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Abstract. The Eocene-Oligocene transition (EOT, ca 40-33 Ma) marks a transformation from a largely ice-free to an

ice-house climate mode that is well recorded by oxygen stable isotopes and sea surface temperature proxies. Opening of

the Southern Ocean gateways and decline in atmospheric carbon dioxide levels have been considered as factors in this

global  environmental  transformation  and  the  growth  of  ice  sheets  in  Antarctica  during  the  Cenozoic.  A more

comprehensive understanding is still needed of the interplay between forcing versus response, the correlation among

environmental  changes  and  the  involved  feedback  mechanisms.  In  this  study,  we  investigate  the  spatio-temporal

variation in export productivity using biogenic Ba (bio-Ba) from Ocean Drilling Program (ODP) Sites in the Southern

Ocean, focusing on possible mechanisms that controlled them as well as the correlation of export productivity changes

to changes in the global carbon cycle. We document two high export productivity events in the Southern Ocean during

the late-Eocene (ca. 37 and 33.5 Ma) that correlate to proposed gateway-driven changes in regional circulation, and to

changes in global atmospheric pCO2  levels. Our findings suggest that paleoceanographic changes following Southern

Ocean gateway openings, along with more variable increases in circulation driven by episodic Antarctica ice sheet

expansion, enhanced export production in the Southern Ocean from the late Eocene through basal Oligocene. These

factors may have played a role in episodic atmospheric carbon dioxide reduction, contributing to Antarctic glaciation

during the Eocene-Oligocene transition.

1 Introduction 

1.1 Late Eocene Events as Precursor to Antarctic Eocene/Oligocene Boundary Glaciation 

The Eocene-Oligocene transition (EOT,  40-33  Ma) is  the  most  important  climatic  interval  of  the  Cenozoic  era∼

(Westerhold et al., 2020). This interval involves profound transformations in environmental conditions including the

onset  of  continental-scale  Antarctica  glaciation  at  the  Eocene-Oligocene  boundary  (Shackleton  &  Kennett,  1975,

Zachos et al., 1996, Coxall et al., 2005), sea-level fall (Houben et al., 2012) and global cooling (Prothero and Berggren,

1992; Liu et al., 2009; Bohaty et al., 2012; Hutchinson et al., 2021) as evidenced by a global shift in oxygen isotope

records from biogenic calcium carbonate (>1‰; Zachos et al. 2001; Coxall et al. 2005; Bohaty et al., 2012; Westerhold

et al., 2020). A positive deep-sea carbon isotope excursion of up to 1‰ (Zachos et al., 2001, Coxall et al,. 2005; Coxall

and Wilson, 2011; Westerhold et al.,  2020) and a change from a shallow ( 3.5 km) to a deeper ( 4.5 km) calcite∼ ∼

compensation depth (CCD) (Coxall et al., 2005; Rea and Lyle, 2005; Pälike et al., 2012; Dutkiewicz and Müller, 2021;
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Taylor et al., 2023) have also been observed and indicate that the carbon cycle played an important role in the changes

observed during the transition, although the mechanisms that caused the carbon cycle perturbation are still unsolved.

Carbon cycling acts through a variety of feedback mechanisms. Even though it is well recognized that changes in

atmospheric carbon dioxide (CO2) impact the Earth’s climate because of its large effect on temperature (Arrhenius,

1896;  IPCC,  2021),  the  mechanisms  controlling  CO2 levels over  long  timescales  are  still  a  matter  of  debate.  A

simplified  carbon cycle  theory  suggests  that  the  level  of  CO2 is  expected to  remain  in  a  steady state  over  multi

millennial (>10 kyr) timescales (Berner et al., 1983; DeVries, 2022). This stability is attributed to a dynamic interplay

of transfer of carbon between volcanic inputs, oceans, atmosphere and sequestration in marine sediments involving

several mechanisms such as weathering, volcanism, and the ocean’s biological pump.

However, the Earth’s pCO2 has, in fact, undergone substantial changes, from Glacial-Interglacial timescales (Sigman &

Boyle, 2000) to long term changes during the Cenozoic (Beerling and Royer, 2011; Anagnostou et al., 2016), thus

suggesting that the Earth’s carbon system operates in a more complex way than proposed in the canonical model.

Changes in the Southern Ocean productivity are thought to have altered pCO2 levels in the Earth’s past, specifically on

Glacial-Interglacial  timescales  (Archer  et  al.,  2000;  Sigman et  al.,  2010),  although  magnitude  and  timing  remain

debated. Changes in the late-Eocene Southern Ocean export productivity over 1 million years, as documented in our

research, could potentially have impacted CO2 levels, as hypothesized by Egan et al., (2013), based on Si isotope proxy

data for Paleogene Southern Ocean diatom productivity.

The carbon cycle perturbation at the EOT provides an opportunity to understand climate-carbon cycle feedback (Zachos

and Kump, 2005). The mechanisms proposed to explain such perturbations are processes operating gradually over long

timescales,  and may have had their origins in the middle to late Eocene. Preceding the abrupt change at  the E/O

boundary, the late Eocene was a period of gradual cooling and progressive CO2 levels decrease (Lauretano et al., 2021).

The events associated with this time period may have had substantial importance in pre-conditioning the climate system

prior to the major climatic shift at the E/O boundary (Egan et al., 2013). The potential main drivers for the initiation of

this global cooling and ice build-up in Antarctica are actively debated. Declining global atmospheric carbon dioxide

concentrations, and the opening of Southern Hemisphere oceanic gateways, namely the Drake Passage (DP) and the

Tasmanian Gateway (TG), are often proposed hypotheses to explain this transition (Coxall and Pearson, 2007; DeConto

et al. 2008). The decline of carbon dioxide levels is an important factor in driving cooler temperatures, and has been

suggested  as  the  crucial  factor  in  the EOT cooling  and  subsequent  build-up of  continental  glaciers  on  Antarctica

(DeConto and Pollard, 2003; Huber and Nof, 2006; Pagani et al.,  2011). Atmospheric CO 2 partial pressure (pCO2)

decline has robust observational support. Atmospheric  pCO2 has been shown to decline through the Eocene, from ca

1400 p.p.m. at the Early Eocene Climate Optimum (EECO, ca 51 to 53 million years ago) to about 770 p.p.m. in the

late-Eocene,.reaching a minimum of 550 ± 190 p.p.m. in the early Oligocene (Anagnostou et al. 2016). However, data is

noisy, with significant variations among different proxies and thus details of the magnitude and timing are still unclear.

Furthermore, the CO2  threshold (  780 p.p.m.v) needed for the onset of Antarctica glaciation, is highly dependent on∼

model boundary conditions while ice sheet model simulations reveal inter-model disagreement (Gasson et al., 2014).

Therefore, it is crucial to approach this leading hypothesis with caution due to these uncertainties.

The tectonic opening of the Southern Ocean gateways is considered a mechanism contributing to the climatic shift

because it  allows the initiation of  a  circum-Antarctic  flow,  leading to  the formation of  the  Antarctic  Circumpolar

Current (ACC) (Kennett, 1977; Barker, 2001; Scher and Martin, 2006; Toumoulin et al. 2020). This intense eastward

flowing current is proposed in this hypothesis to impact the regional and global climate by preventing tropical heat of
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low latitudes from reaching Antarctica,  promoting the thermal isolation of  Antarctica.  Numerous ocean circulation

model studies of this hypothesis have yielded conflicting results (Mikolajewicz et al., 1993; Najjar et al., 2002; De

Conto & Pollard, 2003; Sijp et al., 2009; Goldner et al., 2014; Ladant et al., 2014; Inglis et al., 2015) but most of these

earlier works were limited by unrealistic boundary conditions or other issues (Toumoulin et al., 2020, Hutchinson et al.,

2021).  Recent modelling circulation studies (e.g. Toumoulin et al.,  2020; Sauermilch, et al. 2021) demonstrate the

importance  of  the Southern gateway openings and the  proto-ACC on ocean cooling in  the  Southern Hemisphere.

Additionally,  glaciation has  itself  a  strong influence both on the circulation of  the Southern Ocean and on global

climate, via increased albedo, colder temperatures and increased latitudinal temperature gradients, and stronger zonal

winds (Goldner et al., 2014). There is increasing evidence for at least partial, if transient Antarctic continental glaciation

within the late Eocene (Scher and Martin, 2014), and thus this also needs to be considered in understanding how climate

and ocean change developed within this period.

