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Abstract. Companies increasingly view soil degradation in their supply chains as a commercial risk. 

They have applied sustainability standards to manage environmental risks stemming from suppliers’ 35 
farming operations. To examine the application of supply chain sustainability standards in soil 

protection, we conducted a study using global data on existing sustainability standards and their use in 

the food retail industry, a key sector in agrifood supply chains.  

 

Soil quality is a priority objective in retail sector sustainability efforts: 41% of the investigated 40 
companies apply some soil-relevant standard. But the standards lack specific and comprehensive 

criteria. Compliance typically requires that farmers are aware of soil damage risks and implement 

some mitigation measures; however, no measurable thresholds are usually assigned. This stands in 

contrast to some other provisions in a number of standards, such as deforestation criteria. There are 

two probable causes of this difference: Companies and certification bodies have prioritised other 45 
environmental challenges (e.g., pesticide use, biodiversity loss in tropical biomes) over soil 

degradation. Also, there are practical constraints to the useful standardisation of soil sustainability. 

Effective soil sustainability provisions will require measurable, controllable, and scalable 
multidimensional interventions and compliance metrics. Often, these are not yet available. The 

development of necessary practical tools is a priority for future research. 50 

1. Introduction 

1.1 Soils and agricultural intensification 

A large majority of food used by humanity depends on soil and its ability to support plant growth 

(Kopittke et al., 2019). Beside food production, soils provide many other services such as 

detoxification, drinking water provisioning, regulation of water flow, flood protection, and climate 55 
regulation, in addition to many cultural values like heritage and cultural identity (Dominati et al., 2014). 
Annual value of soil ecosystem services is estimated as high as US$11.4 trillion (McBratney et al., 

2017). Without exaggeration, soils are one of the most important resources economies rely upon. 

 

Population growth has been to a large extent associated with agricultural expansion. Human 60 
population, counting about 6 million when farming emerged (Livi Bacci, 2017), has since increased 

dramatically. The great acceleration of the mid-20th century was supported by, among other factors, 

widespread application of nitrogen fertilisers (Erisman et al., 2008). At the same time, a rising 
proportion of people has moved into cities. As the number of urban dwellers has been increasing, the 

share of people working in agriculture has decreased (Satterthwaite et al., 2010; Frouz and Frouzova 65 
2022). Moreover, affluent urban dwellers have become more demanding about food, consuming 

better-tasting and more expensive food, such as more meat, fat, oil, and dairy products (Satterthwaite 

et al., 2010; Ericksen, 2008). Furthermore, the mean proportion of income spent on food has been 

decreasing with rising wealth, in accordance with Engel's law (Engel, 1857; Chai and Moneta, 2010). 

Intensification and specialisation of agricultural production have contributed to these changes. 70 



 3 

Intensification has also been accompanied with an increased influence of large food and retail 

companies on agricultural practices. This is particularly true for 'lead firms': global buyers who shape 

sales strategy, price structure, and production systems (Gereffi et al., 2005). Retailers and brand-

name food companies typically occupy this position in agrifood value chains. Retailers, processors, 

and traders that control a major proportion of sales often employ their bargaining power to alter trade 75 
conditions to their advantage (Ghosh and Eriksson, 2019; Fearne et al, 2005). They are also able to 

shape their suppliers' farm management choices. Companies’ demand for high-quality produce has 
been linked to increased pressures on water resources, as buyers make growers follow protocols on 

quality, consistency, and continuity that effectively require irrigation (Knox et al., 2010). Manufacturers‘ 

focus on ultra-processed food contributes to, for example, soil degradation (Monteiro et al., 2018). 80 
Processed food producers have been linked to significantly increased input use in agriculture (Moberg 

et al. 2020). Even environmentally benign practices such as integrated pest management can be 

driven by contractual requirements of food companies (Codron et al, 2014). 

 

Intensification increases crop production but at the same time may often cause substantial 85 
environmental impacts (Matson et al., 1997). Agricultural intensification has been shown to reduce the 

biodiversity of soil organisms (Tsiafouli et al., 2015), limiting their ability to support the provision of 

ecosystem services (de Vries et al., 2013). Massive use of agricultural machinery enhances soil 

compaction (Arvidsson and Hakansson, 1991; Kopittke et al., 2019), and together with increasing field 

sizes it may lead to increased erosion (Stoate et al., 2001). These effects of cultivation, together with 90 
unbalanced nutrient supply and reduced organic matter input to the soil, reduce soil organic matter 

content (Huggins et al., 1998). Compaction, erosion, and loss of organic matter may also feed back as 

decreasing soil fertility (Quiroga et al. 2006; Oldfield et al. 2019). Unbalanced nutrient use may cause 
higher nutrient loss from farmland and eutrophication of water bodies, including seas (EU Nitrogen 

