

1 Photoenhanced sulfates formation by the heterogeneous uptake of SO₂ on non-

- 2 photoactive mineral dust
- 3 Chong Han*, Jiawei Ma, Wangjin Yang, Hongxing Yang
- 4 School of Metallurgy, Northeastern University, Shenyang, 110819, China
- 5 *Address correspondence to author: hanch@smm.neu.edu.cn
- 6

Short summary. We provide direct evidences that light prominently enhances the conversion of SO_2 to sulfates on non-photoactive mineral dust, where 3SO_2 can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H_2O , O_2 , and basicity of mineral dust. It is suggested that the SO_2 photochemistry on non-photoactive mineral dust significantly contributes to sulfates, highlighting previously unknown pathway to better explain the missing sources of atmospheric sulfates.

13

14 Abstract. Heterogeneous uptake of SO₂ on mineral dust is a predominant formation pathway 15 of sulfates, whereas the contribution of photo-induced SO₂ oxidation to sulfates on the dust 16 interfaces still remains unclear. Here, we investigated heterogeneous photochemical reactions 17 of SO₂ on five mineral oxides (SiO₂, kaolinite, Al₂O₃, MgO, and CaO) without photocatalytic 18 activity. Light significantly enhanced the uptake of SO₂, and its enhancement effects negatively 19 depended on the basicity of mineral oxides. The initial uptake coefficient (γ_0 BET) and the 20 steady-state uptake coefficient ($\gamma_{s, BET}$) of SO₂ positively relied on light intensity, relative humidity (RH) and O₂ content, while they exhibited a negative relationship with the initial SO₂ 21 22 concentration. Rapid sulfate formation during photo-induced heterogeneous reactions of SO₂ 23 with all mineral oxides was confirmed to be ubiquitous, and H₂O and O₂ played the key roles 24 in the conversion of SO₂ to sulfates. Specially, ³SO₂ was suggested to be the trigger for 25 photochemical sulfate formation. Atmospheric implications supported a potential contribution 26 of interfacial SO₂ photochemistry on non-photoactive mineral dust to atmospheric sulfate 27 sources.

28

- 29 Keywords: SO₂; Sulfates; Non-photoactive mineral dust; Heterogeneous photochemistry
- 30

31

32 1 Introduction

33 As an important trace gas in the atmosphere, SO₂ is mainly emitted by volcanic eruption and 34 fuel combustion. There is an uneven distribution of atmospheric SO₂ concentrations that show 35 a distinctive seasonal and regional differentiation. Typical ratios of SO₂ in the troposphere are 36 below 0.5 ppb for a clean weather in remote areas, rising to around several hundred ppb during 37 the polluted days in urban regions (Ma et al., 2020). About half of SO₂ is oxidized to sulfates (He 38 et al., 2012), which is one of the most significant compositions in fine particles. Sulfates can 39 contribute greatly to the mass concentration of $PM_{2.5}$, with the mass of sulfates high up to 30% (Shao et al., 2019), especially in polluted regions where high-sulfur fuels are usually 40 41 used(Olson et al., 2021). They significantly alter physicochemical properties of aerosols in 42 terms of hygroscopicity, acidity and light absorption property (Chan and Chan, 2003; Cao et al., 2013; Lim et al., 2018). Sulfates also pose a human health risk through causing respiratory 43 44 illness and cardiovascular(Shiraiwa et al., 2017). In addition, the deposition of sulfates leads to 45 adverse effects on ecosystems via the acidification of soils and lakes(Golobokova et al., 2020). Therefore, the oxidation of SO₂ to form sulfates has attracted widespread attentions in the past 46 47 decades.

48 The conversion of SO₂ to sulfates in the atmosphere usually occur by three ways: gas-phase oxidation of SO₂ by hydroxyl radicals (•OH) or Criegee intermediate radicals(Mauldin et al., 49 50 2012; Davis et al., 1979); aqueous-phase reaction of SO₂ with O₃, H₂O₂ or transition metal ions dissolved in cloud and fog droplets(Alexander et al., 2009; Herrmann et al., 2000; Liu et al., 51 52 2020a; Li et al., 2020); and heterogeneous SO₂ uptake on aerosols including authentic mineral 53 dust, soot, inorganic ion and organic compounds(Adams et al., 2005; He et al., 2018a; Zhang 54 et al., 2020a; Liu et al., 2020b). However, the oxidation of SO₂ in gas and aqueous phases fails 55 to explain high sulfate concentrations under polluted conditions. Model simulation suggests

that the rapid sulfate formation can be attributed to the heterogeneous SO_2 uptake(Li et al., 2017). A positive relationship between the fraction of sulfates and mineral dust in haze days has been reported, implying that mineral dust may account for the formation of sulfates(Wang et al., 2020a). Moreover, a large amount of sulfates was observed to be formed on the surface of mineral dust after long-distance transport(Prospero, 1999). Thus, investigating the heterogeneous oxidation of SO_2 on mineral dust is of fundamental importance to reveal large missing sources of atmospheric sulfates in the haze periods.

63 Mineral dust, regarded as the dominant component of particulate matters in the atmosphere, accounts for about 30%-60% mass fractions of global aerosols(Dentener et al., 1996; Peng et 64 al., 2012). It primarily contains SiO₂ (40%-80%), followed by Al₂O₃ (10%-15%), Fe₂O₃ 65 (6%-13%), CaO (3%-10%), MgO (1%-7%) and TiO₂ (0.1%-5%)(Urupina et al., 2021; 66 67 Urupina et al., 2019; Usher et al., 2003). Mineral dust can provide active sites for adsorption and reaction of gases. Up to now, the heterogeneous SO₂ uptake on authentic mineral aerosols 68 and model mineral oxides has been widely reported(Ma et al., 2019; Goodman et al., 2001; 69 70 Wang et al., 2018; Wang et al., 2020b), with various uptake coefficients (γ) of SO₂ varying from 10^{-9} to 10^{-4} (Urupina et al., 2019; Usher et al., 2002). 71

72 It was recognized that light could significantly enhance heterogeneous conversion of SO₂ to 73 sulfates on the surface of photocatalytic mineral dust(Chen et al., 2021; Li et al., 2019; Wang 74 et al., 2020b). Electron-hole pairs are produced via photo-induced electrons from the valence 75 band to the conduction band of photocatalytic metal oxides, and then react with H₂O and O₂ to 76 generate reactive oxygen species (ROS), such as \bullet OH and \bullet O₂ (Chu et al., 2019). Sulfates are produced by the heterogeneous reactions of SO₂ and ROS(Park and Jang, 2016; Park et al., 77 78 2017; Langhammer et al., 2020; Bounechada et al., 2017). In particular, due to the large 79 abundance of non-photoactive mineral dust (more than 85% mass of total mineral dust in the 80 atmosphere) (Usher et al., 2003; Liu et al., 2022), revealing the photooxidation processes of 81 SO₂ on these mineral dust is of great importance to better reevaluate the sulfate formation on 82 aerosols in the global scale.

- were firstly investigated using a flow reactor and an *in situ* diffuse reflectance infrared Fourier
 transform spectroscopy (DRIFTS). The SO₂ conversion to sulfates was examined under various
 conditions, and the roles of light intensity, SO₂ concentration, H₂O, O₂ and basicity of mineral
 oxides were determined. Reaction mechanisms and atmospheric implications were proposed,
 highlighting a new and important pathway accounting for photochemical uptake of SO₂ to form
 sulfates on the non-photoactive surfaces.
- 90

91 2 Experimental methods

92 2.1 Materials.

