| 1 | Secondary aerosol formation Fine particle chemistry under                  |
|---|----------------------------------------------------------------------------|
| 2 | a special dust transport event: impacts from unusually                     |
| 3 | enhanced ozone and <del>air mass<u>dust</u> backflows over the ocean</del> |
| 4 |                                                                            |

- 5 Da Lu<sup>1</sup>, Hao Li<sup>1</sup>, Guochen Wang<sup>1</sup>, Xiaofei Qin<sup>1</sup>, Na Zhao<sup>1</sup>, Juntao Huo<sup>2</sup>, Fan Yang<sup>3</sup>,
- 6 Yanfen Lin<sup>2</sup>, Jia Chen<sup>2</sup>, Qingyan Fu<sup>2</sup>, Yusen Duan<sup>2</sup>, Xinyi Dong<sup>4</sup>, Congrui Deng<sup>1</sup>,
- 7 Sabur F. Abdullaev<sup>5</sup>, Kan Huang<sup>1,6\*</sup>
- 8 <sup>1</sup>Center for Atmospheric Chemistry Study, Shanghai Key Laboratory of Atmospheric
- 9 Particle Pollution and Prevention (LAP<sup>3</sup>), National Observations and Research Station
- 10 for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental
- 11 Science and Engineering, Fudan University, Shanghai, 200433, China
- 12 <sup>2</sup>State Ecologic Environmental Scientific Observation and Research Station for
- 13 Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai, 200030,
- 14 China
- 15 <sup>3</sup>Pudong New District Environmental Monitoring Station, Shanghai 200122, China
- 16 <sup>4</sup>School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- 17 <sup>5</sup>Physical Technical Institute of the Academy of Sciences of Tajikistan, Dushanbe,
- 18 Tajikistan
- <sup>6</sup>Institute of Eco-Chongming (IEC), Shanghai, 202162, China
- 20 Corresponding author: huangkan@fudan.edu.cn
- 21
- 22 Abstract
- In the autumn of 2019, <u>A-a</u> five-days long-lasting dust event was observed with
   using a synergy of field measurements techniques in Shanghai in the autumn of 2019.

| 25 | This particular dust event stood out from others due to its unique characteristics,                   |
|----|-------------------------------------------------------------------------------------------------------|
| 26 | Different from most dust events, this dust was an unusual one characterized of including              |
| 27 | low wind speed, high relative humidity, <u>elevated levelshigh concentrations</u> of gaseous          |
| 28 | precursors, and contrasting wind patterns at different altitudes vectors between low and              |
| 29 | high altitudes. During this event, three distinct dust stages were identified. Three dust             |
| 30 | stages were identified and tThe first stage was a typical normal-dust invasion                        |
| 31 | characterized by with high concentrations of particulate matters concentrations and but               |
| 32 | <u>relatively</u> short duration. In contrast, <u>the second stage exhibited an unusual</u>           |
| 33 | enhancement of ozone-was observed in the second stage, attributed due to compound                     |
| 34 | causes of weak synoptic system, transport from the ocean, and subsidence of high-                     |
| 35 | altitude ozone $\Theta_3$ down drafted by dust, <u>Consequently As a result</u> , gas phase oxidation |
| 36 | served as the major formation pathway of sulfate and nitrate moderately correlated with               |
| 37 | O3-while had almost no correlation with aerosol liquid water content, indicating the                  |
| 38 | dominant role of gas phase oxidations. During In the third stage of dust, a noteworthy                |
| 39 | phenomenon known as dust backflow occurred. a special phenomenon of dust backflow                     |
| 40 | was observed that tThe dust plume originated drifted from the Shandong Peninsula and                  |
| 41 | slowly drifted travelled slowly over the Yellow Sea and the East China Sea before                     |
| 42 | eventually, finally returning to Shanghai. <u>Evidence of this The dust backflow was found</u>        |
| 43 | throughevidenced by the enrichment of marine vessel emissions (V and Ni) and                          |
| 44 | increased solubility of calcium. Under the influence of humid oceanic breezes, the                    |
| 45 | formation of nitrate was dominated by aqueous processing. Additionally, part of nitrate               |
| 46 | and sulfate were , while the strong correlation between SO42- and Na <sup>+</sup> -suggested that a   |
| 47 | considerable part of sulfate was aged and directly transported via sea salts, evidenced               |
| 48 | by -their co-variation with Na <sup>+</sup> and confirmed through Based on the thermodynamic          |

