
Responses to Referee #1

We appreciate the detailed and constructive feedback provided by the anonymous reviewer,
which has been valuable in enhancing the manuscript. We respond by highlighting the
reviewer's comment in shaded text and our responses in black. The resulting changes from our
responses to referee #1 are highlighted in blue in the revised manuscript.

General comments:

The aim of this work is to provide a global assessment of near future river flow changes within
the context of a high-emission climate change scenario. The authors leverage the TRIP model
to simulate river flow dynamics, which is forced by runoff from HighResMIP simulations. They
then quantify the changes by using the signal to noise ratio and time of emergence metrics. I
have two major concerns on this work: 1) the need for a thorough justification, validation, and
demonstration of signal and noise estimations; 2) the absence of logistical and substantive
content that elucidates the implications for metropolitan areas and water resource management.
Please see my detailed comments below.

We appreciate the reviewer's detailed feedback and their two major concerns regarding our
manuscript. The comments provide valuable insights into the clarity and robustness of our work.
First and foremost, we would like to address the following:

1) We understand the importance of providing a strong rationale for our signal and noise
estimations. To address this concern, we provide a comprehensive and detailed description of
our signal-to-noise and time of emergence methodology in the responses to the main concerns,
and explain the main points of that in the revised manuscript. This expanded explanation sheds
light on the utility of these techniques for our research and includes specific validation tests,
ensuring a thorough justification, validation, and demonstration of our estimations.

2) We recognize that it is challenging to establish cause-and-effect relationships between
simulated climate change signals and particular extreme events and/or sectoral impacts.
Following reviewer #2’s suggestion, we replaced the section “Rivers susceptible to strong
changes” by “Regions susceptible to strong changes”. In this new section we analyze the
discharge projections grouping rivers in four regions with (a) trends that significantly deviate
from the historical period, and (b) clear consensus among the model simulations. The regions
are: Central Africa, Arctic, South Asia, and Patagonia. This regional analysis provides a more
concise way to convey the broader implications of our study. The information about the potential
risks for individual rivers is briefly described at the “Discussion and conclusions” section.



Major comments:

1. Abstract: the flow of the abstract from L9 to L14 is hard to follow. They did not conclusively
reflect what has been discussed in the main text. Please consider refine the abstract.

The abstract has been rewritten to more accurately reflect the main findings of our research, in
particular, those referring to the new analysis at regional scale (explained in major comment 7).
See blue text in the abstract (lines 8-14).

2. L77-79 and Appendix A: additional evidence is necessary to support the hidden assumption
that all models share similar internal variability as HadGEM-GC31. Do the remaining models
contain ensemble members of precipitation? If so, how does the precipitation spread across the
ensemble members? Do they share the similar internal variability as the precipitation spread of
HadGEM-GC31? Consider exploring such variables that could influence runoff to earn the
statement.

We agree with the reviewer regarding the assumption of similar internal variability across all
models. To address this concern, we obtained access to additional realizations of the
HighResMIP-CMIP6 from the Laurence Livermore National Laboratory (LLNL) Earth System
Grid Federation (ESGF)​​ Node (esgf-node.llnl.gov), which includes total runoff among the
variables. This extended our internal variability analysis to a total of 58 individual realizations
across different GCMs.

The internal variability results for CNRM-CM6-1 and EC-Earth3P GCMs confirm our earlier
findings for the HadGEM3-GC31 family. While the internal variability tends to rise over time, it is
smaller than the inter-model variability and comparable to the variability given by the GCMs'
resolution. These new results strengthen the robustness of our assumption that the set of
simulations is adequate for the proposed objectives and that more realizations would not
substantially alter the presented results.

New panels showing the internal variability of CNRM and EC-Earth3P GCMs’ families (see new
Figure A1) along with their interpretation have been added to the Appendix A: “Internal
variability in projections of runoff anomaly”. Corresponding adjustments have been made to the
text in lines 76-79 to ensure accurate reflection of these new results.

3. While the authors direct readers to Müller et al. (2021a) for details on the TRIP model, it
would be beneficial to provide a brief overview of TRIP’s global-scale performance and the
rationale for its selection.

Thanks for making this important point. To address this concern:

(a) We add more information about the model origin and features, that makes it ideal for our
purposes in the section “2.1 GCM simulations and river routing model” (lines 80-90). In brief, the



model's key attribute lies in its simplicity, enabling long-term global simulations with minimal
computational resources, all while delivering commendable performance (as shown in item b).