Analytical grade SiO₂ (Sinopharm Chemical Reagent Co., Ltd.), kaolinite (Sinopharm 93 94 Chemical Reagent Co., Ltd.), Al₂O₃ (Alfa Aesar), MgO (Sigma-Aldrich), and CaO (Sigma-95 Aldrich) were used in the experiments. Through the nitrogen Brunauer-Emmett-Teller (BET) physisorption analysis, their specific surface areas were detected to be 0.419, 6.407, 8.137, 96 97 10.948 and 6.944 m² g⁻¹, respectively. The ultraviolet-visible (UV-vis) light absorption spectra of samples in the wavelength range of 300-800 nm were obtained by the Shimadzu UV-2550 98 99 spectrophotometer, as shown in Figure S1 of the Supporting Information. The solid powder 100 (0.2-5 g) was uniformly dispersed into 10.0 mL ethanol solution. The mixed liquid was poured 101 into a rectangle quartz sample dish (14.0 cm \times 7.0 cm) and dried to form a solid coating in an 102 oven at 353 K for 10 h. SO₂ standard gas (50 ppm in N₂, Shenyang Air Liquide Co., LTD) and 103 high purity N2 and O2 (99.999 vol.%, Shenyang Air Liquide Co., LTD) were used as received. 104 The solid sample powder (0.2 g) was immersed into 10 ml deionized water (20 mg ml⁻¹), and 105 then the suspension was vigorously stirred for 10 min. The pH of SiO₂, kaolinite, Al₂O₃, MgO 106 and CaO suspension was measured to be 6.27, 6.58, 9.33, 10.61 and 12.72 using a pH meter, 107 respectively, which was employed to characterize the basicity of mineral oxides.

108 **2.2 Rectangular flow reactor**.

The uptake experiments of SO₂ on mineral dust were performed in a horizontal rectangular
flow reactor (26.0 cm length × 7.5 cm width × 2.0 cm height), which was depicted in Figure
S2. The reactor was made of quartz to allow the transmission of light. The temperature was

112	maintained at 298 K by circulating temperature-controlled water through the outer jacket of the
113	reactor. Synthetic air with a N_2/O_2 volume ratio of 4:1 was introduced into the flow reactor,
114	and its total flow rate was 1000 mL min ⁻¹ . The Reynolds number (<i>Re</i>) was calculated to be
115	14.42 (<i>Re</i> < 200), indicating a laminar flow state. SO ₂ with high purity N ₂ (100 mL min ⁻¹) as
116	carrier gas were introduced into the reactor through a movable T-shaped injector equipped with
117	six exit holes of 0.2 mm diameter, so that the gas could be uniformly distributed over the width
118	of the reactor. The SO ₂ concentration was 40–200 ppb and measured with a SO ₂ analyzer
119	(Thermo 43i). Wet N_2 generated with a bubbler containing deionized water was introduced by
120	two parallel inlets on the side of T-shaped injector. Relative humidity (RH, 10%-75%) was
121	controlled by regulating the ratio of dry N_2 to wet N_2 and measured via a hygrometer (Center
122	314). The equivalent layer numbers of water on surface was 0.9-4.0 according to the Brunauer-
123	Emmett-Teller (BET) model(Sumner et al., 2004), and the thickness of the film of adsorbed
124	water varied between 2.7-12 nm at RH=10%-75%. There were three equally spaced exhaust
125	ports to mitigate the outlet turbulence. A xenon lamp (CEL-LAX500, China Education Au-light
126	Co., Ltd) was used to simulate sunlight and vertically located above the reactor. A filter was
127	placed on the reactor to remove the light with wavelengths shorter than 300 nm. The spectrum
128	irradiance of the xenon lamp was displayed in Figure S3 and measured using a calibrated
129	spectroradiometer (ULS2048CL-EVO, Avantes). The spectral irradiance was measured inside
130	the reactor, after passing the water cooling and in the absence of a sample. The total irradiance
131	$(0-7.93 \times 10^{16} \text{ photons cm}^{-2} \text{ s}^{-1})$ on the coating can be adjusted by varying the distance of the
132	xenon lamp to the reactor.

133 **2.3 Uptake coefficient of SO**₂.

The heterogeneous reaction kinetics of SO₂ with mineral dust can be described by a pseudofirst-order reaction. SiO₂ was taken as an example, and Figure S4 showed a linear relationship between the natural logarithm of the SO₂ concentration and the reaction time. The apparent rate constant (k_{obs, SiO_2}) of SO₂ with SiO₂ can be calculated using the equation 1,

138
$$\frac{\ln(C_0/C_t)}{t} = k_{\text{obs, SiO}_2}$$
 (1)

139 where C_0 and C_t (ppb) are the initial SO₂ concentration and the SO₂ concentration at the

- reaction time *t*, respectively. The loss of SO_2 on the internal wall of the reactor occurred in blank experiments (Figure S5), which should be deducted for the γ calculation. Assuming that
- 142 the wall loss was constant in the experiments with and without samples, the geometric uptake
- 143 coefficient (γ_{geo}) was determined by the equation 2(Knopf et al., 2007),

144
$$\gamma_{\text{geo}} = \frac{4V(k_{\text{obs, SiO}_2} - k_{\text{obs, wall}})}{S\omega}$$
 (2)

145 where k_{obs, SiO_2} and $k_{obs, wall}$ are the apparent rate constants measured with and without SiO_2 146 samples, respectively; $V(m^3)$, $S(m^2)$ and ω (m s⁻¹) are the volume of the rectangular reactor, 147 the surface area of the sample dish, and the mean molecular speed of SO₂, respectively.

148 The uptake process of SO_2 on SiO_2 depended on the reaction of SO_2 with SiO_2 and the mass 149 transport of SO_2 to the surface. It can be expressed with the equation 3,

150
$$k'_{\rm r, SiO_2} = \left[\frac{1}{k_{\rm r, SiO_2}} - \frac{a}{N_u D}\right]^{-1}$$
 (3)

151 where $k_{r, SiO_2} = k_{obs, SiO_2} - k_{obs, wall}$; k'_{r, SiO_2} is the reaction rate constant of SO₂ accounting for the diffusion effect; D (cm² s⁻¹) is the diffusion coefficient of SO₂ in air; a (cm) is one half height 152 153 of the flow reactor; N_u is the Nusselt numbers obtained with a calculation method from Solbrig 154 and Gidaspow(Solbrig and Gidaspow, 1967), which represents the mass transport. Then, the corrected γ can be calculated by inserting the equation 3 into the equation 2. In our experiments, 155 156 the correction for γ was estimated to be approximate 10%. Initial uptake coefficients (γ_0) and steady-state uptake coefficients (γ_c) were calculated by averaging the signals within the 1.0 and 157 40-60 min reaction time, respectively. 158

To understand the diffusion depth of SO₂ and determine the interaction of SO₂ with the underlying layers of SiO₂, the uptake of SO₂ as a function of the SiO₂ mass under irradiation was shown in Figure S6. The γ exhibited a linear increase in the SiO₂ mass range of 0.05–2.0 g, while it remained unchanged at the SiO₂ mass > 3.0 g. Therefore, the uptake coefficient of SO₂ in the linear regions was normalized using the BET surface area of SiO₂ by the equation 4(Brunauer et al., 1938),

165
$$\gamma_{\text{BET}} = \frac{S_{\text{geo}} \times \gamma_{\text{geo}}}{S_{\text{BET}} \times m_{\text{SiO}_2}}$$
 (4)

where γ_{BET} is the SO₂ uptake coefficient normalized to the BET surface area; S_{geo} (m²) is the geometric area of the sample dish; S_{BET} (m²) is the BET surface area of SiO₂; m_{SiO_2} (g) is the SiO₂ mass. The same method was also used to calculate the uptake coefficients of SO₂ on other mineral oxides.

170 2.4 In Situ DRIFTS analysis.