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 1 |                                                                                                       |                                                    |                                                                         |                                                    |                   |                            |                   |
|---|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|-------------------|----------------------------|-------------------|
| 1 | Formatted: F<br>Font color:                                                                           | `ont:<br>Auto,                                     | (Default)<br>Pattern:                                                   | Times<br>Clear                                     | New               | Roman,                     | 小四,               |
| 1 | Formatted: F<br>Font color:                                                                           | `ont:<br>Auto,                                     | (Default)<br>Pattern:                                                   | Times<br>Clear                                     | New               | Roman,                     | 小四,               |
| 1 | Formatted: F<br>Font color:                                                                           | `ont:<br>Auto,                                     | (Default)<br>Pattern:                                                   | Times<br>Clear                                     | New               | Roman,                     | 小四,               |
| 1 | Formatted: F<br>Font color:                                                                           | `ont:<br>Auto,                                     | (Default)<br>Pattern:                                                   | Times<br>Clear                                     | New               | Roman,                     | 小四,               |
| 1 | Formatted: F<br>Font color:                                                                           | `ont:<br>Auto,                                     | (Default)<br>Pattern:                                                   | Times<br>Clear                                     | New               | Roman,                     | 小四,               |
|   |                                                                                                       |                                                    |                                                                         |                                                    |                   |                            |                   |
| 1 | Formatted: F<br>Font color:                                                                           | °ont:<br>Auto,                                     | (Default)<br>Pattern:                                                   | Times<br>Clear                                     | New               | Roman,                     | 小四,               |
|   | Formatted: F<br>Font color: F<br>Formatted: F<br>Font color:                                          | Pont:<br>Auto,<br>Pont:<br>Auto,                   | (Default)<br>Pattern:<br>(Default)<br>Pattern:                          | Times<br>Clear<br>Times<br>Clear                   | New<br>New        | Roman,<br>Roman,           | 小四,<br>小四,        |
|   | Formatted: F<br>Font color: F<br>Formatted: F<br>Font color: Formatted: F<br>Font color: Formatted: F | Font:<br>Auto,<br>Font:<br>Auto,<br>Font:<br>Auto, | (Default)<br>Pattern:<br>(Default)<br>Pattern:<br>(Default)<br>Pattern: | Times<br>Clear<br>Times<br>Clear<br>Times<br>Clear | New<br>New<br>New | Roman,<br>Roman,<br>Roman, | 小四,<br>小四,<br>小四, |

Formatted: Font color: Text 1 Formatted: Font: (Default) Times New Roman, 小四, Font color: Text 1, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| Ì | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| - | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 49 | modeling, sea salts probably involved more in the secondary aerosol formation than the           |                 |                                                                                                                                |
|----|--------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| 50 | dust heterogeneous reactions. The uptake of NH <sub>3</sub> on particles, influenced by the      |                 | Formatted: Subscript                                                                                                           |
| 51 | contributions of alkali metal ions and aerosol pH, regulated the formation potential of          |                 |                                                                                                                                |
| 52 | secondary aerosol. By developing an upstream-receptor relationship method, the                   |                 |                                                                                                                                |
| 53 | amounts of transported and secondarily formed aerosol species were separated. This               |                 |                                                                                                                                |
| 54 | study highlights that the transport pathway of dust <u>e coupled with-and</u> environmental      |                 | Formatted: Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                            |
| 55 | conditions, could-can significantly modify the aerosol properties, especially at the             |                 |                                                                                                                                |
| 56 | complex land-sea interface.                                                                      |                 |                                                                                                                                |
| 57 |                                                                                                  |                 |                                                                                                                                |
| 58 | 1. Introduction                                                                                  |                 |                                                                                                                                |
| 59 | Dust serves as a significant natural source of aerosols, constituting                            |                 | <b>Formatted:</b> Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                     |
| 60 | approximatelyAs an important source of natural aerosols, dust accounted for about half           |                 |                                                                                                                                |
| 61 | of the tropospheric aerosols (Zheng et al., 2016). Dust aerosols played <u>crucial important</u> |                 | <b>Formatted:</b> Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                     |
| 62 | roles in environmental and climatic changes by affecting the radiation balance (Feng et          |                 |                                                                                                                                |
| 63 | al., 2020; Nagashima et al., 2016; Goodman et al., 2019). The optical properties of dust         |                 |                                                                                                                                |
| 64 | aerosols are influenced by various parameters of iron oxides, including refractive               | $\triangleleft$ | Formatted: Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                            |
| 65 | indices, size distributions, and mineralogical compositions. Consequently, these factors         |                 | Formatted: Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                            |
| 66 | introduce potential uncertainties regarding the role of dust in climate forcing (Zhang et        |                 | Formatted: Font: (Default) Times New Roman, 小四,<br>Formatted: Font: (Default) Times New Roman, 小四,                             |
| 67 | al., 2015; Jeong, 2008). Furthermore, dust aerosols have had-important impacts                   |                 | Font color: Auto, Pattern: Clear<br><b>Formatted:</b> Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear |
| 68 | influences on tropospheric chemistry by participating in heterogeneous and photolysis            |                 | Formatted: Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                            |
| 69 | reactions in the atmosphere (Wang et al., 2014; Liu et al., 2018). During transportFor           |                 |                                                                                                                                |
| 70 | instance, dust <u>could-can</u> mix with gaseous pollutants, toxic metals, and soot-during       |                 |                                                                                                                                |
| 71 | transport, thereby thus affecting air quality immediately and potentially posingeausing          |                 | <b>Formatted:</b> Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                     |
| 72 | potential public health hazards (Liu et al., 2021; Wang et al., 2021). Moreover, Barkley         |                 | <b>Formatted:</b> Font: (Default) Times New Roman, 小四,<br>Font color: Auto, Pattern: Clear                                     |
|    |                                                                                                  |                 |                                                                                                                                |

et al. (2021) found that iron-containing aerosols transported from Africa to the
equatorial North Atlantic Ocean provided plentiful nutrients to algae in the ocean and
accumulated inside algae.