In addition to the above physical impacts, the ACC is associated with the development of the Southern Ocean fronts that

contribute to upwelling-induced biological productivity (Chapman et al., 2020). Considering that the changes in the

Southern Ocean circulation have the potential to affect export productivity and via its link to carbon sequestration in

sediments, in removing CO2 from the ocean-atmosphere system, the 'CO2' hypothesis and the 'tectonic' hypothesis may

be linked, via the influence that gateways may have had on Southern Ocean circulation, increasing export productivity

enough to affect global  pCO2 (Egan et al., 2013). Therefore, evaluating export productivity patterns in the Southern

Ocean across the Eocene-Oligocene and its relationship with circulation and decline of atmospheric carbon dioxide

during this time period provide important  information about possible climate feedbacks in this prominent climatic

transition.

Many studies have shown variations in biological productivity during this time interval (Diester-Haass, 1995; Diester-

Haass and Zahn, 1996; 2001, Salamy and Zachos, 1999; Diester-Haass and Zachos, 2003; Schumacher and Lazarus,

2004; Anderson and Delaney, 2005; Villa et al., 2014), pointing towards a productivity increase associated with ocean

circulation changes that increased surface water nutrient availability (Diester-Haass 1992; Zachos et al 1996). However,

existing studies have mostly focused on single sites, whose paleoceanographic history may reflect local rather than

regional developments. A much broader spatial investigation is particularly important for understanding the influence of

large-scale ocean circulation on this process. Moreover, the timing of productivity changes differs among the studies

and different proxies, limiting our understanding of cause-and-effect relationship. This highlights the importance of well

constrained age models and use of consistent paleoproductivity proxies.

Here, we reconstruct changes in export productivity in the Southern Ocean across the late Eocene and early Oligocene,

and evaluate how the changes observed may be linked to ocean circulation changes and how they may have contributed

to the climate changes observed at this interval. We utilize biogenic barium (bio-Ba) accumulation rates to measure

marine export productivity.  Bio-Ba is defined as the fraction of total barium that is not associated with terrigenous

sources, sometimes referred to as  excess-Ba (Dymond et al.,  1992), and has been applied in several studies in the

Paleogene (eg. Nielsen et al., 2003; Anderson and Delaney, 2005; Faul and Delaney, 2010). It is considered a relatively

reliable proxy to estimate changes in paleoproductivity in the Southern Ocean. Newly generated carbon and oxygen

stable isotope records from the same samples of our bio-Ba data further constrain possible causative mechanisms for the

climatic shift at the EOT. We compare our export productivity proxy results to indicators of ocean circulation change,

such as Neodymium (Nd) isotopes. Neodymium isotopes have emerged as a valuable geochemical water mass tracer

(Piepgras  and  Wasserburg,  1982;  Martin  and  Haley,  2000,  Roberts  et  al.,  2010),  contributing  significantly  to  our
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understanding of the role of ocean circulation in the geological past. This proxy provides an opportunity to asses the

origin of water masses and reconstruct deep ocean circulation. Here, we use Nd isotope data to help understand gateway

opening,  paleoceanographic  changes and ice  sheet  history  during the  Eocene-Oligocene transition,  and how these

changes  may  have  influenced  marine  biological  productivity.  We  also  compare  our  productivity  records  to  well

established proxies for the global carbon cycle, specifically pCO2 and ∂13C of benthic deep sea foraminifera. 

Our understanding of the Eocene-Oligocene transition has been enhanced through modelling studies as they provide

means to compare several possible scenarios and generate ‘data’ for components of the system for which no direct

proxy data is available. However, all models are simplifications of complex, not fully understood systems; and are

dependent on parametrizations and calibrations to often sparse, noisy proxies that ground-truth model outputs. This

paper instead focuses on proxy evidence of the changes that occurred in this time interval. 

1.2. Paleoceanographic Setting

The Southern Ocean (SO) today is an important part of the global ocean circulation and climate system, interconnecting

the Atlantic, Pacific and Indian Ocean basins, providing and thus inter-basin exchange of ocean properties and heat

(Rintoul et al.,  2001). There are strong latitudinal gradients and seasonal changes in ocean properties which affect

surface water and export productivity, and thus this region’s role in global carbon capture and sequestration. Low light

levels and, in higher latitudes, extensive sea ice limit productivity during the winter months. Deep surface mixed layers

over the large areas of the Southern Ocean, beyond the shallow stratification effects of meltwater near the sea ice edge,

also tend to limit productivity in spring through fall as plankton is mixed below critical thresholds of light availability

(Deppeler and Davidson, 2017). The relationship between mixed layer thickness and productivity however is complex

(Nelson  and  Smith,  1991;  Li  et  al.  2021).  Southern  Ocean  productivity  is  thus  concentrated  near  the  Antarctic

Circumpolar Current (ACC), the dominant current in the region. This current is the longest and strongest ocean current

on Earth.  This  complex circulation  system is  driven  mainly by westerly winds,  resulting  in  Ekman transport  and

favouring deep water  upwelling.  This flow pattern is  possible in  the absence of  land barriers  and is governed by

bathymetry (Rintoul et al., 2001; Carter et al., 2008), while the strength of the current is driven by the strength and

location of the westerly winds, and thus, among other factors, the global latitudinal thermal gradient. The ACC is a key

component of the ‘ocean conveyor belt’, playing a role in the global transport of heat (Rintoul et al., 2001; Katz, et al.

2011). Moreover, this circumpolar current influences the strength of meridional overturning circulation and several

authors have proposed that this current is one of the main drivers of the Atlantic meridional overturning circulation

(AMOC) (Toggweiler and Samuels, 1995; Toggweiler and Bjornsson, 2000; Scher and Martin, 2006, Kuhlbrodt et al.,

2007, Scher et al., 2015, Sarkar et al., 2019).

The  ACC  is  structured  of  multiple  hydrological  fronts,  associated  with  specific  water  mass  properties  such  as

temperature and salinity (Sokolov and Rintoul, 2009). Orsi et al., 1995 proposed the traditional view of Southern Ocean

fronts.  It  consists  of  the Subantarctic  Front  (SAF),  the Antarctic  Polar  Front  (APF)  and the Southern ACC Front

(SACCF). Besides these main fronts, a Subtropical Frontal Zone (STFZ) can be found north of the ACC (Orsi et al.,

1995; Palter et al. 2013; Chapman et al., 2020). This frontal structure is fundamental to different processes that occur in

the region, such as the distribution of important nutrients through the exchange between deep and surface ocean, and the

exchange of tracers (Palter et al., 2013). Upwelling of Circumpolar Deep Water (CDW) brings nutrient-rich waters to

the surface  towards the  Polar  Front  Zone (PFZ)  where  Antarctic  Surface  Waters  (AASW) sink to  form Antarctic

Intermediate Water (AAIW), thereafter it extends into the Subantarctic Zone (SAZ) (Sarmiento et al., 2004) (Figure 1).
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Wind-driven upwelling, that occurs within the Southern Ocean fronts, enhances biological productivity in these regions

(De Baar et al., 1995; Moore et al., 1999). More recently, upwelling related to ACC bathymetry has been found as an

important mechanism for establishing phytoplankton blooms in the SO (Sokolov and Rintoul, 2007). This complex

structure involving ACC fronts, westerlies and the bottom topography, makes the Southern Ocean a highly productive

region. Iron remobilisation has also been shown to occur due to latitudinal variations of the ACC (Kim et al., 2009),

inducing increases in productivity.

The conventional assumption is that the ACC structure began to develop during the Cenozoic, with the opening of the

Southern Ocean pathways between South America and Antarctica and the following formation of the Drake Passage

(DP) and, also between Australia and Antarctica that allows the Tasmanian Gateway (TG) opening. Removing these

geographic barriers permitted a gradual development of circumpolar flow (Toggweiler and Bjornsoon, 2000). The TG

opening to intermediate and deep waters occurred in the late Eocene, ca 35.5 Ma (Stickley et al., 2004). In contrast,

tectonic reconstructions for the timing of the Drake Passage opening remain controversial, ranging from the late Eocene

(ca 41 Ma; Scher and Martin, 2004, 2006) to the late Oligocene (ca 26 Ma, Barker and Thomas 2004, Hill et al., 2013)

for shallow water exchange. Some studies pointed to deep water exchange occurring as late as the earliest Miocene (ca

22-23 Ma, Barker 2001; Lyle et al.,  2007). Even if the timing of the deepening of the Drake Passage is less well

constrained, a “proto-ACC” has been proposed as an earlier expression of the ACC and it is defined as a shallow-depth

circumpolar current (Scher et al., 2015, Sarkar, et al., 2019). Cramer et al. 2009 suggested that “proto-ACC" would

have played an important  role  in  the  ocean circulation changes that  occurred in  the  Eocene.  Furthermore,  even a

relatively shallow proto-ACC would have strongly affected surface water phyto- and zooplankton (Lazarus and Caulet,

1994), and thus potentially the mechanisms of surface water productivity in the region.