Expert Panel, 2015). Consequently, biogeochemical cycles may be affected (Kopittke et al., 2017). 95 
These effects may be further enhanced by on-going climate change, which is expected to increase the 

stochasticity of farm production (Tigchelaar et al., 2018). But more sustainable agricultural practices 

can substantially decrease these negative effects of intensification (Pretty and Bharucha 2014). In 

some instances, for example, when conservation tillage or other soil-saving practices are applied, 

intensive agriculture may even increase removal of carbon from the atmosphere (Leahy et al., 2020). 100 

1.2 Soil degradation as a business risk 

Business attitudes towards the environmental impact of supply chains, including considerations of soil 

quality, have been changing over the past years from indifference to concern and proactive 

sustainability interventions. As noted by Hajer et al. (2016), companies approach sustainability in three 

main ways: as a tool to improve reputation, as a sustainability-oriented business model, or through 105 
supply chain risk management. Businesses increasingly view unsustainable practices in their supply 

chains as a commercial risk. Widespread soil degradation, water scarcity, and biodiversity declines 

are seen as potential material and, in some cases, reputational hazards. Material risks include market 
volatility and potential future instability of supply chains. Market shocks facilitated by environmental 



 4 

change have major potential implications for costs (Tigchelaar et al. 2018). Companies fear that 110 
deterioration of natural capital may lead to direct cost increases and reduced margins, rising 

commodity market volatility, and supply chain unpredictability. Soil management is a risk factor due to 

its critical contribution to crop productivity and consequent impact on market performance (Davies, 

2017; Sharman, 2017; Burian et al., 2018; Panagos et al., 2018). Apart from primary producers and 

their investors, some of the most exposed sectors are the food, beverage, fibre, and biofuel industries 115 
(Makower et al. 2021). However, other, especially water-sensitive sectors are impacted as well. 
Climate change is expected to elevate the relative risk levels. 

 

But companies also need to deal with other actors' concerns. The regulatory environment is 

increasingly stringent as governments explore effective measures to prevent soil deterioration, and 120 
damage contributes to reputational risks as well. Consumers traditionally demand a great deal from 

the food system: safety, quality, variety, convenience, and service as well as low prices. But they 

increasingly expect environmentally sustainable production and processing methods. Increasing 

pressure on companies from various stakeholders such as NGOs has resulted in companies adjusting 
their strategies to face 'responsible governance' expectations (Fulponi, 2006, Dauvergne and Lister, 125 
2012). 

 

Along with the concerns directly related to soil sustainability, carbon sequestration is an additional 

motivation to intervene in soil management in supply chains. Better soil management leads to 

increased soil organic carbon content and is an important contribution to carbon sequestration (Smith 130 
et al., 2008; Minasny et al.; 2017; Rumpel et al., 2018; Radley et al. 2021). A growing number of 

companies aim for net zero greenhouse gas emissions (Hale et al., 2021; Rogelj et al., 2021). While 
specialist firms and initiatives such as Indigo Ag, Agreena, Soil Capital and Carboneg entered the 

emerging market with soil carbon credits (Popkin, 2023), many companies see working directly with 

their own suppliers as a useful contribution to their efforts to reduce their carbon footprint (Vermeulen 135 
et al., 2019; Amelung et al., 2020; Bossio et al., 2020).  

 

Business soil conserva.on efforts are further facilitated by the rapid prolifera.on of universal sustainability 

repor.ng, propelled by regula.ons such as the EU’s new Corporate Sustainability Repor.ng Direc.ve and the 

expanding supply of sustainability data, tools, repor.ng standards and other infrastructure (Deconinck et al., 140 
2023). Repor.ng contributes to agri-food companies’ engagement in soil sustainability primarily by focusing 

their aKen.on on the cri.cal role of supply chains, helping them to understand their complexi.es and iden.fy 

the less visible risks.   

1.3 Sustainability standards 

Government regulations and other public policies are the obvious framework that companies have 145 
conventionally followed. However, regulations and subsidies often fail to achieve environmental needs 

because of weak objectives or unsatisfactory design (Frelih-Larsen et al., 2016; Paleari, 2017; Pe'er et 

al., 2019; Scown et al., 2020; Amundson, 2020). Since about 2000, numerous predominantly 
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European and North American food and retail companies have sought to take a private initiative to 

increase the sustainability of their farm supplies beyond the minimum regulatory requirements. Initially, 150 
their focus has been on increased sales of organic food. Organic agriculture enhances soil quality 

(Gattinger et al. 2012, Tuomisto et al. 2012; Henneron et al., 2014; Seitz et al., 2019), is explicitly 

defined, and enjoys legislative underpinning and relatively mature markets. However, its scalability 

remains limited. The organic share of food sales remains at around 10% in even the most advanced 

European markets and is substantially lower elsewhere (Willer et al., 2021). Therefore, its practical 155 
utility as a supply chain sustainability tool is constrained. 

