We thank the reviewers for going through our manuscript titled "An aldehyde as a rapid source of secondary aerosol precursors: Theoretical and experimental study of hexanal autoxidation" and for their constructive suggestions on how to improve the work. We have incorporated all the suggestion and have modified the revised manuscript accordingly. Below, the reviewer queries are reproduced in red, followed by detailed point-by-point author responses in blue, and the changes and additions to the revised manuscript and the supplement in purple.

Referee #2 (report #2)

The revision addressed most of my earlier concerns. I appreciate that the authors performed additional experiments to verify a few questions. I have just two additional questions regarding their responses.

1. The authors uphold their interpretation of the C6H11O6 peak in 1.4 s reaction time, as from C6H11O5-RO2 + RO2 to form C6H11O4-RO and this RO isomerizes to form C6H11O6. How fast is this RO isomerization to compete with O2 addition and RO decomposition? If the authors' interpretation is true, then why were there no other products from RO2 + RO2 (i.e., C6H12O5 alcohol, which has two O-H bonds). For typical RO2 + RO2 reactions, especially for secondary RO2 as shown in Figure 4, the following reactions are expected to take place at the same time (different branching ratios, but both are major pathways):

RO2 + RO2 = R-OH + R=O(1)

RO2 + RO2 = 2*RO(2)

For that secondary C6H11O5-RO2, the branching ratio to form RO is expected to be ~ 0.6 and the R-OH + R=O to be ~0.4. Some RO may add oxygen to form R=O again and some RO2 may decompose. Thus, I would expect that the C6H11O6-RO2 have similar abundance as C6H10O5+C6H12O5. Although C6H10O5 may not have great sensitivity, the C6H12O5 product should be present in the mass spectrum. Here, what I cannot understand is that the author suggest that reaction (2) is dominant in as short as 1.4 s, but no evidence of reaction (1) was observed in 1.4 s. Why so?

In addition, in their response, the authors claimed that reaction (1) is not important because their observation didn't show similar R-OH and R=O intensities. Isn't this self-contradicting? Or why do the authors think reaction (2) is important, but reaction (1) is not under the same RO2/HO2 condition for the same reacting RO2?

Response: First, we acknowledge the fact that the secondary $C_6H_{11}O_5$ -RO₂ can undergo both reactions (1) and (2). The $C_6H_{11}O_5$ -RO₂ radical undergoing reaction (1) can form less oxygenated closed-shell products $C_6H_{10}O_4$ (i.e., R=O) and $C_6H_{12}O_4$ (R-OH) but not $C_6H_{10}O_5+C_6H_{12}O_5$ as the reviewer pointed. Despite the two H-bonding groups, the target molecule ($C_6H_{12}O_4$) with 4 oxygen atoms is likely too weakly bound to NO₃⁻ to be detected. (Hyttinen et al. *J. Phys. Chem. A* **2018**, 122, 269–279). In Hyttinen et al. (2018), they show that, for their model systems with two hydrogen bonding functional groups, molecules with 4 oxygen atoms have a binding energy with NO₃⁻ that is weaker than that of the nitrate dimer

(HNO₃*NO₃⁻). As a consequence, the NO₃-CIMS has a low sensitivity for the 4 oxygen containing molecule ($C_6H_{12}O_4$).

On the other hand, the $C_6H_{11}O_5$ -RO₂ undergoing reaction (2) can produce a reactive RO with which can follow isomerization reaction (in competition with RO + O₂, and RO decomposition reactions) which is the key to form the dominant $C_6H_{11}O_6$ -RO₂ (an alkyl peroxy radical with even number of oxygen atoms originated from hexanal OH oxidation) observed experimentally. Based on our current understanding, an alkoxy radical with five (or more) carbon atoms will be more prone isomerization than fragmentation.

Now, unlike the secondary $C_6H_{11}O_5$ -RO₂ undergoing one bimolecular step (RO₂ + RO₂), we would not expect the dominant $C_6H_{11}O_6$ -RO₂ undergo a second bimolecular reaction within 1.4 s. This is likely the reason we do not see the evidence of reaction (1) for $C_6H_{11}O_6$ -RO₂ yielding $C_6H_{10}O_5 + C_6H_{12}O_5$ within 1.4 s reaction time.

