

1 **Photoenhanced sulfates formation by the heterogeneous uptake of SO<sub>2</sub> on non-**  
2 **photoactive mineral dust**

3 Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, Chong Han\*

4 School of Metallurgy, Northeastern University, Shenyang, 110819, China

5 \*Address correspondence to author: hanch@smm.neu.edu.cn

6

7 **Short summary.** We provide evidence that light enhances the conversion of SO<sub>2</sub> to sulfates on  
8 non-photoactive mineral dust, where triplet states of SO<sub>2</sub> (<sup>3</sup>SO<sub>2</sub>) can act as a pivotal trigger to  
9 generate sulfates. Photochemical sulfate formation depends on H<sub>2</sub>O, O<sub>2</sub>, and basicity of mineral  
10 dust. The SO<sub>2</sub> photochemistry on non-photoactive mineral dust contributes to sulfates,  
11 highlighting previously unknown pathways to better explain the missing sources of  
12 atmospheric sulfates.

13

14 **Abstract.** Heterogeneous uptake of SO<sub>2</sub> on mineral dust is a predominant formation pathway  
15 of sulfates, whereas the contribution of photo-induced SO<sub>2</sub> oxidation to sulfates on the dust  
16 interfaces still remains unclear. Here, we investigated heterogeneous photochemical reactions  
17 of SO<sub>2</sub> on five mineral oxides (SiO<sub>2</sub>, kaolinite, Al<sub>2</sub>O<sub>3</sub>, MgO, and CaO) without photocatalytic  
18 activity. Light enhanced the uptake of SO<sub>2</sub>, and its enhancement effects negatively depended  
19 on the basicity of mineral oxides. The initial uptake coefficient ( $\gamma_{0, \text{BET}}$ ) and the steady-state  
20 uptake coefficient ( $\gamma_{s, \text{BET}}$ ) of SO<sub>2</sub> positively relied on light intensity, relative humidity (RH)  
21 and O<sub>2</sub> content, while they exhibited a negative relationship with the initial SO<sub>2</sub> concentration.  
22 Rapid sulfate formation during photo-induced heterogeneous reactions of SO<sub>2</sub> with all mineral  
23 oxides was confirmed to be ubiquitous, and H<sub>2</sub>O and O<sub>2</sub> played key roles in the conversion of  
24 SO<sub>2</sub> to sulfates. Specially, triplet states of SO<sub>2</sub> (<sup>3</sup>SO<sub>2</sub>) were suggested to be the trigger for  
25 photochemical sulfate formation. Atmospheric implications supported a potential contribution  
26 of interfacial SO<sub>2</sub> photochemistry on non-photoactive mineral dust to atmospheric sulfate  
27 sources.

28

29 **Keywords:** SO<sub>2</sub>; Sulfates; Non-photoactive mineral dust; Heterogeneous photochemistry

30

31

32 **1 Introduction**

33 As an important trace gas in the atmosphere, SO<sub>2</sub> is mainly emitted by volcanic eruption and  
34 fuel combustion. There is an uneven distribution of atmospheric SO<sub>2</sub> concentrations that show  
35 a distinctive seasonal and regional differentiation. Typical mixing ratios of SO<sub>2</sub> in the  
36 troposphere are below 0.5 ppb for clean weather days, rising to several hundred ppb during  
37 polluted days in urban regions (Ma et al., 2020). About half of SO<sub>2</sub> is oxidized to sulfate (He  
38 et al., 2012), which is a key component of fine particulates in the atmosphere. High sulfate  
39 loading in PM<sub>2.5</sub> was observed (Shao et al., 2019), especially in polluted regions where high-  
40 sulfur fuels are usually used (Olson et al., 2021). They significantly alter physicochemical  
41 properties of aerosols in terms of hygroscopicity, acidity and light absorption (Chan and Chan,  
42 2003; Cao et al., 2013; Lim et al., 2018). Sulfates may lead to negative health outcomes, such  
43 as respiratory illness and cardiovascular (Shiraiwa et al., 2017). In addition, the deposition of  
44 sulfates leads to adverse effects on ecosystems via the acidification of soils and lakes  
45 (Golobokova et al., 2020). Therefore, the oxidation of SO<sub>2</sub> to form sulfates has attracted  
46 widespread attention in the past decades.

47 The conversion of SO<sub>2</sub> to sulfates in the atmosphere usually occurs in different phases: gas-  
48 phase oxidation of SO<sub>2</sub> by hydroxyl radicals (•OH) or Criegee intermediate radicals (Mauldin  
49 et al., 2012; Davis et al., 1979); aqueous-phase reaction of SO<sub>2</sub> with O<sub>3</sub>, peroxides or transition  
50 metal ions dissolved in cloud and fog droplets (Alexander et al., 2009; Herrmann et al., 2000;  
51 Harris et al., 2013; Liu et al., 2020a; Li et al., 2020); and heterogeneous SO<sub>2</sub> uptake on aerosols  
52 including authentic mineral dust, soot, inorganic ion and organic compounds (Adams et al.,  
53 2005; He et al., 2018a; Ye et al., 2018; Wang et al., 2019; Yao et al., 2019; Zhang et al., 2020a;  
54 Liu et al., 2020; Liu et al., 2021). However, the oxidation of SO<sub>2</sub> in gas and aqueous phases  
55 fails to explain high sulfate concentrations in the polluted areas. Model simulation suggests

56 that the rapid sulfate formation can be attributed to the heterogeneous  $\text{SO}_2$  uptake (Li et al.,  
57 2017). A positive relationship between the fraction of sulfates and mineral dust in haze days  
58 has been reported, implying that mineral dust may account for the formation of sulfates (Wang  
59 et al., 2020a). Moreover, a large amount of sulfates was observed to be formed on the surface  
60 of mineral dust after long-distance transport (Prospero, 1999). Thus, investigating the  
61 heterogeneous oxidation of  $\text{SO}_2$  on mineral dust can provide basic data for the model  
62 calculation to evaluate atmospheric sulfates.

63 Mineral dust, as the dominant component of particulate matters in the atmosphere, accounts  
64 for about 30%–60% mass fractions of global aerosols (Dentener et al., 1996; Peng et al., 2012).  
65 It primarily contains  $\text{SiO}_2$  (40%–80%), followed by  $\text{Al}_2\text{O}_3$  (10%–15%),  $\text{Fe}_2\text{O}_3$  (6%–13%),  
66  $\text{CaO}$  (3%–10%),  $\text{MgO}$  (1%–7%) and  $\text{TiO}_2$  (0.1%–5%) (Urupina et al., 2021; Urupina et al.,  
67 2019; Usher et al., 2003). Mineral dust can provide active sites for the adsorption and reaction  
68 of gases. Up to now, the heterogeneous  $\text{SO}_2$  uptake on authentic mineral aerosols and model  
69 mineral oxides has been widely reported (Ma et al., 2019; Goodman et al., 2001; Wang et al.,  
70 2018; Wang et al., 2020b), with the uptake coefficient ( $\gamma$ ) of  $\text{SO}_2$  varying from  $10^{-9}$  to  $10^{-4}$   
71 (Urupina et al., 2019; Usher et al., 2002).

72 It was recognized that light could significantly enhance the heterogeneous conversion of  $\text{SO}_2$   
73 to sulfates on the surface of photocatalytic mineral dust (Chen et al., 2021; Li et al., 2019; Wang  
74 et al., 2020b). Electron-hole pairs are produced via photo-induced electrons from the valence  
75 band to the conduction band of photocatalytic metal oxides, and then react with  $\text{H}_2\text{O}$  and  $\text{O}_2$  to  
76 generate reactive oxygen species (ROS), such as  $\cdot\text{OH}$  and  $\cdot\text{O}_2^-$  (Chu et al., 2019). Sulfates are  
77 produced by the heterogeneous reactions of  $\text{SO}_2$  with ROS (Park and Jang, 2016; Park et al.,  
78 2017; Langhammer et al., 2020; Bounechada et al., 2017). In particular, due to the large  
79 abundance of non-photoactive mineral dust (more than 85% mass of total mineral dust in the  
80 atmosphere) (Usher et al., 2003; Liu et al., 2022), revealing the photooxidation processes of  
81  $\text{SO}_2$  on these mineral dust is of great importance to better reevaluate the sulfate formation on  
82 aerosols in the global scale.

83 Hence, photochemical  $\text{SO}_2$  uptake and sulfate formation on non-photoactive mineral oxides

were investigated using a flow reactor and an *in situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The SO<sub>2</sub> conversion to sulfates was examined under various conditions, and the roles of light intensity, SO<sub>2</sub> concentration, H<sub>2</sub>O, O<sub>2</sub> and basicity of mineral oxides were determined. Reaction mechanisms and atmospheric implications were proposed, highlighting an important pathway accounting for the photochemical uptake of SO<sub>2</sub> to form sulfates on the non-photoactive surfaces.

90

## 91 **2 Experimental methods**

### 92 **2.1 Materials**

93 Analytical grade SiO<sub>2</sub> (Sinopharm Chemical Reagent Co., Ltd.), kaolinite (Sinopharm 94 Chemical Reagent Co., Ltd.), Al<sub>2</sub>O<sub>3</sub> (Alfa Aesar), MgO (Sigma-Aldrich), and CaO (Sigma- 95 Aldrich) were used in the experiments. Through the nitrogen Brunauer-Emmett-Teller (BET) 96 physisorption analysis, their specific surface areas were detected to be 0.419, 6.407, 8.137, 97 10.948 and 6.944 m<sup>2</sup> g<sup>-1</sup>, respectively. With BaSO<sub>4</sub> used as the reference, the ultraviolet-visible 98 (UV-vis) light absorption spectra of samples (Figure S1) in the wavelength range of 300–800 99 nm were obtained by the Shimadzu UV-2550 spectrophotometer, which was equipped with 100 diffuse reflection integrating sphere attachment. The solid powder (0.2–5 g) was uniformly 101 dispersed into 10.0 mL ethanol solution. The mixed liquid was poured into a rectangle quartz 102 sample dish (14.0 cm × 7.0 cm) and dried to form a solid coating in an oven at 353 K for 10 h. 103 SO<sub>2</sub> standard gas (50 ppm in N<sub>2</sub>, Shenyang Air Liquide Co., LTD) and high purity N<sub>2</sub> and O<sub>2</sub> 104 (99.999 vol.%, Shenyang Air Liquide Co., LTD) were used as received. The solid sample 105 powder (0.2 g) was immersed in 10 mL deionized water (20 mg mL<sup>-1</sup>), and then the suspension 106 was vigorously stirred for 10 min. The pH of SiO<sub>2</sub>, kaolinite, Al<sub>2</sub>O<sub>3</sub>, MgO and CaO suspension 107 was measured to be 6.27, 6.58, 9.33, 10.61 and 12.72 using a pH meter, respectively.