Many climate model studies have contributed insights into the ocean structure and circulation of the late Eocene (e.g.

Huber et al. 2004, Huber & Not 2006, Sipj et al., 2011, Sijp et al., 2016, Elsworth et al., 2017, Baatsen et al., 2020;

Toumoulin, et al., 2020; Sauermilch et al., 2021; Nooteboom et al., 2022). Although some of these experiments have

shown that opening of gateways was not sufficient to have caused the global cooling recorded by proxies (DeConto &

Pollard, 2003, Huber et al. 2004, Huber & Not 2006, Sipj et al., 2011, Baatsen et al., 2020), they acknowledge that the

circulation  patterns  have  changed  during  the  Eocene.  A recent  model  circulation  experiment  has  demonstrated  a

significant regional impact of the DP opening and its effects on ocean structure and dynamics even for shallow depths

(Toumoulin et al., 2020).

The organisation of  Southern Ocean proto-oceanic  fronts  may have  occurred during the late-Eocene as  shown by

microfossil biogeographic data (Lazarus and Caulet, 1994; Cooke et al., 2002).  This frontal system organization likely

played a role in major changes at that time period, including higher ocean productivity.

Evidence  of  significant  events  during  the  late  Eocene  highlights  the  importance  of  this  period  that  preceded  the

permanent glaciation in Antarctica. An interval of increasingly heavy global benthic oxygen isotope values in the late

Eocene, at ca 37 Ma have been interpreted to reflect pre-EOT glaciation and cooling, this episode is referenced as

PrOM event (Priabonian Oxygen isotope Maximum, Scher et al., 2014). Additional evidence for a prominent cooling

episode has been found during this time period (Anderson et al., 2011; Douglas et al., 2014). Despite uncertainties about

the nature and extent of the earliest ice in Antarctica, these changes imply that paleogeographic reconfiguration has

affected the late Eocene Antarctic climate and it is likely that a combination of processes favoured the development of

permanent glaciation in Antarctica.
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Given the importance of changes during the Eocene-Oligocene time interval, especially the ACC development and its

frontal structure to the climate system and ecosystems, it is crucial to investigate the timing and magnitude of late

Eocene paleoceanographic changes in the Southern Ocean, and equally important to expand our understanding of the

implications of such changes on paleoproductivity and how these mechanisms are linked to a changing climate. 

Our multiproxy approach and wide coverage allow us to test the hypotheses:

H1: Changes in ocean circulation patterns that took place during the late Eocene and early Oligocene (eg. development

of a proto-ACC and strengthening of AMOC) contributed to the increase in biological productivity in the Southern

Ocean.

H2: The export productivity increase that preceded the EOT may have been temporally correlated to, and thus may have

contributed to the drawdown of pCO2.

First, we investigate the export productivity changes across the late Eocene to early Oligocene in three different regions

in the Southern Ocean. Then we compare our results to the paleo-circulation changes that occurred at the same time

period, and lastly compare our productivity records to the temporal pattern of change in Eocene-Oligocene pCO2. We

conclude  by  summarising  the  implications  of  the  changes  in  ocean  circulation  and  the  possible  climate  driving

mechanisms that led to the cooling of Earth. 

2 Materials and Methods 

2.1 Site Descriptions

We investigated sediment samples from 3 Ocean Drilling Program (ODP) Sites in the Southern Ocean (Table 1). ODP

Site 1090 on the southern flank of the Agulhas Ridge in the Southern Atlantic Ocean (42°54.8’S, 8°53.9’E, water depth

3,702m), ODP Site 689 on the southern flank of the Maud Rise in the Southern Atlantic Ocean (64°31’S, 3°6’E, water

depth  2,253m)  and  ODP Site  748  on  the  southern  part  of  the  Kerguelen  Plateau  in  the  Southern  Indian  Ocean

(58°26.45’S, 78°58.89’E, water depth 1,290.9m). All the sites lie on topographic highs. The Agulhas Ridge comprises

an elongate part of the Agulhas-Falkland Fracture Zone (AFFZ). The ridge rises  3000m above the surrounding floor∼

and  constitutes  a  topographic  barrier,  having  a  strong  influence  on  the  exchange  of  water  masses  (Gruetzner  &

Uenzelmann-Neben, 2015) between high and lower latitudes. The Maud Rise is a seamount, its elevation rises almost

3000 m from the seafloor (Brandt et al., 2011). Kerguelen Plateau is a large topographic high in the Indian sector of the

Southern Ocean. We selected samples from the middle Eocene through the E-O boundary, depending on the sample

availability.

Currently, the sites studied are located in the Southern Ocean through the ACC. Site 689 is located well south of the

Polar Front Zone (PFZ),and 748 slightly to the south of the  PFZ and Site 1090 in the Subantarctic zone, between the

Subtropical front (STF) and the Subantarctic Front (SAF) (Figure 1). Across the Eocene-Oligocene transition, the sites

were shallower (Table 1), ranging between ca 1.2 and 3 km paleo water depth. These depths are well suited to capture

signals of export productivity to intermediate-deep waters. Sites 689 and 748 locations were similar to today and site

1090 was as much as 5° farther to the south (Gersonde et al., 1999) (Table 1).

The major lithology from the lower Eocene to the upper Oligocene at the Maud Rise is composed of calcareous and

silicious oozes (Barker et al., 1988). Kerguelen Plateau site is composed mainly of nannofossil ooze and chert (Barron

et al.,  1989). Agulhas Ridge is predominantly composed of diatoms and nannofossil ooze, with CaCO3  wt% highly

variable, ranging from non-detectable to 69% of sediment throughout the study interval. (Gersonde et al., 1999) with
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rare occurrences and barren intervals of planktic and benthic foraminifera making it difficult to establish stable isotope

records at this site.

Table 1. Position of the ODP Sites studied in the present-day and in the late-Eocene (  37 Ma). Paleocoordinates∼

calculated based on Seton et al. (2012) rotation model.

Site Geographic
Setting

Latitude Longitude Water
depth (m)

Paleodepths (m) Paleo-
latitude

Paleo-
longitude

1090 Agulhas Ridge 42°54.8’S 8°53.9’E 3 702
ca. 3,000-3,300

(Pusz et al. 2011)
ca 47°33’S ca 1°46.8’ E

689 Maud Rise 64°31’S 3°6’E 2 253
ca. 1500

(Diester-Haass
and Zahn, 1996)

ca 64°19.2’S ca 2°43.2’ E

748
Kerguelen

Plateau
58°26.45’S 78°58.89’E 1 290.9

ca. 1200
(Wright et al.,

2018)

ca 56°48.6’S
ca 75°36’ E

2.2 Age Models, Linear Sedimentation Rates

Revised age models for the ODP Site 1090, ODP Site 689 and ODP Site 748 made for this study were based on all

magnetostratigraphic and biostratigraphic data available, and both models and data are available fromon the Neptune

database-NSB system (Renaudie et al., 2020) (Figures S1-S4). All ages in our study are given in the GPTS standard

used by NSB (Gradstein et al. 2012), or have been remapped to this scale from prior studies. Differences between this

and more recent GPTS scales in the Cenozoic are minor, and generally less than other age model uncertainties for the

sections in our study.

ODP Site 1090 has an age model constructed from shipboard magnetostratigraphic  “U-channel” measurements, and the

records fit well to the geomagnetic polarity timescale (GPTS) (Channell et al., 2003). Nannofossil biostratigraphy has

confirmed the Chron ages (Marino and Flores, 2002), as well as foraminiferal biostratigraphy (Galeotti et al. 2002),

strontium isotopes (Channell et al., 2003) and oxygen and carbon isotope data from benthic foraminifera (Zachos et al.,

2001; Billups et al., 2002). This integration of several age indicators and their consistency makes this a robust and very

well constrained age model.

Magnetostratigraphic data for ODP Site 689 is partially reinterpreted from the measurements originally made by Spiess,

1990. A new high-resolution study of Eocene-Oligocene "U-channel" samples from this site shows a high correlation

with the GPTS (Florindo and Roberts, 2005). Calcareous nannofossil datums (Wei and Wise, 1992; Wei, 1992, Persico

and Villa, 2002, 2004), planktonic foraminiferal datums (Kennett and Sott, 1990; Thomas, 1990; Berggren et al., 1995)

and Argon-argon (40Ar/39Ar) dating (Glass et al., 1986; Vonhof et al., 2000) are used to re-calibrate ages for this site.

