1

Photoenhanced sulfates formation by the heterogeneous uptake of SO₂ on non-

2 photoactive mineral dust

3 Wangjin Yang, Jiawei Ma, Hongxing Yang, Fu Li, Chong Han*

4 School of Metallurgy, Northeastern University, Shenyang, 110819, China

5 *Address correspondence to author: hanch@smm.neu.edu.cn

6

Short summary. We provide direct evidences that light prominently enhances the conversion of SO₂ to sulfates on non-photoactive mineral dust, where triplet states of SO₂ (3 SO₂) can act as a pivotal trigger to generate sulfates. Photochemical sulfate formation depends on H₂O, O₂, and basicity of mineral dust. It is suggested that the SO₂ photochemistry on non-photoactive mineral dust significantly contributes to sulfates, highlighting previously unknown pathway to better explain the missing sources of atmospheric sulfates.

13

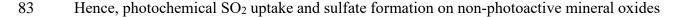
14 Abstract. Heterogeneous uptake of SO₂ on mineral dust is a predominant formation pathway 15 of sulfates, whereas the contribution of photo-induced SO₂ oxidation to sulfates on the dust interfaces still remains unclear. Here, we investigated heterogeneous photochemical reactions 16 17 of SO₂ on five mineral oxides (SiO₂, kaolinite, Al₂O₃, MgO, and CaO) without photocatalytic 18 activity. Light significantly enhanced the uptake of SO₂, and its enhancement effects negatively depended on the basicity of mineral oxides. The initial uptake coefficient ($\gamma_{0 \text{ BET}}$) and the 19 steady-state uptake coefficient ($\gamma_{s, BET}$) of SO₂ positively relied on light intensity, relative 20 21 humidity (RH) and O₂ content, while they exhibited a negative relationship with the initial SO₂ 22 concentration. Rapid sulfate formation during photo-induced heterogeneous reactions of SO₂ 23 with all mineral oxides was confirmed to be ubiquitous, and H₂O and O₂ played the key roles 24 in the conversion of SO₂ to sulfates. Specially, triplet states of SO₂ (³SO₂) was suggested to be the trigger for photochemical sulfate formation. Atmospheric implications supported a 25 26 potential contribution of interfacial SO₂ photochemistry on non-photoactive mineral dust to 27 atmospheric sulfate sources.

28

29 Keywords: SO₂; Sulfates; Non-photoactive mineral dust; Heterogeneous photochemistry

- 30
- 31

32 **1 Introduction**


33 As an important trace gas in the atmosphere, SO₂ is mainly emitted by volcanic eruption and fuel combustion. There is an uneven distribution of atmospheric SO₂ concentrations that show 34 35 a distinctive seasonal and regional differentiation. Typical ratios of SO₂ in the troposphere are 36 below 0.5 ppb for a clean weather in remote areas, rising to around several hundred ppb during 37 the polluted days in urban regions (Ma et al., 2020). About half of SO₂ is oxidized to sulfates 38 (He et al., 2012), which is one of the most significant compositions in fine particles. The mass 39 fraction of sulfates in PM_{2.5} is high up to 30% (Shao et al., 2019), especially in polluted regions where high-sulfur fuels are usually used (Olson et al., 2021). They significantly alter 40 41 physicochemical properties of aerosols in terms of hygroscopicity, acidity and light absorption 42 property (Chan and Chan, 2003; Cao et al., 2013; Lim et al., 2018). Sulfates also pose a human health risk through causing respiratory illness and cardiovascular (Shiraiwa et al., 2017). In 43 44 addition, the deposition of sulfates leads to adverse effects on ecosystems via the acidification 45 of soils and lakes (Golobokova et al., 2020). Therefore, the oxidation of SO₂ to form sulfates 46 has attracted widespread attention in the past decades.

47 The conversion of SO₂ to sulfates in the atmosphere usually occurs in different phases: gas-48 phase oxidation of SO₂ by hydroxyl radicals (•OH) or Criegee intermediate radicals (Mauldin 49 et al., 2012; Davis et al., 1979); aqueous-phase reaction of SO_2 with O_3 , peroxides or transition 50 metal ions dissolved in cloud and fog droplets (Alexander et al., 2009; Herrmann et al., 2000; 51 Harris et al., 2013; Liu et al., 2020a; Li et al., 2020); and heterogeneous SO₂ uptake on aerosols 52 including authentic mineral dust, soot, inorganic ion and organic compounds (Adams et al., 53 2005; He et al., 2018a; Ye et al., 2018; Wang et al., 2019; Yao et al., 2019; Zhang et al., 2020a; 54 Liu et al., 2020; Liu et al., 2021). However, the oxidation of SO₂ in gas and aqueous phases fails to explain high sulfate concentrations under polluted conditions. Model simulation 55

suggests that the rapid sulfate formation can be attributed to the heterogeneous SO_2 uptake (Li et al., 2017). A positive relationship between the fraction of sulfates and mineral dust in haze days has been reported, implying that mineral dust may account for the formation of sulfates (Wang et al., 2020a). Moreover, a large amount of sulfates was observed to be formed on the surface of mineral dust after long-distance transport (Prospero, 1999). Thus, investigating the heterogeneous oxidation of SO_2 on mineral dust can provide basic data for the model calculation to evaluate atmospheric sulfates.

63 Mineral dust, regarded as the dominant component of particulate matters in the atmosphere, accounts for about 30%-60% mass fractions of global aerosols (Dentener et al., 1996; Peng et 64 al., 2012). It primarily contains SiO₂ (40%-80%), followed by Al₂O₃ (10%-15%), Fe₂O₃ 65 (6%-13%), CaO (3%-10%), MgO (1%-7%) and TiO₂ (0.1%-5%) (Urupina et al., 2021; 66 Urupina et al., 2019; Usher et al., 2003). Mineral dust can provide active sites for adsorption 67 68 and reaction of gases. Up to now, the heterogeneous SO₂ uptake on authentic mineral aerosols 69 and model mineral oxides has been widely reported (Ma et al., 2019; Goodman et al., 2001; Wang et al., 2018; Wang et al., 2020b), with various uptake coefficients (γ) of SO₂ varying 70 from 10^{-9} to 10^{-4} (Urupina et al., 2019; Usher et al., 2002). 71

72 It was recognized that light could significantly enhance heterogeneous conversion of SO₂ to 73 sulfates on the surface of photocatalytic mineral dust (Chen et al., 2021; Li et al., 2019; Wang 74 et al., 2020b). Electron-hole pairs are produced via photo-induced electrons from the valence 75 band to the conduction band of photocatalytic metal oxides, and then react with H₂O and O₂ to 76 generate reactive oxygen species (ROS), such as •OH and $\bullet O_2^-$ (Chu et al., 2019). Sulfates are produced by the heterogeneous reactions of SO2 with ROS (Park and Jang, 2016; Park et al., 77 78 2017; Langhammer et al., 2020; Bounechada et al., 2017). In particular, due to the large 79 abundance of non-photoactive mineral dust (more than 85% mass of total mineral dust in the 80 atmosphere) (Usher et al., 2003; Liu et al., 2022), revealing the photooxidation processes of SO₂ on these mineral dust is of great importance to better reevaluate the sulfate formation on 81 82 aerosols in the global scale.

were firstly investigated using a flow reactor and an *in situ* diffuse reflectance infrared Fourier
transform spectroscopy (DRIFTS). The SO₂ conversion to sulfates was examined under various
conditions, and the roles of light intensity, SO₂ concentration, H₂O, O₂ and basicity of mineral
oxides were determined. Reaction mechanisms and atmospheric implications were proposed,
highlighting a new and important pathway accounting for photochemical uptake of SO₂ to form
sulfates on the non-photoactive surfaces.

90

91 **2 Experimental methods**

92 2.1 Materials

93 Analytical grade SiO₂ (Sinopharm Chemical Reagent Co., Ltd.), kaolinite (Sinopharm 94 Chemical Reagent Co., Ltd.), Al₂O₃ (Alfa Aesar), MgO (Sigma-Aldrich), and CaO (Sigma-95 Aldrich) were used in the experiments. Through the nitrogen Brunauer-Emmett-Teller (BET) physisorption analysis, their specific surface areas were detected to be 0.419, 6.407, 8.137, 96 97 10.948 and 6.944 m² g⁻¹, respectively. With BaSO₄ used as the reference, the ultraviolet-visible (UV-vis) light absorption spectra of samples (Figure S1) in the wavelength range of 300-800 98 nm were obtained by the Shimadzu UV-2550 spectrophotometer, which was equipped with 99 100 diffuse reflection integrating sphere attachment. The solid powder (0.2-5 g) was uniformly 101 dispersed into 10.0 mL ethanol solution. The mixed liquid was poured into a rectangle quartz 102 sample dish (14.0 cm \times 7.0 cm) and dried to form a solid coating in an oven at 353 K for 10 h. 103 SO₂ standard gas (50 ppm in N₂, Shenyang Air Liquide Co., LTD) and high purity N₂ and O₂ 104 (99.999 vol.%, Shenyang Air Liquide Co., LTD) were used as received. The solid sample powder (0.2 g) was immersed into 10 mL deionized water (20 mg mL⁻¹), and then the 105 106 suspension was vigorously stirred for 10 min. The pH of SiO₂, kaolinite, Al₂O₃, MgO and CaO 107 suspension was measured to be 6.27, 6.58, 9.33, 10.61 and 12.72 using a pH meter, respectively, 108 which was employed to characterize the basicity of mineral oxides.