 

Facing the limits of both the regulatory regime and organic segment approach, corporations have 

explored private pathways to mitigate environmental challenges across their supply chains. Voluntary 

sustainability standards (VSSs) have been a key tool. They are private norms imposed by companies 160 
that require suppliers to follow more or less specific environmental and/or social criteria (Thorlakson et 

al. 2018, Lambin et al. 2018, Traldi 2021; Meemken et al., 2021). Suppliers' compliance with a 

standard is secured by a market choice to enter a private contract, as opposed to an obligatory 
government regulation (Henson and Humphrey 2010). Companies apply two principal approaches to 

VSSs: (i) third-party controlled certification schemes such as Bonsucro (sugar cane) or the Better 165 
Cotton Initiative (Vogt, 2019; Kemper et al., 2023), and (ii) in-house standards. 

 

While companies increasingly view standards as a risk management tool, they also continue to serve 

as a means of responding to stakeholder expectations, communicating brand differentiation to 

consumers and managing business-to-business relations. They help companies to ensure product 170 
safety or quality attributes, improve market efficiency, strengthen suppliers' liability, or induce 
innovation in sourcing (Fulponi, 2007; Henson 2008; Chkanikova and Lehner, 2015). 

 

Voluntary sustainability standards are not a straightforward solution. Their geographical focus is 

uneven. Most of the major VSSs target tropical crops (Tayleur et al., 2017; Kemper et al., 2023). They 175 
deal with globally relevant priorities such as deforestation and biodiversity loss that are concentrated 

in tropical biomes, while local challenges (e.g., soil degradation), more uniformly distributed in world 

farming, have received less attention so far. Their real-life impact relies critically on their specific 
design, and some schemes may be less than efficient (Blackman and Rivera, 2011; DeFries et al., 

2017; Traldi, 2021). Research suggests a mainstreaming paradox: standard setters face a trade-off 180 
between coverage and outcomes (Dietz and Grabs 2021). As the scope of some schemes expands 

beyond their original focus to cover both environmental and social agendas, parallel generalist 

standards overlap, their topical distinctions blur, and targeting becomes weaker (Lambin and 

Thorlakson, 2018). Whether this thematic generalisation impacts standards' specific content, such as 

environmental criteria, has not yet been sufficiently explored. 185 
 
Nonetheless, VSSs are potentially an important tool of control over environmental challenges, 

particularly in the production of so-called soft commodities such as food and fibre. Here we investigate 
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the extent and depth to which corporate voluntary sustainability standards are applied to protect soils, 

and the potential and constraints of further application of standards in soil quality. We focus on three 190 
key research questions: (i) To what extent are companies considering soil sustainability as part of their 

sustainability strategy? (ii) Do sustainability standards that companies use have a potentially 

meaningful impact on soil protection, and does that impact affect standards’ market penetration? (iii) 

Are schemes that emphasise the environment more likely to have stronger soil-related impact?  

2. Material and methods 195 

To explore the above-described research questions, we integrate three research approaches: (i) In 

order to gain an insight into the current market uptake of the relevant VSSs in business, we investigate 

their use in food retail, the key sector of agrifood value chains. (ii) We review the potential impact of 

soil-related provisions in the existing VSSs, and (iii) examine whether it is linked to the relative 

environmental specialisation of standards. 200 

2.1 Market uptake of soil-relevant VSSs 

We investigated the application of VSSs for soil protection by global food retail. The 250 largest 

retailers listed in Deloitte's Global Powers of Retailing 2021 report (Deloitte, 2021) were used as the 
baseline to determine a sample of relevant companies. Out of this sample, companies labelled 

'Grocery Retailers' in the research database Passport operated by Euromonitor International were 205 
selected in order to identify those involved in food sales. For these companies (n = 119), we gathered 

the latest sustainability reports, annual reports, and data from companies' websites available between 

June and October 2021 and performed content analysis (Krippendorff, 1980) to identify companies' 

activities in sustainable food sourcing. We focused on standards they use, crops they report as 

considered in sustainable sourcing, and topics of agricultural sustainability they focus on.  210 
 
Using binary coding of root word topics, based on Sustainability Consortium’s Sustainable Commodity 

Supply Chains Project's topic classification (The Sustainability Consortium, 2017) with some minor 

adjustments, and related keywords, we categorised relevant content collected and removed 70 data 

points due to unavailability of reports and/or relevant data or language barriers. Each report was 215 
manually analysed and relevant root words recorded if they appeared; keywords (root word 

synonyms) were subsequently identified in the equivalent manner. Similarly, any reference to a 

sustainability standard was also recorded using binary coding in the data sheet. We also recorded any 
crop when it was mentioned in relation to a standard or a root word/keyword In this way, a binary code 

matrix was created, recording any instance of a root word/keyword, a standard or a relationship 220 
between any of the two variables and a crop.  

