) and V700 (c and d). Note the smaller sensitivity range in the

colorbar when compared to Fig. 5 and Fig. 7 (-2.5–2.5 vs. -3.5–3.5).

exists for the CRESW . In these regions, a positive U700 CRESW sensitivity suggests a decrease in cloudiness with a westerly

anomaly of the wind at 700 hPa. The opposite is the case over a trade wind cumulus region of the tropical pacific, even though

the sensitivity is less pronounced. In the following, a composite analysis is used to better understand what drives variability of

local U700 and how that may be related to CRE in an exemplary subtropical low-cloud region. Fig. 9 shows the composite of

anomalies in CCFs when U700 anomalies in the Southeast Atlantic at 17.5◦S and 2.5◦E (black "x") are > 1 σ. Fig. 9 (a) shows5
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the observed CRESW anomalies in these situations, which feature a region of marked positive anomalies (less clouds) with an

anomaly of 5.41 W m−2 locally at 17.5◦S and 2.5◦E. The top center panel shows MSL anomalies which feature a high pressure

anomaly over the midlatitudinal Atlantic that strongly modifies the free-tropospheric winds (i.e. drives the U700 anomaly).

As the climatological mean boundary layer flow in the Southeast Atlantic is from a southeasterly direction, a northwesterly

anomaly in the free-troposphere flow tends to increase the vertical wind shear at the top of the boundary layer (u-wind shear5

between 700 and 925 hPa shown panel (c) of Fig. 9). In a stratocumulus-topped boundary layer an increased vertical wind shear

is known to cause additional turbulence at the cloud top, and lead to stronger entrainment of dry air into the cloudy marine

boundary layer. A stronger dry-air entrainment would then dissolve the clouds from the top (Kopec et al., 2016; Zamora Zapata

et al., 2021), possibly explaining the observed reduction in clouds in these situations. The boundary layer humidity (RH925)

is markedly increased in the composite along the south-western African coastline (d), which would presumably lead to an10

increase in cloudiness (contrary to what is observed). While a synoptically-driven destabilization (reduced EIS) has also been

reported to influence low-level clouds in this region (de Szoeke et al., 2016; Fuchs et al., 2017), and can be observed here

(e), the anomaly is not spatially collocated to the CRE anomaly (bottom center) and is thus unlikely to explain it. Panel (f)

shows the average ridge regression contributions of the most important CCFs to the predicted local CRESW anomaly of the

composite analysis (multiplying the average standardized anomaly of the composite times the coefficients at the marked "x"15

location). Overall, the observed local CRESW anomaly of these situations of 5.41 W m−2 can be reproduced fairly well by

the ridge regression model, even though it is somewhat underestimated (3.85 W m−2). It is clear that in these situations, U700

has the largest contribution (4.51 W m−2) to the predicted CRESW anomaly, which cannot be explained by the other CCFs.

The observed humidification of the boundary layer in these situations only partly balance the strong contribution from U700

(contribution of RH925: -2.22 W m−2). While vertical wind shear was not originally considered as a CCF in the model, at20

this location in the Southeast Atlantic, vertical wind shear and U700 are strongly correlated (-0.90), which is also the case in

all stratocumulus regions (average correlation for the Sc regime: -0.74), so that in these regions, U700 can be thought of as a

proxy for vertical wind shear. Based on the results presented here, the wind-shear induced turbulence at cloud top leading to

entrainment and low-cloud dissipation is likely the main cause for the observed decrease in cooling from low-clouds associated

with the conditions of the composite analysis, and for the observed sensitivity of CRESW to U700 anomalies in the Sc regime.25

As such, vertical wind shear is recommended to be further explored in CCF analysis, especially for low cloud frameworks.

There is a coherent subtropical belt of a marked sensitivity of CRE to V700 between ≈15◦ and 35◦ with maximum sensitivity

values between 20◦ and 25◦ in each hemisphere (Fig. 8, bottom). The sensitivity has opposite signs depending on the hemi-

sphere and the radiative effect considered, and describes an increase in the cooling (CRESW ) or warming (CRELW ) effect of

clouds connected to a poleward anomaly of the winds at 700 hPa. The zonal structure of the CRESW and CRELW sensitivities30

to V700 is clearly visible in Fig. 10a). Fig. 10b) and c) show a clear connection of poleward V700 anomalies with large scale

ascent at the same pressure level and an increase in shortwave cooling from clouds (and vice versa). To give this finding more

context, two composite analyses of situations with V700 > 1 σ in the South Atlantic and South Pacific regions are discussed

in the following.

