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Abstract. Currently, emissions from internal combustion vehicles are not properly monitored throughout their life cycle. In

particular, a small share of vehicles (< 20 %) with malfunctioning after-treatment systems and old vehicles with outdated

engine technology are responsible for the majority (60-90 %) of traffic-related emissions. Remote emission sensing (RES) is a

method used for screening emissions from a large number of in-use vehicles. Commercial open-path RES systems are capable

of providing emission factors for many gaseous compounds, but they are less accurate and reliable for particulate matter (PM).5

Point sampling (PS) is an extractive RES method where a portion of the exhaust is sampled and then analyzed. So far, PS studies

have been conducted predominantly on a rather small scale and have mainly analyzed heavy duty vehicles (HDV), which have

high exhaust flow rates. In this work, we present a comprehensive PS system that can be used for large-scale screening of PM

and gas emissions, largely independent of the vehicle type. The developed data analysis framework is capable of processing

data from thousands of vehicles. The core of the data analysis is our peak detection algorithm (TUG-PDA), which determines10

and separates emissions down to a spacing of just a few seconds between vehicles. We present a detailed evaluation of the main

influencing factors on PS measurements by using about 100,000 vehicle records collected from several measurement locations,

mainly in urban areas. We show the capability of the emission screening by providing real-world black carbon (BC), particle

number (PN) and nitrogen oxides (NOx) emission trends for various vehicle categories such as diesel and petrol passenger cars

or HDVs. Comparisons with open-path RES and PS studies show overall good agreement and demonstrate the applicability15

even for the latest Euro emission standards, where current open-path RES systems reach their limits.

1 Introduction

Exhaust emissions from combustion-based vehicles are negatively affecting human health and our environment. Of specific

interest are NOx and particulate matter (PM) emissions due to the known impact on health, environment and climate (Man-

nucci et al., 2015; EEA, 2017). Nitrogen oxide (NOx) emissions remain a widespread problem, especially for diesel-powered20

vehicles, where tampered, defective and old vehicles are the main source of high emission levels (Meyer et al., 2023). For PM

it is well known from literature, that a small share of vehicles (< 20 %) contribute to the vast amount (60-90 %) of emissions
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(Park et al., 2011; Burtscher et al., 2019; Boveroux et al., 2019; Bainschab et al., 2020). This is due to malfunctioning after-

treatment systems, such as defective diesel particulate filters (DPF) and old vehicles with degenerated or outdated technologies.

It would be highly beneficial to human health and our environment if these high emitters could be identified and subsequently25

maintained to significantly reduce emissions. Most current regulations are only related to type approval procedures, but do

not consider deterioration (e.g., of the exhaust after-treatment system), defects that are not properly repaired or tampering

that occurs in the lifetime of the vehicles (Mock and German, 2015; Bainschab et al., 2020). Particle number (PN) and black

carbon (BC) are two PM metrics of particular interest. In addition to its impact on health and climate, BC is a suitable tracer

for vehicles with high PM emissions (Salimbene et al., 2021; Rönkkö et al., 2023). Interest in real-world PN emissions is30

growing due to newly introduced regulations (Giechaskiel et al., 2021) and known health effects on the human respiratory and

cardiovascular systems (Oberdörster et al., 2005; Brook et al., 2010).

Different strategies exist which try to address these issues. PN concentration measurements during periodic technical inspec-

tions are currently implemented in several European countries like Germany, the Netherlands, Switzerland and Belgium. The

PN inspections should identify malfunctioning vehicles during low-idle operation (Bainschab et al., 2020; Giechaskiel et al.,35

2020; Melas et al., 2021; Giechaskiel et al., 2021). A disadvantage of the periodic technical inspections is that they are in the

best case annual, one-time measurements performed under non real driving conditions, which can potentially be circumvented

by tampering or by manipulating measurements.

Another approach taken for high emitter identification and the screening of real-world emissions of in-use vehicles is remote

emission sensing (RES). RES is employed directly at the roadside to measure emissions from passing vehicles under real40

driving operating conditions (Bishop et al., 1989; Borken-Kleefeld et al., 2018). One advantage of RES is that the vehicles

are measured during their normal operation, which complicates fraud. Commercially available RES systems are open-path

systems that detect the light extinction of the exhaust plume at different wavelengths to measure different pollutants emitted

by passing vehicles (Bishop et al., 1989; Stedman et al., 1992; Moosmüller et al., 2003; Burgard et al., 2006). These systems

deliver statistically acceptable emission factors (EFs) for gaseous species, but EFs are inaccurate for particulates. In particular,45

PM emissions of the latest Euro emission standards (Euro 6, Euro VI and beyond) are below the quantification limit of open-

path RES systems (Gruening et al., 2019; Cha and Sjödin, 2022; Jerksjö et al., 2022). Other PM metrics such as PN or BC

cannot be accurately determined using these systems. Complementary RES concepts exist which can be applied to counteract

the downsides of these systems. In plume chasing, a measurement vehicle equipped with laboratory grade analyzers traces

vehicles under test. Several studies (Ježek et al., 2015; Järvinen et al., 2019; Pöhler et al., 2019; Wang et al., 2020) have shown50

that reliable EFs can be determined by chasing the vehicle under test over a short time period. The disadvantage of plume

chasing is that it is a rather labor-intensive method which can only be applied to a small number (< 200) of vehicles per

chasing vehicle and day.

Extractive point sampling (PS) is a roadside measurement technique (see Fig. 1) that can be used to capture the plumes from

passing vehicles by sampling the diluted exhaust (Hansen and Rosen, 1990; Janhäll and Hallquist, 2005; Hak et al., 2009;55

Ban-Weiss et al., 2009). Compared to open-path RES systems the installation of the measurement setup is relatively simple.

The sample is usually directly extracted at the road surface or at the roadside, as close as possible to the tailpipe of the passing
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vehicles. A small shelter or a van next to the sample extraction houses the instruments that analyze the captured emissions

of the passing vehicles (Hak et al., 2009). With PS, particle metrics such as PN and BC as well as gaseous compounds can

be measured equally well if suitable instruments are selected. PS studies have predominantly measured heavy duty vehicles60

(HDV) or buses by sampling from the roadside (Hallquist et al., 2013; Watne et al., 2018; Liu et al., 2019; Zhou et al.,

2020) or, by sampling from the top of tunnels or bridges for HDVs with a vertical exhaust pipe, which are common in the

US (Ban-Weiss et al., 2008, 2009, 2010; Dallmann et al., 2011, 2012; Preble et al., 2015; Bishop et al., 2015; Preble et al.,

2018; Sugrue et al., 2020). In these applications, the plumes can be resolved relatively easily, as specific vehicle types are

measured or measurements are carried out at selected locations (e.g. bus stations). In dense traffic, difficulties arise when using65

instruments with limited dynamic range or large response time because the plumes can not be separated (Hak et al., 2009).

Detailed analysis of fleet emissions by characteristics such as emission standard, manufacturer or vehicle age were performed

mainly in PS studies measuring HDVs and buses (Dallmann et al., 2011; Bishop et al., 2015; Preble et al., 2015, 2018; Liu

et al., 2019; Zhou et al., 2020). PS systems capable of large-scale emission screening independent of vehicle type are rare and

have only been applied for vehicles classified by length (Wang et al., 2015, 2017) or number of axes and tires (Ban-Weiss et al.,70

2008, 2010; Dallmann et al., 2013, 2014) or for gaseous compounds using sensor networks (Chu et al., 2022). To the best of

our knowledge, there are only individual PS studies in which the LDV emissions of a few test vehicles were determined based

on characteristics such as the Euro emission standard (Hak et al., 2009; Ježek et al., 2015). Analysis of emissions by emission

standard, manufacturer or age provides more detailed information, e.g. on whether emission limits are generally being met or

whether certain manufactures or vehicles stand out.75

In this work, we present a comprehensive PS technique used for large-scale emission screening of individual vehicles,

largely independent of the vehicle type. The PS setup measures different PM metrics as well as gaseous compounds and

allows emission measurements to be carried out in dense traffic down to a distance of just a few seconds between the vehicles.

The core of this work is a data analysis framework that is capable of processing data from thousands of vehicles. The main

part of the data analysis is our peak detection algorithm (TUG-PDA)1, which separates emissions down to a spacing of a few80

seconds between the vehicles. We provide a detailed insight into the developed PS methodology by discussing the dependencies

and key factors, including instrument selection criteria, measurement site selection, sample extraction, vehicle dependencies

and weather influences. We show the capability of the system by providing real-world BC, PN and NOx emission trends for

passenger cars and HDVs up to the latest Euro emission standards. We use the term pollutant for all measured analytes except

CO2. Important definitions for RES emission calculations are described in Appendix A.85

1TUG stands for Technical University of Graz
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2 Method

2.1 Measurement setup

We propose a PS setup as illustrated in Fig. 1, which allows automated post-processing down to a small distance between the

vehicles. The main components are described below.

Figure 1. Schematic (left) and picture (right) of the proposed PS measurement setup, highlighting the required equipment.

Vehicle pass detection: The exact passing time of the vehicles is of great significance for automated post-processing. This90

is especially the case if several vehicles pass by the measurement location and they have only a small spacing between them.

The exact passing time is required during data post-processing to resolve the different plumes correctly. Important variables

related to the vehicle condition during the passing are the speed and acceleration. These are required to determine the vehicle

specific power (VSP) (see Appendix A3). Emissions from passing vehicles strongly depend on the engine load conditions.

Therefore, they must be treated accordingly (Bernard et al., 2018; Davison et al., 2020). For this purpose, we deployed custom-95

built light barriers to measure the passing time, speed and acceleration of the passing vehicles. Using light barriers restricts

the measurement location to single-lane roads or roads with islands between the lanes. Alternatively, vehicle detection can be

performed with radar, video, or LiDAR systems.

License plate recognition: Vehicle technical data are required for several post-processing steps which are described in more

detail in the data analysis section later on. Automated number plate recognition (ANPR) systems are commonly used for license100

plate detection. Depending on the system, additional attributes such as the vehicle pass time or acceleration can be measured.