171 The changes in the chemical compositions on mineral oxides in the SO₂ uptake process were 172 investigated by in situ diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS), 173 which was recorded using the Fourier transform infrared (FTIR) spectrometer (Thermo Nicolet 174 iS50) equipped with a mercury cadmium telluride (MCT) detector. About 14 mg mineral oxides was placed into a stainless-steel cup inside the reaction cell. To remove adsorbed impurities, 175 176 SiO₂ was purged with a 150 mL min⁻¹ airflow (N₂/O₂ volume ratio = 4:1) at RH=40% for 1 h. 177 Then, a background spectrum of unreacted samples was collected. SO₂ (2 ppm) was introduced into the reaction cell, and the IR spectra was recorded as a function of time at a resolution of 4 178 cm⁻¹ by averaging 100 scans. The light from the xenon lamp (500 W) with a total irradiance of 179 3.22×10^{16} photons cm⁻² s⁻¹ was transmitted into the DRIFTS reaction cell via a fiber. 180

181

182 **3 Results and discussion**

183 **3.1 Photo-enhanced uptake of SO**₂.

184 Acting as the most abundant mineral oxides, SiO₂ was firstly used to investigate the uptake 185 behaviors of SO₂. As shown in Figure 1A, when SO₂ (80 ppb) was exposed to SiO₂ in the dark, 186 the SO₂ concentration decreased to 70 ppb, and then it quickly increased and reached the steady state after 20 min. Upon exposure to SiO₂ under irradiation, the SO₂ concentration exhibited a 187 188 greater drop than that in the dark. The deactivation of SO₂ uptake on SiO₂ was very slight after 20 mins under irradiation. These suggest that light can significantly promote the heterogeneous 189 190 reaction of SO₂ on SiO₂. When SO₂ didn't contact with SiO₂, its concentration recovered 191 rapidly. The desorption of SO₂ was observed when SO₂ was isolated from SiO₂ in the dark and 192 under irradiation, indicating that the physical adsorption partially contributed to the SO₂ loss 193 during the photochemical process.

194 The uptake coefficients of SO_2 on SiO_2 as a function of irradiation intensity were shown in 195 Figure 1B. The errors in all figures are the standard deviations of three repetitive experiments. 196 Both $\gamma_{0, BET}$ and $\gamma_{s, BET}$ displayed a well linear relationship with the irradiation intensity, further 197 confirming the photochemical nature for the reactions of SO₂ on SiO₂. In particular, $\gamma_{0, BET}$ and $\gamma_{s,BET}$ on SiO₂ under simulated solar irradiation was comparable with those (10⁻⁷-10⁻⁶) on 198 199 Gobi Desert dust (GDD) and Arizona Test Dust (ATD) under UV irradiation, which contained photocatalytic metal oxides(Park et al., 2017). As for the SO₂ uptake on TiO₂, $\gamma_{0, BET}$ and $\gamma_{s, BET}$ 200 201 were measured to be 10^{-6} and 10^{-7} , respectively, by using the flow tube(Ma et al., 2019), which were similar to our results. Usher et al.(2022) reported a larger γ_{BET} (10⁻⁴) on TiO₂ using a 202 203 Knudsen cell reactor. This difference should be ascribed to the variation in the pressure of 204 Knudsen cell (high vacuum) and flow tube reactor (ambient pressure).

205 Figure 1C shows the evolution of $\gamma_{0 \text{ BET}}$ and $\gamma_{s \text{ BET}}$ at different SO₂ concentrations under 206 irradiation. An inverse dependence of $\gamma_{0 \text{ BET}}$ and $\gamma_{s \text{ BET}}$ on the SO₂ concentration was observed, 207 meaning that both initial and steady-state uptake reactions were lower efficient at higher SO₂ 208 concentrations. The uptake of gases on the solid surfaces usually follows the Langmuir-209 Hinshelwood (L-H) mechanism(Ammann et al., 2003; Zhang et al., 2020b), suggesting that 210 gaseous molecules are quickly absorbed on the surfaces, and then the reactions occur among 211 the absorbed species. Assuming that the adsorption of SO_2 on SiO_2 is in accord with the 212 Langmuir isotherm, the dependence of γ on the SO₂ concentration can be described by the 213 equation 5(Zhang et al., 2020b),

214
$$\gamma = \frac{(4V/S\omega)k[SiO_2]_T K_{SO_2}}{1 + K_{SO_2}[SO_2]_g}$$
 (5)

where $[SO_2]_g$ is the concentration of gaseous SO_2 ; $[SiO_2]_T$ is the total number of active sites on SiO₂; *k* is the reaction rate constant of SO₂ absorbed on SiO₂; K_{SO_2} represents the Langmuir adsorption constant of SO₂. Because the SiO₂ mass remained constant during the reaction, the equation 5 can be written as the equation 6,

219
$$\gamma = \frac{a}{1 + K_{SO_2}[SO_2]_g}$$
 (6)
220 where $a = (4V/S\omega)k[SiO_2]K_{SO_2}$. As shown in Figure 1C, the equation 6 can well describe the

221 correlation of the SO₂ uptake coefficient with the SO₂ concentration, suggesting that the L-H

mechanism can explain the influence of the SO₂ concentration on $\gamma_{0, \text{BET}}$ and $\gamma_{s, \text{BET}}$.

223

Figure 1. (A) The temporal variation of the SO₂ concentration on SiO₂ in the dark and under irradiation (250 W m⁻²); The background changes of the SO₂ concentration in the blank reactor have been deducted. (B) The $\gamma_{0, BET}$ and $\gamma_{s, BET}$ of SO₂ on SiO₂ as a function of the light intensity. (C) The $\gamma_{0, BET}$ and $\gamma_{s, BET}$ of SO₂ on SiO₂ at different SO₂ concentrations under irradiation (250 W m⁻²); The fitting lines for $\gamma_{0, BET}$ and $\gamma_{s, BET}$ were based on the Langmuir-Hinshelwood mechanism using the equation 6. Reaction conditions: SiO₂ mass of 0.2 g, temperature of 298 K, RH of 40% and O₂ content of 20%.

231

232 **3.2** Photo-induced formation of sulfates by the SO₂ uptake.

233 To investigate the products formed on SiO₂, in situ DRIFTS spectra were recorded, as shown in Figure 2. The band at 1359 cm⁻¹ was assigned to physically-adsorbed SO₂ on SiO₂(Urupina 234 et al., 2019). The bidentate sulfate and bisulfate contributed to the bands at 1260 and 1229 235 cm^{-1} (Urupina et al., 2019; Yang et al., 2020), respectively. The bands at 1074 and 1038 cm^{-1} 236 237 may be related to the monodentate sulfite(Yang et al., 2019; Wang et al., 2019). It was noted 238 that the intensity of physically-absorbed SO₂ (1359 cm⁻¹) under irradiation was lower than that 239 in the dark (Figure S7), which may be ascribed to further conversion of SO_2 absorbed on SiO_2 240 under irradiation. Especially, the sulfate bands (1260 and 1229 cm⁻¹) appeared under irradiation,

- 241 while they were not observed in the dark. This clearly confirms the crucial role of light in the
- 242 heterogeneous conversion of SO₂ to sulfates on SiO₂. The bands of sulfites (1038 and 974 cm⁻¹)
- 243 under dark and irradiation conditions became more apparent with the reaction time, suggesting
- 244 the continuous formation of sulfites.

260	generate reactive oxygen species (ROS) such as •OH or HO2 radicals to oxidize SO2 under
261	irradiation(Li et al., 2020; Ma et al., 2019), which would lead to positive effects of RH on the
262	SO_2 uptake. Adsorbed $\mathrm{H}_2\mathrm{O}$ also occupied adsorptive and active sites on the surface, and
263	produced the competition with SO2. When this competitive role was dominated, the uptake of
264	SO ₂ would be hindered.