14



(a)

4 2 0 2 4
CRESW anomaly (W m 2)

(b)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
MSL anomaly (hPa)

(c)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
U-wind shear anomaly between 925 and 700 hPa (m s 1)

(d)

4 2 0 2 4
RH anomaly (%)

(e)

0.6 0.4 0.2 0.0 0.2 0.4 0.6
EIS anomaly (K) U700 RH925 U925 V700 U500 others

2

1

0

1

2

3

4

Co
nt

rib
ut

io
n 

to
 C

RE
SW

 a
no

m
al

y 
(W

 m
2 )

(f)

Figure 9. Composite analysis of anomalies in CCFs and CRESW when U700 anomalies in the Southeast Atlantic at 17.5◦S and 2.5◦E

(black "x") > 1σ. Panel (a) shows the observed CRESW anomalies in these situations. Panel (b) shows the MSL anomalies and wind

anomalies at 700 hPa, and panel (c) shows the wind shear anomaly of the u-component between the boundary layer (925 hPa) and the free

troposphere (700 hPa). Panel (d) shows the RH anomaly in the bounday layer (925 hPa), and panel (e) shows EIS anomalies. Panel (f) shows

the ridge-regression quantified contributions of selected CCFs and the sum of all others to the predicted CRESW .

Fig. 11 shows a connection of the conditions with V700 anomalies > 1σ to a subtropical low pressure anomaly that is

linked to a midlatitude synoptic-scale disturbance. The local poleward flow anomaly is clearly connected to a large-scale

ascent anomaly which is causing an increase in humidity and clouds/decrease in CRESW , confirming the observed correlations

between V700, ω700 and CRESW presented in Fig. 10. While it is generally known that ascending air is the main mechanism

by which air is saturated and clouds form, a positive association between low clouds and free-tropospheric ascent has also5

been found in subtropical regions of climatological subsidence (Myers and Norris, 2013). The results from this exemplary

composite analysis are indicative of the poleward and upward vertical velocity phases of synoptic waves/midlatitude cyclones

and the associated increase in cloudiness. The ridge-regression can reproduce the local CRESW anomalies for these composites

well (observed vs. predicted: Atlantic -7.37 vs. -6.36, Pacific -12.74 vs. -12.28 W m−2), and the quantified contributions to

the predicted CRESW anomalies (bottom panels g and h) show that indeed, the largest contributions come from ω and RH at10

different levels in the free troposphere, and from V700. There are two possible explanations for the CRE sensitivity to V700: 1)

The physical explanation is that the enhanced poleward winds on the eastern side of the midlatitude cyclones could be related
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Figure 10. Summary of the CRE sensitivity to V700 anomalies. a) Zonal mean sensitivities of CRESW (solid line) and CRESW (dashed line)

point to strong sensitivities in the subtropics. b)/c) show the CRESW anomaly against the V700 anomalies in the Northern (centre panel) and

Southern (right-hand panel) Hemisphere where the absolute value of the sensitivity exceeds 1.5 W m−2 σ−1, with the color showing ω700

(blue: ascent, red: subsidence).

to increased warm and moist advection, which increases cloudiness. 2) The statistical explanation is that V700 anomalies are

correlated to large-scale ascent which is causing the clouds to form and additionally have a high signal-to-noise ratio for such

midlatitude synoptic variability. By capturing this synoptic variability, V700 anomalies would then encapsulate changes in a

number of relevant CCFs (not only ω700) related to the synoptic forcing, and thereby be assigned the observed sensitivities.

In this regard, it should be noted that an anomaly pattern similar to that of ω700 can also be found for ω at 500 and 300 hPa,5

showing that the disturbance leads to vertically extended large-scale ascent. The question is to what degree the V700 sensitivity

and resultant contributions are a result from a physical connection between V700 and CRESW in the subtropical belts or from

the correlation of V700 with ascending motion that is driving cloudiness, but cannot directly be answered with this approach,

highlighting the challenge of trying to untangle causality with statistical models and correlated inputs. The coherent association

of V700 anomalies and ω700 (see Fig. 10) suggests that the composite analyses are likely representative for other regions in the10

subtropical V700 sensitivity belt as well.

3.4 Sensitivity patterns of CRESW and CRELW to aerosol proxies

CRE sensitivities to three different aerosol proxies (log10s, log10AI, and log10AOD) are described in the following. It should be

noted that changing a CCF (here: the aerosol proxy) slightly changes other sensitivities as well. The magnitude of these changes

depends on the aerosol proxies compared. Fig. 12 shows the correlation of spatial sensitivity patterns among individual CCFs15
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Figure 11. Composite analysis of anomalies in CCFs and CRESW when V700 in the Southeast Atlantic (left: at 27.5◦S and 12.5◦W) and

in the South Pacific (right: at 22.5◦S and 127.5◦W) > 1σ. From top to bottom, the panels show MSL anomalies and wind anomalies at