A high-resolution magnetostratigraphic study from ODP Site 748B was carried out by Roberts et al. 2003 in continuous

“U-channel”  samples,  revising  the  shipboard  analysis  from  Inokuchi  and  Heider,  1992.  Calcareous  nannofossil

biostratigraphy (Aubry 1992), planktonic foraminiferal biostratigraphic datums (Berggren et al., 1995), diatom datums

(Baldauf and Barron, 1991, Roberts et al., 2003) and strontium isotope ages (Zachos et al., 1999; Roberts et al., 2003)

were re-evaluated for a better age model.
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Accumulation rate fluxes are obtained by calculating the product of linear sedimentation rates (LSR) and shipboard

measured dry bulk densities (DBD), thus a robust age model is crucial for this calculation because it determines the

linear  sedimentation  rates.  We use  a  straightforward  LSR calculation  between  age-depth  control  points  based  on

magnetostratigraphic data, stable isotopes and biostratigraphic data. Mass accumulation rates (MARs, mol cm -2 kyr-1)

were calculated using LSR based on the above age models multiplied by DBD.

Since bio-Ba AR is a direct function of LSR, it is essential to evaluate any possible biases due to this. Figure S5 shows a

comparison of linear sedimentation rates and bio-Ba AR. This comparison showed a high amplitude peak at ODP Site

1090, with LSR of 4.11 cm kyr-1 at the late Eocene, this high rate is based on a very constrained model. The LSRs for

ODP Site 689 vary from 0.1 cm kyr-1 during the early Oligocene to up to 1.3 cm kyr-1 in the late Eocene, whereas ODP

Site 748 has more uniform values during the late Eocene. The available age data for our sites allow some variation in

the placement of the line of correlation, and thus the precise timing and magnitude of sedimentation rate changes on the

scale of ± ca 0.5 m.y. are not well constrained. Patterns and calculated values over longer time scales are however

thought to be robust.

2.3 Stable Isotope Analyses

Stable isotopes of carbon and oxygen were measured both on the bulk fine fraction (<45µm) and benthic foraminifera.

Bulk sediments were oven-dried and washed through different sieve sizes (125 and 45µm). Smear slide observations

indicate that the main carbonate composition of the fine fraction is coccoliths, therefore stable isotopic compositions of

bulk fine fraction (<45 µm) reflect primarily nannofossil isotope signals. Contamination by non-coccolith carbonate

such  as  fragments  of  foraminifera  shells  is  minimal  (Figure  S5).  Fifteen  to  twenty  tests  of  benthic  foraminifera

(Cibicidoides spp.) were picked from the >125-µm-size fraction. Foraminiferal tests were ultrasonically cleaned using

ethanol and oven-dried. Stable isotopic analyses were carried out at the Stable Isotope Laboratory of the Museum für

Naturkunde (Berlin, Germany) on a Thermo Isotope Ratio Mass Spectrometer. All values are reported in the δ-notation

in parts per mil (‰) relative to the Vienna Pee Dee Belemnite (VPDB). In this study, we applied an adjustment of

+0.64‰  (Shackleton  and  Opdyke,  1973;  Shackleton  et  al.,  1984)  to  all δ18O  values  of  the  benthic  foraminifera

Cibicidoides to account for disequilibrium effects.

2.4 Barium Analyses and Biogenic Barium as a Paleoproductivity Proxy

Barium (Ba) and aluminium (Al) were analysed by ICP OES, performed at the ElMiE Lab at the German Centre for

Geosciences  (GFZ,  Potsdam,  Germany)  using  a  5110  spectrometer  (Agilent,  USA).  The  analytical  precision  and

repeatability  were generally  better  than 2% and it  is  regularly tested  by  certified  reference  material  and  in-house

standards. For preparation, 2g of each sample w grounded to assure grain size distribution, and digested by Na2O2

fusion and HCl using ultrapure reagents, following the method by Bokhari and Meisel (2017). Intensity calibration was

performed by external calibration using the same batch of solvent to ensure matrix matching. The analytical blank was

negligible compared to the sample concentration.

Using barium as a paleoproductivity proxy requires some adjustments because other biogenic sources may contribute to

the barium content in the sediment. Detrital aluminosilicate may affect the barium signal in Southern Ocean sediments.

In order to solve this issue and reveal  aluminosilicate contributions,  the Biogenic Barium calculation was used as

proposed by Dymond et al., 1992, following Eq (1): 
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Biogenic Barium (Bio Ba) = (Ba total) sample - (Ba/Al) bulk continental crust x Al sample  (1)

This assumes that the aluminium (Al) concentration and the average continental crust abundance are representative of

the detrital Ba component. The Ba/Al crust ratio of 0.0075 is the global average value from sedimentary rocks as

suggested by Dymond et al. (1992). This value is based on various compilations of elemental abundances in crustal

rocks. This normative calculation potentially introduces uncertainty in samples with high and variable detrital barium,

but considering that clay assemblages and weathering regimes were relatively constant during the early Paleogene in the

Southern Ocean, therefore, the crustal ratio probably did not vary much (Robert et al. 2002).

2.5 Data Compilation

2.5.1 Neodymium Isotope Data

Neodymium isotopes in seawater reflect the different weathering sources of neodymium that affect each water mass.

The isotope values act as conservative elements during ocean mixing. They are therefore a robust water mass tracer, and

are faithfully archived in sediments (Piepgras and Wasserburg, 1982; Martin and Haley, 2000).  Their behaviour in

seawater and the conservation of the signal in sediments make them a valuable proxy for paleoceanographic studies and

past ocean circulation reconstruction. Fossilised fish teeth are commonly used and considered robust archives to extract

Nd isotopic signatures because they incorporate and preserve their Nd signature during very early diagenesis (Martin

and Scher, 2004), and they can be found in deep-sea sediment samples all over the world and in many geologic time

intervals. The Nd signal is given in εNd, where εNd is the ratio 143Nd/144Nd of a sample relative to the same of the bulk

Earth, in parts per 10,000.

In this study, we compiled published Nd isotope data from fossil fish teeth, from the same Ocean Drilling Program

(ODP) sites that we investigated in the Southern Ocean (ODP Site 1090 Agulhas Ridge, Scher and Martin, 2006; ODP

Site 689 Maud Rise, Scher and Martin, 2004; and ODP Sites 738, 744 and 748 on the Kerguelen Plateau, Scher and

Delaney, 2010; Scher et al., 2011; Scher et al., 2014; Wright et al., 2018) and explore the Nd isotope variability to

examine the intrusion of waters from the Pacific to the Atlantic sector of the Southern Ocean. We then used these data

and our records to explore the evolution of the Southern Ocean circulation and significant circulation changes across the

Eocene-Oligocene transition. Sources of Nd isotope data are given in Table S1.

2.5.2 pCO2 Data

A variety of geological proxies have been applied in numerous studies to reconstruct the partial pressure of atmospheric

CO2 (pCO2) during the Cenozoic Era (e.g. Pagani et al., 2005, 2011;  Künschner et al., 2008; Retallack et al., 2009;

Beerling & Royer 2011, Anagnostou et al., 2016, 2020). Given the low published sampling density through the critical

Eocene-Oligocene  interval,  we  compiled  published  pCO2  data  from marine  and  terrestrial  proxies  that  have  been

identified as reliable for reconstructing  pCO2 during this period. The marine geochemical proxies include alkenone-

based estimations,  carbon and boron isotope  (δ11B) composition  of  well-preserved planktonic  foraminifera  calcite.

Proxies from the terrestrial reservoir include Paleosols and Stomatal frequencies. Our atmospheric CO2 compilation

(Table S2) consists to our knowledge all the currently available proxy data on Eocene and Oligocene  pCO2 records,

including all data compiled in previous syntheses through extensive scientific community efforts in paleo CO2 database

(The Cenozoic CO2 Proxy Integration Project Consortium, 2023), such compilations are commonly used to estimate
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past pCO2, although it is known that there are limitations and variation among them (IPCC, 2021). Zhang et al. (2013)

specifically argued that compositing limited, short time interval data from different proxies, and different localities is

likely to introduce significant short-term bias at individual data series end-points into the resulting fitted curve, and

instead generated a 40 My long history of Cenozoic pCO2 using a single proxy from a single section (Site 925 in the

equatorial Atlantic). We consider this study’s results to be the best and most complete single source of information on

the Cenozoic trend of atmospheric pCO2. However, precisely because of the substantial amounts of between proxies and

between locality variation, data using a single proxy and from a single site is also potentially not representative of

global pCO2 history. We thus use both the single site results of Zhang et al. (2013) and the full, multi-site and multi-

proxy compilation (Supplementary material) in evaluating our own study’s results.