The DRIFTS spectra of SiO₂ during the SO₂ uptake at different RHs are shown in Figure 265 266 S9A. The band intensities of sulfates (1260 and 1229 cm⁻¹) at RH=60% were greatly stronger 267 than those at RH=10%, suggesting that H_2O significantly promotes the sulfate formation. To 268 further investigate the influence of H₂O on the sulfate formation, the integrated area of sulfates 269 in the DRIFTS spectra (1289–1202 cm⁻¹) as a function of the time at different RHs is illustrated 270 in Figure 3B. Sulfates exhibited a fast formation in the initial 30 min at any RH, and then they 271 were continuously generated at a relatively slow rate. Absorptive sites for SO₂ can be blocked 272 because of the accumulation of H₂O and products (sulfites and sulfates), resulting in the gradual 273 deactivation of the surface. It was noted that sulfates had a more distinct formation trend with 274 increasing the RH, revealing that H₂O can act as an important participator in the production of 275 sulfates by the photochemical uptake of SO₂ on SiO₂.

Figure 3. (A) The dependence of $\gamma_{0, BET}$ and $\gamma_{s, BET}$ on RH. (B) Integrated area of sulfates in *in situ* DRIFTS spectra (1289–1202 cm⁻¹) as a function of time. (C) The dependence of $\gamma_{0, BET}$ and $\gamma_{s, BET}$ on O₂. Reaction conditions: SiO₂ mass of 0.2 g, irradiation intensity of 250 W m⁻², temperature of 298 K, O₂ content of 20% for (A) and RH of 40% for (B).

281

276

Figure S8B displays effects of O₂ on the photochemical uptake of SO₂ on SiO₂. Negligible SO₂ uptake occurred in N₂, while there was a significant decrease in the SO₂ concentration in

air. The $\gamma_{0, BET}$ greatly increased from $(1.37 \pm 0.45) \times 10^{-7}$ in N₂ to $(1.19 \pm 0.13) \times 10^{-6}$ in 20% O₂ (Figure 3C), confirming that O₂ was involved in the photochemical reaction of SO₂ on SiO₂. The $\gamma_{s, BET}$ displayed different dependence behaviors on O₂. It exhibited an increase from (7.10 $\pm 2.85) \times 10^{-8}$ in N₂ to $(4.37 \pm 0.58) \times 10^{-7}$ in 15% O₂, whereas it remained unchanged in 20% O₂.

289 DRIFTS spectra of SiO₂ during the SO₂ uptake in N_2 and air was compared in Figure S9B. In both air and N₂, the bands of absorbed SO₂ (1359 cm⁻¹), sulfates (1260 and 1229 cm⁻¹) and 290 291 sulfites (1074 cm⁻¹) appeared. Nevertheless, their intensities in N₂ were weaker than those in 292 air. According to the integrated area of sulfates in the DRIFTS spectra ($1289-1202 \text{ cm}^{-1}$) as a 293 function of time, the formation trends of sulfates were similar in N₂ and air (Figure 3B), while 294 the sulfate formation rate in N₂ was obviously lower than that in air, meaning that O₂ enhanced 295 the sulfate production. It was reported that the production rate of sulfates from the SO₂ uptake 296 on TiO₂ and by the photolysis of nitrates under UV irradiation in N_2 was also smaller than that 297 in air(Ma et al., 2019; Gen et al., 2019b). In addition, it was noted that sulfates can be generated 298 in N₂, meaning that O₂ was not necessary and some pathways contributed to sulfates without 299 O₂.

300

301 **3.4 Ubiquitously photoenhanced conversion of SO₂ to sulfates.**

302 To better assess the potential for photochemical conversion of SO₂ to sulfates, the SO₂ uptake 303 experiments were further performed for typical mineral oxides without photocatalytic activity. 304 As displayed in Figure S10, more obvious uptake behaviors of SO₂ on kaolinite, Al₂O₃, MgO 305 and CaO were observed under irradiation when compared to those in the dark. Figure 4A shows 306 that there was the largest $\gamma_{s, BET}$ for CaO among five minerals, and $\gamma_{s, BET}$ positively depended 307 on the basicity (pH) of mineral oxides. Basic oxides generally contains more surface hydroxyls, 308 which is in favor of sulfite and sulfate formation to enhance the heterogeneous uptake of 309 SO₂(Zhang et al., 2006). Moreover, the ratios of steady-state uptake coefficients under 310 irradiation to those in the dark ($\gamma_{s, Light}/\gamma_{s, Dark}$) were larger than 1.0 for all mineral oxides

- 311 (Figure 4B), determining a general enhancement role of light in the SO₂ uptake. However, the
- 312 $\gamma_{\text{Light}}/\gamma_{\text{Dark}}$ had smaller values with an increase in the basicity, suggesting that the promotion
- 313 effect of the light was less remarkable for basic oxides.

Figure 4. (A) The dependence of $\gamma_{s, BET}$ under irradiation on the basicity (pH) of mineral oxides. (B) The ratios of steady-state uptake coefficients under irradiation to those in the dark $(\gamma_{s, Light}/\gamma_{s, Dark})$ for different mineral oxides. Reaction conditions: mineral oxides mass of 0.2 g, irradiation intensity of 250 W m⁻², temperature of 298 K, RH of 40% and O₂ content of 20%.

320

321 As shown in Figure 5A and B, no formation of sulfates was found for kaolinite in the dark, 322 while bisulfates (1220 cm⁻¹) were observed under irradiation. Compared to weaker peaks of 323 sulfates (1200 and 1260 cm⁻¹) for Al₂O₃ in the dark (Figure 5C), a stronger band of bisulfates 324 appeared at 1220 cm⁻¹ under irradiation (Figure 5D). By contrast to the generation of sulfates 325 for kaolinite and Al₂O₃, both sulfites and sulfates formations were observed for MgO and CaO (Figure 5E-H). Sulfites were dominant in the dark, as shown by the peaks at 966 and 1020 cm^{-1} 326 for MgO and 943 cm⁻¹ for CaO, whereas the sulfate formation was significantly enhanced 327 under irradiation according to peak intensities at 1163 cm⁻¹ for MgO and 1137 cm⁻¹ for CaO. 328 329 It should be noted that these mineral oxides were non-photoactive because of their poor light 330 absorption property (Figure S1). Nevertheless, it was very surprised that the light can greatly 331 promote the formation of sulfates via the SO₂ uptake process on mineral oxides without

- 332 photocatalytic activity, which was strongly suggested to be a new and important finding for
- 333 atmospheric sulfate sources.

334

Figure 5. *In situ* DRIFTS spectra of kaolinite (A and B), Al₂O₃ (C and D), MgO (E and F),
CaO (G and H) during the uptake process of SO₂ (2 ppm) for 600 min in the dark (black
lines) and under irradiation (colorful lines). Reaction conditions: RH of 40%, temperature of
298 K and O₂ content of 20%.

339

340 **3.5 Conversion mechanisms of SO₂ to sulfates**.