109 **2.2 Rectangular flow reactor**

110 The uptake experiments of SO_2 on mineral dust were performed in a horizontal rectangular 111 flow reactor (26.0 cm length \times 7.5 cm width \times 2.0 cm height), which was depicted in Figure 112 S2. In a previous study, a similar rectangular flow reactor was designed and the feasibility of 113 the reactor has been verified (Knopf et al., 2007). The reactor was made of quartz to allow the 114 transmission of light. The temperature was maintained at 298 K by circulating temperature-115 controlled water through the outer jacket of the reactor. Synthetic air with a N₂/O₂ volume ratio of 4:1 was introduced into the flow reactor, and its total flow rate was 1000 mL min⁻¹. The 116 Reynolds number (*Re*) was calculated to be 28.2 (Re < 200), as described in the Supporting 117 Information, indicating a laminar flow state. SO₂ with high purity N₂ (100 mL min⁻¹) as carrier 118 119 gas were introduced into the reactor through a movable T-shaped injector equipped with six 120 exit holes of 0.2 mm diameter, so that the gas could be uniformly distributed over the width of the reactor. The SO₂ concentration was 40–200 ppb and measured with a SO₂ analyzer (Thermo 121 43i). Wet N₂ generated with a bubbler containing deionized water was introduced by two 122 parallel inlets on the side of T-shaped injector. Relative humidity (RH, 10%-75%) was 123 controlled by regulating the ratio of dry N₂ to wet N₂ and measured via a hygrometer (Center 124 125 314). The equivalent layer numbers of water on surface was 0.9-4.0 according to the Brunauer-Emmett-Teller (BET) model (Sumner et al., 2004), and the thickness of the film of adsorbed 126 water varied between 2.7–12 nm at RH=10%–75%. There were three equally spaced exhaust 127 ports to mitigate the outlet turbulence. A xenon lamp (CEL-LAX500, China Education Au-light 128 129 Co., Ltd) was used to simulate sunlight and vertically located above the reactor. A filter was 130 placed on the reactor to remove the light with wavelengths shorter than 300 nm. The spectrum 131 irradiance of the xenon lamp was displayed in Figure S3 and measured using a calibrated 132 spectroradiometer (ULS2048CL-EVO, Avantes). The spectral irradiance was measured inside the reactor, after passing the water cooling and in the absence of a sample. The total irradiance 133 $(0-7.93 \times 10^{16} \text{ photons cm}^{-2} \text{ s}^{-1})$ on the coating can be adjusted by varying the distance of the 134 xenon lamp to the reactor. 135

136 **2.3 Uptake coefficient of SO**₂

137 The heterogeneous reaction kinetics of SO_2 with mineral dust can be described by a pseudo-138 first-order reaction. SiO_2 was taken as an example, and Figure S4 showed a linear relationship 139 between the natural logarithm of the SO_2 concentration and the reaction time. The apparent rate 140 constant (k_{obs, SiO_2}) of SO₂ with SiO₂ can be calculated using the equation 1,

141
$$\frac{\ln(C_0/C_t)}{t} = k_{\text{obs, SiO}_2}$$
 (1)

142 where C_0 and C_t (ppb) are the initial SO₂ concentration and the SO₂ concentration, respectively; 143 *t* was calculated by diving the length of the reactive surface by the average flow velocity. The 144 loss of SO₂ on the internal wall of the reactor in blank experiments was carried out under 145 various conditions (Figure S5 as an example), and it has been deducted for the γ calculation. 146 Assuming that the wall loss was constant in the experiments with and without samples, the 147 geometric uptake coefficient (γ_{geo}) was determined by the equation 2 (Knopf et al., 2007),

$$148 \qquad \gamma_{\rm geo} = \frac{4Vk}{S\omega} \quad (2)$$

149 where k (s⁻¹), V (4 × 10⁻⁴ m³), S (9.8 × 10⁻³ m²) and ω (314.05 m s⁻¹) are the reaction rate 150 constant, the volume of the rectangular reactor, the surface area of the sample dish, and the 151 mean molecular speed of SO₂, respectively.

152 The uptake process of SO_2 on SiO_2 depended on the reaction of SO_2 with SiO_2 and the mass 153 transport of SO_2 to the surface. It can be expressed with the equation 3,

154
$$k'_{\rm r, SiO_2} = \left[\frac{1}{k_{\rm obs, SiO_2} - k_{\rm obs, wall}} - \frac{a}{N_u D}\right]^{-1}$$
 (3)

where k_{obs, SiO_2} and $k_{obs, wall}$ (s⁻¹) are the apparent rate constants measured with and without 155 SiO₂ samples, respectively. $k'_{\rm r, SiO_2}$ is the reaction rate constant of SO₂ accounting for the 156 diffusion effect; D (0.1337 cm² s⁻¹) is the diffusion coefficient of SO₂ in air; a (1 cm) is one 157 158 half height of the flow reactor; N_{μ} is the Nusselt numbers obtained with a calculation method 159 from Solbrig and Gidaspow (1967), which represents the mass transport. Then, the corrected γ 160 can be calculated by the equation 2 where k was replaced by k'_{r, SiO_2} . In our experiments, the correction for γ was estimated to be approximate 10%. Initial uptake coefficients (γ_0) and 161 162 steady-state uptake coefficients (γ_s) were calculated by averaging the signals within the 1.0 and 40-60 min reaction time, respectively. 163

164 To understand the diffusion depth of SO_2 and determine the interaction of SO_2 with the 165 underlying layers of SiO_2 , the uptake of SO_2 as a function of the SiO_2 mass under irradiation 166 was shown in Figure S6. The γ exhibited a linear increase in the SiO₂ mass range of 0.05–2.0 167 g, while it remained unchanged at the SiO₂ mass > 3.0 g. Therefore, the uptake coefficient of 168 SO₂ in the linear regions was normalized using the BET surface area of SiO₂ by the equation 4 169 (Brunauer et al., 1938),

170
$$\gamma_{\text{BET}} = \frac{S_{\text{geo}} \times \gamma_{\text{geo}}}{S_{\text{BET}} \times m_{\text{SiO}_2}}$$
 (4)

171 where γ_{BET} is the SO₂ uptake coefficient normalized to the BET surface area; S_{geo} (9.8 × 10⁻³ 172 m²) is the geometric area of the sample dish; S_{BET} (0.419 m² g⁻¹) is the BET surface area of 173 SiO₂; m_{SiO_2} (0.05–2.0 g) is the SiO₂ mass. The same method was also used to calculate the 174 uptake coefficients of SO₂ on other mineral oxides.

175 **2.4 In Situ DRIFTS analysis**

176 The changes in the chemical compositions on mineral oxides in the SO₂ uptake process were investigated by the Fourier transform infrared (FTIR) spectrometer (Thermo Nicolet iS50) 177 equipped with an *in situ* diffuse reflectance accessory and a mercury cadmium telluride (MCT) 178 179 detector. About 14 mg mineral oxides was placed into a stainless-steel cup inside the reaction cell. To remove adsorbed impurities, SiO₂ was purged with a 150 mL min⁻¹ airflow (N₂/O₂ 180 181 volume ratio = 4:1) at RH=40% for 1 h. Then, a background spectrum of unreacted samples 182 was collected. SO₂ (2 ppm) was introduced into the reaction cell, and the IR spectra was recorded as a function of time at a resolution of 4 cm⁻¹ by averaging 100 scans. The light from 183 184 the xenon lamp (500 W) was transmitted into the DRIFTS reaction cell via a fiber. To verify the role of intermediate, Ru(bpy)₃(Cl)₂) and NaHCO₃, acting as ³SO₂ and •OH scavengers 185 (Bulgakov and Safonova, 1996; Gen et al., 2019a), respectively, were mixed with SiO₂ powder 186 187 in an agate mortar, and the mixture was put in the reaction cell of DRIFTS.