### 108 **2.2 Rectangular flow reactor**

109 The uptake experiments of SO<sub>2</sub> on mineral dust were performed in a horizontal rectangular 110 flow reactor (26.0 cm length × 7.5 cm width × 2.0 cm height), which was depicted in Figure 111 S2. In a previous study, a similar rectangular flow reactor was designed and the feasibility of

112 the reactor has been verified (Knopf et al., 2007). The reactor was made of quartz to allow the  
113 transmission of light. The temperature was maintained at 298 K by circulating temperature-  
114 controlled water through the outer jacket of the reactor. Synthetic air with a N<sub>2</sub>/O<sub>2</sub> volume ratio  
115 of 4:1 was introduced into the flow reactor, and its total flow rate was 1000 mL min<sup>-1</sup>. The  
116 Reynolds number (*Re*) was calculated to be 28.2 (*Re* < 200), as described in the Supporting  
117 Information, indicating a laminar flow state. SO<sub>2</sub> together with high purity N<sub>2</sub> (100 mL min<sup>-1</sup>)  
118 was introduced into the reactor through a movable T-shaped injector equipped with six exit  
119 holes (0.2 mm diameter), so that the gas could be uniformly distributed over the width of the  
120 reactor. The SO<sub>2</sub> concentration was 40–200 ppb and measured with a SO<sub>2</sub> analyzer (Thermo  
121 43i). Wet N<sub>2</sub> generated with a bubbler containing deionized water was introduced by two  
122 parallel inlets on the side of a T-shaped injector. Relative humidity (RH, 10%–75%) was  
123 controlled by regulating the ratio of dry N<sub>2</sub> to wet N<sub>2</sub> and measured via a hygrometer (Center  
124 314). The equivalent layer numbers of water on surface was 0.9–4.0 according to the Brunauer-  
125 Emmett-Teller (BET) model (Sumner et al., 2004), and the thickness of the film of adsorbed  
126 water varied between 2.7–12 nm at RH=10%–75%. There were three equally spaced exhaust  
127 ports to mitigate the outlet turbulence. A xenon lamp (CEL-LAX500, China Education Au-light  
128 Co., Ltd) was used to simulate sunlight and vertically located above the reactor. A filter was  
129 placed on the reactor to remove the light with wavelengths shorter than 300 nm. The spectrum  
130 irradiance of the xenon lamp was displayed in Figure S3 and measured using a calibrated  
131 spectroradiometer (ULS2048CL-EVO, Avantes). The spectral irradiance was measured inside  
132 the reactor, after passing the water cooling and in the absence of a sample. The total irradiance  
133 (0–7.93 × 10<sup>16</sup> photons cm<sup>-2</sup> s<sup>-1</sup>) on the coating can be adjusted by varying the distance of the  
134 xenon lamp to the reactor.

### 135 2.3 Uptake coefficient of SO<sub>2</sub>

136 The heterogeneous reaction kinetics of SO<sub>2</sub> with mineral dust can be described by a pseudo-  
137 first-order reaction. Figure S4 showed a linear relationship between the natural logarithm of  
138 the SO<sub>2</sub> concentration and the reaction time. The apparent rate constant (*k*<sub>obs, SiO<sub>2</sub></sub>) of SO<sub>2</sub> with  
139 SiO<sub>2</sub> can be calculated using equation 1,

140 
$$\frac{\ln(C_0/C_t)}{t} = k_{\text{obs, SiO}_2} \quad (1)$$

141 where  $C_0$  and  $C_t$  (ppb) are the initial  $\text{SO}_2$  concentration and the  $\text{SO}_2$  concentration, respectively;  
 142  $t$  was calculated by diving the length of the reactive surface by the average flow velocity. The  
 143 loss of  $\text{SO}_2$  on the internal wall of the reactor in blank experiments was carried out under  
 144 various conditions (Figure S5 as an example), and it has been deducted for the  $\gamma$  calculation.  
 145 Assuming that the wall loss was constant in the experiments with and without samples, the  
 146 geometric uptake coefficient ( $\gamma_{\text{geo}}$ ) was determined by equation 2 (Knopf et al., 2007),

147 
$$\gamma_{\text{geo}} = \frac{4Vk}{Sw} \quad (2)$$

148 where  $k$  ( $\text{s}^{-1}$ ),  $V$  ( $4 \times 10^{-4} \text{ m}^3$ ),  $S$  ( $9.8 \times 10^{-3} \text{ m}^2$ ) and  $\omega$  ( $314.05 \text{ m s}^{-1}$ ) are the reaction rate  
 149 constant, the volume of the rectangular reactor, the surface area of the sample dish, and the  
 150 mean molecular speed of  $\text{SO}_2$ , respectively.

151 The uptake process of  $\text{SO}_2$  on  $\text{SiO}_2$  depended on the reaction of  $\text{SO}_2$  with  $\text{SiO}_2$  and the mass  
 152 transport of  $\text{SO}_2$  to the surface. It can be expressed by equation 3,

153 
$$k'_{\text{r, SiO}_2} = \left[ \frac{1}{k_{\text{obs, SiO}_2} - k_{\text{obs, wall}}} - \frac{a}{N_u D} \right]^{-1} \quad (3)$$

154 where  $k_{\text{obs, SiO}_2}$  and  $k_{\text{obs, wall}}$  ( $\text{s}^{-1}$ ) are the apparent rate constants measured with and without  
 155  $\text{SiO}_2$  samples, respectively.  $k'_{\text{r, SiO}_2}$  is the reaction rate constant of  $\text{SO}_2$  accounting for the  
 156 diffusion effect;  $D$  ( $0.1337 \text{ cm}^2 \text{ s}^{-1}$ ) is the diffusion coefficient of  $\text{SO}_2$  in air;  $a$  (1 cm) is one  
 157 half height of the flow reactor;  $N_u$  is the Nusselt numbers obtained with a calculation method  
 158 from Solbrig and Gidaspow (1967), which represents the mass transport. Then, the corrected  $\gamma$   
 159 can be calculated by equation 2 where  $k$  was replaced by  $k'_{\text{r, SiO}_2}$ . In our experiments, the  
 160 correction for  $\gamma$  was estimated to be 10%. Initial uptake coefficients ( $\gamma_0$ ) and steady-state uptake  
 161 coefficients ( $\gamma_s$ ) were calculated by averaging the signals within the 1.0 and 40–60 min reaction  
 162 time, respectively.

163 To understand the diffusion depth of  $\text{SO}_2$  and determine the interaction of  $\text{SO}_2$  with the  
 164 underlying layers of  $\text{SiO}_2$ , the uptake of  $\text{SO}_2$  as a function of the  $\text{SiO}_2$  mass under irradiation  
 165 was shown in Figure S6. The  $\gamma$  exhibited a linear increase in the  $\text{SiO}_2$  mass range of 0.05–2.0

166 g, while it remained unchanged at the  $\text{SiO}_2$  mass  $> 3.0$  g. Therefore, the uptake coefficient of  
167  $\text{SO}_2$  in the linear regions was normalized using the BET surface area of  $\text{SiO}_2$  by equation 4  
168 (Brunauer et al., 1938),

$$169 \quad \gamma_{\text{BET}} = \frac{S_{\text{geo}} \times \gamma_{\text{geo}}}{S_{\text{BET}} \times m_{\text{SiO}_2}} \quad (4)$$

170 where  $\gamma_{\text{BET}}$  is the  $\text{SO}_2$  uptake coefficient normalized to the BET surface area;  $S_{\text{geo}}$  ( $9.8 \times 10^{-3}$   
171  $\text{m}^2$ ) is the geometric area of the sample dish;  $S_{\text{BET}}$  ( $0.419 \text{ m}^2 \text{ g}^{-1}$ ) is the BET surface area of  
172  $\text{SiO}_2$ ;  $m_{\text{SiO}_2}$  (0.05–2.0 g) is the  $\text{SiO}_2$  mass. The same method was also used to calculate the  
173 uptake coefficients of  $\text{SO}_2$  on other mineral oxides.

## 174 **2.4 In situ DRIFTS analysis**

175 The changes in the chemical compositions on mineral oxides in the  $\text{SO}_2$  uptake process were  
176 investigated by the Fourier transform infrared (FTIR) spectrometer (Thermo Nicolet iS50)  
177 equipped with an *in situ* diffuse reflectance accessory and a mercury cadmium telluride (MCT)  
178 detector. About 14 mg mineral oxides were placed into a stainless-steel cup inside the reaction  
179 cell. To remove adsorbed impurities,  $\text{SiO}_2$  was purged with a  $150 \text{ mL min}^{-1}$  airflow ( $\text{N}_2/\text{O}_2$   
180 volume ratio = 4:1) at RH=40% for 1 h. Then, a background spectrum of unreacted samples  
181 was collected.  $\text{SO}_2$  (2 ppm) was introduced into the reaction cell, and the IR spectra was  
182 recorded as a function of time at a resolution of  $4 \text{ cm}^{-1}$  by averaging 100 scans. The light from  
183 the xenon lamp (500 W) was transmitted into the DRIFTS reaction cell via a fiber. To verify  
184 the role of intermediate,  $\text{Ru}(\text{bpy})_3(\text{Cl})_2$  and  $\text{NaHCO}_3$ , acting as  ${}^3\text{SO}_2$  and  $\cdot\text{OH}$  scavengers  
185 (Bulgakov and Safonova, 1996; Gen et al., 2019a), respectively, were mixed with  $\text{SiO}_2$  powder  
186 in an agate mortar, and the mixture was put in the reaction cell of DRIFTS.