Attention must be paid to the ANPR camera performance, as several influencing factors can exist. License plates are often dirty

(especially in winter) or the ANPR camera may not able to correctly detect all the plates of the passing vehicles, especially

if they pass within short intervals. This impedes data post-processing and underlines the importance of accurate vehicle pass
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detection. In our setup, the ANPR camera is mounted in the front cabin of the measurement van (see Fig. 1), allowing the105

license plates to be detected about 2-3 s after the vehicle passes the light barriers. Based on our practical experience, we

recommend determining the vehicle pass time separately from acquiring the license plate data.

Emission measurement: The emission measurement can be split into two main parts: First, the emissions are sampled and

second, these are subsequently analysed with the employed instrumentation. A schematic of the emission measurement setup

used during one of the campaigns can be found in Appendix B.110

– Sampling: The importance of sample extraction is often underestimated. In PS, the sampling is usually performed with

a simple tube which collects the diluted exhaust from the passing vehicles (Hak et al., 2009; Hallquist et al., 2013; Liu

et al., 2019; Zhou et al., 2020). We sample either from the middle of the road or from the roadside depending on the

circumstances (e.g. permissions, road conditions). When sampling from the center of the road, we covered the tube with

a small cable duct that was taped to the road. The position of the sampling inlet strongly influences the strength (dilution)115

of the measured plume and even determines whether the plume can be captured at all. In general, the closer the sample

inlet is to the emission source (tailpipe), the smaller the dilution and the higher the capture rate are. We found typical

dilution factors between 100 and 500, which is in good agreement with literature (Hak et al., 2009). In addition, the

length of the sampling line must be considered in relation to the sample flow. The pressure drop should be minimal and

the losses must be taken into account, especially when performing PM measurements (Kulkarni et al., 2011). Attention120

should also be paid to the material of the tubing. We use tygon tubing for particle measurement because of the flexibility

and low particle losses (Giechaskiel et al., 2012).

– Instrumentation: Instrument characteristics have a great influence on the quality of the measured emission data. Sugrue

et al. (2020) compared high- and low cost BC and CO2 sensors for their application in PS. They found that low-cost

CO2 sensors may be an adequate substitute for research-grade analyzers in contrast to low-cost BC instruments. In their125

conclusion, they also emphasized that sensors should be tested under field-conditions. Hak et al. (2009) mentioned in

their PS experiments that the small dynamic range of the condensation particle counter used constrained the PN mea-

surements. Therefore, they used a dilution volume which extended the measured emission concentration peaks and the

fall time of the signals to 5-15 s. The dilution and the relatively large response times of the particle instruments limited

the operation to low-traffic situations. Based on the recommendations by Hak et al. (2009) and our own experiences, we130

have defined the most important requirements for the instruments, which are stated in Table 1. These must be respected

to avoid significant problems in PS. In addition, recommendations are given for the different requirements. The emission

events associated with the passing vehicles are of very transient nature. To capture these events, instruments must have a

fast response time (t90 < 1-2 s) and a high time resolution (at least 1 s). In PS, the sampled emissions are highly diluted.

Therefore, small concentrations must be resolved. To accurately measure the varying concentrations, the instruments135

must have a high dynamic range. The measured concentrations can be within a range of four orders of magnitude and

depend on the vehicle type, engine state, sampling position and environmental conditions, as well as other factors. It

is also important to ensure that the species of interest is measured with minimal cross-sensitivity to other compounds.
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Therefore, instruments with qualified measurement principles should be selected. Environmental conditions (e.g., tem-

perature, relative humidity, background (BG) concentrations) differ depending on the measurement location, time and140

season of the year and care should be taken to ensure that they do not affect the instruments. RES campaigns often last

for long periods of time (several weeks or months). Therefore, instruments must be stable over the long term. Due to

restrictions in the use of calibration sources such as gas bottles or particle sources, the instruments should feature stable

calibration over periods of weeks even under harsh environments. Instruments which do not require in-field calibration

are preferred. To perform measurements under all conditions, an instrument housing is required, which can be a small145

shelter or a measurement van.

Problem Instrument requirement Recommendation

Transient nature of emission events
Short (t90) response time ≤ 1-2 s

High time resolution ≤ 1 s

High exhaust dilution in ambient air
Low limit of detection

(at 1 s time resolution)

BC: 1 µg m-3

PN: 1,000 # cm-3

CO2: 5 ppm

NO2: 2 ppb

NOx: 5 ppb

Varying concentrations High dynamic range

BC: 0 - 2 mg m-3

PN: 0 - 2e6 # cm-3

CO2: 0 - 3,000 ppm

NO2: 0 - 2,000 ppb

NOx: 0 - 10,000 ppb

Interfering species
Minimal cross sensitivity

Minimal artefact formation

Qualified measurement principle

For PN: Solid particle number (SPN) measurement
Table 1. Instrument requirements, problem statements and recommendations for PS emission measurements of selected particle metrics and

gases.

Monitoring of environmental conditions: It is advantageous to make additional measurements of environmental conditions

at the measurement location. Local monitoring of wind speed and direction provides information relevant for the sample

extraction and can improve the post-processing. Measurements of precipitation, ambient temperature and relative humidity can

also provide useful information and help to understand anomalies. We have used data from weather stations either in the area150

or preferably directly at the PS site.

2.2 Data analysis

The data analysis deals with the determination of representative EFs from the collected measurement data of the captured

vehicles. The following aspects must be taken into account:
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– Handling and harmonization of data (concentration time series) collected with various instruments.155

– Consideration of measurement parameters such as sampling delay or instrument response times.

– Detection and separation of the plumes from the passing vehicles.

– Relation between vehicle pass (time), concentration time series and license plates.

– Dealing with changing environmental conditions (e.g., BG concentrations, other emission sources, weather conditions)

that can affect the measurement160

In order to deal with the requirements listed above, a comprehensive software framework has been developed. The developed

procedure is divided into three major processing steps, namely the pre-processing, the emission event processing and the

emission analysis and statistics. The pre-processing reads the raw time series files from various instruments and the recorded

data from the light barriers (time, speed, acceleration) and prepares them for the next processing steps. These data are analysed

in the emission event processing part of the procedure. The EFs are then calculated in the emission analysis step, and statistics165

are performed to subsequently evaluate the EFs. An overview of the data analysis procedure is visualized in Fig. 2. The

software framework is designed for modularity and extensibility. New instruments and measurement campaigns can be easily

integrated into the framework by copying existing instruments or campaigns and adjusting the parameters. The software has

not been developed for specific instruments and in general any measurement device that provides continuous measurement data

can be integrated. However, we strongly recommend to consider the recommendations in Table 1 when selecting instruments170

to achieve the best possible results. The software framework is implemented in Python by using common libraries such as

Pandas, NumPy, Matplotlib, or SciPy. The basic framework of the software can be found here: https://gitlab.com/tug-ems/

point-sampling.git.

2.2.1 Pre-processing

Different instruments are often used to measure different exhaust components during PS campaigns (Hallquist et al., 2013;175

Wang et al., 2015; Ježek et al., 2015; Liu et al., 2019; Sugrue et al., 2020; Zhou et al., 2020). Because various instruments are

used, different data formats need to be handled and the time resolution can vary from instrument to instrument. These hetero-

geneous datasets are harmonized into one composite dataset in order to appropriately process the data by using a data analysis

procedure. After reading the raw time series from the individual instruments, a time alignment of the data is performed. Differ-

ent instruments have varying response times which depend on the instrument response function, sample flow and sample tube180

connection to the instruments. These differences must be compensated for. We manually determine the response times from

short manual pollution peaks (e.g., with a lighter) and align the instrument responses based on this event. The response time to

the emissions of individual vehicle passes varies depending on the sampling position, exhaust pipe position and environmental

conditions. We align the concentration time series data to the vehicle passes which cause the fastest response (e.g., from vehicle

with tailpipe on the same side as the sample extraction). Emissions e.g., from vehicles whose tailpipe is on the opposite side of185

the sampling position are sampled with a delay of a few seconds. In addition, sampling delays between the sample inlet and the
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Figure 2. Overview of the PS data analysis procedure.

instruments must be compensated for. To simplify data processing, the time resolution of the CO2 data is equated to the time

resolution of the pollutant data (default time resolution of 0.5 s). Higher time resolution makes it easier to resolve emission

events on smaller time scales. This allows vehicle passage data to be processed down to a spacing of only a few seconds,

as long as the instrument’s response time permits. As a final pre-processing step, error-prone data samples (e.g., outliers) are190

filtered out, the instrument responses are adjusted to each other (by smoothing), and the datasets are merged. If instruments

with large differences in response times (∆t > 2 s) are used, the response function of the instruments must be aligned.

2.2.2 Emission event processing

To determine the EFs, the transient emission events associated with the passing vehicles must be properly detected. For that

purpose, a dedicated algorithm was developed. The TUG-PDA assigns the measured emission concentrations to the by-passing195

vehicles. The CO2 time series and the time series of the measured pollutants (e.g., BC, PN, NOx) are separately processed,

since PM and gaseous emissions can occur at a different time. The time series data of CO2 and pollutants do not have to be

perfectly aligned to each other (± 1.0 s, see Appendix G) and the response functions of the used instrumentation do not have
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to be perfectly matched. At the same time, care must be taken to ensure that the CO2 plume detected from the passing vehicle

is related to the pollutant emission detected. Therefore, several quality assurance (QA) measures are implemented. The TUG-200

PDA relies on the time series data of the measured analyte (e.g., CO2, BC) and the passing times of the vehicles. The algorithm

is fully configurable with various adjustable parameters defining thresholds or QA measures. Fig. 3 shows the main processing

steps of the TUG-PDA algorithm, separated for CO2 on the left and for pollutant emissions on the right. The TUG-PDA loops

through all vehicle pass data and is applied first to CO2 and afterwards to each pollutant (e.g. NOx, BC). The CO2 data signals

must be processed first as the results are required for processing the pollutant data. The main processing steps are the same, but205

several processing steps are only performed when processing CO2 emissions (plume strength), or when processing pollutant

emissions (cross-checks with CO2). The processing steps are explained in the following paragraphs.