188

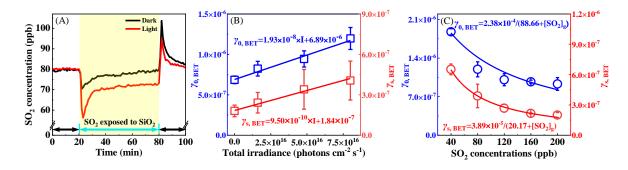
189 **3 Results and discussion**

190 **3.1 Photo-enhanced uptake of SO₂**

Acting as the most abundant mineral oxides, SiO₂ was firstly used to investigate the uptake
behaviors of SO₂. As shown in Figure 1A, when SO₂ (80 ppb) was exposed to SiO₂ in the dark,

193 the SO₂ concentration decreased to 70 ppb, and then it quickly increased and reached the steady 194 state after 20 min. Upon exposure to SiO_2 under irradiation, the SO_2 concentration exhibited a greater drop than that in the dark. The deactivation of SO2 uptake on SiO2 was very slight after 195 196 20 mins under irradiation. These suggest that light can significantly promote the heterogeneous 197 reaction of SO₂ on SiO₂. When SO₂ did not contact with SiO₂, its concentration recovered 198 rapidly. The desorption of SO₂ was observed when SO₂ was isolated from SiO₂ in the dark and 199 under irradiation, indicating that the physical adsorption partially contributed to the SO₂ loss 200 during the photochemical process. The proportion of the desorbed SO₂ during the uptake process can be quantified by dividing the integral of reversible desorption of SO₂ (t = 80-100201 202 min) into the integral of the SO₂ uptake (t = 20-80 min), which was calculated to be 95% and 203 12% in the dark and under irradiation, respectively. This implies that SO₂ uptake in the dark 204 was primarily ascribed to the physical adsorption of SO₂, while SO₂ uptake under irradiation 205 was mainly attributed to chemical processes or irreversible adsorption.

206 The uptake coefficients of SO₂ on SiO₂ as a function of irradiation intensity were shown in 207 Figure 1B. The errors in all figures are the standard deviations of three repetitive experiments. Both $\gamma_{0, BET}$ and $\gamma_{s, BET}$ displayed a well linear relationship with the irradiation intensity, further 208 confirming the photochemical nature for the reactions of SO₂ on SiO₂. In particular, $\gamma_{0, BET}$ and 209 $\gamma_{s,BET}$ on SiO₂ under simulated solar irradiation was comparable with those (10⁻⁷-10⁻⁶) on 210 211 Gobi Desert dust (GDD) and Arizona Test Dust (ATD) under UV irradiation, which contained photocatalytic metal oxides (Park et al., 2017). As for the SO₂ uptake on TiO₂, $\gamma_{0, BET}$ and $\gamma_{s, BET}$ 212 were measured to be 10^{-6} and 10^{-7} , respectively, by using the flow tube (Ma et al., 2019), which 213 214 were similar to our results. It should be pointed out that the similar uptake coefficient did not 215 mean the comparable ability of photoactive and non-photoactive mineral oxides to SO₂ uptake, 216 since the uptake coefficient was highly dependent on environmental conditions (SO₂ 217 concentration, relative humidity, mineral oxides mass, light source and pressure) and reactor type (chamber and flow tube reactor), and the uptake coefficients mentioned here were not 218 219 obtained under the exact same reaction conditions used in our study. The purities of different mineral substances are 95%–98%. If photoactive impurities mainly contributed to the SO₂ uptake in the experiment, the SO₂ uptake coefficient on impurities should be 20–50 times higher than the current SO₂ uptake coefficient and range from 10^{-5} to 10^{-3} . The SO₂ uptake coefficient on photoactive substances was reported to be 10^{-7} – 10^{-6} in previous studies (Ma et al., 2019; Park et al., 2017). Thus, the impurities in minerals were less likely responsible for the SO₂ uptake.


Figure 1C shows the evolution of $\gamma_{0, BET}$ and $\gamma_{s, BET}$ at different SO₂ concentrations under 226 irradiation. An inverse dependence of $\gamma_{0, BET}$ and $\gamma_{s, BET}$ on the SO₂ concentration was observed, 227 228 meaning that both initial and steady-state uptake reactions were lower efficient at higher SO₂ concentrations. The uptake of gases on the solid surfaces usually follows the Langmuir-229 230 Hinshelwood (L-H) mechanism (Ammann et al., 2003; Zhang et al., 2020b), suggesting that 231 gaseous molecules are quickly absorbed on the surfaces, and then the reactions occur among the absorbed species. Assuming that the adsorption of SO₂ on SiO₂ is in accord with the 232 233 Langmuir isotherm, the dependence of γ on the SO₂ concentration can be described by the 234 equation 5 (Zhang et al., 2020b),

235
$$\gamma = \frac{(4V/S\omega)k[SiO_2]_T K_{SO_2}}{1 + K_{SO_2}[SO_2]_g}$$
 (5)

where $[SO_2]_g$ is the concentration of gaseous SO_2 ; $[SiO_2]_T$ is the total number of active sites on SiO₂; *k* is the reaction rate constant of SO₂ absorbed on SiO₂; K_{SO_2} represents the Langmuir adsorption constant of SO₂. Because the SiO₂ mass remained constant during the reaction, the equation 5 can be written as the equation 6,

240
$$\gamma = \frac{a}{1 + K_{\rm SO_2}[\rm SO_2]_g}$$
 (6)

where $a=(4V/S\omega)k[SiO_2]K_{SO_2}$. As shown in Figure 1C, the equation 6 can well describe the correlation of the SO₂ uptake coefficient with the SO₂ concentration, suggesting that the L-H mechanism can explain the influence of the SO₂ concentration on $\gamma_{0, BET}$ and $\gamma_{s, BET}$.

244

Figure 1. (A) The temporal variation of the SO₂ concentration on SiO₂ in the dark and under
irradiation (7.93 × 10¹⁶ photons cm⁻² s⁻¹); The background changes of the SO₂ concentration
in the blank reactor have been deducted. (B) The γ_{0, BET} and γ_{s, BET} of SO₂ on SiO₂ as a
function of the light intensity. (C) The γ_{0, BET} and γ_{s, BET} of SO₂ on SiO₂ at different SO₂
concentrations under irradiation (7.93 × 10¹⁶ photons cm⁻² s⁻¹); The fitting lines for γ_{0, BET}
and γ_{s, BET} were based on the Langmuir-Hinshelwood mechanism using equation 6. Reaction
conditions: SiO₂ mass of 0.2 g, temperature of 298 K, RH of 40% and O₂ content of 20%.

252 **3.2** Photo-induced formation of sulfates by the SO₂ uptake

To investigate the products formed on SiO₂, in situ DRIFTS spectra were recorded, as shown 253 in Figure 2. The band at 1359 cm⁻¹ was assigned to physically-adsorbed SO₂ on SiO₂ (Urupina 254 et al., 2019). The bidentate sulfate and bisulfate contributed to the bands at 1260 and 1229/1074 255 cm⁻¹ (Urupina et al., 2019; Yang et al., 2020), respectively. The bands at 1038 cm⁻¹ may be 256 related to the monodentate sulfite (Yang et al., 2019; Wang et al., 2019). It was noted that the 257 258 intensity of physically-absorbed SO₂ (1359 cm⁻¹) under irradiation was lower than that in the dark (Figure S7), which may be ascribed to further conversion of SO₂ absorbed on SiO₂ under 259 irradiation. Especially, the sulfate bands (1260, 1229 and 1074 cm⁻¹) only appeared under 260 irradiation, while the sulfites (1038 cm⁻¹) were only detected in the dark. This suggests that 261 light changed the SO₂ conversion pathways on SiO₂. As shown in Figure S7, the bands at 262 1157/1055 cm⁻¹ were assigned to the asymmetric stretching of Si-O (Hu et al., 2003). Sulfate 263 264 generated on the surface may interact with SiO₂, leading to a decrease in the intensity of peaks $(1157/1055 \text{ cm}^{-1}).$ 265

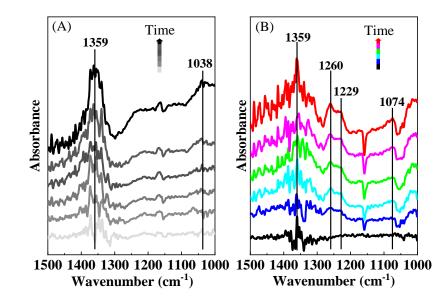


Figure 2. In situ DRIFTS spectra of SiO₂ during the uptake process of SO₂ (2 ppm) in the
 dark (A) and under irradiation (B). Reaction conditions: RH of 40%, temperature of 298 K
 and O₂ content of 20%.