76 Many studies focused on the emissions and transport of Asian dust, which 77 accounted for -- 20% of the global dust budget (Ginoux et al., 2004). Asian dust mostly 78 originated from the deserts in western China, the Gobi, and the Loess Plateau 79 (Nagashima et al., 2016). Dust particles can be lifted to an altitude of several kilometers 80 due to strong winds and low soil moistures. During this process, most of the coarse dust 81 particles would settle near the dust source areas, while relatively fine particles could be 82 transported to further downstream regions such as eastern and southern China, and even 83 across the Pacific Ocean to the western America coast (Huang et al., 2010b; Vicars and 84 Sickman, 2011)-

85 -The irregular shapes of dust particles provided an -efficient medium for 86 heterogeneous reactions with NO2, O3, SO2, and NH3, thereby alteringthus changing 87 the particle size spectrum, hygroscopicity, and radiative properties (Hsu et al., 2014; 88 Tian et al., 2021; Jiang et al., 2018). Jiang et al. (2018) observed a significant increase 89 that the concentrations ofin nitrate and sulfate concentrations during a dust period in 90 March 2010 in Shanghai. This elevation was attributed were significantly elevated due 91 to the presence of moderate <u>to high levels of relative humidity and gaseous precursors</u> 92 during a dust period in March, 2010 at Shanghai, implying that dust can efficiently 93 promoted the formation of sulfate and nitrate. The formation of nitrate included two 94 major pathways. During daytime, the OH radicals produced by the photolysis of O2 and 95 HONO oxidized NO2 to produce HNO3 (Hertel et al., 2012), which subsequently 96 neutralized the alkaline substances to form nitrate in the particles. During nighttime

4

| Formatted:  | Font: | (Default) | Times | New | Roman, | 小四, |
|-------------|-------|-----------|-------|-----|--------|-----|
| Font color: | Auto, | Pattern:  | Clear |     |        |     |

| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四,   |
|---------------------------------------|-----------------------|----------------|-----|--------|-------|
|                                       |                       |                |     |        |       |
| Formatted: Font:                      | (Default)             | Times          | New | Roman, | 小四,   |
| Formatted: Font:                      | (Default)             | Times          | New | Roman, | 小四,   |
| Font color: Auto,                     | Pattern:              | Clear          |     | ,      | • • • |

| 97  | with low temperature and high humidity, NO <sub>2</sub> can be oxidized by O <sub>3</sub> to form NO <sub>3</sub> |   |
|-----|-------------------------------------------------------------------------------------------------------------------|---|
| 98  | radical (Mentel et al., 1996), which then reacted with NO <sub>2</sub> to form $N_2O_5$ radical                   |   |
| 99  | (Dall'osto et al., 2009; Petetin et al., 2016). Previous studies have revealed that HNO3                          |   |
| 100 | formed through the reactions of NO <sub>2</sub> with hydroxyl radical or $N_2O_5$ hydrolysis would                |   |
| 101 | preferentially reacts with mineral dust particles and produce nitrate, which serves as the                        |   |
| 102 | primarywas the main source of nitrate during the dust period episodes (Tang et al., 2016;                         |   |
| 103 | Wu et al., 2020). Improvements in the simulation of sulfate were achieved by                                      |   |
| 104 | employing various parameterization schemes for the heterogeneous uptake of SO2 on                                 | _ |
| 105 | natural dust surfaces in the presence of NH3 and NO2 under different relative humidity                            |   |
| 106 | <u>conditions</u> (Zhang et al., 2019)                                                                            |   |
| 107 | heterogeneous reactions on the dust surface were the main sourcesaccounted for the                                |   |
| 108 | majority of nitrate, and the dust surface nitrate observed in Japan mainly formed over                            |   |
| 109 | the Yellow Sea and the East China Sea during the <u>dust</u> long-range transport. <u>Tang et al.</u>             |   |
| 110 | (2017) conducted a comprehensive review on the effect of dust heterogeneous reactions                             |   |
| 111 | on the tropospheric oxidation capacity. They proposed that high RH (> 80%) and a                                  |   |
| 112 | wider range of temperature should be considered in the laboratory studies of                                      |   |
| 113 | heterogeneous reactions of mineral dust. Additionally, more comprehensive kinetic                                 |   |
| 114 | models should be developed to understand the complex multiphase reactions.                                        |   |
| 115 | Controversies have arisen regardingHowever, there were some controversies on the                                  |   |
| 116 | mixing of dust and anthropogenic aerosols. Zhang et al. (2005) found that                                         |   |
| 117 | anthropogenic aerosols separated with dust during a dust event in Qingdao, China.                                 |   |
| 118 | Coincidentally, there existed a time-lag between dust and anthropogenic aerosols was                              | _ |
| 119 | observed in Japan and South Korea downstream of the dust transport. Single particle                               |   |
| 20  | analysis <u>revealed confirmed</u> that sulfate in fine particles appeared 12 hours before the                    | _ |
|     |                                                                                                                   |   |