2.2 Impact of soil provisions in VSSs 

Second, we analysed the content of the Standards Map (Fiorini et al., 2018), a global database of 322 

VSSs (as of October 2022) operated by the International Trade Centre 
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(https://resources.standardsmap.org/knowledge). Out of 165 standards that cover agriculture, we 225 
identified those that explicitly regulate soil management. This was all done using Standard's Map 

filters. After this we removed organic food standards (because they are irrelevant to supplies from 

conventional farming) and standards focused on food quality that only marginally mention soil, without 

further details. We performed content analysis of the remaining standards (n = 56), identified 11 sub-

categories of criteria that the Standards Map marked as relevant to soil (Fig. 1) and, using the 230 
standards' excerpts that the Standard Map indicates as related to each sub-category,  identified 400 
instances where a particular standard contained one of the 11 sub-categories. 

 

On the basis of the content analysis of the standards, we concocted four categories of ambition level 

(Table 1), and assigned one to each of these individual instances in order to differentiate between 235 
schemes with explicit benchmarks and those confined to general provisions. Content analysis often 

needs to go beyond simple frequency counts and involve interpretation of the text; however, these 

approaches increase the risk of researcher’s bias (Drisko and Maschi, 2016). We used secondary 

data (excerpts from the Standard's Map database) and categories that allowed classification with little 
need of subjective judgement in order to minimise bias (Drisko and Maschi, 2016). The decision 240 
criteria were based on the presence of phrases indicating a level of ambition (Table 1).  

 

We extracted from the Standards Map data on crops covered by the 56 soil-related standards to gain 

an insight about the overlap between supply (existing standards) and demand (reported use by 

companies for each crop). To examine whether the soil-related criteria are affected by the 245 
mainstreaming paradox, we performed Pearson's correlation to test the relationship of the ambition 

level of each individual standard to the acreage of land certified by the standard. Additionally, 
Pearson's correlation was calculated to test the relationship of ambition level with the reported use of 

standards among food retailers (n = 18). 

 250 

https://resources.standardsmap.org/knowledge
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Figure 1: Levels of supply chain sustainability standards' (n = 56) soil protection content 
ambition in individual sub-categories. Level rating criteria are explained in Table 1. 
Note: 

1. Levels are applied to the sub-categories defined by Standards Map. 255 
2. The category originally called 'Other Criteria on Soil' in the Standards Map is renamed to 

'NPK, pH analysis', as this was the only actual topic covered. 

 

Level Description of category Example 

1 No specific requirements or 

actions expected. 

“If applicable, procedures are in place to measure and 

reduce soil erosion and compaction and/or improve soil 

health.” 

 

Equitable Food Initiative (Criteria on soil conservation)1  

2 Some knowledge about 

agricultural sustainability 

issues is expected and 

efforts to address them are 

required. 

“Soil Management Plan in place to avoid erosion and 

maintain and improve soil health Indicator” 

 

Bonsucro (Criteria on soil nutrients)1 
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3 An explicit strategy and its 

demonstration in farm 

practices are required. 

“Indicate pollution caused by the use of fertilisers and 

pesticides in cotton production. Applying more efficient 

irrigation practices to optimise water productivity (applicable 

to irrigated farms only)” 

 

Better Cotton Initiative (Criteria on soil contamination)1 

4 An explicit strategy to deal 

with the issue in specific 

measurable rules and 

interventions is required. 

“4.1 Organic matter balance • An organic matter (OM) 

balance is calculated at company level. The average OM 

balance (balance is input minus decomposition) for all plots 

at company level is at least neutral. In case of a perennial 

crop, the balance at plot level over the entire growing period 

is neutral.” 