270 3.3 Key roles of H₂O and O₂ in photochemical conversion of SO₂ to sulfates

271 Figure S8A shows temporal variations of the SO₂ concentration in the reaction with SiO₂ at RH=10% and 60% under irradiation. The uptake of SO₂ was very weak at RH=10%, whereas 272 273 it was obvious at RH=60%. Moreover, H₂O markedly prolonged the time to reach the steady-274 state uptake of SO₂. This definitely determines that H₂O plays a distinct enhancement role in the photochemical uptake of SO₂. As shown in Figure 3A, $\gamma_{0, \text{BET}}$ had a continuous increase 275 from $(1.20 \pm 0.04) \times 10^{-7}$ to $(1.54 \pm 0.07) \times 10^{-6}$ with increasing the RH in the 10%-60% range, 276 but it decreased to $(1.05 \pm 0.09) \times 10^{-6}$ at RH=75%. The $\gamma_{s, BET}$ linearly depended on the RH, 277 and linear fitting to $\gamma_{s, BET}$ versus RH yielded the equation $\gamma_{s, BET} = 1.31 \times 10^{-8} \times RH - 1.02 \times 10^{-7}$. 278 279 Adsorbed H₂O promoted the hydration and dissociation of SO₂ (Huang et al., 2015), and it may 280 generate reactive oxygen species (ROS) such as •OH or HO₂ radicals to oxidize SO₂ under 281 irradiation (Li et al., 2020; Ma et al., 2019), which would lead to positive effects of RH on the 282 SO₂ uptake. Adsorbed H₂O also occupied adsorptive and active sites on the surface, and produced the competition with SO₂. When this competitive role was dominated, the uptake of 283

284 SO_2 would be hindered.

285 The DRIFTS spectra of SiO₂ during the SO₂ uptake at different RHs are shown in Figure S9A. The band intensities of sulfates (1260 and 1229 cm⁻¹) at RH=60% were greatly stronger 286 287 than those at RH=10%, suggesting that H₂O significantly promotes the sulfate formation. To 288 further investigate the influence of H₂O on the sulfate formation, the integrated area of sulfates in the DRIFTS spectra (1289–1202 cm⁻¹) as a function of the time at different RHs is illustrated 289 in Figure 3B. Sulfates exhibited a fast formation in the initial 30 min at any RH, and then they 290 were continuously generated at a relatively slow rate. Absorptive sites for SO₂ can be blocked 291 because of the accumulation of H₂O and products (sulfites and sulfates), resulting in the gradual 292 293 deactivation of the surface. It was noted that sulfates had a more distinct formation trend with 294 increasing the RH, revealing that H₂O can act as an important participator in the production of sulfates by the photochemical uptake of SO₂ on SiO₂. 295

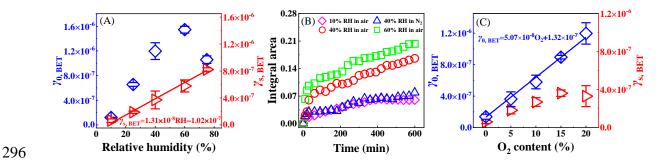
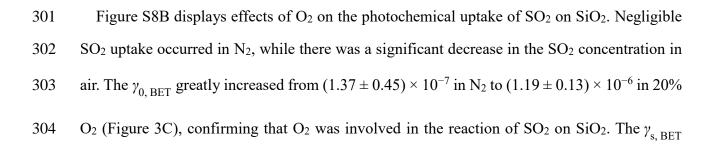
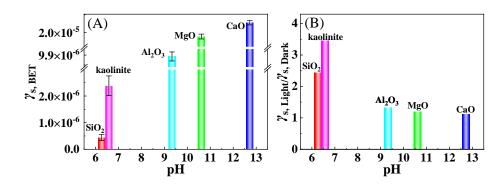



Figure 3. (A) The dependence of $\gamma_{0, BET}$ and $\gamma_{s, BET}$ on RH. (B) Integrated area of sulfates in DRIFTS spectra (1289–1202 cm⁻¹) as a function of time. (C) The dependence of $\gamma_{0, BET}$ and $\gamma_{s, BET}$ on O₂. Reaction conditions: SiO₂ mass of 0.2 g, irradiation intensity of 7.93 × 10¹⁶ photons cm⁻² s⁻¹, temperature of 298 K, O₂ content of 20% for (A) and RH of 40% for (B).



305 displayed different dependence behaviors on O₂. It exhibited an increase from $(7.10 \pm 2.85) \times 10^{-8}$ in N₂ to $(4.37 \pm 0.58) \times 10^{-7}$ in 15% O₂, whereas it remained unchanged in 20% O₂.

DRIFTS spectra of SiO₂ during the SO₂ uptake in N₂ and air was compared in Figure S9B. 307 308 In both air and N₂, the bands of absorbed SO₂ (1359 cm⁻¹), sulfates (1260, 1229 and 1074 cm^{-1}). Nevertheless, their intensities in N_2 were weaker than those in air. According to the 309 integrated area of sulfates in the DRIFTS spectra (1289-1202 cm⁻¹) as a function of time, the 310 311 formation trends of sulfates were similar in N₂ and air (Figure 3B), while the sulfate formation 312 rate in N₂ was obviously lower than that in air, meaning that O₂ enhanced the sulfate production. 313 It was reported that the production rate of sulfates from the SO₂ uptake on TiO₂ and by the 314 photolysis of nitrates under UV irradiation in N2 was also smaller than that in air (Ma et al., 315 2019; Gen et al., 2019b). In addition, it was noted that sulfates can be generated in N₂, meaning 316 that O₂ was not necessary and some pathways contributed to sulfates without O₂.

317 **3.4 Ubiquitously photoenhanced conversion of SO₂ to sulfates**

318 To better assess the potential for photochemical conversion of SO₂ to sulfates, the SO₂ uptake 319 experiments were further performed for typical mineral oxides without photocatalytic activity. 320 As displayed in Figure S10, more obvious uptake behaviors of SO_2 on kaolinite, Al_2O_3 , MgO 321 and CaO were observed under irradiation when compared to those in the dark. Figure 4A shows that there was the largest $\gamma_{s, BET}$ for CaO among five minerals, and $\gamma_{s, BET}$ positively depended 322 323 on the basicity (pH) of mineral oxides. Basic oxides generally contains more surface hydroxyls, 324 which is in favor of sulfite and sulfate formation to enhance the heterogeneous uptake of SO₂ (Zhang et al., 2006). The ratios of steady-state uptake coefficients under irradiation to those in 325 the dark ($\gamma_{s, Light}/\gamma_{s, Dark}$) were larger than 1.0 for all mineral oxides (Figure 4B). The 326 327 experiments for the pH dependence on SiO₂ have been also performed (Figure S11). The pH of SiO₂ suspension was adjusted to pH = 9, and $\gamma_{s, BET}$ and $\gamma_{s, Light}/\gamma_{s, Dark}$ were determined to 328 be $(8.79 \pm 0.85) \times 10^{-6}$ and 1.31, respectively. These results suggest that light can generally 329 enhance the SO₂ uptake on minerals at a wide pH range. However, the $\gamma_{\text{Light}}/\gamma_{\text{Dark}}$ had smaller 330 values with an increase in the basicity, suggesting that the promotion effect of the light was less 331

333

Figure 4. (A) The dependence of $\gamma_{s, BET}$ under irradiation on the basicity (pH) of mineral oxides. (B) The ratios of steady-state uptake coefficients under irradiation to those in the dark $(\gamma_{s, Light}/\gamma_{s, Dark})$. Reaction conditions: mineral oxides mass of 0.2 g, irradiation intensity of 7.93×10^{16} photons cm⁻² s⁻¹, temperature of 298 K, RH of 40% and O₂ content of 20%.

As shown in Figure 5A and B, the band at 1300 cm⁻¹ should be ascribed to the sulfate. The 338 339 intensity of sulfate (1300 and 1220 cm⁻¹) under irradiation was larger than those in the dark. Compared to weaker peaks of sulfates (1200 and 1260 cm⁻¹) for Al₂O₃ in the dark (Figure 5C), 340 a stronger band of bisulfates appeared at 1220 cm⁻¹ under irradiation (Figure 5D). By contrast 341 342 to the generation of sulfates for kaolinite and Al₂O₃, both sulfites and sulfates formations were 343 observed for MgO and CaO (Figure 5E-H). Sulfites were dominant in the dark, as shown by the peaks at 966 and 1020 cm⁻¹ for MgO and 943 cm⁻¹ for CaO, whereas the sulfate formation 344 was significantly enhanced under irradiation according to peak intensities at 1163 cm⁻¹ for 345 MgO and 1137 cm⁻¹ for CaO. It should be noted that these mineral oxides were non-346 photoactive because of their poor light absorption property (Figure S1). Nevertheless, it was 347 348 very surprised that the light can greatly promote the formation of sulfates via the SO₂ uptake process on mineral oxides without photocatalytic activity, which was strongly suggested to be 349 350 a new and important finding for atmospheric sulfate sources.