(b) We include an explicit validation of simulated river flows following the suggestion of reviewer
#2. It includes the calculation of four different metrics: (relative bias, overlapping coefficient,
correlation coefficient, and non-parametric Kling-Gupta efficiency) for the 18 hydrological
simulations and the 18-model ensemble mean. The metrics are based on the comparison of our
simulations against monthly observations of a selection of 346 monitored rivers, which cover
about 42% of the global land and their flows contribute to about 45% of the global river
discharge. The validation results clearly demonstrate the robust performance of the model in
this study (please see them in our response to reviewer #2 main comment #1). Further details
about the validation methodology is included in the section “2.1 GCM simulations and river
routing model” (lines 98-114), while the validation results are analyzed in the new section “3.1
Validation of the hydrological simulations”.

(c) We provide a link to the GitHub repository of the used model in the “Code and data
availability” section (lines 463-465). The repository includes access to the source code,
documentation, and examples for running at the global and regional scales.

4. L110-114: The demonstration of the estimation of signal and noise ratio needs more details:

a) the mathematical details of the low-pass filter, justification for its choice, and an explanation
of how the choice of low-pass filter might impact the noise term;

b) regarding the noise term, why this could be a representation of “natural variability”? Do the
variation of the river flow in the PRESENT period include impact of human water activities? If
so, how would this impact be separated from the “natural variability”?

c) why the signal of a local river flow anomaly can be linearly regressed on the global signal
given large spatial heterogeneity in local river flow variability.

These terms need to be better demonstrated in the method section and the robustness of the
estimation of signal to noise ratio need to be proved.

The estimation of the signal-to-noise ratio follows the method proposed by Hawkins and Sutton
(2012), with a thorough parameter selection process that includes sensitivity tests. We
appreciate the reviewer's feedback and would like to provide a clear response to each concern.

a) Choice of filter:

The choice of the low-pass filter is indeed a critical step in our analysis, as it directly impacts on
the noise term , and subsequently, the Time of Emergence. In our approach, the climate𝑁
change signal is estimated as , i.e., convolving the global river discharge𝑆
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anomaly time-series with a Hanning window that has a length of 41 years. This operation𝑄
𝐺

𝑤

performs a smoothing of the given time-series. The filter is chosen considering the following
factors:



(i) it effectively attenuates high-frequency noise without introducing phase distortion, unlike
Butterworth, Chebysev, or Elliptic (see their phase shifts around 2020 in Fig. R1.1a), and
minimizes boundary effects, unlike the FFT low-pass filter (see the blending effect in the first
and last decades in Fig. R1.1a);

(ii) the Hanning window provides similar smoothing results to other filters, except for the
rectangular window, which introduces some interannual variability (see Fig. R1.1b); and

(iii) a window of 41 years highlights the long-term variations.

Filters that produce phase distortion can exaggerate differences between the original and
filtered time-series, leading to a misrepresentation of the noise term with a higher value.
Similarly, the “blending” of the FFT smoothed signal on the edges of the time-seres, may make
the signal to unrealistically emerge or immerse on the natural variability range. The type and
length of the window have a relatively minor impact in comparison. In summary, while we
recognize that the selection of window length and smoothing options involves some subjectivity,
the resulting N term exhibits relatively low sensitivity to reasonable choices. Moreover, Fig. R1.2
demonstrates the insensitivity of local signal and noise to different filtering options tested for the
global signal.



Figure R1.1. Low-pass filter selection test for a river discharge anomaly time-series ( ) using the CNRM-CM6-1-HR𝑄
𝐺

model as a case study. The signal is estimated with various (a) filters, (b) window functions, and (c) window sizes.𝑆
𝐺

The test of parameters in (b) and (c) is applied for the Lowess filter. The resulting noise value of each filter is provided
in the legend.



Figure R1.2. Illustration of the robustness of local signal ) and noise ( ) derived from various filter options(𝑆
𝐿

𝑁
𝐿

applied to the global signal. The time-series represents the Yukon discharge at its river mouth.

b) Natural variability:

In our study, we adhere to the definition of "natural variability" as proposed by Hawkins and
Sutton (2012), also applied in Hawkins et al. 2020, i.e. noise is the local component that is
unexplained by long-term global changes. We acknowledge that in some studies, the definition
of noise has been broadened to encompass the uncertainty in the climate response to
anthropogenic forcing and the uncertainty in future anthropogenic emissions (Giorgi and Bi,
2009; Hawkins and Sutton, 2009, 2011). However, the GCM simulations used in our study do
not include anthropogenic water activities. Thus, our primary focus remains on the natural
internal variability of climate, as this serves as the key source of noise relevant for the analysis



of the Time of Emergence. The base period for the anomalies calculation covers 6.5 decades
(1950-2014) capturing different variability time-scales from interannual to multidecadal. In
summary, while we recognize that river flow variations in the ‘real world’ include both natural
and human-induced elements, our study primarily aims to assess when simulated changes in
river discharge become distinguishable from the background of this natural climate variability,
following the approach outlined by Hawkins et al.

c) Linear regression:

We agree with the reviewer that river flow anomalies are not homogeneous worldwide.
However, we justify the estimation of local signals based on linear regression of local anomalies
with respect to global anomaly signal considering that:

(i) It has been applied for precipitation which is strongly heterogeneous, even more than river
flow. See Hawkins et al. (2020) and the IPCC AR6 Ch4 WGII (Caretta et al. 2022).