3 Results

3.1 Biogenic Barium

Biogenic Barium accumulation rate (bio-Ba AR) records (Figure 2) show a pronounced rise in the late Eocene when the

values were up to twice as high as in previous periods for all sites studied. At Kerguelen Plateau ODP Site 748, we also

observe a previous and smaller increase around the middle Eocene Climatic Optimum (MECO, ca 40 Ma). At Maud

Rise the increase began at ca 38.3 Ma and persisted for around 1.5 Myr. bio-Ba ARs show a high value in the Agulhas

Ridge at ca 36.8 Ma which is induced by a high sedimentation rate (Figure S5a). Although export productivity was

higher (maximum values to about 16.8 µmol bio-Ba cm-2 ky-1) at Maud Rise compared to the other sites -the Kerguelen

Plateau reached maximum values of about 14.3 µmol cm -2 ky-1 and the Agulhas Ridge site 13.74 µmol cm -2 ky-1, the

records show a high degree of temporal correspondence in the late Eocene peak (ca 36.8 Ma). Bio-Ba values were low

at all sites between ca 36 and 34.5 Ma. Between ca 34.5 Ma and ca 33.3 Ma, which includes the EOT interval, bio-Ba

AR increased in  both sites  of  the Atlantic  Sector,  but  these increases  were not  very concurrent  between the sites

investigated. On the Agulhas Ridge, ODP Site 1090, the rise in bio-Ba (from 7.37 to 20.46 µmol cm-2 kyr -1) is observed

in the very latest Eocene (ca 34.3), just before the Oi-1 event. At Maud Rise, ODP Site 689, the increase is not observed

until ca 1 Myr after, in the early Oligocene (maximum value 16.25 µmol cm -2 kyr-1 at ca 33.3 Ma). On the Kerguelen

Plateau, ODP Site 748, the increase in export productivity registered by bio-Ba during the Oligocene is notably smaller

than in the Atlantic sites, with values not higher than the low values observed during the Eocene.

Our  bio-Ba  results  are  in  general  concordant  with  the  temporally  more  limited  data  obtained  by  prior  studies  of

Southern Ocean sites (Anderson and Delaney, 2005, Site 1090; Diester-Haass and Faul 2019, Site 689) (Figure 2).

However, our results for Kerguelen Plateau Site 748 differ from those of Faul and Delaney, 2010 for nearby Site 738,

where the latter estimate bio-Ba accumulation rates up to twice those obtained in our study of Site 748. The differences

may be due to the different locations of the two sites, Site 738 is located several degrees further south, and in ca 1 km

deeper water depth. The bio-Ba proxy is also very sensitive to sedimentation rates, and the differences may be due to

the  poor  age  control  for  Site  738  which  in  the  studied  time  interval  consists  only  of  a  few  rather  scattered

biostratigraphic  events  (Figure  S4a),  resulting  in  substantially  different  age  models  between  our  study,  Faul  and

Delaney (2010), and other recent studies of this site, e.g. Huber and Quillevere (2005). In these studies the location and

extent of hiatuses, and the uniformity of sedimentation rates varies considerably (SOM Figure S4b). The age model for

Site 748 by contrast (Figure S3) is very well constrained by coherent biostratigraphic events from multiple groups of
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microfossils, Sr isotope stratigraphy and paleomagnetic stratigraphy, and we therefore accept the results from Site 748

as being more reliable.

When the data for individual sites is composited together, the behaviour of the Southern Ocean region can be roughly

estimated, even though our geographic coverage (lacking data from the Pacific/New Zealand sector) is incomplete and

thus may not be entirely representative of the Southern Ocean as a whole. A lowess curve fit to the composited bio-Ba

data shows that the key patterns noted in individual records are retained in the composite signal, and thus that Southern

Ocean productivity can be characterised as having had two intervals of high values at around 37 and 34 Ma.

3.2 Oxygen and Carbon Isotopes

Our new oxygen (Figure 3C and E) and carbon (Figure 3D and F) stable isotope data allow us to identify previously

noted trends and distinct events during the period studied. Benthic δ 18O values exhibit a consistent increasing trend

during the late Eocene indicating the overall decrease of oceanic bottom water temperatures. A sharp increase occurs at

the Eocene-Oligocene transition (between 33.9 and 33.3 Ma) at both sites examined. This rapid shift has been observed

in several sites in the Southern Ocean (e.g., Muza et al., 1983; Miller et al., 1987; Mackensen and Ehrmann, 1992;

Zachos et al., 1996; Billups et al., 2002; Pusz et al., 2011) and it is well established as a global signal (Zachos et al.,

2001). It is generally interpreted as a combination of deep ocean water cooling and major ice growth on the Antarctic

continent (Zachos et al., 2001). At Site 689, the planktic δ18O curve almost mimics the benthic one. The δ18O values

measured on fine fraction reveal a heavier trend more pronounced at ODP Site 748 (Kerguelen Plateau) compared to

ODP Site 689 (Maud Rise). During the late Eocene, around 37 Ma, heavier δ18O values are observed in both the Atlantic

and Indian Sectors of the SO, the benthic/fine fraction ratio declines, indicating more homogenous temperature in the

water column. Both benthic and planktic foraminifera δ13C records show fluctuations across the period studied, with

low values across the Eocene-Oligocene boundary, followed by an increase that accompanied the δ 18O increase and low

values  again  in  the  upper  Oligocene.  The  benthic  trend  is  also  observed  by  previous  data  from  the  same  sites

(Mackensen and Ehrmann, 1992; Diester-Haass and Zahn, 1996; Bohaty et al., 2003). The fine fraction records show

elevated δ13C values between Late Eocene to Early Oligocene, followed by a decreasing trend during the Oligocene

(from ca 33.2Ma). At Site 748, the fine fraction δ13C curve shows less fluctuation than the benthic curves during the

middle Late Eocene. A synchronous δ13C increase (ca 0.6‰ shift) is observed at 36.5 Ma. Elevated fine fraction δ13C

values are observed from the late Eocene until the early Oligocene, coherent with previous studies (Bohaty et al., 2003),

while the benthic values stay low during the same period (Figure 3D and F).

3.3 pCO2 Proxies

As noted above, given the complexities and potential biases of compiling data from different proxies and different time

intervals, we prefer to use the single site single proxy time series of pCO2 from Zhang et al. (2013). This data (Figure 4)

shows two peaks in the late Eocene, with a maximum for the entire study interval at ca 37 Ma and a smaller peak at ca

34.5 Ma, and a rapid drop of over 200 ppm from nearly 1000 to ca 750 ppm in the earliest Oligocene (ca 33.5 Ma).

Despite the limitations of multi-proxy, multi-site compilations, the compiled data (Table S2; Figure S7) shows the same

basic features, nor does the result appear to be sensitive to the precise choice of data to include in the analysis.

4 Discussion
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4.1 Correlation of Productivity to Ocean Circulation, Glaciation and pCO2 Change

Intervals of high export productivity (bio-Ba) exhibit synchronous changes with intervals of changes in oxygen and

carbon stable isotopes and pCO2 data (Figures 3 and 4). Notably, these intervals occur in the late-Eocene (  37 Ma) and∼

at the E/O boundary ( 34 Ma). This correlation is highly suggestive that ocean circulation, glaciation, productivity and∼

atmospheric pCO2 changes are interconnected. It could be assumed that (1) primary processes, such as ocean circulation

and glaciation are independently driving productivity and pCO2 changes, or (2) a cascading effect, with glaciation and

ocean circulation influencing productivity and, consequently, altering atmospheric pCO2 levels. While we cannot in our

study distinguish between these two possibilities, we explore the second, as proposed by Egan et al. (2013), in which

changes in ocean conditions due to tectonic-climate drivers affect productivity, and the latter in turn pCO2 levels.

4.2 Late Eocene Productivity Event and its Potential Impact

The noticeable bio-Ba AR peak at  36.8 Ma (Figure 2), suggests an important, ca 1 My long event of approximate∼

doubling of export productivity during the late Eocene, preceding the significant cooling and the first formation of large

Antarctic ice sheets at the Eocene-Oligocene boundary. The temporal synchronicity among different site locations in the

Southern  Ocean  suggests  that  the  process  driving  this  enhanced  export  productivity  in  the  late  Eocene  occurred

throughout the Southern Ocean, requiring a mechanism that increased the delivery of nutrients to the surface ocean.