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| Formatted: Font:  | (Default) Times New Roman, 小四, |
|-------------------|--------------------------------|
| Font color: Auto, | Pattern: Clear                 |
| Formatted: Font:  | (Default) Times New Roman, 小四, |
| Font color: Auto, | Subscript, Pattern: Clear      |
| Formatted: Font:  | (Default) Times New Roman, 小四, |
| Font color: Auto, | Pattern: Clear                 |
| Formatted: Font:  | (Default) Times New Roman, 小四, |
| Font color: Auto, | Subscript, Pattern: Clear      |
| Formatted: Font:  | (Default) Times New Roman, 小四, |
| Font color: Auto, | Pattern: Clear                 |
| Formatted: Font:  | (Default) Times New Roman, 小四, |
| Font color: Auto, | Subscript, Pattern: Clear      |
| Formatted: Font:  | (Default) Times New Roman, 小四, |
| Font color: Auto, | Pattern: Clear                 |

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 121 | dust arrival in Japan. Wang et al. (2013) also observed a <u>lag of</u> 10 - 12 hours <del>lag</del> between |          |
|-----|--------------------------------------------------------------------------------------------------------------|----------|
| 122 | dust and anthropogenic aerosols in-on_a dust day in Shanghai (Wang et al., 2013).                            |          |
| 123 | Furthermore, Huang et al. (2019) documented vertical differences in observed that there                      | F        |
| 124 | were vertical differences of the long-transported aerosols during a pollution event in                       |          |
| 125 | Taiwan. Dust from the Gobi Desert in Inner Mongolia and China existed at the altitudes                       |          |
| 126 | of 0.8km and 1.90km, respectively, while biomass burning aerosols from South Asia                            |          |
| 127 | were presentexisted at higher altitudes of 3.5km.                                                            | F        |
| 128 | Coastal regions often experience a mixture of inland anthropogenic emissions and                             | F        |
| 129 | releases from the ocean, making regional pollution complex in these areas In the coastal                     |          |
| 130 | regions, the regional pollution was always a mix of inland anthropogenic emissions and                       |          |
| 131 | ocean sourced releases. Due to the active human activities and special weather                               |          |
| 132 | conditions such as monsoon and sea-land breezes, the atmospheric compound pollution                          |          |
| 133 | was usually more complex in the coastal areas (Wang et al.; Hilario et al., 2020; Patel                      |          |
| 134 | and Rastogi, 2020; Perez et al., 2016; Wang et al., 2017). The eastern coast of China,                       |          |
| 135 | is-bordering the East China Sea and the Yellow Sea, and is particularly strongly                             | Fo       |
| 136 | influenced by the Asian monsoon and high emissions from inland industries. resulting                         | Fo       |
| 137 | in highly intricate. The meteorological conditions and pollution conditions in this                          |          |
| 138 | region were among the most complex in the world (Hilario et al., 2020). Furthermore,                         | Fo       |
| 139 | the marine boundary layer in this region exhibits significant seasonal and diurnal                           | Fo       |
| 140 | variations in Due to the complex meteorological conditions, the relative humidity and                        | Fe<br>Fe |
| 141 | temperature of the marine boundary layer showed significant seasonal and diurnal                             | Fo<br>Fo |
| 142 | changes, further impacting affecting the photochemical processes and the                                     | Fo       |
| 143 | heterogeneous reactions on the aerosol surfaces (Zhao et al., 2021). Sea and land                            | Fo       |
| 144 | breezes play a crucial role in this coastal area. During the night, land breezes carry                       |          |
|     |                                                                                                              |          |

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                       |                       |                |     |        |     |