341 Heterogeneous photochemical reaction mechanisms of SO₂ on non-photoactive mineral dust 342 were proposed in light of experimental observations (Figure 6). Gaseous SO₂ was adsorbed on 343 the surface (R1), and then reacted with H_2O to form sulfites (R2). Under irradiation, adsorbed SO₂ accepted photons to form its singlet states (¹SO₂) and triplet states (³SO₂) (R3-5) 344 (Sidebottom et al., 1972; Martins-Costa et al., 2018). The reaction between ³SO₂ and H₂O 345 346 resulted in the formation of HOSO• and •OH (R6), which can combine with SO₂ to produce 347 $HOSO_2^{\bullet}$ (R7). $HOSO^{\bullet}$ and $HOSO_2^{\bullet}$ can be transformed into SO₃, which reacted with H_2O to drove the sulfate formation (R8 and R9). The interaction between ${}^{3}SO_{2}$ and O_{2} may also 348 349 generate SO_3 directly, which would be converted to sulfates subsequently (R10). Theoretical 350 calculations suggested that the multistep reactions between ³SO₂ with H₂O and O₂ had small energy barriers or were barrier-free(Gong et al., 2022), which could enhance the generation of 351

352	ROS and the transformation of $S(IV)$ to $S(VI)$. As displayed by R11 and R12, SO ₂ and H ₂ SO ₃
353	adsorbed on the surface may be oxidized to form sulfates via the reactions with ROS including
354	•O, •OH or HO ₂ • , which were produced in R6 and R8-10. In addition, gaseous SO ₂ could be
355	dissolved into adsorbed $\mathrm{H}_2\mathrm{O}$ to generate bisulfites, which would be finally converted to sulfates
356	by ROS (R13) (Urupina et al., 2019). As displayed in Figure S11A, the IR peaks of sulfates
357	were not observed when tris (2,2'-bipyridine) ruthenium dihydrochloride (Ru(bpy) ₃ (Cl) ₂) was
358	employed as the quencher of ³ SO ₂ (Bulgakov and Safonova, 1996). The peaks were assigned to
359	the vibrations of excited $Ru(bpy)_3(Cl)_2(Mukuta et al., 2014)$. This definitely proves that 3SO_2
360	is the key trigger for the sulfate formation. NaHCO3 can be used as an efficient •OH scavenger
361	to determine the role of \bullet OH deriving from the ${}^{3}SO_{2}$ reactions(Gen et al., 2019a). Figure S11B
362	shows that the peaks of sulfates were obviously weaker in the presence of NaHCO3, confirming
363	the dominant contribution of •OH formed in R6 and R9 to the formation of sulfates.

Several photochemical mechanisms have been reported to explain the sulfate formation via 364 the SO₂ uptake on various surfaces. Photoactive mineral oxides (such as TiO₂, F₂O₃ and ZnO) 365 can accept photons to produce electron-hole pairs, which generated ROS for the conversion of 366 SO₂ to sulfates(Ma et al., 2019; Li et al., 2019; Wang et al., 2020b). For example, •OH and 367 368 HO_2 , generated from the reaction of hole with H_2O and electron with O_2 , respectively, can act 369 as oxidizing agents for the reaction with SO_2 (Ma et al., 2019). Similarly, the reaction of SO_2 370 with photo-induced •OH obviously enhanced the formation of sulfate on diesel soot and actual PM2.5(Zhang et al., 2022; Zhang et al., 2020c). NO2 and NO2⁻/HNO2 can be formed in the 371 372 nitrates photolysis, and primarily contributed to the oxidation of SO₂ to sulfates on nitrates(Gen et al., 2019b; Gen et al., 2019a). Theoretically, the mechanism proposed in this study should 373 also occur on photo-excited substrates. Taking TiO2 as an example, SO2 competed with TiO2 374 for photons, and the production efficiency of ³SO₂ and excited state of TiO₂ (TiO₂*) depended 375 on their light absorption properties. Meanwhile, ³SO₂ had a competition electron-hole pairs 376 377 generated from TiO2* for O2 and H2O. Thus, the dominant mechanism for the SO2 uptake on 378 TiO_2 should be related to light absorption properties of precursors and the reactivity for 3SO_2 379 and TiO₂* to O₂ and H₂O. By contrast, all mineral oxides used here cannot be excited under

irradiation according to their light absorption spectra (Figure S1). Nevertheless, SO₂ adsorbed on mineral oxides can absorb the ultraviolet radiation (290–400 nm) to form the excited states of SO₂ (SO₂^{*})(Kroll et al., 2018), which subsequently reacted with H₂O and O₂, finally converting SO₂ to sulfates. It means that any surfaces, providing absorptive sites for SO₂, can significantly enhance the photooxidation of SO₂ to sulfates.

385

386 Figure 6. The proposed photochemical conversion mechanisms of SO₂ to sulfates on non-

photoactive mineral dust.

387

388

389 4 Atmospheric implications

390 The lifetime (τ) for photochemical loss of SO₂ on mineral dust was given using the equation

391

7,

$$392 \qquad \tau = \frac{4}{\gamma \omega A} \quad (7)$$

where γ and ω are the uptake coefficient and the mean molecular speed of SO₂, respectively; *A* is the surface area density of mineral dust, and it is estimated to be $(1.4-4.8) \times 10^{-5}$ cm² cm⁻³(Zhang et al.,2019; He et al., 2018b). In this work, $\gamma_{s, BET}$ of SO₂ on several mineral oxides were measured to be from 4.39×10^{-7} to 3.45×10^{-5} under conditions with SO₂ concentration of 40 ppb, irradiation intensity of 250 W m⁻² and RH of 40%. Thus, the τ of SO₂ with respect

398 to the photooxidation on mineral dust was calculated to be 0.9-240 days, which was shorter 399 than that (54 years) for the photochemical uptake of SO_2 on TiO_2 and the corresponding one 400 (346 days) for the heterogeneous oxidation of SO₂ on ATD in the presence of nitrates(Ma et al., 401 2019; Zhang et al., 2019). It should be pointed out that the content of TiO_2 in mineral dust was 402 only about 1%, and thus the surface area density of TiO₂ was about 10^{-7} cm² cm⁻³, leading to a longer τ (54 years) for the loss of SO₂ on TiO₂(Ma et al., 2019). It was comparable to the 403 404 lifetime (3.6–20 days) of SO₂ for the gas-phase reaction with •OH at a concentration of $\sim 10^{-6}$ 405 molecules cm⁻³(Huang et al., 2015; Zhang et al., 2019). Therefore, the photochemical process 406 with the excited state SO₂ acting as a driver on mineral dust was an important pathway for the 407 SO₂ sink in the atmosphere.

408 Sulfates show significant influences on the atmosphere, such as an important contributor to 409 the haze formation, affecting the activity of aerosols acting as cloud condensation nuclei (CCN) 410 and ice nuclei (IN), and modifying optical property and acidity of aerosols. A sulfate formation 411 rate (R) can be obtained using γ by the equation 8(Cheng et al., 2016),

412
$$R = \frac{d\left[SO_4^{2-}\right]}{dt} = \left[\frac{R_p}{D} + \frac{4}{\gamma\omega}\right]^{-1} A\left[SO_2\right]$$
(8)

413 where R_P is the radius of mineral dust, which can be estimated using the equation 9(Li et al., 414 2020),

415
$$R_{\rm P} = (0.254 \times [{\rm PM}_{2.5}]/(\mu {\rm g m}^{-3}) + 10.259) \times 10^{-9} {\rm m}$$
 (9)

where [PM2.5] was average PM2.5 mass concentration, and 300 µg m⁻³ was used for the polluted 416 417 periods in typical China cities(Li et al., 2020; Guo et al., 2014). It was assumed that mineral dust accounted for 50% mass of PM2.5(Tohidi et al., 2022), and the mass fraction of SiO2, Al2O3, 418 MgO, and CaO in mineral dust was 60%, 12.5%, 4% and 6.5%, respectively(Urupina et al., 419 2021; Urupina et al., 2019; Usher et al., 2003). Thus, R was determined to be 2.15 μ g m⁻³ h⁻¹ 420 according to $\gamma_{s,BET}$ under environmental conditions above. Table S1 summarizes sulfate 421 422 formation rates from various SO₂ oxidation pathways, including gas-phase reaction with 423 •OH(Xue et al., 2016), aqueous-phase oxidation by dissolved NO₂, H_2O_2 and TMI catalysis(Cheng et al., 2016; Liu et al., 2020a; Ye et al., 2021), and heterogeneous 424