 

Planet Proof standard (Criteria on soil nutrients)1 

Table 1: Standard ambition level criteria applied in the analysis 

 260 
Notes: 

1. All quotations taken from ITC (n.d.)  

2.3. Environmental specialisation 

To evaluate the environmental specialisation of individual standards, we used the Standards Map 

(https://resources.standardsmap.org/knowledge), which indicates the proportion of requirements that 265 
are dedicated to five pillars ('Environmental', 'Social', 'Quality and management', 'Economic', and 

'Ethics'). As a measure of environmental specialisation, we used the relative share of requirements in 

each standard dedicated to the environmental pillar extracted from the Standards Map. We applied 

Pearson's correlation to test the relationship between the environmental specialisation of each VSS 

and (i) its overall ambition level (Table 1) in soil issues (sect. 2.2); (ii) its ambition level in individual 270 
sub-categories (such as erosion, nutrients, and soil as general principle: see full list of subcategories 

in Fig. 1); and (iii) the area of standard application measured in hectares of certified land globally. 

Similarly, we compared environmental specialisation between standards that operate strictly in the 
tropics and/or subtropics and those that also target temperate crops. To do so we assessed the 

environmental specialisation of standards with these two geographic foci. The Standards Map was 275 
used to extract data about each scheme’s geographical scope to differentiate between standards that 

regulate temperate crops (including those with a wider scope including temperate crops) and those 

that strictly target only tropical and/or subtropical agriculture.  

3. Results  

3.1 Market uptake of soil-relevant VSSs 280 

https://resources.standardsmap.org/knowledge


 10 

Soils generally rate high among food retailers' environmental concerns (Table 2). Among the 49 

sampled retailers, 27% self-report soils as a policy objective, with only two topics – pesticides and 

water management – mentioned more frequently (both at 33%). Sustainability standards that involve 

soil protection criteria were applied by 41% of the retailers (Table 3). 

  285 
Some retailers apply their own requirements, which may include both more general policies and 

specific in-house standards. Tesco operates a program within their Sustainable Farming Groups (an 
environmental initiative by Tesco involving its suppliers and farmers) that promotes use of cover crops 

and other sustainable practices in potato farming. In 2019 the program covered 417 hectares, with 

expectations to extend it further (Tesco, 2020). However, soil is generally rarely addressed in the in-290 
house standards. Most of them focus on pesticide use or biodiversity.  

 

 

Objective Share of food retailers that report the objective (%) 

Pesticide management 32.7 

Water resource management 32.7 

Biodiversity 26.5 

Deforestation 26.5 

Soil health 26.5 

Fertiliser management 20.4 

Land use change 8.2 

Energy consumption 6.1 

Manure management 6.1 

Pollination 6.1 

Ecosystem services 4.1 

Habitat/land conservation 4.1 

High conservation value areas 4.1 

Maximum residue levels 4.1 

 

Table 2: Self-reported priority agrifood sustainability objectives of 49 large retail companies  295 
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Standard 

Share of retail 

companies 

reporting use 

(%) 

Average 

ambition level 

Number of sub-

categories covered 

by the standard 

Share of 

environmental topics 

in the total number of 

criteria (%) 

Involves temperate crops only or in a combination with tropical/subtropical crops 

PlanetProof  2.04 4.00 10 60 

Red Tractor 

(Combinable 

Crops) 4.08 2.20 5 56 

GLOBALG.A.P 
(Crops) 26.53 2.00 9 39 

LEAF Marque 6.12 3.00 10 71 

Rainforest Alliance 

- 2020 44.90 2.90 10 38 

Better Cotton 

Initiative 20.41 2.89 9 37 

Sustainable Rice 

Platform 2.04 2.67 6 47 

Sustainably Grown 2.04 2.33 9 39 
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Round Table on 

Responsible Soy 

Association 24.49 2.25 8 46 

Involves tropical/subtropical crops only 

Roundtable on 
Sustainable Palm 

Oil  59.18 2.63 8 34 

Cocoa Horizons – 

Barry Callebaut 8.16 1.88 8 36 

FairTrade 40.82 1.29 7 39 

All standards  41 

2.48 

(median=2.33) 7.21 (median=8.00)  46 

Table 3: Average ambition level across the relevant sub-categories of standards reported as 
used by retailers, and the share of retailers (n = 49) reporting use of the standard. Level rating 
criteria are explained in Table 1. 
Notes: 300 

1. Rating is applied to the sub-categories defined by the Standards Map. 

3.2 Impact of soil provisions in VSSs 

Practical implementation of policy objectives in explicit VSSs remains limited. Just 56 of the 165 third-

party standards relevant to agriculture (excluding organic certification) regulate soil management to a 

greater extent than only mentioning its importance. Overall, the average ambition level of the 305 
standards' soil management requirements by sub-category (Table 1) is less than 2.48, with the median 

at 2.33 (Table 3); that is, they typically require that farmers are knowledgeable about soil-related risks 

and show some effort to apply practices to improve soil quality. The most frequent sub-categories are 
soil erosion, nutrients, soil biodiversity, and productivity (Fig. 1). NPK/pH analysis is the sub-category 
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in which the standards have the most ambitious criteria overall, as compliance with exact thresholds is 310 
required; however, it is only rarely applied (n = 2). There is not much variability in the level of ambition 

beyond that (Fig. 1).  