| 1 | Formatted: For<br>Font color: A | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------|---------------|-----------------------|----------------|-----|--------|-----|
|   |                                 |               |                       |                |     |        |     |
| 1 | Formatted: For<br>Font color: A | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: For<br>Font color: A | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: For<br>Font color: A | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                 |               |                       |                |     |        |     |
| 1 | Formatted: For<br>Font color: A | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                 |               |                       |                |     |        |     |
| 1 | Formatted: For                  | ont:          | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 145 | pollutants from the land to the sea. Subsequently, during the day, these land breezes                  |
|-----|--------------------------------------------------------------------------------------------------------|
| 146 | transform into sea breezes, bringing the pollutants back over the sea. This phenomenon                 |
| 147 | leads to an increase in air pollutants over the landUnder the influence of sea and land                |
| 148 | breezes, land breezes at night blew the land pollutants to the sea. In the next day, land              |
| 149 | breezes would evolve as sea breezes and return the pollutants over the sea to the land,                |
| 150 | resulting in the increase of air pollutants over the land (Zhao et al., 2021). For                     |
| 151 | instanceMeanwhile, Wang et al. (2022b) found that during the ozone pollution in                        |
| 152 | Shanghai in 2018, the presence of O <sub>3</sub> at high altitudes at night was transported vertically |
| 153 | downward during the daytime and high O3 over the ocean was transported horizontally                    |
| 154 | to the land, thus jointly causing contributing to regional O <sub>3</sub> pollution in Shanghai. Also, |
| 155 | one dust episode in 2014 was observed over Shanghai via detouring from northern                        |
| 156 | China due to the blocked north Pacific subtropical high-pressure system (Wang et al.,                  |
| 157 | 2018)_                                                                                                 |
| 158 | High relative humidity caused by the sea breeze favored the participation of gaseous+                  |
| 159 | precursors in heterogeneous reactions, hygroscopic growth of particles, and secondary                  |
| 160 | aerosol formation. Sun et al. (2020) found that nitrate was the main species of aerosol                |
| 161 | in Shanghai during pollution events from 2017 2018, while most of these events in                      |
| 162 | winter were caused by the long transport of air pollutants from the North China Plain.                 |
| 163 | Sea salt, as an important component of aerosol in coastal areas, has been found in                     |
| 164 | various studies that complex multiphase reactions can occur on the surface of sea salts                |
| 165 | (Huang et al., 2010b; Patel and Rastogi, 2020; Wang et al., 2022a). Wang et al. (2022a)                |
| 166 | found that the addition of $Na^{\pm}$ in the ISORROPIA model improved the simulation                   |
| 167 | performance of aerosol and gaseous species at a coastal site in the South China Sea,                   |
| 168 | indicating that sea salts participated in the heterogeneous reactions with other aerosol               |
|     | 7                                                                                                      |

Field Code Changed Formatted: Not Highlight

Formatted: Indent: First line: 0 ch

species. Liang et al. (2018) found that the rise of O<sub>3</sub> in Shanghai could be affected by
both local secondary formation and marine transport based on observation and
simulation. Meanwhile, Wang et al. (2022b) found that during the ozone pollution in
Shanghai in 2018, the presence of O<sub>2</sub> at high altitudes at night was transported vertically
downward during the daytime and high O<sub>2</sub> over the ocean was transported horizontally
to the land, thus jointly causing regional O<sub>2</sub>-pollution in Shanghai.

75 Previous studies have shown that about 70% of Asian dust traverses would pass through the eastern coast of China before and then moving towards the moved out over 76 77 Korean Peninsula, and the Sea of Japan, and eventually reaching finally ending at the 78 Pacific Ocean. The eastern coast of China serves as a crucialis considered as the .79 essential route of for the Asian dust transport to the Pacific Ocean (Arimoto et al., 1997; 80 Huang et al., 2010a). Most previous research has focused on typical dust events 81 characterized by strong intensities, high wind speed, low humidity, and low oxidants 82 (Li et al., 2017; Ma et al., 2019; Xu et al., 2017; Xie et al., 2005). In t In contrast, this 83 study aims to depict, an atypical dust event was observed in Shanghai, a coastal mega-84 city in Eastern China. The unusualness of the meteorological conditions, transport 85 pathways, and air pollutants during the particular dust event was explicitly described. 86 The study involves categorizing the dust event into tThree stages of the dust were sorted 87 and comparing the aerosol chemical compositions between these stages. were .88 compared. By focusing on the second and third stages, the different formation 189 mechanisms of nitrate and sulfate were investigated. The amounts of major aerosol 90 species from transport and secondary formation were estimated based on a simplified .91 simple method of relating the upstream and receptor simultaneous measurements.

| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|--------------------------------------|-------------------------|----------------|-----|--------|-----|
|   |                                      |                         |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                      |                         |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                      |                         |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                      |                         |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto | (Default)<br>, Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

Formatted: Font color: Auto

192

## 193 2. Methodology

## 194 2.1. Observational sites

- 95 Measurements of various atmospheric parameters were conducted <u>A</u>at Shanghai
- Pudong Environmental Monitoring Station (31°13′ N, 121°32′E), comprehensive
- 97 measurements of various atmospheric parameters were conducted. All the
- 98 instruments were <u>installed set up</u> on the top floor of the <u>a</u> building, about 25m
- above the ground <u>level</u>. As shown in Figure <u>S</u>1, the sampling site was is situated
- 200 located at the eastern tip of Shanghai, close to the coastal line. During November,
- 201 The the mean temperature and relative humidity in Shanghai were recorded as
- 202 17.3°C and 72% in Shanghai during November, respectively. In autumn and winter,
- air pollutants <u>originating</u> from upstream urban regions <u>often undergo could be</u>
- 204 frequently transported to Shanghai via the high-pressure systems.
- 205 <u>AdditionallyFurthermore</u>, air pollutants in Shanghai tended to linger at the sea/land
- boundary regions due to the sea-land breeze (Shen et al., 2019).
- In addition to the measurements <u>taken</u> in Shanghai, data from environmental
- 208 monitoring stations in Qingdao and Lianyungang are also <u>incorporated intoused in</u>

9

209 this study.