700 hPa, ω700 anomalies, observed CRESW anomalies, and ridge-regression quantified contributions to the predicted CRESW anomaly.
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Figure 12. Correlation of spatial sensitivity patterns of all individual CCFs estimated by ridge regression models for different aerosol proxy

pairs as noted in the legend. In this study only CRE sensitivities to meteorological CCFs from the log10s are shown.

for different aerosol proxy combinations. It can be seen that when the two satellite-derived aerosol proxies are compared, all

other sensitivity patterns stay nearly constant (average correlation = 0.99 and 0.98 for CRESW and CRELW , respectively), and

the derived spatial sensitivity patterns of log10AOD and log10AI are fairly strongly correlated as well. This is not surprising,

as AOD and AI are directly related. In sensitivity estimates that use log10s as an aerosol proxy correlations amongst the other

CCF sensitivity patterns are lower (on average ≈ 0.92–0.93), and the CRE log10s sensitivities are not strongly correlated to5

those of the satellite-derived aerosol proxies (0.21–0.31). When comparing the sensitivity patterns of the aerosol proxies in the

following, the different nature of the aerosol data sets should be kept in mind: The satellite-derived AOD and AI are columnar

retrievals, do not focus on a specific aerosol species and suffer from retrieval biases close to clouds (especially the AOD),

while the sulfate concentration from the aerosol reanalysis focuses on a single species at a level close to cloud base (for clouds

forming in the marine boundary layer), and is expected to have reduced biases typical of satellite retrievals. However, the10

aerosol reanalysis may introduce different model-based biases, which are not well known. Findings from McCoy et al. (2017)

indicate that the variable spatial emissions of diffuse natural sources of sulfate (e.g. marine biogenic dimethylsulfide) are not

as well captured by MERRA-2 as emissions from anthropogenic source regions, leading to a spatial variability in the quality of

the MERRA-2 sulfate data. While sulfate aerosols dominate the aerosol optical depth signal in many regions of anthropogenic

emissions, continental outflow regions and natural sources, it is not the main contributor in other regions (e.g. Southern Ocean,15

(Li et al., 2022)). In the regions where sulfate does not dominate CCN, log10s is not expected to be a good proxy for CCN at

cloud base.

The left-hand column of Fig. 13 shows CRESW sensitivity to the three aerosol proxies. It is apparent that all aerosol

proxies feature a negative global weighted average sensitivity, with that of log10s being markedly smaller in magnitude (-

0.17 W m−2 σ−1) than those of log10AI (-0.25 W m−2 σ−1) and log10AOD (-0.34 W m−2 σ−1). Similar to the recent study20
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by Wall et al. (2022) who explored the effects of log10s in a low-cloud-specific CCF framework, and other recent global studies

(e.g. Hasekamp et al., 2019; Toll et al., 2019; Jia et al., 2021) sensitivities are strongest in the Sc regime with CRESW sensi-

tivity to log10s of -0.43 W m−2 σ−1, to log10AOD of -0.70 W m−2 σ−1, and to log10AOD of -0.66 W m−2 σ−1. A marked

difference between the derived sensitivity patterns is that in the Ta regime, the CRESW sensitivity to log10s is negligible (-

0.06 W m−2 σ−1), whereas it is substantial for log10AI (-0.27 W m−2 σ−1) and even larger for log10AOD (-0.50 W m−2 σ−1).5

In general, the finding of a stronger sensitivity for the satellite-derived aerosol proxies is expected, in particular in the case of

AOD, due to the retrieval issues discussed in Section 2.1. While the ridge regression does control for the large-scale meteorol-

ogy, the sensitivity is likely to still be confounded for the satellite-derived aerosol proxies, as aerosol swelling can be expected

to affect aerosol retrievals at much smaller scales. Another reason for the weaker sensitivity of CRESW to log10s in the Ta

regime, and especially the tropical Pacific, could be that in this region sulfate aerosols may not dominate the total CCN budget10

as sea salt particles also make a large contribution (Shinozuka et al., 2004), and that in such remote oceanic regions the dif-

fuse natural sources of sulfate are unlikely to be perfectly represented in the aerosol reanalysis, potentially leading to spatially

inaccurate emissions and concentrations (McCoy et al., 2017).

The right-hand column of Fig. 13 shows the sensitivity patterns of CRELW to the different aerosol proxies, with a posi-

tive global weighted mean sensitivity for all proxies (log10s: 0.05 W m−2 σ−1, log10AI: 0.03 W m−2 σ−1, and log10AOD:15

0.44 W m−2 σ−1). While the CRELW sensitivity is much smaller than the CRESW sensitivity for log10s and log10AI, this

is not the case for log10AOD, especially in the Ta regime, where the sensitivity is large (0.87 W m−2 σ−1). This is likely

due to the (largely spurious) relationships between AOD and cloud fraction (Gryspeerdt et al., 2016; Andersen et al., 2017;