 

While there is a weak negative correlation (Pearson coefficient, r = −0.23, n = 18) between the 

standard's ambition level and its hectare coverage in terms of certified production land, the 315 
relationship is not statistically significant (p = 0.355), possibly due to the lack of available data (Fig. 2). 
The same is the case with the relationship between the average ambition of the standard and its use 

by food retailers (Pearson coefficient, r = −0.25, p = 0.441, n = 12). The crops most frequently covered 

by VSSs are soy and fruits, both in terms of the number of standards and in reporting by the food 

retailers (Fig. 3). But some standards diverge in these two criteria: for example, while a high number of 320 
VSSs cover the sustainability of sugar, nuts or rice, they are rarely reported as used by the retail 

companies.  

 

 
Figure 2: Correlation between standard use measured in thousands of ha of land and standard 325 
ambition level using available data (n = 18). The relationship is not statistically significant. 
 
 

 

 330 
 

 

 

 

 335 
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Figure 3: Crops covered by third-party agricultural sustainability standards relevant to soil 
quality (n = 56) and those reported in food retail companies’ (n = 49) literature as being subject 340 
to a specific sustainability standard. 
Notes: 

1. Retail companies usually report 'sugar' as a commodity, rather than the specific crop; in only 

one data point (1.8%) is sugar beet explicitly reported. 

2. Some companies report 'fruits and vegetables' as a generic crop category. 345 

3.3 Environmental specialisation 

Environmental specialisation was weakly but significantly positively correlated to average ambition 
level of all soil-related criteria in a given standard (Pearson coefficient, r = 0.37, p = 0.005, n = 56). 

There was also a positive relationship between the relative environmental specialisation of standards 

and their ambition levels in the erosion (Pearson coefficient, r = 0.41, p = 0.003, n = 56), soil 350 
conservation (Pearson coefficient, r = 0.32, p = 0.043, n = 56), and cover crop (Pearson coefficient, r = 

0.30, p = 0.069, n = 56) sub-categories. Environmental specialisation was negatively correlated with 

the use of the standard measured in hectares of certified land globally (Pearson coefficient, r = −0.53, 

p = 0.025, n = 18); that is, standards with a stronger environmental focus are used on relatively 

smaller areas, and vice versa. Standards with high environmental specialisation also tend to be those 355 
operating in temperate regions, as opposed to standards that target tropical crops only (t test, p = 

0.001, n = 56). 
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4. Discussion 360 

4.1 Current practice 

The food retail industry declares a high degree of interest in soil quality. Soil quality and/or its 

individual parameters are one of the self-declared priority objectives for retail industry sustainability 

efforts. However, there is an apparent discrepancy between this proclaimed prioritisation and the 
implementation of any real measures into standards (Fig. 1). Soil-relevant items generally, with one 365 
exception, lack more comprehensive and/or specific criteria. Hence, soil protection is often reported as 

a priority, but practical implementation is limited. Apart from organic food, GLOBALG.A.P. is the most 

popular standard. Soil quality is covered by the scheme, but its criteria tend to be loose and weak. In 

order to qualify, suppliers must, for example, develop a crop rotation plan and implement some 

interventions to mitigate soil erosion and compaction; however, no specific measures or thresholds are 370 
explicitly required. 

 
The explanation for the discrepancy between prioritisation and implementation is complex. Partly it is 

that any evidence-based policy (Mosse, 2004) needs data and data processing, and its 

implementation is more complex than just the simple declaration of care. This is particularly true for 375 
soil. Soil sustainability criteria are also relatively more difficult to develop and control (sect. 4.2). 

Environmental schemes that prioritise landscape-level threats such as land-use changes in global 

biodiversity hotspots can use fairly simple metrics such as the absence of deforestation (Lambin et al. 

2018, Garrett et al. 2019). Mitigation of soil risks is typically more complex and involves field-level 

interventions that are often more geographically specific. Companies may be naturally inclined to 380 
engage first with topics that are easier to approach, measure, and verify. These complexities are 

probably visible in the ways current sustainability VSSs specify soil quality requirements. While 

relatively strict requirements are applied in easily verifiable measures such as use of cover crops, 

crop-spacing, or soil pH, issues like soil erosion and organic matter loss are left to more vague criteria. 

We will further examine the complexities and challenges faced by the development of a soil standard 385 
in sect. 4.2. 