(ii) River flow anomalies are not largely heterogeneous, indeed they present consistent spatial
responses at the catchment scale.

(iii) The alternative method to estimate the signal, i.e. estimating local signals by filtering local
time-series produces misleading results. The local filtered signal is impacted by the filter's
'blending' effects on the extremes. This is clearly shown in Fig. R1.3 for Congo, Amazon, and
Negro, three rivers with different regional trends. Figure R1.4 shows how the blending yields
high SNR values in the first year of simulation, which is unrealistic. This issue is avoided when
linear regressions are applied.

Following our above responses to each individual concern of comment 4, we summarize the
main points of this discussion (without showing the above figures) in the new appendix B “Notes
about the calculation of the S/N ratio”. This helps ensure that the methodological details are
robustly presented and that the reader can follow the logic behind our decisions, as indicated
now in lines 134-136.
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Figure R1.3. Local signal ) estimated by filtering with the Lowess filter (blue) compared to the local signal based on(𝑆
𝐿

the linear regression of local anomalies with respect to global anomalies (orange). The signals are estimated for
time-series of rivers presenting different trends (positive, neutral, and negative): (a) Congo, (b) Amazon (), and (c)
Negro river flow at their river mouth.



Figure R1.4. Resulting SNR for years 1950 (top), 2000 (middle), and 2050 (bottom) when local signals are estimated
by filtering with the Lowess filter (left) compared to the SNR when local signal based on the linear regression of local
anomalies with respect to global anomalies (right).

5. In Figure 2, the difference in runoff between the two periods in Greenland and central
Australia is small while in Figure 3 (a) the percentage changes in river flow for these locations
are outstanding. Is this discrepancy due to the use of the percent change as a measure, rather
than absolute differences? I think it would be beneficial to explain the discrepancy.

The visual discrepancy between the small and large differences observed in Greenland and
central Australia in our original Figures 2 and 3a has two reasons:

a) mathematical: differences expressed as percentage changes tend to be high on places
where mean values are small, such as Greenland or Australia.

b) visual: Figure 3a shows uniform colors at the catchment scale, and such colors represent the
percentage change at the river mouth, which integrates the runoff of the entire catchments. For
instance, the strong values of Greenland catchments in Figure 3a are directly influenced by the
high difference between FUTURE and PAST near the deltas shown in Figure 2, rather than the
small differences observed upstream.

We clarify this in the caption of Figure 4 (old Figure 3).



6. About ToE: again, the method of signal and noise decomposition would largely determine the
results of ToE. I wonder if the author could check the robustness of the ToE as well.

We agree with the reviewer, the ToE is sensitive to the signal and noise estimations. In our
response to the major comment 4, we provide a comprehensive justification of the methodology
we used to estimate the signal-to-noise ratio, demonstrating the robustness of our approach.

7. Figure 7: the discussion on the results shown in Figure 7 is confusing. In my perspective,
changes are described in the context of a simulation scenario so that they are not yet scalable
to real world situation. However, the authors mentioned about the risk to metropolitan areas and
the implications to infrastructure management. I think these discussions are relevant but
somehow feel disconnected from the results of the simulation. To better connect, I think the
authors should first demonstrate how the simulated river flow for PRESENT period compare to
observations and form the discussion based on it. This might also help condense the content in
the abstract.

We appreciate the reviewer's feedback on the discussion about simulated river flow projections
and extreme events observed in the real world. Recognizing that this connection is too
ambitious, we opted to follow the suggestion of reviewer #2 and replaced that analysis of
specific cases with the assessment of groups of rivers in regions with similar trends. This
modification streamlines our analysis by grouping rivers into regions with notable trends and
clear consensus among model simulations—Central Africa, Arctic, South Asia, and Patagonia.
This is a more concise way to better connect with the simulation results and convey the broader
implications of this study. Please see our response to reviewer #2 main comment #2.