187

## 188 **3 Results and discussion**

### 189 **3.1 Photo-enhanced uptake of $\text{SO}_2$**

190 Acting as the most abundant mineral oxides,  $\text{SiO}_2$  was used to investigate the uptake  
191 behaviors of  $\text{SO}_2$ . As shown in Figure 1A, when  $\text{SO}_2$  (80 ppb) was exposed to  $\text{SiO}_2$  in the dark,  
192 the  $\text{SO}_2$  concentration decreased to 70 ppb, and then it quickly increased and reached a steady

193 state after 20 min. Upon exposure to  $\text{SiO}_2$  under irradiation, the  $\text{SO}_2$  concentration exhibited a  
194 greater drop than that in the dark. The deactivation of  $\text{SO}_2$  uptake on  $\text{SiO}_2$  was very slight after  
195 20 mins under irradiation. These suggest that light can promote the heterogeneous reaction of  
196  $\text{SO}_2$  on  $\text{SiO}_2$ . Few studies observed the photochemical uptake of  $\text{SO}_2$  on non-photoactive  
197 minerals (Xu et al., 2021; Zhang et al., 2022). When  $\text{SO}_2$  did not contact with  $\text{SiO}_2$ , its  
198 concentration recovered rapidly. The desorption of  $\text{SO}_2$  was observed when  $\text{SO}_2$  was isolated  
199 from  $\text{SiO}_2$  in the dark and under irradiation, indicating that the physical adsorption partially  
200 contributed to the  $\text{SO}_2$  loss during the photochemical process. The proportion of the desorbed  
201  $\text{SO}_2$  during the uptake process can be quantified by dividing the integral of reversible  
202 desorption of  $\text{SO}_2$  ( $t = 80\text{--}100$  min) into the integral of the  $\text{SO}_2$  uptake ( $t = 20\text{--}80$  min), which  
203 was calculated to be 95% and 12% in the dark and under irradiation, respectively. This implies  
204 that  $\text{SO}_2$  uptake in the dark was primarily ascribed to the physical adsorption of  $\text{SO}_2$ , while  $\text{SO}_2$   
205 uptake under irradiation was mainly attributed to chemical processes or irreversible adsorption.

206 The uptake coefficients of  $\text{SO}_2$  on  $\text{SiO}_2$  as a function of irradiation intensity were shown in  
207 Figure 1B. The errors in all figures are the standard deviations of three repetitive experiments.  
208 Both  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  displayed a well linear relationship with the irradiation intensity. The  
209  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  under the irradiation of  $7.93 \times 10^{16}$  photons  $\text{cm}^{-2} \text{ s}^{-1}$  were 1.75 and 2.25 times  
210 of those in the dark, respectively. This further confirms the photochemical nature of the  
211 reactions of  $\text{SO}_2$  on  $\text{SiO}_2$ . In particular,  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  on  $\text{SiO}_2$  under simulated solar  
212 irradiation was comparable with those ( $10^{-7}\text{--}10^{-6}$ ) on Gobi Desert dust (GDD) and Arizona  
213 Test Dust (ATD) under UV irradiation, which contained photocatalytic metal oxides (Park et  
214 al., 2017). As for the  $\text{SO}_2$  uptake on  $\text{TiO}_2$ ,  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  were measured to be  $10^{-6}$  and  $10^{-7}$ ,  
215 respectively, by using the flow tube (Ma et al., 2019), which were similar to our results. It  
216 should be pointed out that the similar uptake coefficient did not mean the comparable ability  
217 of photoactive and non-photoactive mineral oxides to  $\text{SO}_2$  uptake, since the uptake coefficient  
218 was highly dependent on environmental conditions ( $\text{SO}_2$  concentration, relative humidity,  
219 mineral oxides mass, light source and pressure) and reactor type (chamber and flow tube

reactor). Table S1 shows that the fraction of  $\text{SiO}_2$  in the sample was 99.02%, accompanied by a small amount of  $\text{Al}_2\text{O}_3$ ,  $\text{K}_2\text{O}$ ,  $\text{Fe}_2\text{O}_3$  and  $\text{CaO}$ . Photoactive substances ( $\text{Fe}_2\text{O}_3$ ) was very few in the sample, and they should not be the main contributor to the photochemical uptake of  $\text{SO}_2$ .

Figure 1C shows the evolution of  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  at different  $\text{SO}_2$  concentrations under irradiation. An inverse dependence of  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  on the  $\text{SO}_2$  concentration was observed,

meaning that the efficiency of  $\text{SO}_2$  uptake decreased with increasing the  $\text{SO}_2$  concentration. The uptake of gases on the solid surfaces usually follows the Langmuir-Hinshelwood (L-H) mechanism (Ammann et al., 2003; Zhang et al., 2020b), suggesting that gaseous molecules are quickly absorbed on the surfaces, and then the reactions occur among the absorbed species. Assuming that the adsorption of  $\text{SO}_2$  on  $\text{SiO}_2$  is in accord with the Langmuir isotherm, the dependence of  $\gamma$  on the  $\text{SO}_2$  concentration can be described by equation 5 (Zhang et al., 2020b),

$$\gamma = \frac{(4V/S\omega)k[\text{SiO}_2]_T K_{\text{SO}_2}}{1+K_{\text{SO}_2}[\text{SO}_2]_g} \quad (5)$$

where  $[\text{SO}_2]_g$  is the concentration of gaseous  $\text{SO}_2$ ;  $[\text{SiO}_2]_T$  is the total number of active sites on  $\text{SiO}_2$ ;  $k$  is the reaction rate constant of  $\text{SO}_2$  absorbed on  $\text{SiO}_2$ ;  $K_{\text{SO}_2}$  represents the Langmuir adsorption constant of  $\text{SO}_2$ . Because the  $\text{SiO}_2$  mass remained constant during the reaction, equation 5 can be written as equation 6,

$$\gamma = \frac{a}{1 + K_{\text{SO}_2}[\text{SO}_2]_g} \quad (6)$$

where  $a = (4V/S\omega)k[\text{SiO}_2]K_{\text{SO}_2}$ . As shown in Figure 1C, equation 6 can well describe the correlation of the  $\text{SO}_2$  uptake coefficient with the  $\text{SO}_2$  concentration, suggesting that the L-H mechanism can explain the influence of the  $\text{SO}_2$  concentration on  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$ .



Figure 1. (A) The temporal variation of the  $\text{SO}_2$  concentration on  $\text{SiO}_2$  in the dark and under

242 irradiation ( $7.93 \times 10^{16}$  photons  $\text{cm}^{-2} \text{ s}^{-1}$ ); The background changes of the  $\text{SO}_2$  concentration  
243 in the blank reactor have been deducted. (B) The  $\gamma_{0, \text{BET}}$  and  $\gamma_{s, \text{BET}}$  of  $\text{SO}_2$  on  $\text{SiO}_2$  as a  
244 function of the light intensity. (C) The  $\gamma_{0, \text{BET}}$  and  $\gamma_{s, \text{BET}}$  of  $\text{SO}_2$  on  $\text{SiO}_2$  at different  $\text{SO}_2$   
245 concentrations under irradiation ( $7.93 \times 10^{16}$  photons  $\text{cm}^{-2} \text{ s}^{-1}$ ); The fitting lines for  $\gamma_{0, \text{BET}}$   
246 and  $\gamma_{s, \text{BET}}$  were based on the Langmuir-Hinshelwood mechanism using equation 6. Reaction  
247 conditions:  $\text{SiO}_2$  mass of 0.2 g, temperature of 298 K, RH of 40% and  $\text{O}_2$  content of 20%.

248 **3.2 Photo-induced formation of sulfates by the  $\text{SO}_2$  uptake**

249 To investigate the products formed on  $\text{SiO}_2$ , *in situ* DRIFTS spectra were recorded, as shown  
250 in Figure 2. The band at  $1359 \text{ cm}^{-1}$  was assigned to physically-adsorbed  $\text{SO}_2$  on  $\text{SiO}_2$  (Urupina  
251 et al., 2019). The bidentate sulfate and bisulfate contributed to the bands at 1260 and 1229/1074  
252  $\text{cm}^{-1}$  (Urupina et al., 2019; Yang et al., 2020), respectively. The bands at  $1038 \text{ cm}^{-1}$  may be  
253 related to the monodentate sulfite (Yang et al., 2019; Wang et al., 2019). It was noted that the  
254 intensity of physically-absorbed  $\text{SO}_2$  ( $1359 \text{ cm}^{-1}$ ) under irradiation was lower than that in the  
255 dark (Figure S7), which may be ascribed to further conversion of  $\text{SO}_2$  absorbed on  $\text{SiO}_2$  under  
256 irradiation. Especially, the sulfate bands (1260, 1229 and  $1074 \text{ cm}^{-1}$ ) only appeared under  
257 irradiation, while the sulfites ( $1038 \text{ cm}^{-1}$ ) were only detected in the dark. This suggests that  
258 light changed the  $\text{SO}_2$  conversion pathways on  $\text{SiO}_2$ . As shown in Figure S7, the bands at  
259  $1157/1055 \text{ cm}^{-1}$  were assigned to the asymmetric stretching of Si–O (Hu et al., 2003). Sulfate  
260 generated on the surface may interact with  $\text{SiO}_2$ , leading to a decrease in the intensity of peaks  
261 ( $1157/1055 \text{ cm}^{-1}$ ).