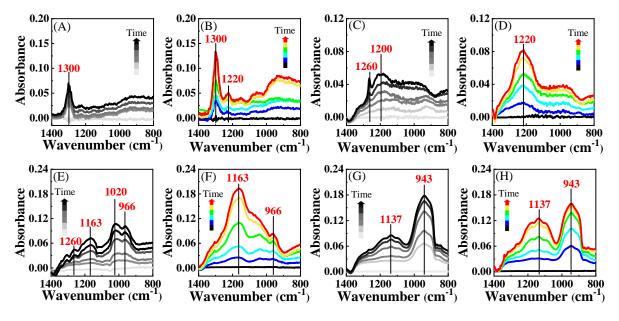
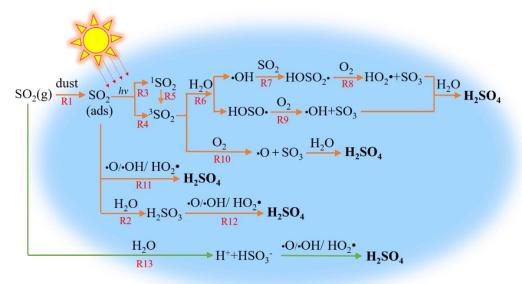


Figure 5. *In situ* DRIFTS spectra of kaolinite (A and B), Al₂O₃ (C and D), MgO (E and F),
CaO (G and H) during the uptake process of SO₂ (2 ppm) for 600 min in the dark (black
lines) and under irradiation (colorful lines). Reaction conditions: RH of 40%, temperature of
298 K and O₂ content of 20%.

356 **3.5 Conversion mechanisms of SO₂ to sulfates**

351


357 Heterogeneous photochemical reaction mechanisms of SO₂ on non-photoactive mineral dust were proposed in light of experimental observations (Figure 6). Gaseous SO₂ was adsorbed on 358 the surface (R1), and then reacted with H₂O to form sulfites (R2). Under irradiation, adsorbed 359 SO_2 accepted photons to form its singlet states (1SO_2) and 3SO_2 (R3–5) (Sidebottom et al., 1972; 360 Martins-Costa et al., 2018). The reaction between ³SO₂ and H₂O resulted in the formation of 361 362 HOSO• and •OH (R6), which can combine with SO₂ to produce HOSO₂• (R7). HOSO• and 363 HOSO₂• can be transformed into SO₃, which reacted with H₂O to drive the sulfate formation (R8 and R9). The interaction between ${}^{3}SO_{2}$ and O_{2} may also generate SO₃ directly, which 364 365 would be converted to sulfates subsequently (R10). Theoretical calculations suggested that the multistep reactions between ³SO₂ with H₂O and O₂ had small energy barriers or were barrier-366 free (Gong et al., 2022), which could enhance the generation of ROS and the transformation of 367 368 S(IV) to S(VI). As displayed by R11 and R12, SO₂ and H₂SO₃ adsorbed on the surface may be oxidized to form sulfates via the reactions with ROS including •O, •OH or HO₂•, which were 369

370 produced in R6 and R8-10. In addition, gaseous SO₂ could be dissolved into adsorbed H₂O to 371 generate bisulfites, which would be finally converted to sulfates by ROS (R13) (Urupina et al., 2019). As displayed in Figure S12A, the IR peaks of sulfates were not observed when tris (2,2'-372 373 bipyridine) ruthenium dihydrochloride ($Ru(bpy)_3(Cl)_2$) was employed as the quencher of 3SO_2 . 374 The peaks were assigned to the vibrations of excited Ru(bpy)₃(Cl)₂ (Mukuta et al., 2014). This definitely proves that ³SO₂ is the key trigger for the sulfate formation. Figure S12B shows that 375 the peaks of sulfates were obviously weaker in the presence of NaHCO₃, confirming the 376 377 dominant contribution of •OH formed in R6 and R9 to the formation of sulfates.

378 Several photochemical mechanisms have been reported to explain the sulfate formation via 379 the SO₂ uptake on various surfaces. Photoactive mineral oxides (such as TiO₂, F₂O₃ and ZnO) can accept photons to produce electron-hole pairs, which generated ROS for the conversion of 380 381 SO₂ to sulfates (Ma et al., 2019; Li et al., 2019; Wang et al., 2020b). For example, •OH and HO₂•, generated from the reaction of hole with H₂O and electron with O₂, respectively, can act 382 as oxidizing agents for the reaction with SO₂ (Ma et al., 2019). Similarly, the reaction of SO₂ 383 with photo-induced •OH obviously enhanced the formation of sulfate on diesel soot and actual 384 385 $PM_{2.5}$ (Zhang et al., 2022; Zhang et al., 2020c). NO₂ and NO₂⁻/HNO₂ can be formed in the nitrates photolysis, and primarily contributed to the oxidation of SO₂ to sulfates on nitrates (Gen 386 et al., 2019b; Gen et al., 2019a). Theoretically, the mechanism proposed in this study should 387 388 also occur on photo-excited substrates. Taking TiO₂ as an example, SO₂ competed with TiO₂ for photons, and the production efficiency of ³SO₂ and excited state of TiO₂ (TiO₂*) depended 389 390 on their light absorption properties. Meanwhile, ³SO₂ had a competition electron-hole pairs generated from TiO₂* for O₂ and H₂O. Thus, the dominant mechanism for the SO₂ uptake on 391 TiO₂ should be related to light absorption properties of precursors and the reactivity for ${}^{3}SO_{2}$ 392 and TiO₂* to O₂ and H₂O. By contrast, all mineral oxides used here cannot be excited under 393 394 irradiation according to their light absorption spectra (Figure S1). Nevertheless, SO₂ adsorbed 395 on mineral oxides can absorb the ultraviolet radiation (290-400 nm) to form the excited states of SO₂ (SO₂^{*}) (Kroll et al., 2018), which subsequently reacted with H₂O and O₂, finally 396 converting SO₂ to sulfates. The SO₂ uptake experiment in the dark and the visible light (>420 397

nm) was carried out (Figure S13). An ignorable difference was observed for the SO₂
concentration with or without visible light, suggesting that visible light had a minor contribution
to the photoenhanced SO₂ uptake.

401 According to the experimental results, some surfaces, providing absorptive sites for SO₂, can 402 enhance the photooxidation of SO₂ to sulfates. However, the promotion effect would vary with 403 different substances. For example, the current experiments on some basic minerals indicate that 404 light plays a minor enhancement role in the SO₂ uptake (Figure 4), but it could still enhance the sulfate formation (Figure 5). The solubility and effective Henry's law constant of SO₂ were 405 positively dependent on pH. Thus, SO₂ was more liable to be dissolved to form HSO₃^{-/}SO₃²⁻ 406 407 on more alkaline surface, leading to a strong SO₂ uptake in the dark (Figure 4A and 4B), and 408 abundant sulfites on surfaces (Figure 5). Nevertheless, gaseous SO₂ tends to be adsorbed on 409 kaolinite and Al₂O₃ due to less solubility of SO₂ on these surfaces, and then converted to sulfate 410 under irradiation (Figure 6). Accordingly, a strong promotion effect of light on SO₂ uptake was 411 observed on neutral and weakly alkaline surfaces (Figure 4B).

- 412
- Figure 6. The proposed photochemical conversion mechanisms of SO₂ to sulfates on nonphotoactive mineral dust.

415 4 Atmospheric implications

416 The lifetime (τ) for photochemical loss of SO₂ on mineral dust was given using the equation

417 7,

418
$$\tau = \frac{4}{\gamma \omega A}$$
 (7)

where γ and ω are the uptake coefficient and the mean molecular speed of SO₂, respectively; A 419 is the surface area density of mineral dust, and it is estimated to be $(1.4-4.8) \times 10^{-5} \text{ cm}^2 \text{ cm}^{-3}$ 420 (Zhang et al., 2019; He et al., 2018b). In this work, $\gamma_{s, BET}$ of SO₂ on several mineral oxides 421 were measured to be from 4.39×10^{-7} to 3.45×10^{-5} under conditions with SO₂ concentration 422 of 40 ppb, irradiation intensity of 7.93×10^{16} photons cm⁻² s⁻¹ and RH of 40%. Thus, the τ of 423 SO₂ with respect to the photooxidation on mineral dust was calculated to be 0.9–240 days, 424 425 which was shorter than that (54 years) for the photochemical uptake of SO₂ on TiO₂ and the corresponding one (346 days) for the heterogeneous oxidation of SO₂ on ATD in the presence 426 of nitrates (Ma et al., 2019; Zhang et al., 2019). The reaction conditions in this study and those 427 in the literatures are different in some respects, and the previously reported SO₂ uptake 428 coefficient ($10^{-7}-10^{-6}$) had a lower value (Ma et al., 2019). The huge difference in the τ of SO₂ 429 was also ascribed to the variation in the surface area density. The content of TiO₂ in mineral 430 dust was only about 1%, and thus the surface area density of TiO₂ was about 10^{-7} cm² cm⁻³, 431 leading to a longer τ (54 years) for SO₂ on TiO₂ (Ma et al., 2019). It was comparable to the 432 lifetime (3.6–20 days) of SO₂ for the gas-phase reaction with •OH at a concentration of $\sim 10^{-6}$ 433 molecules cm⁻³ (Huang et al., 2015; Zhang et al., 2019). Therefore, the photochemical process 434 with the excited state SO₂ acting as a driver on mineral dust was an important pathway for the 435 436 SO₂ sink in the atmosphere.