425	photochemistry on the surfaces of nitrates(Gen et al., 2019a), brown carbon(Liu et al., 2020b),
426	black carbon and PM _{2.5} (Zhang et al., 2022; Zhang et al., 2020c). It was clearly noted that sulfate
427	formation rates on non-photocatalytic mineral oxides under simulated sunlight were
428	comparable with those $(0.001-10 \ \mu g \ m^{-3} \ h^{-1})$ for various pathways above, which may explain
429	the missing sulfate sources in the atmosphere. Accordingly, this new sulfate pathway should be
430	well taken into the full consideration in further field observation and model simulation studies
431	to better quantify atmospheric sulfate formation
432	
752	
433	Author contributions
434	CH and JM designed and conducted experiments; CH and JM analyzed the data and prepared
435	the paper with contributions from WY and HY. CH supervised the project.
436	
437	Competing interests
438	The authors declare that they have no conflict of interest.
439	
440	Acknowledgements
441	This work was supported by the National Natural Science Foundation of China [grant number
442	42077198], the LiaoNing Revitalization Talents Program [grant number XLYC1907185], and
443	the Fundamental Research Funds for the Central Universities [grant numbers N2025011].
444	
445	Reference
446	Adams, J., Rodriguez, D., and Cox, R.: The uptake of SO2 on Saharan dust: A flow tube study,
447	Atmos. Chem. Phys., 5, 2679-2689, https://doi.org/10.5194/acpd-5-2643-2005, 2005.
448	Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of
449	atmospheric sulfur: Global implications for the sulfur budget, J. Geophy. Res., 114, 2309-
450	2312, <u>https://doi.org/10.1029/2008jd010486</u> , 2009.
451	Ammann, M., Poschl, U., and Rudich, Y.: Effects of reversible adsorption and Langmuir-
452	Hinshelwood surface reactions on gas uptake by atmospheric particles, Phys. Chem. Chem.
453	Phys., 5, 351-356, <u>https://doi.org/10.1039/b208/08a</u> , 2003.
454	Bounechada, D., Anderson, D., Skoglundh, M., and Carlsson, P.: SO ₂ adsorption on silica
433	supported maruni, J. Chem. Phys., 140, 064/01-064/06, <u>https://doi.org/10.1063/1.49/6835</u> ,

456	2017.
457	Brunauer, B., Deming, L., Deming, W., and Teller, E.: Adsorption of gases in multimolecular
458	layers, J. Am. Chem. Soc., 60, 309-319, https://doi.org/10.1021/ja01269a023, 1938.
459	Bulgakov, R. G. and Safonova, L. A.: Chemiluuminescence in the oxidation of Na ₂ S by oxygen
460	in water solutions, Russ. Chem. Bull., 45, 1775-1776, https://doi.org/10.1007/bf01431827,
461	1996.
462	Cao, J., Tie, X., Dabberdt, W. F., Jie, T., Zhao, Z., An, Z., Shen, Z., and Feng, Y.: On the
463	potential high acid deposition in northeastern China, J. Geophy. Res.: Atmos., 118, 4834-
464	4846, https://doi.org/10.1002/jgrd.50381, 2013.
465	Chan, M. and Chan, C.: Hygroscopic properties of two model humic-like substances and their
466	mixtures with inorganics of atmospheric importance, Environ. Sci. Technol., 37, 5109-5115,
467	https://doi.org/10.1021/es0342720, 2003.
468	Chen, Y., Tong, S., Li, W., Liu, Y., Tan, F., Ge, M., Xie, X., and Sun, J.: Photocatalytic oxidation
469	of SO ₂ by TiO ₂ : Aerosol formation and the key role of gaseous reactive oxygen species,
470	Environ. Sci. Technol., 55, 9784-9793, https://doi.org/10.1021/acs.est.1c01608, 2021.
471	Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K.,
472	Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a
473	source of sulfate during haze events in China, Sci. Adv., 2, 1601530-1601540,
474	https://doi.org/10.1126/sciadv.1601530, 2016.
475	Chu, B., Wang, Y. L., Yang, W. W., Ma, J. Z., Ma, Q. X., Zhang, P., Liu, Y. C., and He, H.:
476	Effects of NO ₂ and C ₃ H ₆ on the heterogeneous oxidation of SO ₂ on TiO ₂ in the presence or
477	absence of UV-Vis irradiation, Atmos. Chem. Phys., 19, 14777-14790,
478	https://doi.org/10.5194/acp-19-14777-2019, 2019.
479	Davis, D. D., Ravishankara, A. R., and Fischer, S.: SO ₂ oxidation via the hydroxyl radical:
480	Atmospheric fate of HSO_x radicals, Geo. Res. Lett., 6, 113-116,
481	https://doi.org/10.1029/GL006i002p00113, 1979.
482	Dentener, F., Carmichael, G., Zhang, Y., Lelieveld, J., and Crutzen, P.: Role of mineral aerosol
483	as a reactive surface in the global troposphere, J. Geophy. Res.: Atmos., 101, 22869-22889,
484	<u>https://doi.org/10.1029/96jd01818</u> , 1996.
485	Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C.: Heterogeneous oxidation of SO ₂ in sulfate
486	production during nitrate photolysis at 300 nm: Effect of pH, relative humidity, irradiation
487	intensity, and the presence of organic compounds, Environ. Sci. Technol., 53, 8757-8766,
488	https://doi.org/10.1021/acs.est.9b01623, 2019a.
489	Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C.: Heterogeneous SO ₂ oxidation in sulfate
490	formation by photolysis of particulate nitrate, Environ. Sci. Tech. Lett., 6, 86-91,
491	https://doi.org/10.1021/acs.estlett.8b00681, 2019b.
492	Golobokova, L., Khodzher, T., Khuriganova, O., Marinayte, I., Onishchuk, N., Rusanova, P.,
493	and Potemkin, V.: Variability of chemical properties of the atmospheric aerosol above lake
494	baikal during large wildfires in siberia, Atmosphere, 11, 1230-1250,
495	$\frac{\text{nttps://doi.org/10.3390/atmos11111230}}{Const. C. Yours D. Xing D. Zhang D. Martin, C. G. M.T.C. A. J. J. J. M. D. i. J.$
496	Gong, C., Yuan, X., Xing, D., Zhang, D., Martins-Costa, M. T. C., Anglada, J. M., Ruiz-Lopez,
49/	M. F., Francisco, J. S., and Zhang, X.: Fast sulfate formation initiated by the spin-forbidden

498	excitation of SO2 at the air-water interface, J. Am. Chem. Soc., 144, 22302-22308,
499	https://doi.org/10.1021/jacs.2c10830, 2022.
500	Goodman, A., Li, P., Usher, C., and Grassian, V.: Heterogeneous uptake of sulfur dioxide on