262  
263  
264  
265

**Figure 2.** *In situ* DRIFTS spectra of  $\text{SiO}_2$  during the uptake process of  $\text{SO}_2$  (2 ppm) in the dark (A) and under irradiation (B). Reaction conditions: RH of 40%, temperature of 298 K and  $\text{O}_2$  content of 20%.

266 **3.3 Key roles of  $\text{H}_2\text{O}$  and  $\text{O}_2$  in photochemical conversion of  $\text{SO}_2$  to sulfates**

267 Figure S8A shows temporal variations of the  $\text{SO}_2$  concentration in the reaction with  $\text{SiO}_2$  at  
268 RH=10% and 60% under irradiation. The uptake of  $\text{SO}_2$  was very weak at RH=10%, whereas  
269 it was obvious at RH=60%. Moreover,  $\text{H}_2\text{O}$  prolonged the time to reach the steady-state uptake  
270 of  $\text{SO}_2$ . This means that  $\text{H}_2\text{O}$  plays an enhancement role in the photochemical uptake of  $\text{SO}_2$ .  
271 As shown in Figure 3A,  $\gamma_{0, \text{BET}}$  had a continuous increase from  $(1.20 \pm 0.04) \times 10^{-7}$  to  $(1.54 \pm$   
272  $0.07) \times 10^{-6}$  with increasing the RH in the 10%–60% range, but it decreased to  $(1.05 \pm 0.09) \times$   
273  $10^{-6}$  at RH=75%. The  $\gamma_{s, \text{BET}}$  linearly depended on the RH, and linear fitting to  $\gamma_{s, \text{BET}}$  versus  
274 RH yielded an equation  $\gamma_{s, \text{BET}} = 1.31 \times 10^{-8} \times \text{RH} - 1.02 \times 10^{-7}$ . Adsorbed  $\text{H}_2\text{O}$  promoted the  
275 hydration and dissociation of  $\text{SO}_2$  (Huang et al., 2015), and it may generate reactive oxygen  
276 species (ROS) such as  $\cdot\text{OH}$  or  $\text{HO}_2$  radicals to oxidize  $\text{SO}_2$  under irradiation (Li et al., 2020;  
277 Ma et al., 2019), which would lead to positive effects of RH on the  $\text{SO}_2$  uptake. Adsorbed  $\text{H}_2\text{O}$   
278 also occupied adsorptive and active sites on the surface, leading to a decrease in  $\text{SO}_2$  adsorption.  
279 When this competitive role was dominated, the uptake of  $\text{SO}_2$  would be hindered.

280 The DRIFTS spectra of  $\text{SiO}_2$  during the  $\text{SO}_2$  uptake at different RHs are shown in Figure

281 S9A. The band intensities of sulfates ( $1260$  and  $1229\text{ cm}^{-1}$ ) at  $\text{RH}=60\%$  were stronger than  
 282 those at  $\text{RH}=10\%$ , suggesting that  $\text{H}_2\text{O}$  promotes the sulfate formation. To further investigate  
 283 the influence of  $\text{H}_2\text{O}$  on the sulfate formation, the integrated area of sulfates in the DRIFTS  
 284 spectra ( $1289\text{--}1202\text{ cm}^{-1}$ ) as a function of the time at different RHs is illustrated in Figure 3B.  
 285 Sulfates exhibited a fast formation in the initial 30 min, and then they were continuously  
 286 generated at a relatively slow rate.  $\text{SO}_2$  absorption on the surface would be blocked because of  
 287 the accumulation of  $\text{H}_2\text{O}$  and products (sulfites and sulfates), resulting in the gradual  
 288 deactivation of the surface. It was noted that sulfates formation was more prominent at higher  
 289  $\text{RH}$ , revealing that  $\text{H}_2\text{O}$  can act as an important participator in the production of sulfates by the  
 290 photochemical uptake of  $\text{SO}_2$  on  $\text{SiO}_2$ .



291  
 292 **Figure 3.** (A) The dependence of  $\gamma_{0,\text{BET}}$  and  $\gamma_{s,\text{BET}}$  on RH. (B) Integrated area of sulfates in  
 293 DRIFTS spectra ( $1289\text{--}1202\text{ cm}^{-1}$ ) as a function of time. (C) The dependence of  $\gamma_{0,\text{BET}}$  and  
 294  $\gamma_{s,\text{BET}}$  on  $\text{O}_2$ . Reaction conditions:  $\text{SiO}_2$  mass of  $0.2\text{ g}$ , irradiation intensity of  $7.93 \times 10^{16}$   
 295 photons  $\text{cm}^{-2}\text{ s}^{-1}$ , temperature of  $298\text{ K}$ ,  $\text{O}_2$  content of  $20\%$  for (A) and RH of  $40\%$  for (B).

296 Figure S8B displays effects of  $\text{O}_2$  on the photochemical uptake of  $\text{SO}_2$  on  $\text{SiO}_2$ . Negligible  
 297  $\text{SO}_2$  uptake occurred in  $\text{N}_2$ , while there was a significant decrease in the  $\text{SO}_2$  concentration in  
 298 air. The  $\gamma_{0,\text{BET}}$  greatly increased from  $(1.37 \pm 0.45) \times 10^{-7}$  under anaerobic condition to  $(1.19$   
 299  $\pm 0.13) \times 10^{-6}$  under  $20\%$   $\text{O}_2$  content condition (Figure 3C), confirming that  $\text{O}_2$  was involved  
 300 in the reaction of  $\text{SO}_2$  on  $\text{SiO}_2$ . The  $\gamma_{s,\text{BET}}$  increased from  $(7.10 \pm 2.85) \times 10^{-8}$  under anaerobic  
 301 condition to  $(4.37 \pm 0.58) \times 10^{-7}$  under  $15\%$   $\text{O}_2$  content condition, whereas it remained

302 unchanged with further increasing the O<sub>2</sub> content.

303 DRIFTS spectra of SiO<sub>2</sub> during the SO<sub>2</sub> uptake in N<sub>2</sub> and air were compared in Figure S9B.  
304 In both air and N<sub>2</sub>, the bands of absorbed SO<sub>2</sub> (1359 cm<sup>-1</sup>), sulfates (1260, 1229 and 1074  
305 cm<sup>-1</sup>). Nevertheless, their intensities in N<sub>2</sub> were weaker than those in air. According to the  
306 integrated area of sulfates in the DRIFTS spectra (1289–1202 cm<sup>-1</sup>), the formation trends of  
307 sulfates were similar in N<sub>2</sub> and air (Figure 3B), while the sulfate formation rate in N<sub>2</sub> was  
308 obviously lower than that in air, meaning that O<sub>2</sub> enhanced the sulfate production. It was  
309 reported that the production rate of sulfates from the SO<sub>2</sub> uptake on TiO<sub>2</sub> and by the photolysis  
310 of nitrates under UV irradiation in N<sub>2</sub> was also smaller than that in air (Ma et al., 2019; Gen et  
311 al., 2019b). In addition, it was noted that sulfates can be generated in N<sub>2</sub>, meaning that O<sub>2</sub> was  
312 not necessary and some pathways contributed to sulfates without O<sub>2</sub>.

313 **3.4 Ubiquitously photoenhanced conversion of SO<sub>2</sub> to sulfates**

314 To better assess the potential for photochemical conversion of SO<sub>2</sub> to sulfates, the SO<sub>2</sub> uptake  
315 experiments were further performed on typical mineral oxides without photocatalytic activity.  
316 As displayed in Figure S10, more obvious SO<sub>2</sub> uptake on kaolinite, Al<sub>2</sub>O<sub>3</sub>, MgO and CaO were  
317 observed under irradiation compared to those in the dark. Figure 4A shows that there was the  
318 largest  $\gamma_{s, \text{BET}}$  for CaO among five minerals, and  $\gamma_{s, \text{BET}}$  positively depended on the basicity (pH)  
319 of mineral oxides. Basic oxides generally contain more surface hydroxyls, which enhanced  
320 the heterogeneous uptake of SO<sub>2</sub> (Zhang et al., 2006). The ratios of steady-state uptake  
321 coefficients under irradiation to those in the dark ( $\gamma_{s, \text{Light}}/\gamma_{s, \text{Dark}}$ ) were larger than 1.0 for all  
322 mineral oxides (Figure 4B). The experiments for the pH dependence on SiO<sub>2</sub> have been also  
323 performed (Figure S11). The pH of SiO<sub>2</sub> suspension was adjusted to pH = 9, and  $\gamma_{s, \text{BET}}$  and  
324  $\gamma_{s, \text{Light}}/\gamma_{s, \text{Dark}}$  were determined to be  $(8.79 \pm 0.85) \times 10^{-6}$  and 1.31, respectively (Figure 4A and  
325 4B). These results suggest that light can generally enhance the SO<sub>2</sub> uptake on minerals at a  
326 wide pH range. However, the  $\gamma_{\text{Light}}/\gamma_{\text{Dark}}$  had smaller values with an increase in the basicity,  
327 suggesting that the promotion effect of the light was less remarkable for basic oxides.



328

329 **Figure 4.** (A) The dependence of  $\gamma_{s,BET}$  under irradiation on the basicity (pH) of mineral  
 330 oxides. (B) The ratios of steady-state uptake coefficients under irradiation to those in the dark  
 331 ( $\gamma_{s,Light}/\gamma_{s,Dark}$ ). Reaction conditions: mineral oxides mass of 0.2 g, irradiation intensity of  
 332  $7.93 \times 10^{16}$  photons  $\text{cm}^{-2} \text{ s}^{-1}$ , temperature of 298 K, RH of 40% and O<sub>2</sub> content of 20%.