Start conditions: The vehicle pass time is used as the starting point for the plume detection. The TUG-PDA searches around

the vehicle pass time (default window: -1 s to 6 s) for a sequence of positive concentration gradients above a defined threshold

(see Table 2) of the processed analyte (visualized in Fig. 4). The thresholds were determined based on a large number of210

manual reviews of TUG-PDA results. There must be either at least two gradients or one very large gradient (> 10 times the

threshold) above the threshold. The time of the first rising gradient is used as the starting point for the plume integration. When

processing pollutant emissions, the processing of the current vehicle is skipped if no valid CO2 plume was detected during

CO2 processing. Several QA measures (shaded boxes in Fig. 3) are implemented to prevent wrongly assigned emissions or

inaccurate results. The following tests are performed during the start condition:215

– Vehicle distance: First, when a new vehicle pass is fetched, it is checked whether the distance to the next vehicle pass is

sufficient (≥ 3 s). If this is not the case, the processing of the current vehicle is stopped and the algorithm proceeds to

the next vehicle. With a spacing of less than 3 s, there is a large uncertainty that emissions will be attributed to the wrong

vehicle due to differences in the sampling delay between vehicles.

– Separability: The detected gradient (plume) must not be from a previous vehicle. The processing is skipped if either:220

– A rising gradient (start condition) from the previous vehicle is found within a pre-defined time frame (default: 3 s

before the vehicle pass of the current vehicle) and the plume directly interferes with the current vehicle.

– Or a significantly higher pollutant concentration was measured in the last period (default: 25 s) than for the current

vehicle and the current vehicle is likely to be affected by this emission. This is the case when the emission of the

previous vehicle was much higher than the peak of the current vehicle and the BG concentration before the current225

vehicle is still significantly higher than the BG without vehicles.

– Pollutant vs CO2: The pollutant peak must start within a pre-defined window compared to the CO2 peak (default window:

-1 to 3 s).

BG determination: Before integrating the peak, the BG concentration is determined. We divide the BG determination into

the following two cases:230
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Figure 3. Emission event processing - flow charts of the peak detection algorithm (TUG-PDA). CO2 and pollutant (e.g., BC, PN, NOx)

emissions are processed separately. The algorithm is applied first to CO2 (left) and then to the individual pollutant emissions (right). The

shaded boxes are QA conditions. The processing of low emitters is highlighted in blue. The following abbreviations are used: min - minimum,

mov avg - moving average, conc - concentration, BG - background.

– No interference: If there is no interference from a previous vehicle, this case is used. We found that the minimum of the

running mean concentration just before the vehicle pass was the best fit as it represents the actual condition. In this study

we used a window of 4 s (8 samples) before the integration start time. Similar approaches have been used in the literature

to determine BG concentrations (Ban-Weiss et al., 2008; Wang et al., 2015).

– Interference: The plumes overlap when vehicles pass the measurement point within a short period of time. In this case,235

the mean value is taken between the median concentration directly before the starting point of the integration (default
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Figure 4. Time series example of sampled PS data (BC, CO2) from two vehicle passages. The integrated areas of the CO2 and BC emission

concentrations are highlighted for the first passing vehicle using the TUG-PDA as described in Sect. 2.2.2. The start time range of the

algorithm is indicated for the first vehicle pass.

Analyte Threshold

CO2 8 ppm s-1

BC 4 (µg m-3) s-1

PN 4,000 (# cm-3) s-1

NOx 12 ppb s-1

Table 2. Default gradient thresholds defined in the TUG-PDA for the peak search.

window size: 3 s) and a general BG value taken within the last few minutes that is not influenced by vehicles. Here we

search for the last time frame in which no vehicle plume was detected. If no such window (default length: 8 s) is found in

the last 10 minutes, a statistically determined BG value is calculated by removing emissions above the 75th percentile of

the dataset used. A moving average filter (default window size: 30 s) is applied to the resulting dataset and the minimum240

value is used as BG. Examples of BG subtracted emissions from overlapping plumes are shown in Fig. 5a and 5b.

Emission integration (and separation): After determining the BG, the concentration of the exhaust plume is integrated

until one of the defined stop conditions is reached (see Fig. 3):

– Stop 1: The maximum allowed duration (default length: 25 s) of the emission event is exceeded.

– Stop 2: The concentration falls below the BG concentration.245

– Stop 3: Another vehicle pass is observed and the concentration gradient increases.
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– Stop 4 (Pollutant only): The pollutant integration exceeds the stop time of the CO2 event by a defined value (default: 3

s).

– Stop 5 (Pollutant only): The integration interval of the pollutant emission event (duration of the integrated areas) exceeds

the integration interval of the CO2 emission event by a defined value (default: 1 s).250

In addition to the QA measures applied during the start conditions, the following tests are performed after the integration:

– Duration: The integration interval must exceed a minimum value (default: 3 s).

– Plume strength (CO2 only): The integrated CO2 area must be greater than a defined minimum concentration (default: 80

ppm s).

– Pollutant vs CO2: The integration interval of the CO2 emission event including a pre-defined factor (default: tmax diff =255

0.6) must not be greater than the integration interval of the pollutant emission event.

– Pollutant vs CO2: The CO2 and pollutant integration intervals must overlap to a certain extent (default: by at least 50

percent).

The emission event is considered valid (highlighted in green in Fig. 3) if the conditions are met. The TUG-PDA continues

processing the next vehicle pass.260

When processing the pollutant data, a special case is implemented in order to consider low emitters (Fig. 3, in blue). This

is the case if either no emission gradient (peak) was found, the duration of the emission event is below the lower limit of the

integration interval, or if the integration interval of CO2 is too long compared to the integration interval of the pollutant. If

one of the three conditions is not met, then the pollutant concentration is integrated over the same time period as the captured

CO2 event associated with the passing vehicle. Similarly to the general procedure, the BG determination is separated into265

the two cases described (without/with interference) and the integration is stopped if another vehicle pass is observed and the

measured concentration increases. After the TUG-PDA has finished processing, the emission ratios (ER) of each vehicle pass

(see Sect. A1) are calculated.

Alternative methodologies exist for emission processing in PS. The captured CO2 and pollutant emissions are commonly

integrated over the same time frame (Ban-Weiss et al., 2009; Ježek et al., 2015; Liu et al., 2019; Zhou et al., 2020). Automated270

PS emission processing algorithms can also be found in previous studies. Wang et al. (2015) presented a plume identification

algorithm that takes different approaches in the case of plume separation (minimum plume length of 10 s) or low emitter

detection. Another new approach proposed by Farren et al. (2023) is the so-called rolling regression method. This algorithm

simplifies data processing by calculating the ERs for three consecutive data samples, which makes the BG determination

redundant. This is a particularly promising approach for short emission events of high emitter. One challenging aspect of275

this approach is the determination of low emissions from the latest emission standards. Another aspect is that the instrument

responses for CO2 and measured pollutants must be perfectly matched when taking this approach. The applicability of this

approach to evaluate PM pollutants still needs to be studied due to the disparity between gaseous and PM emissions.

12



2.2.3 Emission analysis and statistics

Once the ERs of passing vehicles have been determined, further analysis requires the vehicle technical data. This is usually280

obtained from government organizations. It is important to respect the privacy of the license plates captured, which varies from

country to country. Several details from the vehicle technical data are required during the emission analysis to calculate EFs

and to perform further statistical analysis. The fuel type (e.g., gasoline, diesel) must be known to calculate fuel-based EFs. The

CO2 emissions measured during the type-approval process of the vehicle model are required to calculate the distance-related

EFs. In most European countries, the European emission standard class is used to classify vehicles according to their emission285

limits. Information such as the manufacturer or vehicle category are used to perform detailed evaluations of fleet emissions and

to identify unusual emission patterns, such as individual high emitting vehicle models or manufacturers.

As part of our data post-processing procedure, the vehicle technical data as requested from the authorities and detected by

the ANPR camera must be related to the ERs. These are then assigned to the passing time as gathered with the light barriers.

We use the speed and acceleration information of the passing vehicles to match the passing time with the detected license plate.290

This generally sounds like a simple task. However, not all license plates are correctly detected by the ANPR camera for various

reasons (e.g., dirt, poor light conditions, too little distance between the vehicles). This makes the task of correctly matching the

data from the ANPR camera and light barriers challenging, and specially for vehicles that follow each other closely.

2.3 Capture rate

In RES, the proportion of valid measurement records is a significant indicator. We call this indicator the capture rate (CR),295

which is the ratio between the number of vehicle passes for which valid EFs can be calculated and all vehicle passages:

CR=
# validEF

# all vehicle passes
. (1)

What is considered as a valid measurement is always subjective. We consider the calculated emissions to be valid if the plume

from the passing vehicle was properly captured and an EF can be calculated. This is the case if the following conditions are

considered to be true:300

– The integrated CO2 plume is greater than a specified threshold. In this study, 80 ppm s was used.

– The emissions of the passing vehicle can be separated from those of other vehicles. This is not the case if the plumes

cannot be separated or if the emissions can’t be unambiguously assigned to one vehicle (see Fig. 3).

3 Results and discussion

3.1 TUG-PDA emission separation capabilities305

The TUG-PDA tries to resolve emissions down to a small distance (default: 3 s) between the vehicles. Several tests are imple-

mented to determine whether the emissions really come from the current vehicle or are caused by interference from previous
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vehicles or another source. However, not all cases can be covered and overlapping plumes are difficult to resolve accurately.

The plume separation can be tuned using several parameters used in the software. This can be very useful for instruments

with different response times and for locations with dense traffic to obtain a sufficient number of measurements. Restricting310

measuring to low-traffic areas would severely limit the application.

Fig. 5a and Fig. 5b show two PS time series examples that demonstrate the capabilities and the limitations of the TUG-PDA

for plume separation from passing vehicles. The BC and CO2 emissions assigned to the passing vehicles are highlighted in

black and blue, respectively. In both examples, the BG concentrations are subtracted from the integrated areas. In the data

shown in Fig. 5a, the TUG-PDA is able to separate emissions for three (V1, V3, V4) out of four vehicles. CO2 and BC peaks315

are evident for all four passing vehicles, but to varying degrees. For the vehicles V1, V3 the algorithm stops integrating the

emissions because another vehicle (V2 and V4) is passing and the concentrations are rising. For vehicle V4, the integration

is stopped because the BG value is undercut. The plume detected from vehicle V2 is invalid because the CO2 gradient is not

above the threshold and the integrated area is below the minimum value (80 ppm s). The algorithm can be easily tuned to detect

emissions from vehicle V2, but as plume strength decreases, inaccuracies increase. This is due to the increasing dependence320

on the BG determination and is even more pronounced when the plumes overlap. Fig. 5b shows a data example where the

emissions of most passing vehicles cannot be resolved properly due to high traffic density. The emissions of the vehicles V1

and V2 can be resolved as the distance between the vehicles is large enough (≥ 3 s) and two distinct CO2 peaks are detected.