437 Sulfates show significant influences on the atmosphere, such as an important contributor to 438 the haze formation, affecting the activity of aerosols acting as cloud condensation nuclei (CCN) 439 and ice nuclei (IN), and modifying optical property and acidity of aerosols. A sulfate formation 440 rate (R) can be obtained using γ by the equation 8 (Cheng et al., 2016),

441
$$R = \frac{d\left[SO_4^{2-}\right]}{dt} = \left[\frac{R_p}{D} + \frac{4}{\gamma\omega}\right]^{-1} A\left[SO_2\right] \quad (8)$$

442 where R_P is the radius of mineral dust, which can be estimated using the equation 9 (Li et al.,

- 443 2020),
- 444 $R_{\rm P} = (0.254 \times [{\rm PM}_{2.5}]/(\mu {\rm g m}^{-3}) + 10.259) \times 10^{-9} {\rm m}$ (9)
- 445 where $[PM_{2.5}]$ was average $PM_{2.5}$ mass concentration, and 300 μ g m⁻³ was used for the polluted
- 446 periods in typical China cities (Li et al., 2020; Guo et al., 2014). It was assumed that mineral
- dust accounted for 50% mass of $PM_{2.5}$ (Tohidi et al., 2022), and the mass fraction of SiO_2 ,
- 448 Al₂O₃, MgO, and CaO in mineral dust was 60%, 12.5%, 4% and 6.5%, respectively (Urupina
- et al., 2021; Urupina et al., 2019; Usher et al., 2003). Thus, R was determined to be 2.15 µg
- 450 $m^{-3} h^{-1}$. This suggests that the SO₂ on non-photoactive surfaces is a newly identified sulfate
- 451 formation pathway in some dust-rich conditions.
- 452

453 Author contributions

CH, WY and JM designed and conducted experiments; CH, WY and JM analyzed the data and
prepared the paper with contributions from HY; FL conducted experiments; CH supervised the
project.

457

458 **Competing interests**

459 The authors declare that they have no conflict of interest.

460

461 Acknowledgements

This work was supported by the National Natural Science Foundation of China [grant number
42077198], the LiaoNing Revitalization Talents Program [grant number XLYC1907185], and
the Fundamental Research Funds for the Central Universities [grant numbers N2325034;
N2025011].

466

467 **Reference**

Adams, J., Rodriguez, D., and Cox, R.: The uptake of SO₂ on Saharan dust: A flow tube study,
Atmos. Chem. Phys., 5, 2679-2689, https://doi.org/10.5194/acpd-5-2643-2005, 2005.

470 Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition metal-catalyzed oxidation of

471 atmospheric sulfur: Global implications for the sulfur budget, J. Geophy. Res., 114, 2309-

472 2312, <u>https://doi.org/10.1029/2008jd010486</u>, 2009.

- Ammann, M., Poschl, U., and Rudich, Y.: Effects of reversible adsorption and LangmuirHinshelwood surface reactions on gas uptake by atmospheric particles, Phys. Chem. Chem.
 Phys., 5, 351-356, <u>https://doi.org/10.1039/b208708a</u>, 2003.
- Bounechada, D., Anderson, D., Skoglundh, M., and Carlsson, P.: SO₂ adsorption on silica
 supported iridium, J. Chem. Phys., 146, 084701-084708, <u>https://doi.org/10.1063/1.4976835</u>,
 2017.
- Brunauer, B., Deming, L., Deming, W., and Teller, E.: Adsorption of gases in multimolecular
 layers, J. Am. Chem. Soc., 60, 309-319, <u>https://doi.org/10.1021/ja01269a023</u>, 1938.
- Bulgakov, R. G. and Safonova, L. A.: Chemiluuminescence in the oxidation of Na₂S by oxygen
 in water solutions, Russ. Chem. Bull., 45, 1775-1776, <u>https://doi.org/10.1007/bf01431827</u>,
 1996.
- Cao, J., Tie, X., Dabberdt, W. F., Jie, T., Zhao, Z., An, Z., Shen, Z., and Feng, Y.: On the
 potential high acid deposition in northeastern China, J. Geophy. Res.: Atmos., 118, 4834486 4846, https://doi.org/10.1002/jgrd.50381, 2013.
- 487 Chan, M. and Chan, C.: Hygroscopic properties of two model humic-like substances and their
 488 mixtures with inorganics of atmospheric importance, Environ. Sci. Technol., 37, 5109-5115,
 489 <u>https://doi.org/10.1021/es0342720</u>, 2003.
- Chen, Y., Tong, S., Li, W., Liu, Y., Tan, F., Ge, M., Xie, X., and Sun, J.: Photocatalytic oxidation
 of SO₂ by TiO₂: Aerosol formation and the key role of gaseous reactive oxygen species,
 Environ. Sci. Technol., 55, 9784-9793, https://doi.org/10.1021/acs.est.1c01608, 2021.
- Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K.,
 Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a
 source of sulfate during haze events in China, Sci. Adv., 2, 1601530-1601540,
 https://doi.org/10.1126/sciadv.1601530, 2016.
- 497 Chu, B., Wang, Y. L., Yang, W. W., Ma, J. Z., Ma, Q. X., Zhang, P., Liu, Y. C., and He, H.: Effects of NO₂ and C₃H₆ on the heterogeneous oxidation of SO₂ on TiO₂ in the presence or 498 499 absence UV-Vis irradiation, Phys., 19. 14777-14790. of Atmos. Chem. 500 https://doi.org/10.5194/acp-19-14777-2019, 2019.
- Davis, D. D., Ravishankara, A. R., and Fischer, S.: SO₂ oxidation via the hydroxyl radical:
 Atmospheric fate of HSO_x radicals, Geo. Res. Lett., 6, 113-116, https://doi.org/10.1029/GL006i002p00113, 1979.
- Dentener, F., Carmichael, G., Zhang, Y., Lelieveld, J., and Crutzen, P.: Role of mineral aerosol
 as a reactive surface in the global troposphere, J. Geophy. Res.: Atmos., 101, 22869-22889,
 <u>https://doi.org/10.1029/96jd01818</u>, 1996.
- Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C.: Heterogeneous oxidation of SO₂ in sulfate
 production during nitrate photolysis at 300 nm: Effect of pH, relative humidity, irradiation
 intensity, and the presence of organic compounds, Environ. Sci. Technol., 53, 8757-8766,
 <u>https://doi.org/10.1021/acs.est.9b01623</u>, 2019a.
- 511 Gen, M., Zhang, R., Huang, D., Li, Y., and Chan, C.: Heterogeneous SO₂ oxidation in sulfate 512 formation by photolysis of particulate nitrate, Environ. Sci. Tech. Lett., 6, 86-91,
- 513 https://doi.org/10.1021/acs.estlett.8b00681, 2019b.