 
A second problem can be that the relationship of soil to a final product is mediated by other factors, 

and soil changes are usually slow, so its degradation may not be perceived as an imminent threat. 

Consequently, while retail business apparently views soils as a potentially important issue, the initial 390 
focus of its supply chain sustainability efforts has been elsewhere. Companies tend to concentrate on 

major global concerns (climate, biodiversity, deforestation, and other habitat loss). This is associated 

with public awareness about soil which is, despite recent efforts and some partial successes (Dazzi 

and Lo Papa, 2022), lower compared with awareness of other issues such as biodiversity and climate. 

There are many reasons for this. Among others, soil, soil organisms, and soil processes responsible 395 
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for soil fertility are virtually invisible to most of the population, including customers and company 

managers. Thus, these matters are spotlighted less than other natural resource issues such as 

biodiversity, which is easier to visualise, making it easier to build emotional attachment to biodiversity 

(Hanisch et al., 2019). 

 400 
The relevant agrifood supply chain impacts are generally higher in tropical and subtropical landscapes 

(Moran and Kanemoto, 2017; Pendrill et al., 2019) than in temperate zones. Tropical farming is 
understandably a primary priority for private schemes (Tayleur et al., 2018). These risks are also the 

key priority for conservation NGOs and other stakeholders who often play a major role in companies' 

understanding of sustainability agendas and their strategic choices. Reporting of the 49 large food 405 
retailers shows that some of the most frequently applied schemes are the Roundtable on Sustainable 

Palm Oil, the UTZ–Rainforest Alliance, and Fairtrade. These standards have one thing in common: 

they mostly focus on tropical cash crops such as cocoa, coffee, and palm oil. While they typically 

include some soil-related criteria, their main environmental components usually revolve around 

biodiversity and habitat conversion. 410 

4.2. Data limitations 

An obvious limitation of the data presented here is that it reports on companies’ intentions rather than 

impacts. Efficient VSSs require robust design, including measurable thresholds and effective 

verification procedures (ISEAL, 2013). However, practical results on the ground are likely to depend 

on a complex web of factors that influence farmers’ (and consumers’) choices. These are probably 415 
difficult to discern from design alone. Ultimately, impacts need to be measured directly. 

 

Retail industry is a natural choice of the sector for data gathering because of its key role in agrifood 
value chains and its broad coverage of different commodities. Nevertheless, the choice entails 

inevitable trade-offs. Perhaps most importantly, fresh food - a segment where they have direct 420 
contractual relationships with farmers - is an understandable priority for retail companies’ supply chain 

sustainability efforts. As a consequence, sustainability of manufactured goods will be less intensively 

reported. This is, for example, probably the main reason why Sustainable Agriculture Initiative (SAI), a 

major collaborative platform involved in sustainability standardisation, appears in the standards data 

(sect. 3.2), but not in the retail data (sect. 3.1). 425 

4.3. Practical applications 

Typically, soil is - and probably will continue to be - an element of wider agri-food sustainability 

standards, rather than a narrow, stand alone issue. However, robust and widely applicable soil health 

metrics and data infrastructure are key prerequisites for development of VSSs useful for agri-food 

supply chains (Sharman, 2017). 430 
 

The need to support soil sustainability has been the focus of many recent initiatives. In particular, the 

European Commission has invested significant resources in programmes such as the European Joint 
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Programme Soil and Mission Soil, which bring together researchers, policy makers, farmers and other 

actors (Chenu et al., 2023) to identify priorities for soil protection (Boruvka et al., 2022) and highlight 435 
key management practices that benefit soil health (Rodrigues et al., 2021; Tiefenbacher et al., 2021; 

Keesstra et al., 2021; Hendricks et al., 2022; Vanino et al., 2023). Attention has also been paid to the 

impact of different agri-environmental schemes on soil (Polakova et al., 2022). Several EU projects 

have investigated incentives and business models for soil health (NOVASOIL, SoilValues, InBestSoil). 

Similar projects are pursued by other researchers (e.g. Soil Health Index) and businesses (Open Soil 440 
Index) (Bünemann et al. 2018). While these initiatives focus mainly on the social value of soil, public 

policy incentives at European, national or local level and the impact on (and support of) farmers, they 

produce data, monitoring infrastructure, intervention designs and other outcomes that may potentially 

contribute to the development of effective VSSs. Advances in agricultural mapping and remote sensing 

including satellite imagery will make localised soil metrics more feasible (Sharman, 2017). Moreover, 445 
with the development of AI technology, it is likely that integration of soil mapping with AI will translate 

into criteria and monitoring models in the future. The development of innovative monitoring, reporting 