Both vehicles can be considered as low BC emitters as no BC peaks were measured. No EFs can be determined for the vehicles

V4, V5, V8, V9 and V10 because the distance between the vehicles is too small and no distinct CO2 peaks can be assigned325

to them. The vehicles V3, V6 and V7 do not show clear CO2 peaks, either because they are too weak or because they are

superimposed by the emissions of a preceding vehicle.

(a) Separable (b) Not separable

Figure 5. Two PS time series examples (BC, CO2) from captured plumes. The yellow, vertical, dashed lines mark the point at which the

vehicles passed the PS spot. a) Emissions can be separated for three (V1, V3, V4) of the four vehicles. The assigned emissions are highlighted

in different colors (BC1-BC4 and CO21-4). b) For most vehicle passes, the emissions for individual vehicle passes are not separable. Ten

vehicle passes are shown, of which emissions are determined for two (BC1,2 and CO21,2).
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In the current implementation of the TUG-PDA, the BG determination for overlapping plumes is done by calculating an

average value between the median concentration directly between the overlapping plumes and a common BG when no vehicle

is passing. This is a simple estimation and entails deviations from the actual situation. This can be seen, for example, in Fig. 5a)330

for vehicle V4. The BC background is overestimated. This results in a too small integrated area (BC4) and thus underestimated

emissions. This can also be seen to a smaller extent for vehicle V3, where both CO2 (CO23) and BC (BC3) backgrounds are

underestimated, leading to an overestimation of both areas.

It is important to know how accurate the determined EFs are due to the assumptions made in the calculations for overlapping

plumes and the complexity of resolving superimposed emissions. We therefore assessed the impact of interference from other335

vehicles/sources on the resulting EFs. The TUG-PDA distinguishes between the following three cases of interference:

– Overlap: The plume from the current vehicle overlaps with the plume of a previous vehicle. The two plumes must be

separated.

– Cut-off: The plume from the current vehicle interferes with the next vehicle. The emission integration stops for the

current vehicle and the entire plume has not been captured.340

– Overlap + cut-off: The above two cases are applicable. The plume from the current vehicle is influenced by the plume

from the previous vehicle and the exhaust plume from the next vehicle.

These cases are marked in the algorithm and can be used for further analysis. This marking is done individually for the different

emission signals (e.g. CO2, BC, NOx), as they are processed separately.

As an example, we investigated the influence of interfering plumes on the determined BC emissions of petrol-powered345

passenger cars. Only overlapping CO2 signals are taken into account and no superposition of BC emissions. The inclusion of

BC interferences distorts the results, as these consist mainly of high emitters (see Appendix Fig. C1). The emission distributions

shown (Fig. 6) are separated into a combined data set (with and without interference), measured interference-free emissions,

and the three cases in which the TUG-PDA categorizes interference . We did not find a strong influence of plume interference

on the results. The determined EFs are statistically comparable between the different datasets with and without interference350

from other vehicles. The largest deviation was found for plumes that were cut-off. The median EFs were 19 % lower than

in cases without interference. The sample size shows that the majority of the emissions determined were influenced by an

interference. If only plumes without interference were considered, the number of measurements would be greatly reduced.

3.2 Factors influencing point sampling measurements

In the following part, the most important factors influencing PS measurements are discussed and the resulting impacts are355

shown on basis of around 100,000 vehicle emission records gathered during 4 measurement campaigns. The measurement

campaigns were conducted in the Netherlands, Italy, Poland and Czechia. The results include data from 9 monitoring sites, with

data from the specially developed Black Carbon Tracker (BCT) being used to assess the various factors. The BCT measures

BC with a photoacoustic based sensor cell and CO2 with a non-dispersive infrared (NDIR) sensor integrated into one device.
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Figure 6. Influence of interference from other vehicles/sources on the BC emission distributions determined with the TUG-PDA. Measured

EFs of petrol-powered passenger cars are used for comparison. Interference data includes both overlapping plumes and plume cut-offs

(interference = overlap and/or cut-off).

The device was developed based on the recommendations listed in Table 1 as part of the CARES project (Knoll et al., 2021).360

The impact of misaligned measurement data on the resulting ERs is discussed in Appendix G.

3.2.1 Instrument characteristics

We compared the characteristics of the custom-designed BCT with those of a commercially available Aethalometer AE33

(Magee Scientific). The Aethalometer AE33 is widely used in environmental science for BC measurements and source ap-

pointment and is commonly used in PS studies to quantify BC emissions (Ježek et al., 2015; Preble et al., 2018; Zhou et al.,365

2020; Sugrue et al., 2020). Laboratory measurements showed a very good correlation (R2 = 0.99) between the Aethalometer

and the BCT. Comparable limit of detection (1 s, 3 σ) were determined for both instruments, with values of 1.01 µg m-3 for

the Aethalometer and 1.12 µg m-3 for the BCT. The limit of detection of the instruments defines the extent to which emissions

can be resolved. This is particularly important for accurately quantifying emissions from vehicles that meet the latest emission

standards. The t90 response times of the two instruments were measured in the laboratory: 0.9 s for the BCT and 7 s for the370

Aethalometer. A small response time enables the separation of highly transient emission events. This determines how close

vehicles can drive to each other in order to be able to resolve the emissions. Fig. 7 shows two emission time series of the

two instruments during one of the measurement campaigns. Two vehicles pass by the PS spot during the shown time frame

with an interval of six seconds. The BCT responds quickly to the captured BC emissions from the first passing vehicle (V1).

A distinct peak is noted where the measured concentration is again below 10 % of the peak concentration of the first vehicle375

when the second vehicle (V2) passed by. The emissions captured for the two vehicles overlap, but they can be separated. In

contrast, the Aethalometer response time is much slower and the maximum concentration is reached after the second vehicle

(V2) has passed by. The BC emissions from the two vehicles cannot be separated in this case. This is an example that shows

how important it is to select instruments with suitable characteristics for PS applications in dense traffic (see Table 1). Indi-
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vidual characteristics that do not meet the requirements of the application can severely affect the measurement data. However,380

the Aethalometer can also be used for PS, as has already been demonstrated in several studies. The traffic density must be

low enough (distance between vehicles greater than 7-10 s) or only certain types of vehicles (e.g. HDVs with vertical exhaust

pipes) are measured, which naturally entail a greater distance between exhaust plumes.

Figure 7. Emission concentration time series example of two instruments with different response times. Gray (Black Carbon Tracker) and

brown (Magee Aethalometer AE33) shaded areas show the integrated areas of the BC emissions from the first passing vehicle as determined

with the TUG-PDA.

3.2.2 Measurement location and sampling position

Special care must be taken when selecting suitable measurement locations. Besides the legal regulations (e.g. for the placement385

of equipment), the following aspects influence the selection:

– Road properties (single or multi-lane, lane width, road gradient)

– Traffic conditions (traffic flow, distance between passing vehicles, number and type of vehicles) and vehicle operating

conditions (VSP)

– Influence of environmental and background conditions (see Appendix Sec. D)390

– Cross-interference from other pollution sources

In the following evaluations (e.g., Fig. 8, 9), we assess the influences of the above mentioned aspects on PS measurements. The

results from the different measurement locations are labeled with numbers. Different sampling positions or traffic situations

were evaluated on individual locations. These are labeled with x.x (e.g., 1.1). This should facilitate the interpretation of the

results and the comparison between the different impact factors, as they were not determined independently.395
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One selection criteria of PS campaigns is often the number of vehicles per site and day. Conducting campaigns on highly

frequented roads guarantees a high number of vehicle passes. This is to a certain extent beneficial, as it allows for the collection

of a large number of emission records. If the traffic density is too high for PS, the emissions from the individual passing vehicles

cannot be properly resolved because they superimpose (e.g. Fig. 5b). Not only the traffic density, but also the general traffic

flow must be considered. Measurements are often performed after a crossroad or traffic light. Such conditions can lead to a high400

number of vehicles passing within a short period of time and a short distance from each other. This prevents emissions from

being properly resolved. Therefore, we evaluated the CR as a function of the median vehicle distance at different measurement

locations. The CR generally increases with median vehicle distances at the measurement locations (Fig. 8, left). It is noticeable

that even in relatively dense traffic (median vehicle distances 3.3 - 6.2 s), a high CR (31 - 38 %) can be achieved if the sampling

is done from the middle of the road.405

In order to select the measurement site, the road itself and the topography must be evaluated. We examined the influence of

the VSP on the CR for the three sampling positions (left, middle, right). For this investigation, only speed, acceleration and the

road gradient were used to calculate the VSP (see Appendix A3). The determined VSP values for the different measurement

locations are clustered and averaged. We observed only a small impact of the VSP on the CR (Fig. 8, right). The CR increases

slightly with increasing VSP regardless of the sampling position. A certain engine load (e.g., VSP > -5 kW t-1 according410

to Bernard et al. (2018)) is required for the measured vehicles, which can be accomplished in locations with a positive road

gradient or at locations where vehicles accelerate (e.g. road crossings, slip roads). Roads with declining gradients should

generally not be chosen due to lack of engine load. The road type must be considered in terms of space for the measurement

setup and cross interference from other vehicles. In general, single-lane roads are preferred, as well as two-lane roads where

the measured direction has a positive gradient. Vehicles driving on the opposite lane have a negative VSP and therefore only a415

small influence on the measurements.

Figure 8. Evaluation of two traffic related impact factors and their influence on the capture rate. Left: The capture rate is shown as a function

of the median vehicle distance at different measurement locations (indicated by numbers as in Fig. 9). Right: The calculated VSPs are

clustered and shown separately for the different sampling positions.
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The approach used to collect the exhaust has a major impact on the quality and strength of the signal. We found a direct

relation between the CO2 signal strength (see Fig. E1 in the Appendix) and the CR (Fig. 9, left). A higher CO2 signal generally

leads to a higher CR. The highest CR can be achieved if the sample extraction is performed from the middle of the road. By

using this central setup, a CO2 plume could be captured for an average of 34 % of the vehicles. Sampling from the left roadside420

delivers on average a CR of 25 % as compared to 17 % if the sample is extracted from the right side. In most regions in Europe,

sampling from the left is favored over the right side. Vehicles from manufacturers in Europe (e.g., VW, BMW, Mercedes,

Fiat) have usually the tailpipe on the left-hand side, unlike manufacturers in Asia or the United States (e.g., Toyota, Kia). At

two measurement locations (3 and 7), the sampling was conducted from both, the roadside and from the center of the road.