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| , |                                       |                       |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:                      | 小四                    |                |     |        |     |
| ĺ | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
|   | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear



| 226 | particle      | s were anal        | yzed wi          | th an X-r   | ay fluoresce        | nce. Organio  | c carbon   | and elemental        |
|-----|---------------|--------------------|------------------|-------------|---------------------|---------------|------------|----------------------|
| 227 | carbon        | were measu         | red by a         | n in situ S | Semi-Continu        | ious Organio  | c Carbon   | and Elemental        |
| 228 | Carbon        | aerosol ana        | alyzer (F        | RT-4, Suns  | set Laborato        | ry, Beaverto  | on, Orego  | on, USA). <u>The</u> |
| 229 | <u>concen</u> | tration of mi      | neral aer        | osols is ca | lculated by s       | umming the    | major mi   | neral elements       |
| 230 | with          | oxygen             | for              | their       | normal              | oxides,       | i.e.,      | [Minerals]=          |
| 231 | <u>(2.2*A</u> | <u>l+2.49*Si+1</u> | . <u>63*Ca</u> + | 2.42*Fe+    | 1.94*Ti) (Ma        | alm et al., 1 | 994). The  | concentration        |
| 232 | <u>of OM</u>  | (organic mat       | tters) is a      | estimated   | <u>by multiplyi</u> | ng OC with a  | a factor o | <u>f 2.</u>          |

233 The concentrations of particles and gaseous pollutants were measured by a set of 234 Thermo Fisher Scientific instruments, including PM<sub>2.5</sub> (Thermo 5030i), PM<sub>10</sub> (Thermo 235 5030i), SO<sub>2</sub> (Thermo Fisher 43i), NO<sub>x</sub> (Thermo Fisher 42i), O<sub>3</sub> (Thermo Fisher 49i), 236 and CO (Thermo Fisher 48i-TLE). Meteorological parameters (ambient temperature, 237 relative humidity, wind speed, and wind direction) were obtained by a Vaisala Weather 238 transmitter (WXT520). Other supplementary parameters such as the height of planetary 239 boundary layer (PBL), vertical profiles of ozone and aerosol extinction were obtained 240 by a ceilometer (CL31, Vaisala), ozone lidar (LIDAR-G-2000, WUXIZHONGKE), and 241 aerosol lidar (AGJ, AIOFM), respectively.

242

## 243 2.3. Thermodynamic simulation of aerosol pH and aerosol liquid water content

The ISORROPIA II model is subject to the principle of minimizing the Gibbs energy of the multi-phase aerosol system, leading to a computationally intensive optimization problem (Song et al., 2018). ISORROPIA II calculates the aerosol pH, ALWC (aerosol liquid water content) and compositions of ammonia-sulfate-nitrate-chloride-sodiumcalcium-potassium-magnesium in the thermodynamic equilibrium with gas-phase precursors. The performances and advantages of ISORROPIA over the usage of other 250 thermodynamic equilibrium codes has been assessed in numerous studies (Nenes et al.,

251 1998; West et al., 1999; Ansari and Pandis, 1999; Yu et al., 2005). The ISORROPIA

252 running in the forward mode at the metastable state was applied in this study.

253

## 254 2.4. Hybrid Single-Particle Lagrangian Integrated Trajectory Model

The HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) was used to compute the backward trajectories of the air parcels during the dust events. In this study, the HYSPLIT model was driven by meteorological data outputs from the Global Data Assimilation System (GDAS) (Su et al., 2015), which is available at <u>ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1</u>. Air mass trajectories were launched at different heights from the ground and a total duration of 48 hours simulation was conducted.

262

## c) ) =

# 263 <u>2.5. Calculation of uptake coefficient of NH<sub>3</sub> ( $\gamma_{\text{NH3}}$ ) on particles 264 <u>NH<sub>3</sub>, being the most abundant alkaline species in the atmosphere, plays a crucial</u> 265 role in acid neutralization and secondary aerosol formation. To assess the gas-particle 266 partitioning of NH<sub>3</sub>, the uptake coefficient of NH<sub>3</sub> ( $\gamma_{\text{NH3}}$ ) on particles is calculated as 267 <u>below. Initially, the quasi-first-order reaction rate constant for heterogeneous</u> 268 <u>conversion from NH<sub>3</sub> to NH<sub>4</sub><sup>+</sup> (k<sub>pet</sub>, s<sup>-1</sup>) is calculated according to (Liu et al., 2022).</u> 269 $k_{\text{het}} = \frac{2(C_{NH_4^+, t_2} - C_{NH_4^+, t_1})}{(C_{NH_3, t_2} + C_{NH_3, t_1})(t_2 - t_1)}$ </u>

k<sub>het</sub> is only valid when c<sub>NH4+</sub> increases, while c<sub>NH3</sub> decreases assuming a constant