Christensen et al., 2017) and cloud-top temperature (Gryspeerdt et al., 2014) that dominate the CRELW signal. It is notable

that while log10AI produces a similar overall sensitivity pattern (correlation = 0.57, see Fig. 12), the magnitude is lower by20

a factor of 17 in the Ta regime. Overall, CRELW sensitivity to aerosol proxies is large where the CRESW is large as well

(correlations are -0.49 for log10s, -0.53 for log10AI, -0.69 for log10AOD), indicating that a large fraction of the quantified

aerosol sensitivity is from the cloud adjustments that influence both CRESW and CRELW . In that sense it is expected that the

correlation between the CRESW and CRELW sensitivity is particularly large for log10AOD, as it is particularly sensitive to

aerosol swelling (thus spuriously relating AOD and cloud fraction). In the future, to better understand the differences in aerosol25

proxy-CRE relationships, a decomposition into cloud amount and radiative property changes of clouds maybe helpful.

4 Summary and conclusions

In this study, a regime-independent CCF framework was presented to predict near-global CRESW and CRELW . A regularized

linear statistical learning technique (ridge regression) was used to quantify sensitivities of CRESW and CRELW to 28 CCFs,

including three different aerosol proxies. The quantified sensitivities are investigated for selected CCFs, and in regions of four30

broad cloud regimes. The most relevant findings are described in the following.
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Figure 13. Sensitivity of CRESW (left) and CRELW (right) to log10s (a, b), log10AI (c, d), and log10AOD (e, f). Note that a smaller

sensitivity range is shown compared to the other sensitivity maps.
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1. The statistical models are shown to be able to skillfully predict CRESW (global average R2 = 0.63) and CRELW

(R2 = 0.72) in independent test data. Model skills are highest in the tropics, and lower at high latitudes and in particular

the Southern Ocean.

2. The sensitivity of CRE to the two most dominant low-cloud controls, SST and EIS, is most pronounced in the shortwave.

It is strongest in regions where stratocumulus clouds dominate and largely consistent with other studies, suggesting an5

increase in low clouds with increasing EIS and decreasing SST. However, the sensitivity of CRESW to changes in SST

is more spatially uniform than found in Scott et al. (2020), suggesting a possible underestimation of low cloud feedback

with planetary warming by Myers et al. (2021).

3. In the tropics, ω300 is the most important CCF, influencing CRESW and CRELW in such a way that the effects of ω300

nearly cancel out.10

4. Zonal winds in the free troposphere are shown to be important proxies for synoptic variability relevant for subtropical

CREs. U700 anomalies are shown to be a good proxy for changes in vertical wind shear between the boundary layer and

the free troposphere and thus the generation of turbulence at cloud top, leading to the depletion of low-clouds. Vertical

wind shear should thus be included and explored in CCF frameworks, in particular in low cloud studies.

5. CRE is shown to be sensitive to V700 in the subtropics, where poleward V700 anomalies are linked to increased cooling15

from clouds. It is unclear though, to what degree the V700 sensitivity is related to warm, moist meridional advection that

may increase cloudiness or driven by the correlation of V700 with large-scale ascent in the region which may lead to

nonphysical statistical associations.

6. The CRE sensitivities to the three aerosol proxies (log10s, log10AI, and log10AOD) share the average sign (negative for

CRESW and positive for CRELW ), and have some qualitative similarities (CRESW sensitivity strongest in the stratocu-20

mulus regime). However, CRE are much more sensitive to log10AI and log10AOD in the tropics than to log10s. Dif-

ferences between the sensitivities of CRE to the three aerosol proxies can be explained by retrieval biases (confounded

relationships), and the varying contributions of log10s to CCN globally.

The statistical framework suggested here and the derived sensitivity patterns can be used in future cloud feedback analyses and

to compare relationships between CCFs and CRE in global climate model output.25

Data availability. The ERA5 meteorological reanalysis data (https://doi.org/10.24381/cds.f17050d7; https://doi.org/10.24381/cds.6860a573)

are freely available at the Copernicus Climate Change Service (C3S) Climate Date Store: https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset

(last access: March 26th, 2021). MODIS data (https://dx.doi.org/10.5067/MODIS/MOD08_M3.061) were downloaded (last access: Novem-

ber 11th, 2021) in the Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC)

https://ladsweb.modaps.eosdis.nasa.gov/search/. CERES data (https://doi.org/10.5067/TERRA-AQUA/CERES/EBAF-TOA_L3B004.1) are30
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Figure A1. Sensitivity of CRESW to SST (a) and EIS (b) with λ set to 0 (OLS). The regression models are overfitting to the training data

resulting in much larger, noisy and (in the case of SST) physically inconsistent sensitivity patterns.

freely available and were obtained from the NASA Langley Research Center CERES ordering tool at https://ceres.larc.nasa.gov/ (last access:

May 17th, 2021).
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