333 As shown in Figure 5A and B, the band at  $1300 \text{ cm}^{-1}$  should be ascribed to the sulfate. The  
 334 intensity of sulfate ( $1300$  and  $1220 \text{ cm}^{-1}$ ) under irradiation was larger than those in the dark.  
 335 Compared to weaker peaks of sulfates ( $1200$  and  $1260 \text{ cm}^{-1}$ ) for Al<sub>2</sub>O<sub>3</sub> in the dark (Figure 5C),  
 336 a stronger band of bisulfates appeared at  $1220 \text{ cm}^{-1}$  under irradiation (Figure 5D). By contrast  
 337 to the generation of sulfates for kaolinite and Al<sub>2</sub>O<sub>3</sub>, both sulfites and sulfates formations were  
 338 observed for MgO and CaO (Figure 5E–H). Sulfites were dominant in the dark, as shown by  
 339 the peaks at  $966$  and  $1020 \text{ cm}^{-1}$  for MgO and  $943 \text{ cm}^{-1}$  for CaO, whereas the sulfate formation  
 340 was significantly enhanced under irradiation according to peak intensities at  $1163 \text{ cm}^{-1}$  for  
 341 MgO and  $1137 \text{ cm}^{-1}$  for CaO. It should be noted that these mineral oxides were non-  
 342 photoactive because of their poor light absorption property (Figure S1). Nevertheless, the light  
 343 can promote the formation of sulfates via the SO<sub>2</sub> uptake process on mineral oxides without  
 344 photocatalytic activity.



345

346 **Figure 5.** *In situ* DRIFTS spectra of kaolinite (A and B), Al<sub>2</sub>O<sub>3</sub> (C and D), MgO (E and F),  
 347 CaO (G and H) during the uptake process of SO<sub>2</sub> (2 ppm) for 600 min in the dark (black  
 348 lines) and under irradiation (colorful lines). Reaction conditions: RH of 40%, temperature of  
 349 298 K and O<sub>2</sub> content of 20%.

### 350 3.5 Conversion mechanisms of SO<sub>2</sub> to sulfates

351 Heterogeneous photochemical reaction mechanisms of SO<sub>2</sub> on non-photoactive mineral dust  
 352 were proposed in light of experimental observations (Figure 6). Gaseous SO<sub>2</sub> was adsorbed on  
 353 the surface (R1), and then reacted with H<sub>2</sub>O to form sulfites (R2). Under irradiation, adsorbed  
 354 SO<sub>2</sub> accepted photons to form its singlet states (<sup>1</sup>SO<sub>2</sub>) and <sup>3</sup>SO<sub>2</sub> (R3–5) (Sidebottom et al., 1972;  
 355 Martins-Costa et al., 2018). The reaction between <sup>3</sup>SO<sub>2</sub> and H<sub>2</sub>O resulted in the formation of  
 356 HOSO<sup>•</sup> and •OH (R6), which can combine with SO<sub>2</sub> to produce HOSO<sub>2</sub><sup>•</sup> (R7). HOSO<sup>•</sup> and  
 357 HOSO<sub>2</sub><sup>•</sup> can be transformed into SO<sub>3</sub>, which reacted with H<sub>2</sub>O to drive the sulfate formation  
 358 (R8 and R9). The interaction between <sup>3</sup>SO<sub>2</sub> and O<sub>2</sub> may also generate SO<sub>3</sub> directly, which  
 359 would be converted to sulfates subsequently (R10). Theoretical calculations suggested that the  
 360 multistep reactions between <sup>3</sup>SO<sub>2</sub> with H<sub>2</sub>O and O<sub>2</sub> had small energy barriers or were barrier-  
 361 free (Gong et al., 2022), which could enhance the generation of ROS and the transformation of  
 362 S(IV) to S(VI). As displayed by R11 and R12, SO<sub>2</sub> and H<sub>2</sub>SO<sub>3</sub> adsorbed on the surface may be  
 363 oxidized to form sulfates via the reactions with ROS including •O, •OH or HO<sub>2</sub><sup>•</sup>, which were

364 produced in R6 and R8–10. In addition, gaseous SO<sub>2</sub> could be dissolved into adsorbed H<sub>2</sub>O to  
365 generate bisulfites, which would be finally converted to sulfates by ROS (R13) (Urupina et al.,  
366 2019). As displayed in Figure S12A, the IR peaks of sulfates were not observed when tris (2,2'-  
367 bipyridine) ruthenium dihydrochloride (Ru(bpy)<sub>3</sub>(Cl)<sub>2</sub>) was employed as the quencher of <sup>3</sup>SO<sub>2</sub>.  
368 The peaks were assigned to the vibrations of excited Ru(bpy)<sub>3</sub>(Cl)<sub>2</sub> (Mukuta et al., 2014). This  
369 definitely proves that <sup>3</sup>SO<sub>2</sub> is the key trigger for the sulfate formation. Figure S12B shows that  
370 the peaks of sulfates were weaker in the presence of NaHCO<sub>3</sub>, confirming the dominant  
371 contribution of •OH formed in R6 and R9 to the formation of sulfates.

372 Several photochemical mechanisms have been reported to explain the sulfate formation via  
373 the SO<sub>2</sub> uptake on various surfaces. Photoactive mineral oxides (such as TiO<sub>2</sub>, F<sub>2</sub>O<sub>3</sub> and ZnO)  
374 can accept photons to produce electron-hole pairs, which generated ROS for the conversion of  
375 SO<sub>2</sub> to sulfates (Ma et al., 2019; Li et al., 2019; Wang et al., 2020b). For example, •OH and  
376 HO<sub>2</sub>•, generated from the reaction of hole with H<sub>2</sub>O and electron with O<sub>2</sub>, respectively, can act  
377 as oxidizing agents for the reaction with SO<sub>2</sub> (Ma et al., 2019). Similarly, the reaction of SO<sub>2</sub>  
378 with photo-induced •OH obviously enhanced the formation of sulfate on diesel soot and actual  
379 PM<sub>2.5</sub> (Zhang et al., 2022; Zhang et al., 2020c). NO<sub>2</sub> and NO<sub>2</sub><sup>−</sup>/HNO<sub>2</sub> can be formed in the  
380 nitrates photolysis, and primarily contribute to the oxidation of SO<sub>2</sub> to sulfates on nitrates (Gen  
381 et al., 2019b; Gen et al., 2019a). Theoretically, the mechanism proposed in this study should  
382 also occur on photo-excited substrates. Taking TiO<sub>2</sub> as an example, SO<sub>2</sub> competed with TiO<sub>2</sub>  
383 for photons, and the production efficiency of <sup>3</sup>SO<sub>2</sub> and excited state of TiO<sub>2</sub> (TiO<sub>2</sub><sup>\*</sup>) depended  
384 on their light absorption properties. Meanwhile, <sup>3</sup>SO<sub>2</sub> had a competition electron-hole pairs  
385 generated from TiO<sub>2</sub><sup>\*</sup> for O<sub>2</sub> and H<sub>2</sub>O. Thus, the dominant mechanism for the SO<sub>2</sub> uptake on  
386 TiO<sub>2</sub> should be related to light absorption properties of precursors and the reactivity for <sup>3</sup>SO<sub>2</sub>  
387 and TiO<sub>2</sub><sup>\*</sup> to O<sub>2</sub> and H<sub>2</sub>O. By contrast, all mineral oxides used here cannot be excited under  
388 irradiation according to their light absorption spectra (Figure S1). Nevertheless, SO<sub>2</sub> adsorbed  
389 on mineral oxides can absorb the ultraviolet radiation (290–400 nm) to form the excited states  
390 of SO<sub>2</sub> (SO<sub>2</sub><sup>\*</sup>) (Kroll et al., 2018), which subsequently reacted with H<sub>2</sub>O and O<sub>2</sub>, finally  
391 converting SO<sub>2</sub> to sulfates. The SO<sub>2</sub> uptake experiment in the dark and the visible light (>420

392 nm) was carried out (Figure S13). An ignorable difference was observed for the  $\text{SO}_2$  393 concentration with or without visible light, suggesting that visible light had a minor contribution 394 to the photoenhanced  $\text{SO}_2$  uptake.

395 According to the experimental results, some surfaces, providing absorptive sites for  $\text{SO}_2$ , can 396 enhance the photooxidation of  $\text{SO}_2$  to sulfates. However, the promotion effect would vary with 397 different substances. For example, the current experiments on some basic minerals indicate that 398 light plays a minor enhancement role in the  $\text{SO}_2$  uptake (Figure 4), but it could still enhance the 399 sulfate formation (Figure 5). The solubility and effective Henry's law constant of  $\text{SO}_2$  were 400 positively dependent on pH. Thus,  $\text{SO}_2$  was more liable to be dissolved to form  $\text{HSO}_3^-/\text{SO}_3^{2-}$  401 on more alkaline surface, leading to a strong  $\text{SO}_2$  uptake in the dark (Figure 4A and 4B), and 402 abundant sulfites on surfaces (Figure 5). Nevertheless, gaseous  $\text{SO}_2$  tends to be adsorbed on 403 kaolinite and  $\text{Al}_2\text{O}_3$  due to less solubility of  $\text{SO}_2$  on these surfaces, and then converted to sulfate 404 under irradiation (Figure 6). Accordingly, a promotion effect of light on  $\text{SO}_2$  uptake was 405 observed on neutral and weakly alkaline surfaces (Figure 4B).



406  
407 **Figure 6.** The proposed photochemical conversion mechanisms of  $\text{SO}_2$  to sulfates on non-  
408 photoactive mineral dust.