Our findings corroborate previous paleoproductivity  studies  that  indicate  an increase  in  export  productivity  in  the

Atlantic Sector of the Southern Ocean during this time period. Anderson and Delaney (2005) found several peaks in

productivity indicators at the Agulhas Ridge during the same time interval, and benthic foraminiferal accumulation rates

show an increase in paleo-primary productivity on Maud Rise (Diester-Haass & Faul, 2019) (Figure 2). A pronounced

opal abundance peak is also documented by Diekman et al. (2004) between 37.5 and 33.5 Ma at the ODP Site 1090.

Our results now show that the 37 Ma event extended at least as far as the Kerguelen Plateau in the Indian Ocean sector,

with a substantial peak around 37 Ma and an earlier one near 40 Ma, thus affecting a large portion of the Southern

Ocean region.

A direct analysis of the impact of the potential significance of this event for the development of late Eocene global

climate depends on two key factors: the extent to which the increased productivity contributed to enhanced carbon

sequestration, and the magnitude of sequestration over the ca 1 my interval of enhancement. Understanding the impact

of productivity on carbon sequestration for the Eocene oceans however is complicated by the lack of knowledge of

several factors that influence this process. These factors include our ability to estimate the impact of higher productivity

on carbon sequestration is limited, as many of the factors that affect this in the modern ocean are poorly understood for

Eocene oceans (export efficiency to the subsurface waters, rates of transport and degradation in the water column and

upper sediment layers, organic carbon content of Southern Ocean Eocene pelagic sediments; as well as transport of

organic  carbon  by  subsurface  water  layers  in  the  late  Eocene  oceans  to  lower  latitude  areas  of  productivity  and

sequestration. We therefore cannot directly calculate the impact that the observed productivity change had on pCO2.

Instead we take an indirect approach, comparing the productivity history to the history of pCO2 and potential drivers of

productivity change such as ocean circulation and climate change. 

4.3 Surface Water Changes in Physical Conditions in the Late Eocene
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The  late  Eocene  is  generally  accepted  as  a  time  interval  of  gradual  cooling  of  Southern  Ocean  waters.  Indeed,

biomarker-based temperature estimates reveal substantial (3-5 °C) high latitude sea surface temperatures (SST) cooling

within the late Eocene (Liu et al., 2009; O’Brien et al., 2020). Our fine fraction stable oxygen isotopes confirm this

cooling trend following MECO, with a distinct peak at 37 Ma during the Eocene, matching the peak cooling reported by

O’Brien  et  al.  (2020).  This  interval  of  maximum δ18O values  occurred  during  the  same interval  in  which  export

productivity increased (Figure 2). In this interval the difference in the δ18O gradient between benthic foraminifera and

fine fraction (nannofossil) carbonate is less pronounced. This increase in similarity is interpreted as having been caused

by a decrease in water column stratification and enhanced vertical mixing. 

This change in export productivity in the late Eocene is coeval with a change towards increasing variability of carbon

stable isotopes (δ13C) of benthic foraminifera (Figure 4). Although δ13C in individual sections can also represent local

effects, usually there is a strong component of global changes in carbon reservoirs, and indeed our local measurements

closely align with the global curve (Figure 3B, D and F). In the global context, a shift towards more positive values in

the benthic δ13C at  37 Ma indicates a carbon cycle perturbation. This shift coincides with the export productivity∼

changes observed in our study. One possible explanation is that higher productivity may have elevated the export flux of

organic carbon to sediments, thereby increasing the marine organic carbon burial and preferentially scavenging the

lighter 12C from the carbon pool. 

4.4 Oceanographic Circulation Drivers of the Late Eocene Productivity Change

We propose that the main cause for the productivity increase observed in the late Eocene is the upwelling of nutrient-

rich deep waters.  Understanding however the physical  oceanographic  mechanisms that  led to  increased upwelling

throughout the Southern Ocean requires examining links between the different processes that occurred at that time

period.  Changes  in  paleoceanography  during  the  Paleogene  were  significantly  mediated  through  tectonic  re-

organisation, such as the Southern Ocean gateways opening (i.e., the Drake Passage and the Tasman Gateway), changes

in the Atlantic-Arctic gateway and in the Tethys Seaway.

In this context, the Southern Ocean circulation during this time period is still debated due to uncertainties concerning

the opening of the gateways that led to the development of the Antarctic Circumpolar Current (ACC). Estimates for the

onset of the modern-like ACC have not reached a consensus yet and vary from as early as middle Eocene (ca 41 Ma,

Scher & Martin, 2006; ca 35.5 Ma, Stickley et al. 2004) to middle Oligocene (ca 23Ma; Pfuhl and McCave, 2005). This

inconsistency suggests that the onset of ACC could have been a gradual or an intermittent change. Further, local proxy

records cannot distinguish between regionally developed fronts and true circumpolar flow (i.e. ACC).

In addition to δ18O and δ13C, εNd has been used to identify circulation changes and water masses exchange through the

Eocene (Scher and Martin, 2004, 2008; Scher et al., 2014; Huck et al., 2017; Wright et al., 2018). Nd isotopes are one of

the most robust tracers of water mass origin (Frank, 2002). The residence time of Nd in oceans is much shorter (300-

1000 years) than ocean mixing time and is thus distinct at a given location. Further, the isotope composition of the Nd

ocean budget is solely determined by terrigenous contribution. The latter is balanced by Nd sinks that  remove Nd

quantitatively, yet this only influences the net budget and thus the magnitude and/or swiftness of changes to the εNd

composition. However, mixing of water masses, e.g. through lateral or vertical mixing, can also cause changes as long

as they occur more rapidly than the residence times.
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In the late Eocene, starting at 37 Ma, Scher and Martin (2004) found a dramatic positive shift in ε-Nd values in the

Atlantic sector of the SO that they interpreted as the influx of Pacific deep waters, due to its characteristic of more

radiogenic (positive) waters, not previously observed in the Atlantic Ocean. Recently published Nd isotope records from

the Kerguelen Plateau (Wright et al., 2018) revealed a long-term negative trend during the late Eocene, which also

suggests  that  the  water  mass  mixing between the Pacific  and Atlantic  preceded 36 Ma.  εNd (t)  records from the

Kerguelen Plateau in fact  showed values comparable to modern CDW during the Oligocene, inferring water mass

composition similar to the present day. Thus, Nd isotope data support at least partial opening of Drake Passage by the

late Eocene (before 36 Ma), consistent with plate tectonic reconstructions (Livermore et al., 2005, 2007). Regardless of

the depth, Neodymium isotope evidence for late Eocene opening of the Drake Passage suggests that increased fetch for

surface flow and changing deep water composition could have had changes in the surface water conditions in the South

Atlantic sector of the late Eocene Southern Ocean.

This  has  been  explicitly  demonstrated  in  a  recent  modelling  study  conducted  by  Toumoulin  et  al.  (2020).  They

demonstrate that the Drake Passage opening, even at shallow depth, notably connects prior regional frontal systems

together, thereby allowing the formation of a proto-ACC; and has a strong effect on the Southern Ocean Eocene water

mass structure, inducing ocean cooling in most of the Southern Hemisphere. These temperature changes are not linear

and differ from one region to another, with DP opening causing changes in the mixed layer depths and provoking

different responses in the Atlantic and Indian Sectors of the SO. In the Atlantic and Indian Ocean sectors in particular,

very deep seasonal mixing (several hundred meters) over broad areas of the entire region is replaced by more moderate

levels of mixing (generally ca 200 m or less), except near the proto-polar front region, where seasonal mixing of 300-

400 m still occurs. Vila et al. 2014 have found nannofossil assemblages characteristic of cool sea surface waters in the

late-Eocene in Kerguelen Plateau samples. Cooler temperatures are coeval with the paleoceanographic re-organization

and intensified upwelling that we infer for this time period, while differences in the depth of the mixed layers between

ocean basins may explain the different magnitude of export productivity observed in the Atlantic and Indian sectors of

the SO.

The wind-driven eastward flow and the characteristic fronts of the modern ACC support the upwelling of nutrient-rich

water to the surface and consequently high levels of productivity. On the balance of evidence, it seems that the export

productivity  seen  in  our  data  in  the  late  Eocene  is  likely  to  have  occurred  in  response  to  a  proto-ACC front’s

development and its associated upwelling. The inferred onset of a proto-ACC in the late Eocene and our finding of

increased upwelling fits the hypothesis that ACC type circulation itself helps drive the AMOC circulation (Toggweiler

and Bjornsson, 2000; Katz et al., 2011; Sarkar et al., 2019). A proto-ACC causes SO upwelling, and thus provides

support for increasing AMOC-like circulation in the late Eocene as an additional cause of increased upwelling as a

causative  mechanism  of  the  export  productivity  event.  Temperature  asymmetry  between  Northern  and  Southern

Hemisphere and comparisons between benthic 𝛿13C records provide evidence for the strengthening of the AMOC in the

late Eocene (Elsworth et al., 2017).