272 <u>emission rate from  $t_1$  to  $t_2$  (1 h in this study). Then, the uptake coefficient of NH<sub>3</sub> ( $\gamma_{NH3}$ )</u>

| Formatted:                | Font: Bold                                                   |
|---------------------------|--------------------------------------------------------------|
| Formatted:                | Font: Bold, Subscript                                        |
| Formatted:                | Font: Bold                                                   |
| Formatted:                | Font: Bold, Subscript                                        |
| Formatted:                | Font: Bold                                                   |
| Formatted:<br>Font color: | Font: (Default) Times New Roman, 小四,<br>Auto, Pattern: Clear |
| Formatted:                | Indent: Left: 0 cm, First line: 2 ch                         |
| Formatted:                | Left                                                         |
| Formatted:<br>Font color: | Font: (Default) Times New Roman, 小四,<br>Auto, Pattern: Clear |
| Formatted:                | Superscript                                                  |
| Formatted:                | Subscript                                                    |
| Formatted:                | Superscript                                                  |
|                           |                                                              |

|           | Formatted: | Indent: Left: | 0 cm, | First | line: | 2 ch |
|-----------|------------|---------------|-------|-------|-------|------|
| Ϊ         | Formatted: | Subscript     |       |       |       |      |
|           | Formatted: | Subscript     |       |       |       |      |
| $\square$ | Formatted: | Subscript     |       |       |       |      |
| (         | Formatted: | Subscript     |       |       |       |      |
| $\square$ | Formatted: | Subscript     |       |       |       |      |

275 276 277

278

273

on particles can be calculated as below (Liu et al., 2022; Wang and Lu, 2016).

$$\gamma_{\rm NH_3} = \frac{4k_{\rm het}}{S\omega} = \frac{4k_{\rm het}}{S\sqrt{\frac{8RT}{\pi M}}}$$

where S is the surface area of particles  $(m^2 m^3)$  measured using SMPS and APS.  $\omega$  is the velocity of NH<sub>3</sub> molecules. T is the ambient temperature (K). R is the ideal gas constant, and M is the molecular weight of NH<sub>3</sub> (kg mol<sup>-1</sup>).

### Formatted: Superscript Formatted: Indent: Left: 0 cm, First line: 0 cm Formatted: Superscript Formatted: Subscript Formatted: Subscript Formatted: Superscript Formatted: Indent: Left: 0 cm, Hanging: 4.2 ch, First line: 0 ch

#### 279 3. Results and Discussion

#### 280 3.1. Characteristics of an unusual dust event

281 Figure 2 Figure 1 shows the time series of PM10, PM2.5, and meteorological 282 parameters, as well as the vertical profiles of aerosol extinction coefficient and 283 depolarization ratio observed at the Shanghai sampling site from October 25 to 284 November 6, 2019. During From October 25 to 28, the mean wind speed remained was 285 relatively low of 0.9±0.72m/s with the a peak value of 3.1m/s, and predominantly 286 blowingwinds prevailed from the northwest. The mean concentration of PM<sub>2.5</sub> and 287 PM<sub>10</sub> was 34.7 and 44.2 µg/m<sup>3</sup>, respectively. Starting at 4:00 LST on October 29, the 288 concentration of PM10 increased sharply and lasted till November 2 (Figure 12d). Based 289 on the The aerosol lidar observation indicated that, both the aerosol extinction 290 coefficient and depolarization ratio extended from the ground to around 2km during the 291 same period. Notably Specifically, the enhanced depolarization ratio (>0.1) suggested 292 the occurrence of a prolonged dust event in Shanghai. was obviously enhanced (>0.1), 293 indicating that Shanghai encountered a long-lasting dust event. Throughout the 294 entireDuring the whole dust period, the mean concentrations of PM2.5 and PM10 reached

295  $53.3 \pm 20.5 \mu g/m^3$  and  $172.4 \pm 70.2 \mu g/m^3$ , respectively, yielding a low PM<sub>2.5</sub>/PM<sub>10</sub> ratio

| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| Formatted: Font:                      | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|                                       |                       |                |     |        |     |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |



**297** 38.9 $\mu$ g/m<sup>3</sup> and 49.8 $\mu$ g/m<sup>3</sup>, respectively, <u>exhibiting with</u> a relatively high PM<sub>2.5</sub>/PM<sub>10</sub>

298 ratio of  $0.62 \pm 0.20$ .



Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

- Figure <u>12</u>. Time series of (a) relative humidity, temperature, wind vectors, (b) aerosol
  depolarization ratio, (c) aerosol extinction coefficient, (d) mass concentrations of PM<sub>2.5</sub>
  and PM<sub>10</sub> during the study period. Three dust stages, i.e., P1, P2, and P3 are also marked.
  The missing aerosol lidar data were due to instrument malfunction.
- 304

299

The occurrences of dust were are typically usually accompanied by low relative humidity and strong winds due to the passage of cold fronts (Huang et al., 2010b; Huang et al., 2010a; Wang et al., 2013; Wang et al., 2018). <u>However, In-in</u> this study, relative humidity was exceptionally high with the mean value of 71±26%. It showed strong