- 514 Golobokova, L., Khodzher, T., Khuriganova, O., Marinayte, I., Onishchuk, N., Rusanova, P., 515 and Potemkin, V.: Variability of chemical properties of the atmospheric aerosol above lake 516 during wildfires in siberia, Atmosphere, 11, 1230-1250, baikal large https://doi.org/10.3390/atmos11111230, 2020. 517
- Gong, C., Yuan, X., Xing, D., Zhang, D., Martins-Costa, M. T. C., Anglada, J. M., Ruiz-Lopez,
 M. F., Francisco, J. S., and Zhang, X.: Fast sulfate formation initiated by the spin-forbidden
 excitation of SO₂ at the air-water interface, J. Am. Chem. Soc., 144, 22302-22308,
 https://doi.org/10.1021/jacs.2c10830, 2022.
- Goodman, A., Li, P., Usher, C., and Grassian, V.: Heterogeneous uptake of sulfur dioxide on
 aluminum and magnesium oxide particles, J. Phys. Chem. A 105, 6109-6120,
 <u>https://doi.org/10.1021/jp004423z</u>, 2001.
- Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng,
 L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proc.
 Natl. Acad. Sci. U. S. A., 111, 17373-17378, <u>https://doi.org/10.1073/pnas.1419604111</u>,
 2014.
- Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A.,
 Gnauk, T., Fahlbusch, B., Mertes, S., Lee, T., Collett, J., Foley, S., Borrmann, S., Hoppe, P.,
 and Herrmann, H.: Enhanced role of transition metal ion catalysis during in-cloud oxidation
 of SO₂, Science, 340, 727-730, https://doi.org/10.1126/science.1230911, 2013.
- He, G., Ma, J., and He, H.: Role of carbonaceous aerosols in catalyzing sulfate formation, ACS
 Catal., 8, 3825-3832, <u>https://doi.org/10.1021/acscatal.7b04195</u>, 2018a.
- He, H., Li, C., Loughner, C. P., Li, Z., Krotkov, N. A., Yang, K., Wang, L., Zheng, Y., Bao, X.,
 Zhao, G., and Dickerson, R. R.: SO₂ over central China: Measurements, numerical
 simulations and the tropospheric sulfur budget, J. Geophy. Res.: Atmos., 117, 37-51,
 https://doi.org/10.1029/2011jd016473, 2012.
- He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y., Su,
 H., Liu, C., and Xie, Z.: Isotopic constraints on heterogeneous sulfate production in Beijing
 haze, Atmos. Chem. Phys., 18, 5515-5528, <u>https://doi.org/10.5194/acp-18-5515-2018</u>,
 2018b.
- Herrmann, H., Ervens, B., Jacobi, H. W., Wolke, R., Nowacki, P., and Zellner, R.: CAPRAM_{2.3}:
 A chemical aqueous phase radical mechanism for tropospheric chemistry, J. Atmos. Chem.,
 36, 231-284, https://doi.org/10.1023/A:1006318622743, 2000.
- Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of heterogeneous reaction of sulfur dioxide
 on authentic mineral dust: Effects of relative humidity and hydrogen peroxide, Environ. Sci.
 Technol., 49, 10797-10805, <u>https://doi.org/10.1021/acs.est.5b03930</u>, 2015.
- Hu, Q., Suzuki, H., Gao, H., Araki, H., Yang, W., and Noda, T.: High-frequency FTIR
 absorption of SiO₂/Si nanowires, Chem. Phys. Lett., 378, 299-304,
 https://doi.org/10.1016/j.cplett.2003.07.015, 2003.
- Knopf, D., Cosman, L., Mousavi, P., Mokamati, S., and Bertram, A.: A novel flow reactor for
 studying reactions on liquid surfaces coated by organic monolayers: Methods, validation,
 and initial results, J. Phys. Chem. A, 111, 11021-11032, <u>https://doi.org/10.1021/jp075724c</u>,
 2007.

- 556 Kroll, J., Frandsen, B., Kjaergaard, H., and Vaida, V.: Atmospheric hydroxyl radical source:
- Reaction of triplet SO₂ and water, J. Phys. Chem. A, 122, 4465-4469, <u>https://doi.org/10.10</u>
 <u>21/acs.jpca.8b03524</u>, 2018.
- Langhammer, D., Kullgren, J., and Osterlund, L.: Photoinduced adsorption and oxidation of
 SO₂ on anatase TiO₂, J. Am. Chem. Soc., 142, 21767-21774, <u>https://doi.org/10.1021/jacs.0</u>
 c09683, 2020.
- Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and
 Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China,
 Atmos. Chem. Phys., 17, 3301-3316, <u>https://doi.org/10.5194/acp-17-3301-2017</u>, 2017.
- Li, J., Zhang, Y. L., Cao, F., Zhang, W., Fan, M., Lee, X., and Michalski, G.: Stable sulfur
 isotopes revealed a major role of transition-metal ion-catalyzed SO₂ oxidation in haze
 episodes, Environ. Sci. Technol., 54, 2626-2634, <u>https://doi.org/10.1021/acs.est.9b07150</u>,
 2020.
- Li, K., Kong, L., Zhanzakova, A., Tong, S., Shen, J., Wang, T., Chen, L., Li, Q., Fu, H., and
 Zhang, L.: Heterogeneous conversion of SO₂ on nano α-Fe₂O₃: the effects of morphology,
 light illumination and relative humidity, Environ. Sci.: Nano, 6, 1838-1851,
 https://doi.org/10.1039/c9en00097f, 2019.
- Lim, S., Lee, M., Kim, S., and Laj, P.: Sulfate alters aerosol absorption properties in East Asian
 outflow, Sci. Rep., 8, 5172-5178, <u>https://doi.org/10.1038/s41598-018-23021-1</u>, 2018.
- Liu, T., Clegg, S., and Abbatt, J. P. D.: Fast oxidation of sulfur dioxide by hydrogen peroxide
 in deliquesced aerosol particles, Proc. Natl. Acad. Sci. U. S. A., 117, 1354-1359,
 <u>https://doi.org/10.1073/pnas.1916401117</u>, 2020a.
- Liu, T., Chan, A. W. H., and Abbatt, J. P. D.: Multiphase oxidation of sulfur dioxide in aerosol
 particles: Implications for sulfate formation in polluted environments, Environ. Sci.
 Technol., 55, 4227-4242, <u>https://doi.org/10.1021/acs.est.0c06496</u>, 2021.
- Liu, Y., Deng, Y., Liu, J., Fang, X., Wang, T., Li, K., Gong, K., Bacha, A. U., Nabi, I., Ge, Q.,
 Zhang, X., George, C., and Zhang, L.: A novel pathway of atmospheric sulfate formation
 through carbonate radicals, Atmos. Chem. Phys., 22, 9175-9197,
 https://doi.org/10.5194/acp-22-9175-2022, 2022.
- Ma, J., Dörner, S., Donner, S., Jin, J. L., Cheng, S. Y., Guo, J. R., Zhang, Z. F., Wang, J. Q.,
 Liu, P., Zhang, G. Q., Pukite, J., Lampel, J., and Wagner, T.: MAX-DOAS measurements of
 NO₂, SO₂, HCHO, and BrO at the Mt. Waliguan WMO GAW global baseline station in the
 Tibetan Plateau, Atmos. Chem. Phys., 20, 6973-6990, <u>https://doi.org/10.5194/acp-20-6973-</u>
 2020, 2020.
- Ma, Q., Wang, L., Chu, B., Ma, J., and He, H.: Contrary role of H₂O and O₂ in the kinetics of
 heterogeneous photochemical reactions of SO₂ on TiO₂, J. Phys. Chem. A., 123, 1311-1318,
 https://doi.org/10.1021/acs.jpca.8b11433, 2019.
- Martins-Costa, M., Anglada, J., Francisco, J., and Ruiz-Lopez, M.: Photochemistry of SO₂ at
 the air-water interface: A source of OH and HOSO radicals, J. Am. Chem. Soc., 140, 1234112344, https://doi.org/10.1021/jacs.8b07845, 2018.
- 596 Mauldin, R., Berndt, T., Sipila, M., Paasonen, P., Petaja, T., Kim, S., Kurten, T., Stratmann, F.,
- 597 Kerminen, V., and Kulmala, M.: A new atmospherically relevant oxidant of sulphur dioxide,

- 598 Nature, 488, 193-196, <u>https://doi.org/10.1038/nature11278</u>, 2012.
- Mukuta, T., Fukazawa, N., Murata, K., Inagaki, A., Akita, M., Tanaka, S., Koshihara, S. Y., and
 Onda, K.: Infrared vibrational spectroscopy of [Ru(bpy)₂(bpm)]²⁺ and [Ru(bpy)₃]²⁺ in the
 excited triplet state, Inorg. Chem., 53, 2481-2490, https://doi.org/10.1021/ic402474t, 2014.
- 602 Olson, E., Michalski, G., Welp, L., Valdivia, A., Larico, J., Pen, J., Fang, H., Gomez, K., and
- Li, J.: Mineral dust and fossil fuel combustion dominate sources of aerosol sulfate in urban
 Peru identified by sulfur stable isotopes and water-soluble ions, Atmos. Environ., 260,
 118482-118495, https://doi.org/10.1016/j.atmosenv.2021.118482, 2021.
- Park, J. and Jang, M.: Heterogeneous photooxidation of sulfur dioxide in the presence of airborne
 mineral dust particles, RSC Adv., 6, 58617-58627, <u>https://doi.org/10.1039/c6ra09601h</u>,
 2016.
- Park, J., Jang, M., and Yu, Z.: Heterogeneous photo-oxidation of SO₂ in the presence of two
 different mineral dust particles: Gobi and arizona dust, Environ. Sci. Technol., 51, 96059613, https://doi.org/10.1021/acs.est.7b00588, 2017.
- 612 Peng, Y., von Salzen, K., and Li, J.: Simulation of mineral dust aerosol with Piecewise Log-
- 613 normal Approximation (PLA) in CanAM4-PAM, Atmos. Chem. Phys., 12, 6891-6914,
 614 <u>https://doi.org/10.5194/acp-12-6891-2012</u>, 2012.
- Prospero, J.: Long-range transport of mineral dust in the global atmosphere: Impact of African
 dust on the environment of the southeastern United States, Proc. Natl. Acad. Sci. U. S. A.,
 96, 3396-3403, <u>https://doi.org/10.1073/pnas.96.7.3396</u>, 1999.
- Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R. V., Philip, S., Song,
 S., Zhao, Y., Xie, Z., Zhang, L., and Alexander, B.: Heterogeneous sulfate aerosol formation
 mechanisms during wintertime Chinese haze events: air quality model assessment using
 observations of sulfate oxygen isotopes in Beijing, Atmos. Chem. Phys., 19, 6107-6123,
 https://doi.org/10.5194/acp-19-6107-2019, 2019.
- Shiraiwa, M., Ueda, K., Pozzer, A., Lammel, G., Kampf, C. J., Fushimi, A., Enami, S., Arangio,
 A. M., Frohlich-Nowoisky, J., Fujitani, Y., Furuyama, A., Lakey, P. S. J., Lelieveld, J., Lucas,
 K., Morino, Y., Poschl, U., Takahama, S., Takami, A., Tong, H., Weber, B., Yoshino, A., and
 Sato, K.: Aerosol health effects from molecular to global scales, Environ. Sci. Technol., 51,
 13545-13567, https://doi.org/10.1021/acs.est.7b04417, 2017.
- Sidebottom, H. W., Badcock, C. C., Jackson, G. E., Calvert, J. G., Reinhardt, G. W., and Damon,
 E. K.: Photooxidation of sulfur dioxide, Environ. Sci. Technol., 6, 72-79, https://doi.org/10.1080/00022470.1971.10469552, 1972.
- Solbrig, C. W. and Gidaspow, D.: Convective diffusion in a parallel plate duct with one catalytic
 wall, laminar flow, first order reaction-part one, Can. J. Chem. Eng., 45, 35-39,
 https://doi.org/10.1016/0304-5102(89)80197-X, 1967.
- Sumner, A. L., Menke, E. J., Dubowski, Y., Newberg, J. T., Penner, R. M., Hemminger, J. C.,
 Wingen, L. M., Brauers, T. and Finlayson-Pitts, B. J. The nature of water on surfaces of
 laboratory systems and implications for heterogeneous chemistry in the troposphere. Phys.
- 637 Chem. Chem. Phys., 6, 604-613, <u>https://doi.org/10.1039/B308125G</u>, 2004.
- Tohidi, R., Farahani, V., and Sioutas, C.: Real-time measurements of mineral dust concentration in coarse particulate matter $PM_{10-2.5}$ by employing a novel optical-based technique in Los