4.5 Eocene-Oligocene Boundary Productivity Changes 

The earliest Oligocene, following the E/O boundary, has been suggested as a period of a significant rise in biological

productivity in high southern latitudes (Diester-Haass, 1995, 1996; Diester-Haass and Zahn, 1996, 2001). However, in

contrast to the late Eocene event, the export productivity changes across the Eocene-Oligocene boundary observed in
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our study were not always concurrent between the sites investigated (Figure 2). In the Atlantic sites, export productivity

increases and decreases several times from the late Eocene to early Oligocene. We thus argue that the fluctuations in

export productivity that occurred in the Southern Ocean during this global climatic re-organization are more strongly

modulated by local parameters, whereas the late Eocene productivity event is more uniform and reflects the global re-

organization of ocean circulation. If the trends observed in export productivity across the EOT were regulated only by

global, or at least regional temperature and circulation changes, then we would observe significant changes also in the

Indian sector of the Southern Ocean. It seems however that productivity increase was more pronounced in the Atlantic

sector of the Southern Ocean.

Today, the Southern Ocean (SO) has a frontal system that strongly impacts circulation, primary productivity and the

entire climate system (Chapman et al., 2020). The Antarctic Polar Front (APF) is particularly important for controlling

nutrient distribution. Latitudinal variations of the APF for example have been shown to alter regional productivity over

the glacial cycles (Kim et al., 2014, Thole et al., 2019). The causes of the lack of significant export productivity changes

in the Indian sector of the Southern Ocean during the early Oligocene after the Eocene-Oligocene boundary are unclear.

The Kerguelen Plateau may not have been located in a position favourable to nutrient-rich upwelling. In addition, the

regional frontal migration may have been more intense in the Atlantic sector compared to the Indian sector of the SO.

4.6 A Scenario for Southern Ocean Productivity and Circulation Change in the Late Eocene

The patterns of productivity change seen in our study can be placed in an (admittedly speculative) scenario, which is at

least compatible with prior studies and modelling of conditions in the late Eocene austral ocean region and Antarctica.

In the earliest interval covered in our study (ca 40-38 Ma) productivity was in most sites fairly low (Figure 5a). At this

time there is little evidence for a significant influx of Pacific waters into the Atlantic, and the Drake Passage is thus

assumed to be effectively closed to ocean circulation. 

During the 38-36 Ma interval, evidence summarised by Scher et al. (2014) suggests that a significant, if transient,

glaciation  event  occurred  on  the  Antarctic  continent-the  Priabonian  oxygen maximum,  or  PriOM.  If  sufficient  in

magnitude this would have significantly affected circulation throughout the austral ocean region, with strengthened

temperature gradients, invigorated circulation (Houben et al., 2019), and increased upwelling (Goldner et al, 2014). This

would account both for the substantial increase in productivity, and the broad geographic extent of the increase seen in

our data (Figure 5b). The cause of this glaciation event is unknown, but may be related in part to the trend in the late

Eocene towards lower atmospheric pCO2 interacting with orbital fluctuations in polar insulation as explored in model

simulations by Van Breedam et al. (2022).

With the end of transient glaciation, the atmospheric forcing of ocean circulation would have declined, and with it the

high levels of productivity seen in our data (Figure 5c). However, by this time (ca 36-34 Ma) the Nd isotope data

suggests that a significant influx of Pacific water was reaching the South Atlantic sector of the austral ocean (Scher and

Martin, 2004), and consequently, the Drake Passage must have been at least partially open. This would have resulted in,

if not as strong as during the PriOM, nonetheless stronger circumpolar circulation in a proto-ACC, increased upwelling,

and increased nutrient availability from Pacific-sourced deep waters. The locus of high productivity would have become

however more cantered near the proto-ACC, which at that time, according to the model results of Toumoulin et al.

(2020) was located a few degrees north of the current location of the ACC. The high productivity and accumulation of

biogenic opal seen at Site 1090, fortuitously located at this time in this region can be thus be explained, as can the lower
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relative productivity of Site 689, located much further to the south and thus outside the region primarily influenced by

the proto-ACC system.

Lastly, at the E/O boundary itself (Figure 5d), the well known major shifts in oxygen isotopes signal the formation of a

full continental ice-sheet, which would have in turn driven a renewed increase in circumpolar ocean circulation- a full,

if early form of the ACC, and dramatically increased levels of productivity, again however primarily near the ACC

region.

4.7 Possible Implications to the EOT Global Cooling

Our pCO2 compilation shows that carbon dioxide levels declined gradually from ca 1200 ppm in the late Eocene to ca

750 ppm across the EOT (Figure 4 and Figure S7). There are different processes involved in the oceanic uptake of CO 2.

The solubility pump is a physical-chemical process that promotes gas transfer between the atmosphere and seawater in

order  to  achieve  chemical  equilibrium.  This  process  depends  on  temperature,  in  which the  solubility  increases  as

temperature  decreases.  Evidence  for  cooling  of  surface  waters  observed in  the  Southern Ocean (Liu  et  al.,  2009;

Hutchinson et al., 2021) could have favoured the ability to dissolve atmospheric CO2,  contributing to the drawdown of

pCO2 during the late-Eocene.

Silicate weathering has been suggested to play an essential role in regulating CO 2 across the EOT (Zachos and Kump,

2005). On geologic time scales, chemical silicate weathering is considered to modulate atmospheric CO2 levels through

a negative feedback mechanism (Berner et al., 1983). Weathering of silicate rocks provides alkalinity to the oceans,

acting as a sink for atmospheric CO2, thereby influencing global climate. In addition, increasing silicate weathering

enhances primary productivity through the delivery of nutrients to the ocean. Intensified weathering is supported by Os

isotope records, showing an anomaly before the EOT, at ca 35.5Ma (Dalai et al., 2006).

High export  productivity potentially modulates CO2 by two major  mechanisms, operating over very different time

scales. Productivity maintains a gradient in dissolved CO2 between the surface and deep ocean by exporting organic

carbon from the surface into deep ocean waters,  This in turn lowers the concentration of CO2 in surface waters, causing

more atmospheric CO2  to be drawn out of the atmosphere into dissolved surface ocean CO2. It is estimated that this

mechanism causes pCO2 to be approximately 200 ppm lower than it would in a purely abiotic ocean (Volk and Hoffert

1985).  In the second mechanism, in areas of the ocean with high export productivity a (generally rather small) fraction

of  biologically  captured  carbon  (both  soft  tissue  and  carbonate  from coccolithophores  and  plantkic  foraminifera)

escapes remineralization in the water column and is buried in ocean bottom sediments, where it  is sequestered for

(typically) many millions of years.  Changes in either mechanism can contribute to the decline of atmospheric carbon

dioxide,  thereby intensifying the cooling trend.  Therefore,  the  observed increase in  exportproductivity  in  the late-

Eocene over 1 My in multiple sites in the SO, and the temporal correlation with the changes in  pCO2 proxy records

showed in our study is compatible with the hypothesis proposed by Egan et al., 2013.This suggests that the heightened

export productivity identifying in our study is a potential candidate that may have provided important positive feedback

to the pCO2 decline.

However, this correlation is suggestive rather than conclusive, given the complexities of the carbon cycle. For instance,

variations  in  the  efficiency  of  the  carbon pump,  remineralization  (Griffith  et  al.,  2021),  the  relationship  between

nutrients availability and plankton utilization and the dynamics of shelf-deep sea carbonate (Sluijs et al., 2013) can

significantly  influence  the  relationship  between  export  productivity  and  pCO2  levels  and  adds  complexity  to  our
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understanding. Lmited data for the late-Eocene on some critical parameters to our understanding (e.g. sedimentary C org,

Olivarez  Lyle  & Lyle,  2006)  further  contributes  to  the  uncertainties  in  establishing a causal  link.  Moreover,  it  is

essential to note that upwelling, while promoting nutrient-rich conditions favourable to productivity and the long-term

sequestration mechanism, also contribute to outgassing of CO2 into atmosphere, influencing the carbon balance in the

short-term mechanism.  This adds another layer of complexity to the carbon cycle dynamics and its relationship with

productivity changes. While our findings propose a potential link, it is crucial to recognize that this alone does not

constitute proof of the export productivity directly influenced late Eocene pCO2 levels.