409 **4 Atmospheric implications**

410 The lifetime ( $\tau$ ) for photochemical loss of  $\text{SO}_2$  on mineral dust was given using equation 7,

411  $\tau = \frac{4}{\gamma \omega A}$  (7)

412 where  $\gamma$  and  $\omega$  are the uptake coefficient and the mean molecular speed of  $\text{SO}_2$ , respectively;  $A$   
 413 is the surface area density of mineral dust, and it is estimated to be  $(1.4\text{--}4.8) \times 10^{-5} \text{ cm}^2 \text{ cm}^{-3}$   
 414 ([Zhang et al., 2019](#); [He et al., 2018b](#)). In this work,  $\gamma_{s, \text{BET}}$  of  $\text{SO}_2$  on several mineral oxides  
 415 were measured to be  $4.39 \times 10^{-7}\text{--}3.45 \times 10^{-5}$  (Reaction conditions:  $\text{SO}_2$  concentration of 40  
 416 ppb, irradiation intensity of  $7.93 \times 10^{16}$  photons  $\text{cm}^{-2} \text{ s}^{-1}$  and RH of 40%). Thus, the  $\tau$  of  $\text{SO}_2$   
 417 with respect to the photooxidation on mineral dust was calculated to be 0.9–240 days, which  
 418 was shorter than that (54 years) for the photochemical uptake of  $\text{SO}_2$  on  $\text{TiO}_2$  and the  
 419 corresponding one (346 days) for the heterogeneous oxidation of  $\text{SO}_2$  on ATD in the presence  
 420 of nitrates ([Ma et al., 2019](#); [Zhang et al., 2019](#)). The reaction conditions in this study and those  
 421 in the literatures are different in some respects, and the previously reported  $\text{SO}_2$  uptake  
 422 coefficient ( $10^{-7}\text{--}10^{-6}$ ) had a lower value ([Ma et al., 2019](#)). The huge difference in the  $\tau$  of  $\text{SO}_2$   
 423 was also ascribed to the variation in the surface area density. The content of  $\text{TiO}_2$  in mineral  
 424 dust was only about 1%, and thus the surface area density of  $\text{TiO}_2$  was about  $10^{-7} \text{ cm}^2 \text{ cm}^{-3}$ ,  
 425 leading to a longer  $\tau$  (54 years) for  $\text{SO}_2$  on  $\text{TiO}_2$  ([Ma et al., 2019](#)). It was comparable to the  
 426 lifetime (3.6–20 days) of  $\text{SO}_2$  for the gas-phase reaction with  $\cdot\text{OH}$  at a concentration of  $\sim 10^{-6}$   
 427 molecules  $\text{cm}^{-3}$  ([Huang et al., 2015](#); [Zhang et al., 2019](#)). Therefore, the photochemical process  
 428 with the excited state  $\text{SO}_2$  acting as a driver on mineral dust was an important pathway for the  
 429  $\text{SO}_2$  sink in the atmosphere.

430 Sulfates show significant influences on the atmosphere, such as an important contributor to  
 431 the haze formation, affecting the activity of aerosols acting as cloud condensation nuclei (CCN)  
 432 and ice nuclei (IN), and modifying optical property and acidity of aerosols. A sulfate formation  
 433 rate ( $R$ ) can be obtained using  $\gamma$  by equation 8 ([Cheng et al., 2016](#)),

434  $R = \frac{d[SO_4^{2-}]}{dt} = \left[ \frac{R_p}{D} + \frac{4}{\gamma \omega} \right]^{-1} A[SO_2]$  (8)

435 where  $R_p$  is the radius of mineral dust, which can be estimated using equation 9 ([Li et al., 2020](#)),  
 436  $R_p = (0.254 \times [\text{PM}_{2.5}]/(\mu\text{g m}^{-3}) + 10.259) \times 10^{-9} \text{ m}$  (9)

437 where  $[\text{PM}_{2.5}]$  was average  $\text{PM}_{2.5}$  mass concentration, and  $300 \mu\text{g m}^{-3}$  was used for the polluted  
438 periods in typical China cities (Li et al., 2020; Guo et al., 2014). It was assumed that mineral  
439 dust accounted for 50% mass of  $\text{PM}_{2.5}$  (Tohidi et al., 2022), and the mass fraction of  $\text{SiO}_2$ ,  
440  $\text{Al}_2\text{O}_3$ ,  $\text{MgO}$ , and  $\text{CaO}$  in mineral dust was 60%, 12.5%, 4% and 6.5%, respectively (Urupina  
441 et al., 2021; Urupina et al., 2019; Usher et al., 2003). Thus,  $R$  was determined to be  $2.15 \mu\text{g}$   
442  $\text{m}^{-3} \text{h}^{-1}$ . This suggests that the  $\text{SO}_2$  uptake on non-photoactive surfaces may be an important  
443 sulfate formation pathway under irradiation in some dust-rich conditions.

444

#### 445 **Author contributions**

446 CH, WY and JM designed and conducted experiments; CH, WY and JM analyzed the data and  
447 prepared the paper with contributions from HY; FL conducted experiments; CH supervised the  
448 project.

449

#### 450 **Competing interests**

451 The authors declare that they have no conflict of interest.

452

#### 453 **Acknowledgements**

454 This work was supported by the National Natural Science Foundation of China [grant number  
455 42077198], the LiaoNing Revitalization Talents Program [grant number XLYC1907185], and  
456 the Fundamental Research Funds for the Central Universities [grant numbers N2325034;  
457 N2025011].

458

#### 459 **Reference**

460 Adams, J., Rodriguez, D., and Cox, R.: The uptake of  $\text{SO}_2$  on Saharan dust: A flow tube study,  
461 *Atmos. Chem. Phys.*, 5, 2679-2689, <https://doi.org/10.5194/acpd-5-2643-2005>, 2005.

462 Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of  
463 atmospheric sulfur: Global implications for the sulfur budget, *J. Geophys. Res.*, 114, 2309-  
464 2312, <https://doi.org/10.1029/2008jd010486>, 2009.

465 Ammann, M., Poschl, U., and Rudich, Y.: Effects of reversible adsorption and Langmuir-  
466 Hinshelwood surface reactions on gas uptake by atmospheric particles, *Phys. Chem. Chem.*

467 Phys., 5, 351-356, <https://doi.org/10.1039/b208708a>, 2003.

468 Bounechada, D., Anderson, D., Skoglundh, M., and Carlsson, P.: SO<sub>2</sub> adsorption on silica  
469 supported iridium, J. Chem. Phys., 146, 084701-084708, <https://doi.org/10.1063/1.4976835>,  
470 2017.

471 Brunauer, B., Deming, L., Deming, W., and Teller, E.: Adsorption of gases in multimolecular  
472 layers, J. Am. Chem. Soc., 60, 309-319, <https://doi.org/10.1021/ja01269a023>, 1938.

473 Bulgakov, R. G. and Safonova, L. A.: Chemiluminescence in the oxidation of Na<sub>2</sub>S by oxygen  
474 in water solutions, Russ. Chem. Bull., 45, 1775-1776, <https://doi.org/10.1007/bf01431827>,  
475 1996.

476 Cao, J., Tie, X., Dabberdt, W. F., Jie, T., Zhao, Z., An, Z., Shen, Z., and Feng, Y.: On the  
477 potential high acid deposition in northeastern China, J. Geophys. Res.: Atmos., 118, 4834-  
478 4846, <https://doi.org/10.1002/jgrd.50381>, 2013.

479 Chan, M. and Chan, C.: Hygroscopic properties of two model humic-like substances and their  
480 mixtures with inorganics of atmospheric importance, Environ. Sci. Technol., 37, 5109-5115,  
481 <https://doi.org/10.1021/es034272o>, 2003.

482 Chen, Y., Tong, S., Li, W., Liu, Y., Tan, F., Ge, M., Xie, X., and Sun, J.: Photocatalytic oxidation  
483 of SO<sub>2</sub> by TiO<sub>2</sub>: Aerosol formation and the key role of gaseous reactive oxygen species,  
484 Environ. Sci. Technol., 55, 9784-9793, <https://doi.org/10.1021/acs.est.1c01608>, 2021.

485 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K.,  
486 Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a  
487 source of sulfate during haze events in China, Sci. Adv., 2, 1601530-1601540,  
488 <https://doi.org/10.1126/sciadv.1601530>, 2016.

489 Chu, B., Wang, Y. L., Yang, W. W., Ma, J. Z., Ma, Q. X., Zhang, P., Liu, Y. C., and He, H.:  
490 Effects of NO<sub>2</sub> and C<sub>3</sub>H<sub>6</sub> on the heterogeneous oxidation of SO<sub>2</sub> on TiO<sub>2</sub> in the presence or  
491 absence of UV-Vis irradiation, Atmos. Chem. Phys., 19, 14777-14790,  
492 <https://doi.org/10.5194/acp-19-14777-2019>, 2019.

493 Davis, D. D., Ravishankara, A. R., and Fischer, S.: SO<sub>2</sub> oxidation via the hydroxyl radical:  
494 Atmospheric fate of HSO<sub>x</sub> radicals, Geo. Res. Lett., 6, 113-116,  
495 <https://doi.org/10.1029/GL006i002p00113>, 1979.

496 Dentener, F., Carmichael, G., Zhang, Y., Lelieveld, J., and Crutzen, P.: Role of mineral aerosol  
497 as a reactive surface in the global troposphere, J. Geophys. Res.: Atmos., 101, 22869-22889,  
498 <https://doi.org/10.1029/96jd01818>, 1996.

499 Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C.: Heterogeneous oxidation of SO<sub>2</sub> in sulfate  
500 production during nitrate photolysis at 300 nm: Effect of pH, relative humidity, irradiation  
501 intensity, and the presence of organic compounds, Environ. Sci. Technol., 53, 8757-8766,  
502 <https://doi.org/10.1021/acs.est.9b01623>, 2019a.

503 Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C.: Heterogeneous SO<sub>2</sub> oxidation in sulfate  
504 formation by photolysis of particulate nitrate, Environ. Sci. Tech. Lett., 6, 86-91,  
505 <https://doi.org/10.1021/acs.estlett.8b00681>, 2019b.

506 Golobokova, L., Khodzher, T., Khuriganova, O., Marinayte, I., Onishchuk, N., Rusanova, P.,  
507 and Potemkin, V.: Variability of chemical properties of the atmospheric aerosol above lake  
508 baikal during large wildfires in siberia, Atmosphere, 11, 1230-1250,

509 <https://doi.org/10.3390/atmos11111230>, 2020.