- Angeles, Sci. Total. Environ., 838, 156215-156226, <u>https://doi.org/10.1016/j.scitotenv.202</u>
 2.156215, 2022.
- Urupina, D., Romanias, M. N., and Thevenet, F.: How relevant is it to use mineral proxies to
 mimic the atmospheric reactivity of natural dust samples? A reactivity study using SO₂ as
 probe molecule, Minerals, 11, 282-299, https://doi.org/10.3390/min11030282, 2021.
- Urupina, D., Lasne, J., Romanias, M. N., Thiery, V., Dagsson-Waldhauserova, P., and Thevenet,
 F.: Uptake and surface chemistry of SO₂ on natural volcanic dusts, Atmos. Environ., 217,
 116942-116959, https://doi.org/10.1016/j.atmosenv.2019.116942, 2019.
- 648 Usher, C., Michel, A., and Grassian, V.: Reactions on mineral dust, Chem. Rev., 103, 4883649 4939, <u>https://doi.org/10.1021/cr020657y</u>, 2003.
- Usher, C., Al-Hosney, H., Carlos-Cuellar, S., and Grassian, V.: A laboratory study of the
 heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles, J. Geophys.
 Res-atmos., 107, 4713-4729, https://doi.org/10.1029/2002jd002051, 2002.
- 653 Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang,
- 654 D. D., Ji, D., Sun, X., Xu, W., Guo, J., Song, S., Qin, Y., Liu, P., Turner, J. R., Lee, H. C.,
- Hwang, S., Liao, H., Martin, S. T., Zhang, Q., Chen, M., Sun, Y., Ge, X., and Jacob, D. J.:
 Fast sulfate formation from oxidation of SO₂ by NO₂ and HONO observed in Beijing haze,
 Nat. Commun., 11, 2844-2850, <u>https://doi.org/10.1038/s41467-020-16683-x</u>, 2020a.
- Yao, M., Zhao, Y., Hu, M., Huang, D., Wang, Y., Yu, J. Z., and Yan, N.: Multiphase reactions 658 between secondary organic aerosol and sulfur dioxide: Kinetics and contributions to sulfate 659 aerosol Technol. 660 formation and aging. Environ. Sci. Lett., 6, 768-774, 661 https://doi.org/10.1021/acs.estlett.9b00657, 2019.
- Ye, J., Abbatt, J. P. D., Chan, A. W. H.: Novel pathway of SO₂ oxidation in the atmosphere:
 Reactions with monoterpene ozonolysis intermediates and secondary organic aerosol.
 Atmos. Chem. Phys., 18, 5549-5565, <u>https://doi.org/10.5194/acp-18-5549-2018</u>, 2018.
- Wang, S., Zhou, S., Tao, Y., Tsui, W. G., Ye, J., Yu, J. Z., Murphy, J. G., McNeill, V. F., Abbatt,
 J. P. D., and Chan, A. W. H.: Organic peroxides and sulfur dioxide in aerosol: Source of
 particulate sulfate. Environ. Sci. Technol., 53, 10695-10704, <u>https://doi.org/10.1021/acs.es</u>
 t.9b02591, 2019.
- Wang, T., Liu, Y., Deng, Y., Fu, H., Zhang, L., and Chen, J.: The influence of temperature on
 the heterogeneous uptake of SO₂ on hematite particles, Sci. Total. Environ., 644, 1493-1502,
 https://doi.org/10.1016/j.scitotenv.2018.07.046, 2018.
- Wang, T., Liu, Y. Y., Deng, Y., Cheng, H. Y., Yang, Y., Li, K. J., Fang, X. Z., and Zhang, L. W.:
 Irradiation intensity dependent heterogeneous formation of sulfate and dissolution of ZnO
 nanoparticles, Environ. Sci.: Nano, 7, 327-338, https://doi.org/10.1039/c9en01148j, 2020b.
- Wang, Z., Wang, T., Fu, H., Zhang, L., Tang, M., George, C., Grassian, V. H., and Chen, J.:
 Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification
 of iron speciation during simulated cloud processing, Atmos. Chem. Phys., 19, 12569-12585,
 https://doi.org/10.5194/acp-19-12569-2019, 2019.
- Yang, N., Tsona, N. T., Cheng, S., Li, S., Xu, L., Wang, Y., Wu, L., and Du, L.: Competitive
 reactions of SO₂ and acetic acid on α-Al₂O₃ and CaCO₃ particles, Sci. Total. Environ., 699,
 134362-134370, https://doi.org/10.1016/j.scitotenv.2019.134362, 2020.

- Yang, W., Ma, Q., Liu, Y., Ma, J., Chu, B., and He, H.: The effect of water on the heterogeneous
 reactions of SO₂ and NH₃ on the surfaces of α-Fe₂O₃ and γ-Al₂O₃, Environ. Sci.: Nano, 6,
 2749-2758, https://doi.org/10.1039/c9en00574a, 2019.
- Zhang, P., Chen, T., Ma, Q., Chu, B., Wang, Y., Mu, Y., Yu, Y., and He, H.: Diesel soot
 photooxidation enhances the heterogeneous formation of H₂SO₄, Nat. Commun., 13, 53645372, https://doi.org/10.1038/s41467-022-33120-3, 2022.
- Zhang, R., Gen, M., Huang, D., Li, Y., and Chan, C.: Enhanced sulfate production by nitrate
 photolysis in the presence of halide ions in atmospheric particles, Environ. Sci. Technol.,
 54, 3831-3839, <u>https://doi.org/10.1021/acs.est.9b06445</u>, 2020a.
- Kang, T., Yang, W., Han, C., Yang, H., and Xue, X.: Heterogeneous reaction of ozone with
 syringic acid: Uptake of O₃ and changes in the composition and optical property of syringic
 acid, Environ. Pollut., 257, 113632-113638, https://doi.org/10.1016/j.envpol.2019.113632,
 2020b.
- Zhang, X., Zhuang, G., Chen, J., Wang, Y., Wang, X., An, Z., and Zhang, P.: Heterogeneous
 reactions of sulfur dioxide on typical mineral particles, J. Phys. Chem. B, 110, 12588-12596,
 <u>https://doi.org/10.1021/jp0617773</u>, 2006.
- Zhang, Y., Bao, F., Li, M., Chen, C., and Zhao, J.: Nitrate-enhanced oxidation of SO₂ on mineral
 dust: A vital role of a proton, Environ. Sci. Technol., 53, 10139-10145,
 <u>https://doi.org/10.1021/acs.est.9b01921</u>, 2019.
- Zhang, Y., Bao, F., Li, M., Xia, H., Huang, D., Chen, C., and Zhao, J.: Photoinduced uptake
 and oxidation of SO₂ on Beijing urban PM_{2.5}, Environ. Sci. Technol., 54, 14868-14876,
 <u>https://doi.org/10.1021/acs.est.0c01532</u>, 2020c.

704