In connection to the previous response, where the reaction (1) was initially given somewhat less importance (although latter acknowledged in the revised manuscript) while explaining the distribution of the closed-shell $C_6H_{10}O_5$ and $C_6H_{12}O_5$ products in the higher residence time experiments, we agree that the reactions (1) and (2) take place at same time. We thank to the reviewer to point out the branching ratios of reactions (1) and (2).

2. In Figure S1, the chemical formulas of the major peaks should be labeled.

Response: The mass spectral peaks in Figure S1 are not identified which we refer as background signals (mainly originating from the zero-air source) and the background spectra are subtracted accordingly from the hexanal OH oxidation spectrum as mentioned in the main manuscript.

Referee #3 (report #1)

The authors did a great and thorough job in addressing all reviewers comments. However, there is an aspect that I would like to see clarified with more detail, and it is related to the fact that the authors only find one TS conformer for the aldehydic H-abstraction. I performed a very quick search at the M08-HX/pcseg-2 level and found 5 unique aldehydic TS conformers, all within 1 kcal/mol. I would suggest that the authors take the Cartesian coordinates that I am providing, reoptimize these structures at their chosen level of theory and verify if they obtain more TSs than the one that they already have. If they do, what is the effect of including them on the rate constant?

The Cartesian coordinates:

O -3.5157423078 -0.7705013644 0.1908610098 C 0.7295103392 0.2362464807 0.0888256259 C -0.7031565879 -0.2837666536 0.0508583823 C 1.7640772110 -0.8618431621 -0.1346671071 C -1.7212591969 0.8330119581 0.2192926397 C 3.1928290922 -0.3327974852 -0.0768257030 C -3.1505390214 0.3610514630 0.2295652609 H 0.8584176104 1.0167253695 -0.6737712758 H 0.9166933345 0.7190967625 1.0575299052H -0.8508818691 -1.0342321772 0.8357511188H -0.8871268365 -0.7984151944 -0.8991902775H 1.6260839022 -1.6472611747 0.6186773913H 1.5819242107 -1.3325066647 -1.1082434133H -1.5702141044 1.3852218175 1.1574736605H -1.6418975814 1.5885380611 -0.5736739767H 3.9255633199 -1.1266264212 -0.2430670777H 3.4011294573 0.1139902353 0.9001411968H 3.3535831202 0.4383711427 -0.8369647663H -3.9030952629 1.2234925022 0.2744898154O -4.7425391183 2.6142884258 0.0096841856H -5.6069971016 2.1937664316 -0.0999879850

O -3.4632383150 -1.2695763565 -0.2703158252 C 0.6105894638 0.2476681491 -0.0790420399 C -0.7513137063 -0.4373748733 -0.0715364753 C 1.7609843555 -0.7228303991 0.1694463041 C -1.8913539513 0.5496751621 -0.2724131522 C 3.1197699219 -0.0336832260 0.1191459376 C -3.2488109529 -0.1002675124 -0.3298417846 H 0.7610224543 0.7486449699 -1.0448610812 H 0.6319163776 1.0375717156 0.6843213910 H -0.8965368888 -0.9687748520 0.8757440787 H -0.7912360671 -1.2007746797 -0.8565820846 H 1.6218987196 -1.2004080747 1.1466246155 H 1.7217393352 -1.5270635406 -0.5754967195 H -1.9267407714 1.3040479251 0.5248642297 H -1.7776767150 1.1189960929 -1.2052902624 H 3.9387600391 -0.7331208689 0.3053154628 H 3.1816556469 0.7622779625 0.8680607240 H 3.2865909901 0.4199266122 -0.8625758896 H -4.1218346267 0.6409079110 -0.4465979948 O -5.5904526812 1.2515381406 -0.6407385895 H -5.9995009141 0.3748431890 -0.6666748132

O -1.9921480153 2.9069191243 0.6693248659 C 0.2789688347 0.1281340706 -0.2832717118 C -1.1372759225 -0.3845756312 -0.0411338072 C 1.3500303778 -0.8835201738 0.1097316982 C -2.1970567562 0.6918681934 -0.2968223693 C 2.7569466902 -0.3864625887 -0.2032364375 C -2.1353665183 1.7344774217 0.7877154290 H 0.3930663892 0.3913684656 -1.3429386142 H 0.4392167554 1.0607779049 0.2761785888 H -1.2363711608 -0.7354208392 0.9931840772 H -1.3342019021 -1.2487820919 -0.6841096227 H 1.2600534114 -1.0990488153 1.1806645123 H 1.1648407674 -1.8319275307 -0.4094728579 H -2.0733065727 1.1727988058 -1.2711137791 H -3.2010896516 0.2559370940 -0.2366823265 H 3.5216850792 -1.1032953814 0.1070058069 H 2.9556618835 0.5622828547 0.3046149203 H 2.8764323615 -0.2150756408 -1.2770248389 H -2.2519239182 1.2516950604 1.8271141020 O -2.8986536896 0.0549237891 2.7706161085 H -3.0965242655 0.6239674825 3.5275766248