510 Gong, C., Yuan, X., Xing, D., Zhang, D., Martins-Costa, M. T. C., Anglada, J. M., Ruiz-Lopez,  
511 M. F., Francisco, J. S., and Zhang, X.: Fast sulfate formation initiated by the spin-forbidden  
512 excitation of SO<sub>2</sub> at the air-water interface, *J. Am. Chem. Soc.*, 144, 22302-22308,  
513 <https://doi.org/10.1021/jacs.2c10830>, 2022.

514 Goodman, A., Li, P., Usher, C., and Grassian, V.: Heterogeneous uptake of sulfur dioxide on  
515 aluminum and magnesium oxide particles, *J. Phys. Chem. A* 105, 6109-6120,  
516 <https://doi.org/10.1021/jp004423z>, 2001.

517 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng,  
518 L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, *Proc.*  
519 *Natl. Acad. Sci. U. S. A.*, 111, 17373-17378, <https://doi.org/10.1073/pnas.1419604111>,  
520 2014.

521 Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A.,  
522 Gnauk, T., Fahlbusch, B., Mertes, S., Lee, T., Collett, J., Foley, S., Borrmann, S., Hoppe, P.,  
523 and Herrmann, H.: Enhanced role of transition metal ion catalysis during in-cloud oxidation  
524 of SO<sub>2</sub>, *Science*, 340, 727-730, <https://doi.org/10.1126/science.1230911>, 2013.

525 He, G., Ma, J., and He, H.: Role of carbonaceous aerosols in catalyzing sulfate formation, *ACS*  
526 *Catal.*, 8, 3825-3832, <https://doi.org/10.1021/acscatal.7b04195>, 2018a.

527 He, H., Li, C., Loughner, C. P., Li, Z., Krotkov, N. A., Yang, K., Wang, L., Zheng, Y., Bao, X.,  
528 Zhao, G., and Dickerson, R. R.: SO<sub>2</sub> over central China: Measurements, numerical  
529 simulations and the tropospheric sulfur budget, *J. Geophys. Res.: Atmos.*, 117, 37-51,  
530 <https://doi.org/10.1029/2011jd016473>, 2012.

531 He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su,  
532 H., Liu, C., and Xie, Z.: Isotopic constraints on heterogeneous sulfate production in Beijing  
533 haze, *Atmos. Chem. Phys.*, 18, 5515-5528, <https://doi.org/10.5194/acp-18-5515-2018>,  
534 2018b.

535 Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM<sub>2.3</sub>:  
536 A chemical aqueous phase radical mechanism for tropospheric chemistry, *J. Atmos. Chem.*,  
537 36, 231-284, <https://doi.org/10.1023/A:1006318622743>, 2000.

538 Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of heterogeneous reaction of sulfur dioxide  
539 on authentic mineral dust: Effects of relative humidity and hydrogen peroxide, *Environ. Sci.*  
540 *Technol.*, 49, 10797-10805, <https://doi.org/10.1021/acs.est.5b03930>, 2015.

541 Hu, Q., Suzuki, H., Gao, H., Araki, H., Yang, W., and Noda, T.: High-frequency FTIR  
542 absorption of SiO<sub>2</sub>/Si nanowires, *Chem. Phys. Lett.*, 378, 299-304,  
543 <https://doi.org/10.1016/j.cplett.2003.07.015>, 2003.

544 Knopf, D., Cosman, L., Mousavi, P., Mokamati, S., and Bertram, A.: A novel flow reactor for  
545 studying reactions on liquid surfaces coated by organic monolayers: Methods, validation,  
546 and initial results, *J. Phys. Chem. A*, 111, 11021-11032, <https://doi.org/10.1021/jp075724c>,  
547 2007.

548 Kroll, J., Frandsen, B., Kjaergaard, H., and Vaida, V.: Atmospheric hydroxyl radical source:  
549 Reaction of triplet SO<sub>2</sub> and water, *J. Phys. Chem. A*, 122, 4465-4469, <https://doi.org/10.1021/acs.jpca.8b03524>, 2018.

551 Langhammer, D., Kullgren, J., and Osterlund, L.: Photoinduced adsorption and oxidation of  
552 SO<sub>2</sub> on anatase TiO<sub>2</sub>, *J. Am. Chem. Soc.*, 142, 21767-21774, <https://doi.org/10.1021/jacs.0c09683>, 2020.

553

554 Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and  
555 Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China,  
556 *Atmos. Chem. Phys.*, 17, 3301-3316, <https://doi.org/10.5194/acp-17-3301-2017>, 2017.

557 Li, J., Zhang, Y. L., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski, G.: Stable sulfur  
558 isotopes revealed a major role of transition-metal ion-catalyzed SO<sub>2</sub> oxidation in haze  
559 episodes, *Environ. Sci. Technol.*, 54, 2626-2634, <https://doi.org/10.1021/acs.est.9b07150>,  
560 2020.

561 Li, K., Kong, L., Zhanzakova, A., Tong, S., Shen, J., Wang, T., Chen, L., Li, Q., Fu, H., and  
562 Zhang, L.: Heterogeneous conversion of SO<sub>2</sub> on nano  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>: the effects of morphology,  
563 light illumination and relative humidity, *Environ. Sci.: Nano*, 6, 1838-1851,  
564 <https://doi.org/10.1039/c9en00097f>, 2019.

565 Lim, S., Lee, M., Kim, S., and Laj, P.: Sulfate alters aerosol absorption properties in East Asian  
566 outflow, *Sci. Rep.*, 8, 5172-5178, <https://doi.org/10.1038/s41598-018-23021-1>, 2018.

567 Liu, T., Clegg, S., and Abbatt, J. P. D.: Fast oxidation of sulfur dioxide by hydrogen peroxide  
568 in deliquesced aerosol particles, *Proc. Natl. Acad. Sci. U. S. A.*, 117, 1354-1359,  
569 <https://doi.org/10.1073/pnas.1916401117>, 2020a.

570 Liu, T., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase oxidation of sulfur dioxide in aerosol  
571 particles: Implications for sulfate formation in polluted environments, *Environ. Sci.  
572 Technol.*, 55, 4227-4242, <https://doi.org/10.1021/acs.est.0c06496>, 2021.

573 Liu, Y., Deng, Y., Liu, J., Fang, X., Wang, T., Li, K., Gong, K., Bacha, A. U., Nabi, I., Ge, Q.,  
574 Zhang, X., George, C., and Zhang, L.: A novel pathway of atmospheric sulfate formation  
575 through carbonate radicals, *Atmos. Chem. Phys.*, 22, 9175-9197,  
576 <https://doi.org/10.5194/acp-22-9175-2022>, 2022.

577 Ma, J., Dörner, S., Donner, S., Jin, J. L., Cheng, S. Y., Guo, J. R., Zhang, Z. F., Wang, J. Q.,  
578 Liu, P., Zhang, G. Q., Pukite, J., Lampel, J., and Wagner, T.: MAX-DOAS measurements of  
579 NO<sub>2</sub>, SO<sub>2</sub>, HCHO, and BrO at the Mt. Waliguan WMO GAW global baseline station in the  
580 Tibetan Plateau, *Atmos. Chem. Phys.*, 20, 6973-6990, <https://doi.org/10.5194/acp-20-6973-2020>, 2020.

581

582 Ma, Q., Wang, L., Chu, B., Ma, J., and He, H.: Contrary role of H<sub>2</sub>O and O<sub>2</sub> in the kinetics of  
583 heterogeneous photochemical reactions of SO<sub>2</sub> on TiO<sub>2</sub>, *J. Phys. Chem. A.*, 123, 1311-1318,  
584 <https://doi.org/10.1021/acs.jpca.8b11433>, 2019.

585 Martins-Costa, M., Anglada, J., Francisco, J., and Ruiz-Lopez, M.: Photochemistry of SO<sub>2</sub> at  
586 the air-water interface: A source of OH and HOSO radicals, *J. Am. Chem. Soc.*, 140, 12341-  
587 12344, <https://doi.org/10.1021/jacs.8b07845>, 2018.

588 Mauldin, R., Berndt, T., Sipila, M., Paasonen, P., Petaja, T., Kim, S., Kurten, T., Stratmann, F.,  
589 Kerminen, V., and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide,  
590 *Nature*, 488, 193-196, <https://doi.org/10.1038/nature11278>, 2012.

591 Mukuta, T., Fukazawa, N., Murata, K., Inagaki, A., Akita, M., Tanaka, S., Koshihara, S. Y., and  
592 Onda, K.: Infrared vibrational spectroscopy of [Ru(bpy)<sub>2</sub>(bpm)]<sup>2+</sup> and [Ru(bpy)<sub>3</sub>]<sup>2+</sup> in the

593 excited triplet state, *Inorg. Chem.*, 53, 2481-2490, <https://doi.org/10.1021/ic402474t>, 2014.

594 Olson, E., Michalski, G., Welp, L., Valdivia, A., Larico, J., Pen, J., Fang, H., Gomez, K., and

595 Li, J.: Mineral dust and fossil fuel combustion dominate sources of aerosol sulfate in urban

596 Peru identified by sulfur stable isotopes and water-soluble ions, *Atmos. Environ.*, 260,

597 118482-118495, <https://doi.org/10.1016/j.atmosenv.2021.118482>, 2021.

598 Park, J. and Jang, M.: Heterogeneous photooxidation of sulfur dioxide in the presence of airborne

599 mineral dust particles, *RSC Adv.*, 6, 58617-58627, <https://doi.org/10.1039/c6ra09601h>,

600 2016.

601 Park, J., Jang, M., and Yu, Z.: Heterogeneous photo-oxidation of SO<sub>2</sub> in the presence of two

602 different mineral dust particles: Gobi and arizona dust, *Environ. Sci. Technol.*, 51, 9605-

603 9613, <https://doi.org/10.1021/acs.est.7b00588>, 2017.

604 Peng, Y., von Salzen, K., and Li, J.: Simulation of mineral dust aerosol with Piecewise Log-

605 normal Approximation (PLA) in CanAM4-PAM, *Atmos. Chem. Phys.*, 12, 6891-6914,

606 <https://doi.org/10.5194/acp-12-6891-2012>, 2012.