Two to three times higher CRs were obtained when sampling from the middle of the road (Fig. 9, middle and Fig. 8, left).425

Measurements from the center of the road allows sample extraction in the closest proximity of the source and is therefore less

influenced by traffic (Fig. 8, left), wind or tailpipe position. We found no significant influence on the driving behavior when

the sampling was done from the center of the road through the covered tube. In addition to the influence of the sampling side,

the sampling height also has a major impact on the sample extraction. Higher CRs and stronger CO2 signals are achieved at

lower sampling inlet heights for most vehicles in Europe. An exception are L-type vehicles (e.g. motorcycles) with tailpipes430

pointing straight or even upwards. The width of the road has a non-negligible impact on measurements from the roadside

(Fig. 9, right). At two locations (1, 2), the sampling was conducted at two positions (1.1, 1.2 and 2.1, 2.2) at the same roadside

with differences in road width and sampling height. For both, it can be seen that a smaller road width and a lower sampling

height lead to a higher CR. Measurement locations where the sampling was done from the right side (2, 3, 5, 7) generally have

a rather low CR. An exception is location 5, where the highest CR of all measurement sites was achieved. Location 5 stands435

out with good characteristics of all influencing factors such as a small lane width (3.5 m), a low sampling height (5 cm) and

a high median vehicle distance of 10.6 s (∼ 2.500 vehicle per day). The highest absolute number of valid measurements per

hour was achieved at location 8 with 103 valid ERs per hour.

Figure 9. Three plots show the influence of the sampling position and road width on the capture rate. Left: Mean capture rate at the three

sampling positions, combined from all measurement sites. Middle: Capture rate as a function of the height of the sampling inlet. The

measurements were performed at different measurement locations, which are indicated by the numbers. Right: Capture rate as a function of

the lane width for roadside measurements.
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3.2.3 Weather conditions

Harsh weather conditions can have a substantial impact on RES measurements. For both PS and RES, the literature lacks440

detailed assessments that examine the effects of environmental conditions. Of particular interest are the dependencies related

to precipitation and wind conditions. During the measurement campaigns, a weather station was either located directly next to

the PS site or in the vicinity. The weather data used were available on at least hourly basis. To allow an unbiased comparison,

only datasets were used where the compared meteorological conditions were present during the measurement campaigns.

Rain: We found that the PS measurements were not significantly influenced by rain. CRs are comparable during rainy445

(29.3 %) and dry (29.8 %) conditions (Fig. 10, left). Similar values were also determined for the average CO2 plume of the

passing vehicles. During dry periods, an average CO2 plume of 525 ppm s was measured as compared to 536 ppm s under wet

conditions. We were particularly interested in discovering whether these conditions impacted PM emissions. For this purpose,

we performed a Monte Carlo simulation by drawing 100 samples of the measured ERs of the passing vehicles from the different

measurement sites 1,000 times. We calculated the mean ERs from the 100 samples and the distribution of the mean values is450

shown in Fig. 10 in the right plot. Statistically, no significant difference was observed between the ERs calculated in dry and

rainy conditions with median values of 110 and 134 mg (kg CO2)-1, respectively. The slight differences may result, for example,

from different driving behavior in wet conditions.

Figure 10. Effect of precipitation on PS measurements. Measurements are compared for rainy (> 0.05 mm h-1) and dry weather conditions.

Capture rates (left) and mean BC ratios (right) measured in both conditions are compared.

Wind: Wind direction and wind speed affect the dilution and transport of the plume. We assessed the effect of wind speed

and wind direction on the measurements. The wind speed was segmented according to the Beaufort scale (Singleton, 2008).455

We found that with increasing wind speed the CR steadily decreases (Fig. 11, left). A similar trend can be observed for the

measured average CO2 plume of the passing vehicles. A higher CO2 signal (519 ppm s) was measured under calm conditions

(< 20 km h-1) than under windier (21-39 km h-1) conditions (425 ppm s). A similar influence of wind speed on the CR was

reported by Dallmann et al. (2011) in their top-down PS study for HDVs. They reported lower CRs in June (61 % unsuccessful

plume captures) than in November (36 % unsuccessful plume captures), where average wind speeds were twice as high. In460

contrast to our results, they found that the dilution of the captured plumes was similar for both wind conditions.

20



Not only the wind speed is relevant, but also the direction in which the wind blows the exhaust plume. We evaluated the

impact of the wind direction on the PS measurements under calm (< 11 km h-1) and breezier (> 11 km h-1) conditions. For

this purpose, we separated the wind directions into wind blowing the exhaust plume towards the measurement location and

wind blowing it away from the sampling point. The wind directions are indicated in Fig. F1 in the Appendix. A significant465

influence was observed at a rural measurement location (Fig. 11, right). The CR is higher under calm conditions and when

winds are blowing towards the sampling position. We performed the same evaluation in urban environments. Here, we could

not observe such a trend with similar CRs regardless of the wind direction (Fig. F2). We assume that this is mainly related to

differences between the local wind conditions (local turbulences) directly at the PS spot and the wind measured at the weather

station. Generally, wind conditions in street canyons are much calmer than those in open spaces, which is beneficial for PS470

applications.

Figure 11. Influence of different wind conditions on the capture rate. Left: Wind speed at urban measurement locations. Right: Wind speed

and direction at a rural measurement site.

Temperature: The influence of temperature is investigated in Fig. 12 for low (≤ 10 ◦C) and high temperatures (> 10 ◦C).

Ambient temperatures ranged from -7.3 ◦C to 28.2 ◦C during the different measurement campaigns. No significant difference

was observed with an average CR of 28 % at low temperatures and of 29 % at high temperatures. The effects of ambient

temperature and humidity are not expected to have an impact on the PS measurement itself, if the instrumentation used are475

either properly stored or can perform measurements under such conditions. Ambient temperature is expected to have an impact

mainly on the passing vehicles and their exhaust after-treatment systems (Kwon et al., 2017; Ko et al., 2019).

3.3 Measurement campaign

In total, for the city measurement campaigns in Italy, Poland and Czechia, it was possible to collect technical data from

authorities for 66,803 of the recorded vehicles. The technical data sets collected were pseudo-anonymised to comply with the480

data protection regulations of the individual countries. Based on the collected technical data sets, we determined with our data

analysis framework (see Sect. 2.2) the emissions of 22,160 vehicles. Measurements were conducted with our described setup
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Figure 12. Influence of ambient temperature on the capture rate.

(see Sect. 2.1). Several instruments were used in the campaigns to measure BC, PN and NOx EFs. The newly developed BCT

was used to measure BC and CO2, a custom designed diffusion charger (Schriefl et al., 2020) measured PN concentrations and

an ICAD (Airyx GmbH, Horbanski et al. (2019)) was deployed for NOx and CO2 measurements. A schematic of the emission485

measurement setup can be found in Appendix B.

3.3.1 Fleet composition and capture rate

The measurements were carried out in city centers, which is also reflected in the vehicle fleet. The vehicle types were classified

according to the vehicle categories of the United Nations Economic Commission for Europe (UNECE). The largest share of

vehicles measured were passenger cars (84.1 %). A much smaller share of L-type vehicles (1.4 %) and HDV and buses (0.8490

%) were recorded (Fig. 13, left upper plot). We determined the CRs for the different vehicle categories to verify the ability

to measure different vehicle types (Fig. 13, left lower plots). The highest CR could be achieved for HDVs and buses (55 %),

followed by passenger cars (22 %) and L-type vehicles (17 %). Previous PS studies (Dallmann et al., 2011, 2012) reported

CRs for HDVs using top-down measurements from a bridge and a tunnel. In these studies CRs ranged from 12 % to 59 % for

individual trucks and from 16 % to 44 % for groups of trucks. In general, it can be said that the CR depends on the exhaust495

flow rate of the vehicles. HDVs and buses have much greater exhaust flow rates than passenger cars or L-type vehicles. This is

also reflected when looking at the average integrated exhaust plume of the different vehicle categories. The average integrated

exhaust plume of HDVs and buses (947 ppm s CO2) was significantly higher than those of passenger cars (459 ppm s CO2)

and L-type vehicles (374 ppm s CO2). A lower percentage of L-type vehicles is measured not only because of the smaller

exhaust flow rate, but also because of the direction of the exhaust pipe. In contrast to HDVs, buses and passenger cars, the500

exhaust pipe for L-type vehicles often points upwards, which is disadvantageous when sampling from low heights. Looking at

the distribution of the fuel type of the measured vehicles, a similar number of diesel (45.2 %) and petrol (46.5 %) vehicles were

measured. A small share of CNG, LPG or bi-fuel (petrol/diesel + CNG/LPG, 2.6 %) was captured (Fig.13, right upper plot). In

contrast to the vehicle type, the CR is rather independent of the fuel type (Fig. 13, right lower plot). EFs could be determined

for 24 % of diesel vehicles, which is slightly higher CR compared to 22 % of petrol vehicles. This is mainly due to the fact that505

22



vehicles with a larger engine displacement (e.g. trucks or buses) are mostly powered by diesel engines, while smaller vehicles

are mostly equipped with petrol engines (e.g. L-type vehicles).

Figure 13. Measured vehicle fleet split into vehicle categories (left) and fuel type (right). Capture rates for the different types are shown in

the lower plots. The data contains multiple passes of the same vehicles.

3.3.2 Fleet emission characteristics

Fuel-based EFs (see Appendix A1) were determined for the measured vehicles using the collected technical vehicle data. The

fuel-based EF accounts for the larger total emissions from large vehicles such as HDVs and buses and makes all derived EFs510

comparable. Statistical evaluations were carried out for various vehicle categories and Euro emission standards (Fig. 14 to

Fig. 16). Upper and lower whiskers represent the 97.5 and 2.5 percentile, respectively. The number of vehicles in each category

is indicated by the numbers in the brackets. Emissions from hybrid electric vehicles are included in the statistics. There are

mainly two reasons for negative EFs. First, negative EFs result from low emitting vehicles where the determined background

is higher than the measured emissions during the captured CO2 plume. Second, the emissions of other vehicles interfere with515

the measurement of the current vehicle.