and verification (MRV) methodologies to ensure the environmental integrity of carbon farming 
schemes generates outputs that are potentially useful for measuring other environmental impacts, 

including soil health (Radley et al. 2021; Springer, 2023). 450 
 

Companies mostly serving European and North American markets appear to prioritise sustainable 

production of (i) tropical commodities and (ii) fresh produce (fruit, vegetables). They are often traded in 

different ways (complex global supply chains vs. direct purchases), with practical implications for 

implementation of supply chain sustainability (schemes such as third party certifications and direct 455 
cooperation with farmers, respectively). A meaningful intervention in soil quality in temperate 
landscapes would involve addressing common field crops such as cereals and oilseeds. The market 

model (and governance of supply chain sustainability) for many of these is more similar to that of 

globally traded tropical commodities, rather than fresh produce, although the physical distance of trade 

flows is shorter. The complexities of crops entering parallel supply chains, with supplies of different 460 
origins mixed together, and multiple tiers of manufacturers can pose challenges to the application of 

VSSs.  

 
Precompetitive initiatives (i.e. agreed and applied by several companies in a sector, potentially with 

involvement of other relevant stakeholders) could be a viable solution for sectoral and even cross-465 
sectoral collaboration (Waldman et Kerr, 2014; Barker et al., 2021), enabling companies to identify 

best practices for their shared supply chains and focus on developing robust criteria for soil 

sustainability that can be measured, validated and applied interchangeably across countries and 

continents. Sustainable Agriculture Initiative (sect. 4.2), while not strictly a VSS, is one of the more 

prominent precompetitive initiatives currently on the market. 470 
 
The growing breadth and depth of available life cycle assessment (LCA) data has rapidly improved our 

understanding of environmental footprints along agri-food value chains in recent years (Poore et 
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Nemecek, 2018). Practical tools have been developed to apply LCA approaches at scale, such as the 

Product Environmental Footprint (Damiani et al. 2022). While soil quality is challenging to incorporate 475 
into LCA methodologies due to the diversity of relevant impact criteria and limited amount of soil data, 

numerous models and indices have been proposed (Vidal Legaz et al. 2017; De Laurentiis et al., 

2019). LCA provides useful information that highlights key risk points and the relative contributions of 

value chain stages. As such, it is essential for reporting and labelling initiatives. Nevertheless, LCA-

based criteria are rarely used in VSSs when applied to business-to-business relationships. There are 480 
probably two reasons for this. One is tradition. VSSs grew out of practice-based policies such as the 

organic farming standard, and more recent instruments mostly tend to follow the traditional route 

(Komvies and Jackson, 2013). Perhaps more importantly, LCA tends to be complex, and users 

(companies and especially farmers) would find it difficult to collect the necessary data and apply it to 

farm-level decision-making. 485 
 

Soils are complex, and effective sustainability standards require practical solutions that are feasible for 

farmers to implement and for companies to standardise, measure, and control. Companies' preference 
for universal rules across markets is constrained by the variability of soils, farming practices, and 

regulatory environments. Soil and sustainability research can contribute with the development of 490 
relevant tools such as multidimensional sustainability criteria, compliance metrics, and spatially 

explicit, commodity-relevant datasets. Some of these approaches can be reasonably applied to other 

complex dimensions of agrifood supply chain sustainability such as small-scale farmland biodiversity. 

 

5. Conclusions 495 

Companies’ efforts to implement sustainability standards in their supply chains are a potentially 
important instrument of farmland soil sustainability. While companies show a rising interest in 

combating market risks related to soil degradation, the practical interventions have remained in early 

phases so far.  

 500 
We (i) found that the food retail industry, a key sector in agrifood supply chains, generally considers 

soil sustainability as part of its sustainability strategy. Sustainability standards that include soil 

protection criteria were applied by 41% of the sampled retail companies. However, (ii) the 
sustainability standards used by companies tend to have only a limited impact on soil protection. Only 

56 of the 165 third-party standards relevant to conventional agriculture regulate soil management to a 505 
greater extent than simply mentioning its importance. Surprisingly, there was no significant relationship 

between the impact of the standard and its market penetration (hectares of certified production area). 

(iii) Schemes that emphasise the environment are more likely to have a greater impact on soil, 

particularly for criteria related to the erosion, soil conservation and cover crops. 

 510 
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There seem to be several major reasons for this. Companies focus their supply chain interventions on 

globally important environmental risks such as loss of high-biodiversity habitats, particularly in the 

tropics, and more easily manageable topics such as pesticide use management. Also, soil 

sustainability standards require relatively complex interventions and criteria. Provisions in the existing 

standards tend to be too generic to have a substantial impact. 515 
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