Despite some modelling studies showing that circulation changes were not the main factor in driving the cooling and

glaciation on Antarctica (e.g. Huber et al., 2004; Huber and Not 2006; Sijp et al., 2011), circulation changes still had a

significant  impact,  with e.g.  Southern  Ocean sea  surface  temperature  declines  of  2-4°C (Toumoulin et  al.,  2020),

affecting the atmosphere-ocean CO2 equilibrium. A succession of  events may have contributed to the evolution of

climate: thermal isolation of Antarctica, glacier formation, increasing intensity of silicate weathering, together with

upwelling of nutrient rich and cold deep waters, leading to high biological productivity, then declining pCO2. Moreover,

because  the  Atlantic  Meridional  Overturning  Circulation  (AMOC)  affects  the  distribution  of  tracers  such  as

temperature, dissolved inorganic carbon (DIC), alkalinity and nutrients (Boot et al., 2021), the strengthening of AMOC

could explain the further decrease in atmospheric CO2 via biological export productivity. Elsworth et al., (2017), for

example,  suggest  that  enhanced weathering is  driven by intensified AMOC in the latest  Eocene due to increasing

AMOC causing differential global distribution and increase of surface temperatures and precipitation over land areas.

These factors together suggest that E-O changes in AMOC also may play an important role as a driver of CO2 decline.

Taken together, the above processes indicate that a variety of positive feedback contributed to Antarctic glaciation from

about 37 Ma onwards. Recent evidence suggests that continental-scale Antarctic glaciation initiated in the late Eocene

(Scher  et  al.,  2014;  Carter  et  al.,  2017).  Our  results  indicate  that  significant  changes  in  Southern  Ocean  export

productivity preceded the E/O boundary by approximately 3 million years. These trends are likely to be a response to

the combination of the intensified processes that had been in place since the late Eocene. The correlation between our

Southern Ocean productivity peaks and decline in global pCO2 records suggest that biological productivity may have

played an important role in the drawdown of  pCO2 levels. Specifically enhanced CO2 fixation by phytoplankton and

carbon sequestration in seafloor sediments increased via an increase in the biological pump may have contributed to

decrease atmospheric CO2, and through a positive feedback from declining Southern Ocean surface water temperature

enhanced  boosting  the  cooling  trend.  The  establishment  of  Antarctic  glaciation  may  thus  have  been  influenced

significantly by enhanced productivity. 

4.8 Limitations and Future Directions

Our study has numerous limitations. Our data on paleoproductivity does not cover the full time interval in all of the sites

studied, and our geographic coverage is still incomplete. In particular, we have not examined sections from the Pacific

sector, or the influence of the Tasman gateway. Most of our interpretations are based on a single productivity proxy -

biogenic Barium. While this proxy is well established and gives coherent results in our study, productivity proxies are

known to have complex behaviours,  and results using different proxies might be at  least somewhat different.  Our

suggestion that elevated late Eocene Southern Ocean productivity might have affected global carbon sequestration is

only a speculation based on general characteristics of the ocean carbon system, and much more detailed study of both
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actual  sequestration  values  in  sediment,  and  the  impact  on  atmospheric  pCO2 are  still  needed.  Our  interpretative

scenario attributing productivity changes to a combination of Drake Passage opening and continental scale glaciation on

Antarctica are also purely qualitative and need further study. Despite these limitations, our study sheds new light on the

late Eocene oceanic precursors of the Eocene-Oligocene glaciation event-the most dramatic climate change of  the

Cenozoic.

5 Conclusions

Our bio-Ba data provide important records of the Southern Ocean productivity history across the EOT. These data show

that export productivity increased significantly in the late Eocene in the Southern Ocean and was affected by ocean

circulation changes. The development of a regionally varying circumpolar polar flow (proto-ACC) and the associated

frontal  system proposed by  other  recent  studies  is  likely to  have  contributed  to  the  enhanced  productivity  in  the

Southern Ocean through the intensification of upwelling (H1).

Our results show that increasing Southern Ocean productivity in the late Eocene to earliest Oligocene is correlated to

global changes in atmospheric  pCO2 and carbon isotope proxies for organic carbon extraction. This finding points

toward a potential positive climate system feedback, involving ocean circulation changes, enhanced export productivity

and drawdown of atmospheric CO2. Although many studies of the Eocene-Oligocene climate transition try to identify a

single dominant mechanism (e.g.  ocean gateway opening vs  pCO2 decline) for  causing the initiation of Antarctica

glaciation, each mechanism plays a different role and has associated complex feedbacks. Our study points toward a

climate  feedback  system involving  ocean  circulation,  thermal  isolation  and  biological  productivity,  where  several

mechanisms are interconnected and cannot be considered separately. Openings of gateways led to the development of a

circumpolar flow, promoting cooling and increased upwelling that contributed to enhanced ocean carbon pump activity

and the decline of atmospheric carbon dioxide.
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Figure 1: Schematic Antarctic Circumpolar Current (ACC) and Southern Ocean fronts as determined by Orsi et
al., 1995, named from north to south, STF: Subtropical front, SAF: Subantarctic Front; PF: Polar Front and
SACCF: Southern Antarctic Circumpolar Current Front, and sBdy: Southern Boundary front. Modern location
of ODP sites (1090, Agulhas Ridge; 689, Maud Rise and 748, Kerguelen Plateau) used for reconstructions in this
study. ODP = Ocean Drilling Program.
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Figure 2: Paleoprouctivity proxies vs Age (Ma) for Agulhas Ridge (ODP Site 1090, in orange), Maud Rise (ODP
Site 689, in blue) and Kerguelen Plateau (ODP Sites 748, 744, in green). Solid circles are new biogenic barium
accumulation rate (bio-Ba, µmol cm-2 kyr-1) data of this study, open circles from prior literature (Agulhas Ridge
data from Anderson and Delaney, 2005; Maud Rise data from Diester-Haass and Faul 2019; Kerguelen Plateau
data from Faul et al., 2010). Site 1090 opal MAR data are from Diekmann et al., 2004. Site 689 BFAR data are
from  Diester-Haass  et  al.,  2019.   Vertical  bar  identifies  the  E/O  boundary  (at  ca  33.8  Ma).  Shaded  area
encompasses the late-Eocene productivity event.
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Figure 3:  Multiproxy records from the late Eocene and early Oligocene.  Global  compilation of  oxygen and
carbon stable isotopes (from Westerhold et al., 2020). New generated oxygen and carbon benthic foraminiferal
isotopes data (solid circles) and fine fraction (<45µm) (solid triangles), and previously published oxygen and
carbon stable isotopes (shaded circles, from Mackensen and Ehrmann, 1992; Diester-Haass and Zahn, 1996;
Bohaty et al., 2003) from Atlantic Southern Ocean (Maud Rise) ODP Site 689 (in blue) and Indian Southern
Ocean (Kerguelen Plateau) ODP Site 748 (in green). PDB is PeeDee Belemnite carbonate reference. Compilation
of εNd data obtained from fossil fish teeth for the Atlantic Sector of SO (Maud Rise, in blue, Site 689), and for
the Indian sector of SO (Kerguelen Plateau, in green, sites 738 and 748) (Scher and Martin, 2004, 2006; Scher et
al., 2014; Wright et al. 2018). Shaded area identifies E/O boundary at ca 33.8 Ma and productivity event at ca 37
Ma. Note inverted y-axis scales for oxygen and Nd isotopes. 
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Figure 4: Comparison between (a) a global compilation of carbon stable isotopes (from Westerhold et al., 2020),
(b) alkenone-based atmospheric pCO2  record (from Zhang et al., 2013) and (c) biogenic Barium (bio-Ba) export
productivity proxy (this study). Antarctic glaciation thresholds (approx. 750 ppm) (from climate model, DeConto
et al.  2008) is  marked by a dashed line.  Shaded areas encompass the late-Eocene and early-Oligocene high
productivity intervals.
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Figure 5: Interpretive scenario of paleoceanographic change in the late Eocene to earliest Oligocene Southern
Ocean. Base map, circulation patterns and extent of deep mixing regions largely after Toumoulin et al. (2020), ice
sheet extent at 38 Ma after models in Van Breedam (2022). Productivity values based on results of this study,
shown  in  relative  scale.  Note  general  trend  towards  higher  productivity  values,  and  within  this,  higher
productivity, focussed near proto-ACC, during intervals with inferred ice sheets. 
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