BC emissions from petrol-powered passenger cars (M1 category) decrease from Euro 2 to Euro 6 emission standards. The

mean values decreased from 256 to 103 mg (kg fuel)-1 and median values decreased from 57 to 37 mg (kg fuel)-1. For passenger

cars with diesel engine, BC emissions decrease significantly with increasing Euro emission standards and decreasing vehicle

age from 2.37 g (kg fuel)-1 (median: 1.08 g (kg fuel)-1) for Euro 2 down to 81 mg (kg fuel)-1 (median: 30 mg (kg fuel)-1) for520

Euro 6. This corresponds to a reduction by a factor of more than 30 from Euro 2 to Euro 6 on the median. The impact of the

introduction of DPFs sticks out from Euro 5 onwards. BC emissions from Euro 6 diesel vehicles are below of those from Euro

6 petrol vehicles. Similar trends can be observed for BC emissions of HDVs and buses. The BC EFs of both HDVs and buses

drop significantly from Euro III to Euro V. Measured buses were mainly well maintained city operated Euro V and VI vehicles,

with BC emissions even lower than those of Euro 6 passenger cars.525
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Figure 14. Distribution of fuel-based BC EFs in dependence of the Euro emission standard for different vehicle categories. Passenger cars

are split into petrol and diesel-powered vehicles. The numbers in brackets represent the sample size.

PN measurements were performed for particles larger than 23 nm (D50 cut-off at 23 nm) using a catalytic stripper to remove

volatile compounds (Giechaskiel et al., 2014). PN and BC results agree well for the different vehicle categories and Euro

emission standards, as only the solid particle fraction was measured (Fig. 15). The impact of the introduction of DPF for

diesel passenger cars is even more pronounced for PN than for BC. Median PN EFs decrease from Euro 2 to Euro 6 from

1,842 to 22 · 1012 particles per kg fuel by a factor of more than 80. The greater reduction of PN compared to BC EFs can530

be related to DPF filtration efficiency, which depends on the particle size distribution (Yang et al., 2009; Rossomando et al.,

2021). Vehicle exhaust PN consists mainly of a large number of small particles below 60 nm, while the main contributor to BC

mass concentration are accumulation mode particles (Giechaskiel et al., 2014). However, a shift towards smaller particles sizes

caused by newer engine technologies must be taken into account.

NOx emission levels of petrol-powered passenger cars are steadily decreasing from Euro 2 to Euro 6 (Fig. 16). Median values535

decrease from 5.74 g (kg fuel)-1 to 0.87 g (kg fuel)-1. The effects of “Dieselgate“ are reflected in the NOx emissions of diesel

passenger cars, which primarily affect Euro 5 and Euro 6 vehicles. NOx EFs stagnate for Euro 2 to 5 vehicles, with median

values ranging from 9.78 to 13.31 g (kg fuel)-1. For Euro 6 vehicles, NOx EFs decrease significantly with a median value of

2.85 g (kg fuel)-1. In contrast to BC and PN, NOx EFs for HDVs and buses are higher compared to emissions of passenger cars.

This applies to all Euro classes. HDVs tend to have a higher milage, which affects the deterioration of the vehicle’s condition.540

In addition, intentional tampering of the NOx reduction system is believed to be more common in commercial vehicles than in

private vehicles.
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Figure 15. Distribution of fuel-based PN EFs in dependence of the Euro emission standard for different vehicle categories. PN measurements

were performed for solid particles greater than 23 nm. Passenger cars are split into petrol and diesel-powered vehicles. The numbers in

brackets represent the sample size.

Figure 16. Distribution of fuel-based NOx EFs in dependence of the Euro emission standard for different vehicle categories. Passenger cars

are split into petrol and diesel-powered vehicles. The numbers in brackets represent the sample size.
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Table 3 compares average emissions of selected Euro emission standards from this study with previous open-path RES and

PS studies. The average BC EFs from this study are compared with the PM EFs from other studies. BC can be assumed to be a

subset of PM. For diesel vehicles, BC typically accounts for the largest share of PM emissions. This is especially the case for545

older Euro emission standards and vehicles with defective DPF. The proportion of BC emissions for petrol vehicles is typically

lower, except under specific conditions (Platt et al., 2017; Yang et al., 2019; Bessagnet et al., 2022). PN EFs are reported only

for PS studies, because only rough estimates from open-path RES studies can be made for PN.

Average BC EFs from this study and PM EFs from open-path studies are in a similar range for petrol and diesel passenger

cars. The average PM EFs reported from open-path RES studies are subject to a large variation. The measured emissions can550

vary widely depending on several factors such as fleet characteristics (e.g. vehicle type, manufacturer, mileage, age) or the

measurement location. Determined average BC EFs from this study for Euro 5 and 6 passenger cars are higher than those

found in open-path RES studies. One reason for this can be the quantification limit of open-path RES instruments for PM

measurements. Several studies pointed out difficulties in quantifying emissions of newer Euro emission standards, which was

reflected in negative average EFs (Gruening et al., 2019; Cha and Sjödin, 2022; Jerksjö et al., 2022). The average NOx EFs555

from the selected open-path RES studies vary to a much smaller extent. Determined NOx EFs for passenger cars of this study

agree well with literature values for almost all Euro emission standards given.

The calculated EFs of HDVs and buses from this study are compared with selected literature from both PS studies and open-

path RES studies. The selected PS studies were conducted solely in Sweden. BC EFs of this study and PM EFs of literature

studies are in similar ranges for Euro III to Euro V standards. Differences are mainly observed for Euro VI HDVs. These560

can arise from differences in fleet characteristics or vehicle age, causing deterioration of the exhaust after-treatment system.

This could be particularly the case for newer Euro VI HDVs, where 2-3 years between the studies can have a significant

impact. Negative PM EFs reported by open-path RES studies can be referred to limits in instrument accuracy similar to those

for passenger cars. PN EFs for HDVs and buses reported in previous PS studies are generally higher than those reported

in this study. This can be attributed to the different size characteristics of the used PN instruments. Particles larger than 5.6565

nm were measured by Hallquist et al. (2013), Liu et al. (2019) and Zhou et al. (2020). In this study, the D50 cut-off was 23

nm (Schriefl et al., 2020). We performed solid particle number (SPN) measurements with a cut-off at 23 nm to comply with

current emission regulations and to be able to relate the calculated EFs to official limits. Determined NOx EFs of HDV and

buses are in good agreement with literature data of PS and open-path RES studies. Similar to diesel passenger cars, NOx

EFs of this study for HDV and buses are slightly lower compared to literature data of open-path RES studies. NOx EFs of570

literature PS studies span over a wide range, which can be referred to differences in vehicle exhaust after-treatment systems. In

Hallquist et al. (2013), open-path RES data was used to determine NOx EFs. Which EFs are more accurate cannot be judged

from the comparison as several reasons influence the derived EFs like measurement location, vehicle fleet, driving properties,

environmental conditions, instrument characteristics or data analysis methods. A detailed comparison of our PS system with

other simultaneous measurements will be part of a separate study.575

26



Study Vehicle type - fuel type Euro standard
Av. EF BC/PM

mg (kg fuel)-1

Av. EF PN

1012 # (kg fuel)-1

Av. EF NOx

g (kg fuel)-1

This study Passenger cars - petrol Euro 3 188a 243c 7.0

Open-path RES studies1,2,3,4 30 - 670b - 5.1 - 14.5

This study Euro 4 153a 174c 5.7

Open-path RES studies1,2,3,4 20 - 200b - 3.8 - 7.2

This study Euro 5 166a 210c 3.9

Open-path RES studies1,2,3,4 30 - 90b - 2.5 - 3.3

This study Euro 6 103a 132c 2.3

Open-path RES studies1,2,3,4 0 - 95b - -0.5 - 3.2

This study Passenger cars - diesel Euro 3 1787a 2223c 14.3

Open-path RES studies1,2,3,4 170 - 1840b - 13.7 - 18.7

This study Euro 4 918a 1377c 13.5

Open-path RES studies1,2,3,4 130 - 1080b - 11.6 - 15.4

This study Euro 5 261a 351c 12.6

Open-path RES studies1,2,3,4 20 - 270b - 11.7 - 14.4

This study Euro 6 81a 117c 5.5

Open-path RES studies1,2,3,4 10 - 70b - 5.8 - 8.5

This study Buses, heavy duty - diesel Euro III 1579, 2620a 2465, 2039c 20.6, 22.7

PS studies6,7,8 30 - 1820b 730 - 3900d 16 - 43.3e

Open-path RES studies1,4 250 - 2100b - 24.6 - 27.5

This study Euro IV 443, 384a 651, 458c 13.7, 25.6

PS studies6,8 172 - 1845b 870 - 3200d 14 - 19.8e

Open-path RES studies1,4,5 220 - 1250b - 17.8 - 21.5

This study Euro V 63, 287a 77, 520c 5.5, 15.4

PS studies6,7,8 146 - 258b 650 - 1600d 15 - 37e

Open-path RES studies1,2,4,5 40 - 360b - 13.1 - 25.3

This study Euro VI 35, 43a 38, 87c 3.7, 6.4

PS studies8 5b 850d 3.1

Open-path RES studies1,2,4,5 -50 - 190b - 2.8 - 8.7
Table 3. Comparison of average fuel-based BC/PM, PN and NOx EFs of this study with selected open-path RES and PS literature data.

Emissions are ordered by vehicle category, fuel type and Euro emission standard. BC/PM column show either BC or PM EFs. 1Hooftman

et al. (2019), 2Bernard et al. (2021), 3Jerksjö et al. (2022), 4Cha and Sjödin (2022), 5Lee et al. (2022), 6Hallquist et al. (2013), 7Liu et al.

(2019), 8Zhou et al. (2020), aBC, bPM, cPN > 23 nm, dPN > 5.6 nm, eNO EFs of Hallquist et al. (2013) were determined by open-path RES,

NO2 measurements are estimated.
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4 Summary and conclusions

This paper presents a PS system capable of screening vehicle fleets largely independent of the vehicle type. Our approach

allows the direct measurement of different particle metrics such as BC or PN as well as different gaseous compounds (e.g.