O -2.4716811712 2.4502996042 -0.9543102759 C 0.1582715052 0.0224159618 0.2085153514 C -1.2085832933 -0.4140471832 0.7277559536 C 1.2304456505 -1.0463999425 0.3895390511 C -2.2216255991 0.7306426241 0.7241380444 C 2.5650844374 -0.6331255746 -0.2202169446 C -2.3952126534 1.3003145765 -0.6618532347 H 0.0761781909 0.2709882896 -0.8583710502 H 0.4693821849 0.9445075936 0.7188660390 H -1.1171702912 -0.7985411927 1.7491902650 H -1.5825041901 -1.2409522608 0.1105876303 H 1.3536538782 -1.2478924236 1.4603728191 H 0.8887855147 -1.9855783955 -0.0622341052 H -3.2114960089 0.3744578332 1.0363728692 H -1.9294177340 1.5474264520 1.3914339115 H 3.3446253638 -1.3773342030 -0.0384589668 H 2.9036709645 0.3207223815 0.1962856657 H 2.4732929355 -0.5043039823 -1.3024328344 H -2.4359045903 0.4907445393 -1.4814819494 O -1.8759890689 -0.2652507417 -2.8048002245 H -1.7748167363 0.5720492963 -3.2803301294

O -4.2459618367 0.2142833881 1.0732261213 C 0.4283235015 0.2432090007 -0.0620283067 C -0.9398217200 -0.3373903932 0.2785382746 C 1.5645248830 -0.7533760431 0.1411404123 C -2.0455001001 0.7205943374 0.1999882256 C 2.9137678801 -0.1775142143 -0.2741968429 C -3.3976076404 0.0674785811 0.2555289588 H 0.4220403251 0.5814264965 -1.1061205816 H 0.6137519293 1.1363731870 0.5498803216 H -0.9216265986 -0.7661158682 1.2872304512 H -1.1711808100 -1.1563749556 -0.4147513252 H 1.5943327918 -1.0509728000 1.1958950192

```
H 1.3555183676 -1.6662511153 -0.4297827194
H -1.9632056303 1.4616857746 0.9993902483
H -1.9857408552 1.2214357416 -0.7743573816
H 3.7315789214 -0.8795172761 -0.0930823198
H 3.1302044985 0.7425798220 0.2778636159
H 2.9174699355 0.0700169065 -1.3396955324
H -3.5450103150 -0.6499709515 -0.6341237621
O -3.2435934655 -0.9292906710 -2.2343063529
H -4.1756937406 -0.9110694557 -2.4911863982
```

Response: We thank the reviewer for the additional TS conformer geometries for the OH aldehydic H-abstraction. We reoptimized them at the MN15/def2-tzvp level of theory and found two new TS conformers, one of which is the global minima aldehydic H-abstraction TS conformer, lower than what we reported previously. Of the remaining 3 conformers, one was a duplicate and the other two did not optimize to transition states. Including the two additional TS conformers along with the original TS conformer in the bimolecular MC-TST equation gives us a low aldehydic H-abstraction rate coefficient (8.57×10^{-13}). While this is slightly faster than our previous MC-TST rate coefficient (4.14×10^{-13}), it is still significantly slower than the literature experimental value. The significantly higher number of reactant hexanal conformers likely has a large influence on this slow rate. However, the new TS conformer leads to a perceptible increase in our lowest conformer TST (LC-TST) rate coefficient. We now provide the new LC-TST rate coefficient and the corresponding branching ratios in the main manuscript (Table 1), and provide both LC-TST and MC-TST rate coefficients in the *Supplementary Table S2*.

Changes to manuscript: In Table 1, we updated the aldehydic H-abstraction rate coefficient, branching ratios and the overall rate coefficient.

Changes to supplement: In Supplementary Table S2, we updated the LC-TST and MC-TST aldehydic H-abstraction rate coefficients.