Minor comments:

1. L68: Clarification is needed regarding what “availability”

Surface and subsurface runoff is simulated by all GCMs, but these variables are not always
stored. The text was rephrased to “The selection of these HighResMIP GCMs was contingent
upon the availability of surface and subsurface runoff data within the Earth System Grid
Federation (ESGF) servers, which host the HighResMIP simulations.” (lines 64-65)

2. L86-87: Please specify the resolution of the target grid.

Thanks for noting it was unclear. It was rephrased as follows: “The simulations are run globally
(excluding Antarctica) using the nearest-neighbour option to regrid the runoff from the original
GCM resolutions to the target grid at a common resolution of 0.25°.” (lines 83-85)

L97-98: the term “expected changes in rivers” requires clarification. Rationale is needed to
connect the three steps.



We rephrased the term as “projected changes in rivers”. As indicated in our response to major
comment 7 we provide a regional analysis of the projections that better connects with the
simulated projections and the evaluation of signal-to-noise ratio and time-of-emergence. See
lines 116-119.

Responses to Referee #2

We thank the constructive insights offered by the anonymous referee, which significatively
contributes to the improvement of the manuscript. We respond by highlighting the reviewer's
comment in shaded text and our responses in black. The resulting changes from our responses
to referee #2 are highlighted in green in the revised manuscript.

Main Comments:

The manuscript titled "River flow in the near future: a global perspective in the context of a
high-emission climate change scenario" investigates the potential effects of global warming on
river flows worldwide from 2015-2050 with hydrological simulations. The study aims to provide
insights into the potential changes in river flows and their broader socio-environmental
consequences. Overall, the manuscript is well structured and clear. However, the following
points raise my concerns.

1) There seems to be a lack of explicit validation of simulated river flows by observations from
the same historical period. In general, it is important to ensure that the modeling framework
accurately reproduces observed river flows in the historical period before trusting projections for
the future.

Thanks for making this important point. In response, we incorporate a comprehensive validation
of simulated river flows in the revised manuscript. This validation involves assessing four distinct
metrics: relative bias ( ), overlapping coefficient ( ), correlation coefficient ( ), and𝑅𝐵 𝑂𝐶 𝑟
non-parametric Kling-Gupta efficiency ( ), for the 18 hydrological simulations and the𝑛𝑝𝐾𝐺𝐸
18-model ensemble mean. These metrics, which evaluate diverse aspects of the simulations,
are computed by comparing our simulations with monthly observations of a selected set of 346
monitored rivers, covering approximately 42% of the global land and contributing to about 45%
of the global river discharge.

The ensemble mean presents a relative bias of 7.6%, an overlap coefficient of 0.63, a
correlation coefficient of 0.72, and an efficiency of 0.58. These scores improve to -1.8%, 0.62,
0.76, and 0.71 (respectively) when the assessment is restricted to the 20 largest monitored
rivers (see new Figure 1). Another important finding of the validation is the consistency of the
scores across models. Independent of the resolution and the type of simulation, the scores
remain in a narrow range. The validation results compellingly prove the robust performance of
the model in the context of this study.



Further details about the validation methodology is included in the section “2.1 GCM simulations
and river routing model” (lines 98-114), while the validation results are analyzed in the new
section “3.1 Validation of the hydrological simulations”.

2. Section 3.2.1 is overly descriptive, providing detailed information about individual rivers, their
importance to their respective regions, historical context, and model projections. While such
detail is valuable to some extent, it may be more than necessary for the main message of the
article. I recommend a more concise way to convey the broader implications of this study. For
example, group rivers with similar trends and mention the specifics only when they significantly
deviate from the general trend. The implications for human settlements, global water systems,
and climate systems can be summarized in one final paragraph. In addition, explaining the
"why" behind the trend or time of emergence can provide more insightful analysis and make the
findings more compelling. Also, the discussion section reads repetitively, which seems to
summarize the above finding again.

We value the reviewer feedback regarding the detailed nature of section 3.2.1. While
recognizing the value of such details, we acknowledge the need for conciseness in conveying
the primary message of the article. In response, we adopted the suggested approach of
grouping rivers with similar trends. We identify four regions with notable trends and clear
consensus among model simulation: Central Africa, Arctic, South Asia, and Patagonia (see new
Figure 8). This approach offers a concise way to communicate the wider implications of our
study. This regional assessment is complemented with a brief description of specific rivers at
their mouths projecting significant changes in their annual cycle, which could be useful for
planning purposes given the population living upstream (see new Figure 9). Please see the
refined objective in lines 53-59, and the changes in the new section 3.4 “Regions susceptible to
significant changes”.