NOx). In particular, PN is a relevant metric today with knowledge of the health effects of ultrafine particles (Oberdörster et al.,

2005; Brook et al., 2010; Mannucci et al., 2015), but also concerning currently introduced emission legislations (Bainschab580

et al., 2020; Giechaskiel et al., 2021). Newly introduced Euro emission standards bring along stringent requirements, where

current open-path RES systems reach their quantification limits, especially for PM (Gruening et al., 2019; Cha and Sjödin,

2022; Jerksjö et al., 2022). Compared to commercial open-path RES systems, the installation of the PS measurement setup is

relatively simple. The method is quite flexible when it comes to where the sample extraction is performed and what instruments

are used to measure the species of interest. We presented a comprehensive data analysis framework that is capable of processing585

emissions from thousands of vehicles. The core is the TUG-PDA, which determines and separates vehicle emissions down to

a distance of 3 s between the vehicles, if appropriate instruments are used. We have shown that emissions from overlapping

plumes can be measured with similar accuracy as when there is no overlap. As an application example, we presented the first

results of measurement campaigns in three different European cities in which we made use of our PS method. We showed

distributions of measured BC, PN and NOx EFs of different vehicle types and Euro emission standards. The results are in good590

agreement with relevant literature studies and show the potential for screening emissions of different vehicle types, including

those meeting newly introduced emission standards.

We evaluated important impact factors influencing PS measurements that should be considered when planning and imple-

menting PS campaigns. The most important influences are summarized in the following:

– Instruments used for PS campaigns should be properly chosen (see Table 1). Response time, dynamic range and limit of595

detection are the most significant factors. The response time should be as low as possible (< 1-2 s). The dynamic range

should be large enough to cover both low and high emitters. The limit of detection should be low enough to accurately

determine the emissions from the evaluated species.

– When selecting the measurement site, the traffic conditions must be taken into account. An ideal condition is a steady

traffic flow with sufficient distance (≥ 3 s with appropriate instrumentation) between the vehicles to collect a high number600

of valid emission records. At the measurement site, the passing vehicles should be under considerable engine load. This

can either be in appropriate traffic situations where vehicles accelerate (e.g., after crossing, slip road) or at roads with

positive gradients.

– The sampling should be performed as close to the exhaust source (tailpipe) as possible. The best results can be achieved

if the sample extraction is performed from the middle of the road with the sampling tube directly attached to the road.605

When sampling from the side, the road width (smaller roads preferred) and the sampling height (as low as possible) have

a significant influence on the CR. In addition, the position of the exhaust pipe of the fleet of interest should be examined

in advance to determine the best sampling position.
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– The CR depends on the wind speed and direction. Windy conditions that transport the exhaust plume away from the

sampling point have a negative effect on the CR. The influence of wind can be minimized by choosing an appropriate610

measurement location (e.g., street canyon). Other weather factors such as temperature or precipitation have negligible

impact.

Future work will involve a detailed analysis of the gathered BC, PN, and NOx emissions. Several open questions will be

addressed such as how PS measurements relate to those made by reference equipment such as PEMS or other RES methods

(Knoll et al., In preparation). Further development of the TUG-PDA could address improvements in the determination of BG615

for overlapping plumes (e.g. using a linear approximation between the start and end of the peak) or the use of adaptive thresh-

olds and parameters depending on the measurement location. Another interesting aspect to investigate is the reproducibility

and reliability of individual measurements. This is particularly important for the potential identification of high emitters. Com-

mercial open-path RES systems are associated with a high degree of uncertainty when considering individual measurements

(Huang et al., 2020; Qiu and Borken-Kleefeld, 2022). PS results indicate that single measurements are more reliable due to620

the longer measurement duration. It would be a great step forward if this could be proven and applied in the future to identify

individual high emitters.
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Appendix A: Remote emission sensing definitions

A1 Emission ratio and fuel-based emission factor

Emissions of combustion-based vehicles are generally reported as EFs. In RES, fuel-based EFs are used to express emissions625

from the measured vehicles (Hansen and Rosen, 1990; Borken-Kleefeld et al., 2018; Bernard et al., 2018). Fuel-based emissions

are expressed as a mass fraction of the emitted pollutant per mass of burned fuel. The amount of burned fuel is calculated based

on the measured CO2 concentration of the passing vehicle by using the carbon mass balance method (Bishop et al., 1989;

Hansen and Rosen, 1990; Stedman et al., 1992; Singer and Harley, 1996; Ban-Weiss et al., 2009; Hak et al., 2009) and under

the assumption that the majority (> 90 %) of the carbon content in the fuel is oxidized to CO2 during the combustion process.630

By relating the measured pollutant P (e.g., BC, PN, NOx) to the measured CO2 concentration, an ER can first be calculated

(Stedman et al., 1992; Hansen and Rosen, 1990):

ER=

∫ t2
t1
([P ]t − [P ]t0)dt∫ t2

t1
([CO2]t − [CO2]t0)dt

(A1)

By multiplying the ER with the mass fraction of carbon in fuel ωc a fuel-based emission factor EFfb (Ban-Weiss et al., 2009;

Hak et al., 2009) can be calculated:635

EFfb = ER ·ωc, (A2)

where ωc discriminates among different fuel types (see Table A1). Regarding PS measurements, the emission events last

for several seconds. The measured concentrations of the pollutant and CO2 for one vehicle pass are commonly integrated and

the results are related to each other. The start and stop times of the emission event define the integration intervals and these

are represented by t1 and t2, respectively. The measured emissions are superimposed by BG concentrations of the different640

species in ambient air. For that reason, a BG correction is required, where t0 specifies the point of time from which the BG

concentration is used. The BG is usually determined on the basis of the concentration at the integration starting point, t1. When

plumes overlap or impacts from other sources occur, this concentration may be underestimated.

Fuel type ωc

Gasoline (2016 E0) 0.864

Diesel (B0) 0.861

CNG 0.708-0.717

LPG 0.824

LNG 0.749-0.756
Table A1. Typical mass fraction of carbon in common fuel types from JRC (2020).
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A2 Distance-based emission factor

Fuel-based EFs do not distinguish between vehicles with different fuel consumption. Therefore, fuel-based EFs favor vehicles645

with higher fuel consumption. Distance-based EFs, on the contrary, include the fuel consumption and are, therefore, usually

used to compare vehicle emissions (Bernard et al., 2018). However, distance-based EFs cannot be directly calculated in RES

due to the snapshot measurement. An estimate can be calculated using the type approval CO2 consumption (AvgCO2 ) which is

obtained from the vehicle technical information. The official CO2 emissions from passenger cars have been shown to differ

increasingly from real-world emissions (Tietge et al., 2017). Therefore, a correction factor (RWGCO2 ) including the real-world650

CO2 gap can be included according to Bernard et al. (2018). Making this assumption, a distance-based EF can be calculated as

follows:

EFdb = ER ·AvgCO2 ·RWGCO2 (A3)

In a recent publication by Davison et al. (2020), a new approach was presented to calculate the distance-based EF in RES

studies using the VSP. A good agreement was found between the outcome of their approach and validation measurements655

made with portable emission measurement systems (PEMS).

A3 Vehicle specific power

VSP is often used when performing emission modeling of combustion-based vehicles to estimate vehicle operating conditions.

Using VSP, insights can be gained to estimate the engine load when a vehicle passes the measurement point. For example, this

can be used to exclude vehicles with a small VSP (< -5 kW t-1) due to the disabled fuel injection in the engine (and therefore660

unexpected CO2 emissions) (Bernard et al., 2018). The VSP is defined according to Jimenez-Palacios (1999) by the sum of the

relevant power variables related to the mass of the vehicle:

V SP =
d
dt (EKin +EPot)+FRol · v+FAero · v

m
= v · (a · (1+ ϵ)+ g · grade+ g ·CR +

1

2
· ρa ·CD

A

m
· (v+ vw)

2) (A4)

Where EKin and EPot are the kinetic and the potential energies, respectively, v is the speed of the vehicle, FRol is the force from

the rolling friction, FAero is the aerodynamic drag force, m is the mass of the vehicle, a is the vehicle acceleration, ε is the665

mass factor, g is the gravity of Earth, grade is the road gradient, CR is the coefficient of the rolling resistance, ρa is the density

of ambient air, CD is the drag coefficient, A is the projected frontal area of the vehicle and vw is the headwind impacting the

vehicle.

Appendix B: PS emission measurement setup

Fig. B1 shows the emission measurement setup used during one of the measurement campaigns. A water protection hose670

protected the sampling inlets from water. Two different sampling tubes were used for particle and gas sampling. Tygon tubing
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with a inner diameter of 5 mm was used for particle sampling. Teflon tubes were used for the NOx measurements, due to the

volatility of the gas. Both sampling paths were protected with water traps. For the particle measurements, impactors removed

particles with diameters greater than 1 µm. BC and CO2 were measured with the newly developed BCT (Knoll et al., 2021).

In parallel measured an Aethalometer AE33 (Magee Scientific) BC and brown carbon (BrC). Total particle number (TPN)675

concentration was measured using a CPC (Condensation Particle Counter 3775, TSI Incorporated). Solid particle number

(SPN) measurements of particles larger than 23 nm were performed with a diffusion charger (Schriefl et al., 2020) downstream

to a custom-built catalytic stripper which removed volatile compounds. A second BCT measured in parallel to the diffusion

charger BC and CO2. A dust filter protected the instrument in the gas sampling path from particle penetration. NOx and CO2

were measured with an ICAD (Airyx GmbH, Horbanski et al. (2019)).680

Figure B1. PS emission measurement setup used during one of the campaigns.

Appendix C: TUG-PDA emission separation capabilities

Fig. C1 shows the influence of interference, but additionally includes the superposition of the measured BC emissions to the

superposition of CO2 emissions. The emission distributions are separated in the same manner as in Fig. 6 into the measured

CO2 plumes with and without interference from other vehicles/sources. Compared to Fig. 6, measured CO2 plumes which were

interfered are slightly higher compared to plumes without interference. This is due to the fact that most of the BC superimposed685

vehicle emissions are contained in the inference datasets. These are mainly vehicles with higher emissions, as BC peaks could

be detected.
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Figure C1. Influence of interference (CO2 and BC) from other vehicles/sources on the BC emission distributions determined with the TUG-

PDA. Measured EFs of petrol-powered passenger cars are used for comparison. Interference data includes both overlapping plumes and

plume cut-offs (interference = overlap and/or cut-off).