- 501
 aluminum and magnesium oxide particles, J. Phys. Chem. A 105, 6109-6120,

 502
 <u>https://doi.org/10.1021/jp004423z</u>, 2001.
- Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng,
 L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proc.
 Natl. Acad. Sci. U. S. A., 111, 17373-17378, <u>https://doi.org/10.1073/pnas.1419604111</u>,
 2014.
- He, G., Ma, J., and He, H.: Role of carbonaceous aerosols in catalyzing sulfate formation, ACS
 Catal., 8, 3825-3832, <u>https://doi.org/10.1021/acscatal.7b04195</u>, 2018a.
- He, H., Li, C., Loughner, C. P., Li, Z., Krotkov, N. A., Yang, K., Wang, L., Zheng, Y., Bao, X.,
 Zhao, G., and Dickerson, R. R.: SO₂ over central China: Measurements, numerical
 simulations and the tropospheric sulfur budget, J. Geophy. Res.: Atmos., 117, 37-51,
 https://doi.org/10.1029/2011jd016473, 2012.
- He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su,
 H., Liu, C., and Xie, Z.: Isotopic constraints on heterogeneous sulfate production in Beijing
 haze, Atmos. Chem. Phys., 18, 5515-5528, <u>https://doi.org/10.5194/acp-18-5515-2018</u>,
 2018b.
- Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM_{2.3}:
 A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem.,
 36, 231-284, https://doi.org/10.1023/A:1006318622743, 2000.
- Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of heterogeneous reaction of sulfur dioxide
 on authentic mineral dust: Effects of relative humidity and hydrogen peroxide, Environ. Sci.
 Technol., 49, 10797-10805, https://doi.org/10.1021/acs.est.5b03930, 2015.
- Knopf, D., Cosman, L., Mousavi, P., Mokamati, S., and Bertram, A.: A novel flow reactor for
 studying reactions on liquid surfaces coated by organic monolayers: Methods, validation,
 and initial results, J. Phys. Chem. A, 111, 11021-11032, <u>https://doi.org/10.1021/jp075724c</u>,
 2007.
- 527 Kroll, J., Frandsen, B., Kjaergaard, H., and Vaida, V.: Atmospheric hydroxyl radical source:
 528 Reaction of triplet SO₂ and water, J. Phys. Chem. A, 122, 4465-4469,
 529 <u>https://doi.org/10.1021/acs.jpca.8b03524</u>, 2018.
- Langhammer, D., Kullgren, J., and Osterlund, L.: Photoinduced adsorption and oxidation of
 SO₂ on anatase TiO₂, J. Am. Chem. Soc., 142, 21767-21774,
 https://doi.org/10.1021/jacs.0c09683, 2020.
- Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and
 Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China,
 Atmos. Chem. Phys., 17, 3301-3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
- Li, J., Zhang, Y. L., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski, G.: Stable sulfur
 isotopes revealed a major role of transition-metal ion-catalyzed SO₂ oxidation in haze
 episodes, Environ. Sci. Technol., 54, 2626-2634, <u>https://doi.org/10.1021/acs.est.9b07150</u>,
 2020.

540	Li, K., Kong, L., Zhanzakova, A., Tong, S., Shen, J., Wang, T., Chen, L., Li, Q., Fu, H., and
541	Zhang, L.: Heterogeneous conversion of SO ₂ on nano α -Fe ₂ O ₃ : the effects of morphology,
542	light illumination and relative humidity, Environ. Sci.: Nano, 6, 1838-1851,
543	https://doi.org/10.1039/c9en00097f, 2019.
544	Lim, S., Lee, M., Kim, S., and Laj, P.: Sulfate alters aerosol absorption properties in East Asian
545	outflow, Sci. Rep., 8, 5172-5178, https://doi.org/10.1038/s41598-018-23021-1, 2018.
546	Liu, T., Clegg, S., and Abbatt, J.: Fast oxidation of sulfur dioxide by hydrogen peroxide in
547	deliquesced aerosol particles, Proc. Natl. Acad. Sci. U. S. A., 117, 1354-1359.
548	https://doi.org/10.1073/pnas.1916401117, 2020a.
549	Liu, Y., Wang, T., Fang, X., Deng, Y., Cheng, H., Bacha, A. U., Nabi, I., and Zhang, L.: Brown
550	carbon: An underlying driving force for rapid atmospheric sulfate formation and haze event,
551	Sci. Total. Environ., 734, 139415-139424, https://doi.org/10.1016/j.scitotenv.2020.139415,
552	2020b.
553	Liu, Y., Deng, Y., Liu, J., Fang, X., Wang, T., Li, K., Gong, K., Bacha, A. U., Nabi, I., Ge, O.,
554	Zhang, X., George, C., and Zhang, L.: A novel pathway of atmospheric sulfate formation
555	through carbonate radicals, Atmos. Chem. Phys., 22, 9175-9197,
556	https://doi.org/10.5194/acp-22-9175-2022, 2022.
557	Ma, J., Dörner, S., Donner, S., Jin, J. L., Cheng, S. Y., Guo, J. R., Zhang, Z. F., Wang, J. Q.,
558	Liu, P., Zhang, G. Q., Pukite, J., Lampel, J., and Wagner, T.: MAX-DOAS measurements of
559	NO ₂ , SO ₂ , HCHO, and BrO at the Mt. Waliguan WMO GAW global baseline station in the
560	Tibetan Plateau, Atmos. Chem. Phys., 20, 6973-6990, https://doi.org/10.5194/acp-20-6973-
561	2020, 2020.
562	Ma, Q., Wang, L., Chu, B., Ma, J., and He, H.: Contrary role of H ₂ O and O ₂ in the kinetics of
563	heterogeneous photochemical reactions of SO ₂ on TiO ₂ , J. Phys. Chem. A., 123, 1311-1318,
564	https://doi.org/10.1021/acs.jpca.8b11433, 2019.
565	Martins-Costa, M., Anglada, J., Francisco, J., and Ruiz-Lopez, M.: Photochemistry of SO ₂ at
566	the air-water interface: A source of OH and HOSO radicals, J. Am. Chem. Soc., 140, 12341-
567	12344, https://doi.org/10.1021/jacs.8b07845, 2018.
568	Mauldin, R., Berndt, T., Sipila, M., Paasonen, P., Petaja, T., Kim, S., Kurten, T., Stratmann, F.,
569	Kerminen, V., and Kulmala, M .: A new atmospherically relevant oxidant of sulphur dioxide,
570	Nature, 488, 193-196, https://doi.org/10.1038/nature11278, 2012.
571	Mukuta, T., Fukazawa, N., Murata, K., Inagaki, A., Akita, M., Tanaka, S., Koshihara, S. Y., and
572	Onda, K.: Infrared vibrational spectroscopy of [Ru(bpy) ₂ (bpm)] ²⁺ and [Ru(bpy) ₃] ²⁺ in the
573	excited triplet state, Inorg. Chem., 53, 2481-2490, https://doi.org/10.1021/ic402474t, 2014.
574	Olson, E., Michalski, G., Welp, L., Valdivia, A., Larico, J., Pen, J., Fang, H., Gomez, K., and
575	Li, J.: Mineral dust and fossil fuel combustion dominate sources of aerosol sulfate in urban
576	Peru identified by sulfur stable isotopes and water-soluble ions, Atmos. Environ., 260,
577	118482-118495, https://doi.org/10.1016/j.atmosenv.2021.118482, 2021.
578	Park, J. and Jang, M.: Heterogeneous photooxidation of sulfur dioxide in the presence of
579	airborne mineral dust particles, RSC Adv., 6, 58617-58627,
580	https://doi.org/10.1039/c6ra09601h, 2016.
581	Park, J., Jang, M., and Yu, Z.: Heterogeneous photo-oxidation of SO ₂ in the presence of two