In response to the reviewer's concern about repetitive elements in the discussion section, we
have focused on enhancing clarity and conciseness in our revised manuscript. The new section
3.4 describes the results, while the updated Discussion section (entirely rewritten) delves into
various topics, including choices related to the signal-to-noise ratio technique and their potential
impact on results (discussed in our response to reviewer #1 major comment #4), the internal
variability of model projections, and the potential sectoral implications of projected changes at
the regional and at the local scale. We believe these refinements effectively address the raised
concerns and elevate the overall clarity of our discussion.

3. For the information in Appendix A, it's a bit of a leap to conclude that "it may be assumed that
our set of simulations is adequate for the proposed objectives and that more realizations would
not present substantial alter the presented results" without information about the internal
variability of other models. While this may be true for the HadGEM3-GC31 model, it may be
premature to state this as a broader conclusion without data from other models to support it.

We agree with the reviewer, the internal variability is only shown for HadGEM-GC31 and that
can not be extended to all models. We got access to more realizations of the
HighResMIP-CMIP6 from the Laurence Livermore National Laboratory (LLNL) Earth System
Grid Federation (ESGF)​​ Node (esgf-node.llnl.gov), which includes total runoff among the



variables. Thus, the internal variability analysis was extended to these new GCM simulations,
resulting in an assessment of 58 individual realizations in total.

The new results for the CNRM-CM6-1 and EC-Earth3P GCMs family confirm our previous
findings for the HadGEM3-GC31 family. While the internal variability tends to rise over time, it is
smaller than the inter-model variability and comparable to the variability given by the GCMs'
resolution. These new results provide robustness to the assumption that our set of simulations
is adequate for the proposed objectives and that more realizations would not substantially alter
the presented results.

The new figure showing the internal variability of CNRM-CM6-1, EC-Earth3P, and
HadGEM-GC31 GCMs’ families along with their interpretation have been incorporated to the
Appendix A: “Internal variability in projections of runoff anomaly”.

Minor comments:

1) Figure 4, can you explain why most of the solid lines show a downward trend after 2045?

The “boundary” effects observed in the first and last decades of the several GCMs’ signals are
caused by the filtering process. The choice of the low-pass filter is a critical step in our analysis.
We tested several filters and selected it considering: (a) an effective attenuation of
high-frequency noise without introducing phase distortion, and (b) the minimization of the
boundary effects. Figure R1.1a shows how the various filter's respond to the river discharge
anomaly time-series of a given GCM. From the various options, we selected the Lowess filter in
our approach given that it does not introduce phase distortion, unlike Butterworth, Chebysev, or
Elliptic (see their phase shifts around 2020), and minimizes boundary effects, unlike the FFT
low-pass filter (see the strong blending effect in the first and last decades). Thus, the selected
filter ensures realistic climate change signals and noise terms.

A detailed explanation of the choices related to the filtering process and the overall
signal-to-noise technique is provided in our response to reviewer #1 major comment #4. The
revised manuscript details the main aspects of these topics in the new appendix B “Notes about
the calculation of the S/N ratio”.



Figure R1.1a. Low-pass filter selection test for a river discharge anomaly time-series ( ) using the𝑄
𝐺

CNRM-CM6-1-HR model as a case study. The signal is estimated with various filters.𝑆
𝐺

2) Figure 5, I'm curious if the order of calculating the ensemble mean and calculating the
signal-to-noise ratio would have an impact, let's say calculating the signal-to-noise ratio of the
ensemble mean of the simulation instead.

The order of calculation has an impact on the results. Both alternatives present similar patterns
(see Figures 5 original and suggested). However, calculating the signal-to-noise ratio (SNR) of
the ensemble mean tends to magnify the SNR values. This effect arises from the ensemble
mean time-series, which inherently exhibits minimal interannual variability due to the
cancellation of individual model variabilities. The reduced variability results in a small noise
value, thereby yielding high SNR values. For this reason, we consider our original calculation to
be more realistic.

Figure 5 (original). Global map of signal-to-noise ratio of river flow by 2050. The ratio is the ensemble mean of the
signal-to-noise ratio of each simulation. Rivers with little climatological flow are masked out.

Figure 5 (suggested). Global map of signal-to-noise ratio of river flow by 2050. The ratio is the signal-to-noise ratio of
the ensemble mean. Rivers with little climatological flow are masked out.



Editorial comment:

1) Figure 1, there seem to be no squares in the three main plots.

Thanks for noting it. We originally plotted the COUPLED GCMs with squares, but then decided to
show them with closed circles, to allow a fair visual comparison of the warming level with the AMIP
GCMs. We fix the legend in the revised manuscript (see Fig. 2).