Appendix D: Background conditions

Different measurement locations may be accompanied with varying environmental conditions such as wind or BG concentra-

tions of the measured species. In Fig. D1, 30-minute averaged BG concentrations for BC and CO2 are shown for three different690

measurement sites over a time period of 24 hours. At Location 1, rather stable BC concentrations can be noted along with a

distinct increase in the CO2 concentration during the morning traffic period. In contrast, very high BC BG concentrations were

measured at Location 4 on the presented measurement day accompanied by varying BG CO2 values. Such different conditions

depend on the season, meteorology, traffic density and other emission sources like industry and must be taken into account.

High or varying BG concentrations can impact instrument performance. The BG concentration must be compensated for in the695

emission calculation and results can vary widely depending on the BG concentration used.

Appendix E: Influence of the sampling position on the captured plume strength

In Fig. E1, we compared the CO2 concentrations when we measured either from the middle, the left, or the right side of the

road. All three sampling positions were used at least three times during the measurement campaigns. Distributions of mean

CO2 concentrations of the three sampling positions were calculated using the Monte Carlo method by drawing 500 samples of700

the measured CO2 concentrations of passing vehicles from each measurement position 1,000 times. Sampling from the middle

of the road gives on average clearly higher signals as compared to sampling from either side of the road, with a mean and σ of

654 ppm s and 1046 ppm s, respectively. Sampling from the left (mean: 480 ppm s, σ: 257 ppm s) delivers on average a higher

signal as compared to sampling from the right side (mean: 455 ppm s, σ: 439 ppm s). A Gaussian distribution was assumed

and fitted to the three datasets (Fig. E1).705
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Figure D1. Background concentrations of BC (upper plot) and CO2 (lower plot) from three different measurement sites. Concentrations are

averaged with a half-hour running mean filter.

Figure E1. Distribution of mean CO2 concentrations of the three sampling positions.

Appendix F: Influence of weather conditions

Fig. 11 and Fig. F2 show the influence of wind direction on the CR. We separated the directions in the 180° when the wind

blows the plume towards the sampling point and in the 180° when the wind blows the plume away from the sampling point

(Fig. F1).

The impacts of wind direction and speed on the capture rate at urban sampling locations are shown in Fig. F2. No real710

difference can be seen between winds blowing the exhaust towards or away from the sampling location. We assume that this

is mainly due to differences between the measured local wind conditions at the sampling location and the measured data from

the weather station nearby.
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Figure F1. Schematic of the PS setup where the sampling is done from the roadside. The wind directions are indicated for winds which blow

the exhaust plume toward or away from the sampling point.

Figure F2. Influence of wind speed and direction in urban areas on the capture rate.

Appendix G: Influence of misaligned measurement data

We emphasized the importance of compensating for sampling delays and the response times of instruments during the pre-715

processing steps of the data analysis. Additionally, the instrument responses are time-aligned to the vehicle passes which cause

the fastest response of the measurement instruments (see Sect. 2.2.1). Misalignment has a major influence and impacts both the

CR and the resulting ERs. Therefore, we investigate the effects resulting from misalignment between emission datasets from

different instruments (e.g., CO2 and pollutants) and between emission data and the vehicle pass times. First, we take a look at

the latter. We deliberately misaligned the time series of the measurement equipment (e.g., CO2, BC) as compared to the vehicle720
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pass times for time shifts (misalignment) between -5 and +5 s. Negative time shifts represent exhaust plumes that occur prior

to the corresponding vehicle pass. A maximum CR is reached at a time shift of -1.5 s (Fig. G1a). There are several reasons why

the CR peaks at slightly misaligned data. First, the TUG-PDA starts to scan the emission concentrations 1 s before the vehicle

pass time (see Fig. 4). Second, the emission concentration time series datasets are time-aligned for plumes with the smallest

time delay. These are plumes, e.g., of vehicles with the exhaust pipe located on the same side as the sampling position (if the725

sampling is performed from the side). Plumes of vehicles with an exhaust pipe on the other side are sampled with a slight delay

(up to a few seconds). The negative time shift leads to additionally captured plumes in cases where the vehicles pass within

small distance of each other. These additional records can be both correctly or wrongly assigned emissions, depending on the

circumstances. For prior perfectly aligned plumes parts of the emissions are cut off because they are outside of the TUG-PDA

start range leading to deviations in the resulting ERs. As the misalignment increases, the CR decreases steadily. The main730

reason is that the plumes from vehicles passing within short distances of one another can no longer be resolved. The substantial

drop in time shifts below -3 s is caused by plumes peaking before the vehicles pass (e.g, see Fig. G5), and these peaks are

not detected for larger negative time shifts. In addition to the influence on the CR, misalignment has a major influence on the

resulting ERs. Fig. G1b shows the deviation of the calculated ERs caused by misalignment compared to the results calculated

with the aligned datasets. The deviation increases as the misalignment increases, with median values ranging from -31.4 % to735

0 % and between -162.1 % and 242.6 % on average. Fig. G2 shows the impact of misalignment between vehicle pass times

and measured emission data on the integrated CO2 concentration. The CO2 concentration increases as the positive time shift

increases and decreases as the negative time shift decreases. An increasing negative time shift in the time series causes the

plumes to be cut off. Thus, BG concentrations that are too high are determined, which reduce the integrated concentrations

(see e.g. Fig. G4). The deviations of the misaligned, integrated CO2 concentrations from the properly aligned data are shown740

in Fig. G3.

(a) Influence of misalignment on the capture rate.
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(b) The deviation of the resulting BC emission ratio due to the misalignment

compared to the properly aligned data is shown.

Figure G1. Impact of improperly compensated sampling delay due to misalignment of time series data of the measurement equipment with

the vehicle pass times.
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Figure G2. Impact of improperly compensated sampling delay on the integrated CO2 concentration of the passing vehicles.
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Figure G3. Impact of misalignment between measured emission concentrations and the vehicle pass times. Deviation of the properly aligned

integrated CO2 signal compared to the time shifted signal.

Two examples of misaligned instrument data related to the vehicle pass times are depicted in Fig. G4 and Fig. G5. The

emission concentration time series from the instruments are 3 s time shifted (misaligned on purpose) compared to the vehicle

pass times for both cases. In the graphs only the CO2 concentration is shown. In both examples, the aligned data is shown

in the same graph as the misaligned data. The TUG-PDA start range is shown on top, to illustrate the time range in which745

the TUG-PDA searches for an increasing concentration. The first case (Fig. G4) shows an example where the time shift can

be compensated by the TUG-PDA. No other vehicle interferes with the measurement and the captured emissions are not too

much delayed for proper detection. Only a small amount of the emissions are missed (highlighted in red). The second example

(Fig. G5) shows one case where the emission concentrations are shifted to such an extent that they can no longer be associated
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with the vehicle pass. The positive slope of the plume is not covered by the TUG-PDA start range and therefore the entire750

plume is missed.

Figure G4. Time series example where the misalignment between instrument data (only CO2) and vehicle pass times can be compensated

by the TUG-PDA. The misaligned as well as the properly aligned time series are shown in the same plot.

Figure G5. Time series example where the misalignment between instrument data (only CO2) and vehicle pass times cannot be compensated

by the TUG-PDA. The misaligned as well as the properly aligned time series are shown in the same plot. The TUG-PDA start range is shown

for the first vehicle pass.

As a second step we analyzed the impact of misalignment between instrument data. In particular, CO2 time series data must

be properly aligned with respect to data from the measured pollutants (e.g., BC, PN, NOx). We shifted the CO2 time series in

0.5 s steps against the BC time series to investigate possible effects of misalignment on the results. Fig. G6 shows the deviation

of the BC ratio as compared to the properly aligned data. As the positive time shift increases, there is a steady increase in the755

deviation. The deviation increases on average from -0.9 % for +0.5 s to -89.1 % for +5 s. A negative time shift has a different
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impact. Statistically, a small and slightly increasing impact is observed up to a time shift of -2.5 s, with a maximum median

deviation of 6.4 %. From a time shift of -3 s and onward, the deviation increases significantly, with median values falling

between -64.5 % and -89.1 %. The small impact for time shifts between -2.5 and 0.5 s is mainly due to the peculiarities of

the TUG-PDA. A small time shift between CO2 and the pollutant is compensated, especially in the negative direction, because760

the datasets are processed individually. This effect is even more pronounced in the negative direction, because the data are

time-aligned for vehicle plumes with the smallest time delay as already described above. The high deviations observed for

small time shifts can mainly be referred to vehicle passages in a short period, where small misalignment errors have a strong

impact on the determined ERs.
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Figure G6. Impact of misalignment between CO2 and BC instrumentation. The deviation caused by the misalignment of the resulting BC

ER compared to the properly aligned data is shown.

In Fig. G7 and Fig. G8, two time series examples show possible effects of misalignment between the CO2 and BC sensors.765

In these two cases, the CO2 response is 3 s time shifted as compared to the BC response. In both examples, the original aligned

data in the left graph is compared to the misaligned data in the right graph. In the first example (Fig. G7), the misalignment can

be compensated by the TUG-PDA for two reasons. First, the emissions from the passing vehicle reach the sample inlet about

3 s after the vehicle has passed by. This could be the case because the tailpipe of the vehicle is located on the left-hand side

and the sampling is conducted on the right-hand side, resulting in a transport delay. Second, the whole plume can be captured770

because there is no other vehicle present, which could cause an interfering plume. The second example (Fig. G8) shows one

case where the time shift causes emissions to be assigned to the wrong vehicle. A substantial share of the CO2 emissions of the

second vehicle are wrongly assigned to the first vehicle. This results into a underestimated ER for the first vehicle.
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(a) Aligned time series (b) Misalignment time series

Figure G7. Time series example where the misalignment between CO2 and BC sensors can be compensated by the TUG-PDA. Gray (BC)

and blue (CO2) shaded areas show the integrated areas.

(a) Aligned time series (b) Misaligned time series

Figure G8. Time series example where the misalignment between CO2 and BC sensors cannot be compensated. Gray (BC) and blue (CO2)

shaded areas show the integrated areas for the emission concentrations of the first passing vehicle. The TUG-PDA start range is shown for

the first vehicle pass.
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