582	different mineral dust particles: Gobi and arizona dust, Environ. Sci. Technol., 51, 9605-
583	9613, https://doi.org/10.1021/acs.est.7b00588, 2017.
584	Peng, Y., von Salzen, K., and Li, J.: Simulation of mineral dust aerosol with Piecewise Log-
585	normal Approximation (PLA) in CanAM4-PAM, Atmos. Chem. Phys., 12, 6891-6914,
586	https://doi.org/10.5194/acp-12-6891-2012, 2012.
587	Prospero, J.: Long-range transport of mineral dust in the global atmosphere: Impact of African
588	dust on the environment of the southeastern United States, Proc. Natl. Acad. Sci. U. S. A.,
589	96, 3396-3403, https://doi.org/10.1073/pnas.96.7.3396, 1999.
590	Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song,
591	S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation
592	mechanisms during wintertime Chinese haze events: air quality model assessment using
593	observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107-6123,
594	https://doi.org/10.5194/acp-19-6107-2019, 2019.
595	Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio,
596	A. M., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas,
597	K., Morino, Y., Poschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and
598	Sato, K.: Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 51,
599	13545-13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
600	Sidebottom, H. W., Badcock, C. C., Jackson, G. E., Calvert, J. G., Reinhardt, G. W., and Damon,
601	E. K.: Photooxidation of sulfur dioxide, Environ. Sci. Technol., 6, 72-79,
602	https://doi.org/10.1080/00022470.1971.10469552, 1972.
603	Solbrig, C. W. and Gidaspow, D.: Convective diffusion in a parallel plate duct with one catalytic
604	wall, laminar flow, first order reaction-part one, Can. J. Chem. Eng., 45, 35-39,
605	https://doi.org/10.1016/0304-5102(89)80197-X, 1967.
606	Sumner, A. L., Menke, E. J., Dubowski, Y., Newberg, J. T., Penner, R. M., Hemminger, J. C.,
607	Wingen, L. M., Brauers, T. and Finlayson-Pitts, B. J. The nature of water on surfaces of
608	laboratory systems and implications for heterogeneous chemistry in the troposphere. Phys.
609	Chem. Chem. Phys., 6, 604-613, https://doi.org/10.1039/B308125G, 2004.
610	Tohidi, R., Farahani, V., and Sioutas, C.: Real-time measurements of mineral dust concentration
611	in coarse particulate matter PM _{10-2.5} by employing a novel optical-based technique in Los
612	Angeles, Sci. Total. Environ., 838, 156215-156226, https://doi.org/10.1016/j.scitotenv.202
613	<u>2.156215</u> , 2022.
614	Urupina, D., Romanias, M. N., and Thevenet, F.: How relevant is it to use mineral proxies to
615	mimic the atmospheric reactivity of natural dust samples? A reactivity study using SO ₂ as
616	probe molecule, Minerals, 11, 282-299, <u>https://doi.org/10.3390/min11030282</u> , 2021.
617	Urupina, D., Lasne, J., Romanias, M. N., Thiery, V., Dagsson-Waldhauserova, P., and Thevenet,
618	F.: Uptake and surface chemistry of SO ₂ on natural volcanic dusts, Atmos. Environ., 217,
619	116942-116959, https://doi.org/10.1016/j.atmosenv.2019.116942, 2019.
620	Usher, C., Michel, A., and Grassian, V.: Reactions on mineral dust, Chem. Rev., 103, 4883-
621	4939, <u>https://doi.org/10.1021/cr020657y</u> , 2003.
622	Usher, C., Al-Hosney, H., Carlos-Cuellar, S., and Grassian, V.: A laboratory study of the
623	heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles, J. Geophys.

624	Res-atmos., 107, 4713-4729, https://doi.org/10.1029/2002jd002051, 2002.
625	Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang,
626	D. D., Ji, D., Sun, X., Xu, W., Guo, J., Song, S., Qin, Y., Liu, P., Turner, J. R., Lee, H. C.,
627	Hwang, S., Liao, H., Martin, S. T., Zhang, Q., Chen, M., Sun, Y., Ge, X., and Jacob, D. J.:
628	Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze,
629	Nat. Commun., 11, 2844-2850, https://doi.org/10.1038/s41467-020-16683-x, 2020a.
630	Wang, T., Liu, Y., Deng, Y., Fu, H., Zhang, L., and Chen, J.: The influence of temperature on
631	the heterogeneous uptake of SO ₂ on hematite particles, Sci. Total. Environ., 644, 1493-1502,
632	https://doi.org/10.1016/j.scitotenv.2018.07.046, 2018.
633	Wang, T., Liu, Y. Y., Deng, Y., Cheng, H. Y., Yang, Y., Li, K. J., Fang, X. Z., and Zhang, L. W.:
634	Irradiation intensity dependent heterogeneous formation of sulfate and dissolution of ZnO
635	nanoparticles, Environ. Sci.: Nano, 7, 327-338, <u>https://doi.org/10.1039/c9en01148j</u> , 2020b.
636	Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.:
637	Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification
638	of iron speciation during simulated cloud processing, Atmos. Chem. Phys., 19, 12569-12585,
639	https://doi.org/10.5194/acp-19-12569-2019, 2019.
640	Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K., and Yu, J. Z.: Sulfate formation enhanced
641	by a cocktail of high NO _X , SO ₂ , particulate matter, and droplet pH during haze-fog events
642	in megacities in china: An observation-based modeling investigation, Environ. Sci. Technol.,
643	50, 7325-7334, https://doi.org/10.1021/acs.est.6b00768, 2016.
644	Yang, N., Tsona, N. T., Cheng, S., Li, S., Xu, L., Wang, Y., Wu, L., and Du, L.: Competitive
645	reactions of SO ₂ and acetic acid on α -Al ₂ O ₃ and CaCO ₃ particles, Sci. Total. Environ., 699,
646	134362-134370, https://doi.org/10.1016/j.scitotenv.2019.134362, 2020.
647	Yang, W., Ma, Q., Liu, Y., Ma, J., Chu, B., and He, H.: The effect of water on the heterogeneous
648	reactions of SO ₂ and NH ₃ on the surfaces of α -Fe ₂ O ₃ and γ -Al ₂ O ₃ , Environ. Sci.: Nano, 6,
649	2749-2758, https://doi.org/10.1039/c9en00574a, 2019.
650	Ye, C., Chen, H., Hoffmann, E. H., Mettke, P., Tilgner, A., He, L., Mutzel, A., Bruggemann,
651	M., Poulain, L., Schaefer, T., Heinold, B., Ma, Z., Liu, P., Xue, C., Zhao, X., Zhang, C.,
652	Zhang, F., Sun, H., Li, Q., Wang, L., Yang, X., Wang, J., Liu, C., Xing, C., Mu, Y., Chen, J.,
653	and Herrmann, H.: Particle-phase photoreactions of HULIS and TMIs establish a strong
654	source of H ₂ O ₂ and particulate sulfate in the winter north china plain, Environ. Sci. Technol.,
655	55, 7818-7830, https://doi.org/10.1021/acs.est.1c00561, 2021.
656	Zhang, P., Chen, T., Ma, Q., Chu, B., Wang, Y., Mu, Y., Yu, Y., and He, H.: Diesel soot
657	photooxidation enhances the heterogeneous formation of H ₂ SO ₄ , Nat. Commun., 13, 5364-
658	5372, https://doi.org/10.1038/s41467-022-33120-3, 2022.
659	Zhang, R., Gen, M., Huang, D., Li, Y., and Chan, C.: Enhanced sulfate production by nitrate
660	photolysis in the presence of halide ions in atmospheric particles, Environ. Sci. Technol.,
661	54, 3831-3839, https://doi.org/10.1021/acs.est.9b06445, 2020a.
662	Zhang, T., Yang, W., Han, C., Yang, H., and Xue, X.: Heterogeneous reaction of ozone with
663	syringic acid: Uptake of O3 and changes in the composition and optical property of syringic
664	acid, Environ. Pollut., 257, 113632-113638, https://doi.org/10.1016/j.envpol.2019.113632,
665	2020b.

- Zhang, X., Zhuang, G., Chen, J., Wang, Y., Wang, X., An, Z., and Zhang, P.: Heterogeneous
 reactions of sulfur dioxide on typical mineral particles, J. Phys. Chem. B, 110, 12588-12596,
 https://doi.org/, 2006.
- 669 Zhang, Y., Bao, F., Li, M., Chen, C., and Zhao, J.: Nitrate-enhanced oxidation of SO₂ on mineral
- dust: A vital role of a proton, Environ. Sci. Technol., 53, 10139-10145,
 https://doi.org/10.1021/acs.est.9b01921, 2019.
- 672 Zhang, Y., Bao, F., Li, M., Xia, H., Huang, D., Chen, C., and Zhao, J.: Photoinduced uptake
- and oxidation of SO₂ on Beijing urban PM_{2.5}, Environ. Sci. Technol., 54, 14868-14876,
- 674 <u>https://doi.org/10.1021/acs.est.0c01532</u>, 2020c.
- 675