607 Prospero, J.: Long-range transport of mineral dust in the global atmosphere: Impact of African

608 dust on the environment of the southeastern United States, *Proc. Natl. Acad. Sci. U. S. A.*,

609 96, 3396-3403, <https://doi.org/10.1073/pnas.96.7.3396>, 1999.

610 Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song,

611 S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation

612 mechanisms during wintertime Chinese haze events: air quality model assessment using

613 observations of sulfate oxygen isotopes in Beijing, *Atmos. Chem. Phys.*, 19, 6107-6123,

614 <https://doi.org/10.5194/acp-19-6107-2019>, 2019.

615 Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio,

616 A. M., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas,

617 K., Morino, Y., Poschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and

618 Sato, K.: Aerosol health effects from molecular to global scales, *Environ. Sci. Technol.*, 51,

619 13545-13567, <https://doi.org/10.1021/acs.est.7b04417>, 2017.

620 Sidebottom, H. W., Badcock, C. C., Jackson, G. E., Calvert, J. G., Reinhardt, G. W., and Damon,

621 E. K.: Photooxidation of sulfur dioxide, *Environ. Sci. Technol.*, 6, 72-79,

622 <https://doi.org/10.1080/00022470.1971.10469552>, 1972.

623 Solbrig, C. W. and Gidaspow, D.: Convective diffusion in a parallel plate duct with one catalytic

624 wall, laminar flow, first order reaction-part one, *Can. J. Chem. Eng.*, 45, 35-39,

625 [https://doi.org/10.1016/0304-5102\(89\)80197-X](https://doi.org/10.1016/0304-5102(89)80197-X), 1967.

626 Sumner, A. L., Menke, E. J., Dubowski, Y., Newberg, J. T., Penner, R. M., Hemminger, J. C.,

627 Wingen, L. M., Brauers, T. and Finlayson-Pitts, B. J. The nature of water on surfaces of

628 laboratory systems and implications for heterogeneous chemistry in the troposphere. *Phys.*

629 *Chem. Chem. Phys.*, 6, 604-613, <https://doi.org/10.1039/B308125G>, 2004.

630 Tohidi, R., Farahani, V., and Sioutas, C.: Real-time measurements of mineral dust concentration

631 in coarse particulate matter PM<sub>10-2.5</sub> by employing a novel optical-based technique in Los

632 Angeles, *Sci. Total. Environ.*, 838, 156215-156226, <https://doi.org/10.1016/j.scitotenv.202>

633 <https://doi.org/10.1016/j.scitotenv.202.156215>, 2022.

634 Urupina, D., Romanias, M. N., and Thevenet, F.: How relevant is it to use mineral proxies to

635 mimic the atmospheric reactivity of natural dust samples? A reactivity study using SO<sub>2</sub> as  
636 probe molecule, Minerals, 11, 282-299, <https://doi.org/10.3390/min11030282>, 2021.

637 Urupina, D., Lasne, J., Romanias, M. N., Thiery, V., Dagsson-Waldhauserova, P., and Thevenet,  
638 F.: Uptake and surface chemistry of SO<sub>2</sub> on natural volcanic dusts, Atmos. Environ., 217,  
639 116942-116959, <https://doi.org/10.1016/j.atmosenv.2019.116942>, 2019.

640 Usher, C., Michel, A., and Grassian, V.: Reactions on mineral dust, Chem. Rev. , 103, 4883-  
641 4939, <https://doi.org/10.1021/cr020657y>, 2003.

642 Usher, C., Al-Hosney, H., Carlos-Cuellar, S., and Grassian, V.: A laboratory study of the  
643 heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles, J. Geophys.  
644 Res-atmos. , 107, 4713-4729, <https://doi.org/10.1029/2002jd002051>, 2002.

645 Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang,  
646 D. D., Ji, D., Sun, X., Xu, W., Guo, J., Song, S., Qin, Y., Liu, P., Turner, J. R., Lee, H. C.,  
647 Hwang, S., Liao, H., Martin, S. T., Zhang, Q., Chen, M., Sun, Y., Ge, X., and Jacob, D. J.:  
648 Fast sulfate formation from oxidation of SO<sub>2</sub> by NO<sub>2</sub> and HONO observed in Beijing haze,  
649 Nat. Commun., 11, 2844-2850, <https://doi.org/10.1038/s41467-020-16683-x>, 2020a.

650 Xu, M., Qiu, P., He, Y., Guo, S., Bai, Y., Zhang, H., Zhao, S., Shen X., Zhu, B., Guo, Q., Guo,  
651 Z., Sulfur isotope composition during heterogeneous oxidation of SO<sub>2</sub> on mineral dust: The  
652 effect of temperature, relative humidity, and light intensity. Atmos. Res., 254, 105513,  
653 <https://doi.org/10.1016/j.atmosres.2021.105513>, 2021.

654 Yao, M., Zhao, Y., Hu, M., Huang, D., Wang, Y., Yu, J. Z., and Yan, N.: Multiphase reactions  
655 between secondary organic aerosol and sulfur dioxide: Kinetics and contributions to sulfate  
656 formation and aerosol aging. Environ. Sci. Technol. Lett., 6, 768-774,  
657 <https://doi.org/10.1021/acs.estlett.9b00657>, 2019.

658 Ye, J., Abbatt, J. P. D., Chan, A. W. H.: Novel pathway of SO<sub>2</sub> oxidation in the atmosphere:  
659 Reactions with monoterpane ozonolysis intermediates and secondary organic aerosol.  
660 Atmos. Chem. Phys., 18, 5549-5565, <https://doi.org/10.5194/acp-18-5549-2018>, 2018.

661 Wang, S., Zhou, S., Tao, Y., Tsui, W. G., Ye, J., Yu, J. Z., Murphy, J. G., McNeill, V. F., Abbatt,  
662 J. P. D., and Chan, A. W. H.: Organic peroxides and sulfur dioxide in aerosol: Source of  
663 particulate sulfate. Environ. Sci. Technol., 53, 10695-10704, <https://doi.org/10.1021/acs.est.9b02591>, 2019.

664 Wang, T., Liu, Y., Deng, Y., Fu, H., Zhang, L., and Chen, J.: The influence of temperature on  
665 the heterogeneous uptake of SO<sub>2</sub> on hematite particles, Sci. Total. Environ., 644, 1493-1502,  
666 <https://doi.org/10.1016/j.scitotenv.2018.07.046>, 2018.

667 Wang, T., Liu, Y. Y., Deng, Y., Cheng, H. Y., Yang, Y., Li, K. J., Fang, X. Z., and Zhang, L. W.:  
668 Irradiation intensity dependent heterogeneous formation of sulfate and dissolution of ZnO  
669 nanoparticles, Environ. Sci.: Nano, 7, 327-338, <https://doi.org/10.1039/c9en01148j>, 2020b.

670 Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.:  
671 Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification  
672 of iron speciation during simulated cloud processing, Atmos. Chem. Phys., 19, 12569-12585,  
673 <https://doi.org/10.5194/acp-19-12569-2019>, 2019.

674 Yang, N., Tsona, N. T., Cheng, S., Li, S., Xu, L., Wang, Y., Wu, L., and Du, L.: Competitive  
675 reactions of SO<sub>2</sub> and acetic acid on  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> and CaCO<sub>3</sub> particles, Sci. Total. Environ., 699,

677 134362-134370, <https://doi.org/10.1016/j.scitotenv.2019.134362>, 2020.

678 Yang, W., Ma, Q., Liu, Y., Ma, J., Chu, B., and He, H.: The effect of water on the heterogeneous  
679 reactions of SO<sub>2</sub> and NH<sub>3</sub> on the surfaces of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> and  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, Environ. Sci.: Nano, 6,  
680 2749-2758, <https://doi.org/10.1039/c9en00574a>, 2019.

681 Zhang, P., Chen, T., Ma, Q., Chu, B., Wang, Y., Mu, Y., Yu, Y., and He, H.: Diesel soot  
682 photooxidation enhances the heterogeneous formation of H<sub>2</sub>SO<sub>4</sub>, Nat. Commun., 13, 5364-  
683 5372, <https://doi.org/10.1038/s41467-022-33120-3>, 2022.

684 Zhang, R., Gen, M., Huang, D., Li, Y., and Chan, C.: Enhanced sulfate production by nitrate  
685 photolysis in the presence of halide ions in atmospheric particles, Environ. Sci. Technol.,  
686 54, 3831-3839, <https://doi.org/10.1021/acs.est.9b06445>, 2020a.

687 Zhang, T., Yang, W., Han, C., Yang, H., and Xue, X.: Heterogeneous reaction of ozone with  
688 syringic acid: Uptake of O<sub>3</sub> and changes in the composition and optical property of syringic  
689 acid, Environ. Pollut., 257, 113632-113638, <https://doi.org/10.1016/j.envpol.2019.113632>,  
690 2020b.

691 Zhang, X., Zhuang, G., Chen, J., Wang, Y., Wang, X., An, Z., and Zhang, P.: Heterogeneous  
692 reactions of sulfur dioxide on typical mineral particles, J. Phys. Chem. B, 110, 12588-12596,  
693 <https://doi.org/10.1021/jp0617773>, 2006.

694 Zhang, Y., Bao, F., Li, M., Chen, C., and Zhao, J.: Nitrate-enhanced oxidation of SO<sub>2</sub> on mineral  
695 dust: A vital role of a proton, Environ. Sci. Technol., 53, 10139-10145,  
696 <https://doi.org/10.1021/acs.est.9b01921>, 2019.

697 Zhang, Y., Bao, F., Li, M., Xia, H., Huang, D., Chen, C., and Zhao, J.: Photoinduced uptake  
698 and oxidation of SO<sub>2</sub> on Beijing urban PM<sub>2.5</sub>, Environ. Sci. Technol., 54, 14868-14876,  
699 <https://doi.org/10.1021/acs.est.0c01532>, 2020c.

700