Formatted: Font: (Default) Times New Roman, 小四, Font color: Text 1, Pattern: Clear

| 309 | diurnal variation, reaching with its minimum in the daytime and even close to 100% in                                                                       |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 310 | the nighttime (Figure <u>1</u> 2a). <u>AdditionallyAlso</u> , wind speed was low of 0.54±0.59m/s                                                            |   |
| 311 | with a maximum of 2.6m/s. Due to tThis stagnant synoptic condition, led to elevated,                                                                        |   |
| 312 | the mean concentrations of main gaseous pollutants such as $O_3$ , $SO_2$ , and $NO_{2_2}$ reached                                                          |   |
| 313 | <u>with mean values of 86.0±47.8<math>\mu</math>g/m<sup>3</sup>, 11.8±3.4<math>\mu</math>g/m<sup>3</sup>, and 63.3±27.9<math>\mu</math>g/m<sup>3</sup>,</u> |   |
| 314 | respectively, even higher than those during the non-dust period.                                                                                            |   |
| 315 | We further divided the dust event into three stages based on the temporal                                                                                   |   |
| 316 | characteristics of $PM_{10}$ and the <u>transport patterns of</u> air masses transport patterns. As                                                         |   |
| 317 | shown in Figure 2dFigure 1d, $PM_{10}$ quickly climbed from 4:00 on October 29 and                                                                          |   |
| 318 | reached a maximum of $436\mu g/m^3$ after 8 hours. The air masses primarily mainly                                                                          |   |
| 319 | originated from the semi-arid regions of northwest China (Figure 3dFigure 2d), and                                                                          |   |
| 320 | this which was consistent with both the near surface wind observation (Figure 2a Figure                                                                     |   |
| 321 | <u>1a</u> ) and wind lidar observation (Figure 3aFigure 2a). The wind profiles showed                                                                       |   |
| 322 | prevailing dominant northwest winds from the surface up to ground to the altitudes of                                                                       | < |
| 323 | around 2km before the noon of on October 29, indicating the presence of a strong                                                                            |   |
| 324 | synoptic system. Afterwards, $PM_{10}$ quickly decreased to 199 $\mu\text{g}/\text{m}^3$ at 20:00, October                                                  |   |
| 325 | 29 within 8 hours. This was <u>primarily attributed</u> mainly due to the shift of wind                                                                     |   |
| 326 | directions. As shown in Figure 3aFigure 2a, while although the winds at altitudes of                                                                        |   |
| 327 | higher thanabove 700m continued to blowkept blowing from the northwest, the near-                                                                           |   |
| 328 | surface winds had <u>shifted turned</u> from the southeast. <u>Due to As</u> Shanghai's is a coastal                                                        |   |
| 329 | eity and location adjacent to the East China Sea, the relatively clean southeasterlies                                                                      |   |
| 330 | diluted the local air pollutants. thereby explaining and thus explained the quick decline                                                                   | _ |
| 331 | decrease of in PM10 concentrations. This initial short dust episode occurring from 4:00                                                                     | < |
| 332 | - 13:00 <u>, October 29 was defined as Stage P1.</u>                                                                                                        |   |
|     |                                                                                                                                                             |   |

| -[ | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|----|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| -[ | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| -[ | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| - | <b>Forma</b><br>Font | atted:<br>color: | Font:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|----------------------|------------------|----------------|-----------------------|----------------|-----|--------|-----|
|   | Forma<br>Font        | atted:<br>color: | Font:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| Formatted: |       | Font: | (Default) | Times | New | Roman, | 小四, |
|------------|-------|-------|-----------|-------|-----|--------|-----|
| Font c     | olor: | Auto, | Pattern:  | Clear |     |        |     |

| 1 | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------|----------------|------|--------|-----|
| 1 | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| 1 | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| 1 | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| - | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| - | Formatted: N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ot Suj        | perscript,            | / Subsc        | ript | ;      |     |
| 1 | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| 1 | Formatted: | ont:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                       |                |      |        |     |

| 333 | Despite the persistent However, the prevailing southeasterly winds, the dust event                               |
|-----|------------------------------------------------------------------------------------------------------------------|
| 334 | did not come to a complete halt.didn't fully terminate the dust event. Even under these                          |
| 335 | prevailing windsthe persistent southeasterlies, hourly PM10 concentrations remained                              |
| 336 | stayed above 150 $\mu$ g/m <sup>3</sup> until November 1 <sub>e</sub> gradually decreasing and then decreased to |
| 337 | 65 $\mu$ g/m <sup>3</sup> at 03:00, November 1 (Figure 2d1d). Compared to P1, wind speed during this             |
| 338 | stage was as low as $0.4 \pm 0.5$ m/s <sub>2</sub> while RH was moderately high of $70 \pm 26$ %. Although       |
| 339 | the daytime RH stayed low between 30% and 50%, it frequently soared abovereached                                 |
| 340 | over 90% at nighttime. Figure 3e-Figure 2e shows that although the air masses                                    |
| 341 | originated from the Gobi Desert, they also <u>traversed passed over</u> considerable coastal                     |
| 342 | regions. The wind profiles <i>further indicated that whilealso showed that although</i>                          |
| 343 | northwest winds prevailed at altitudes higher than 500m, the east and northeast winds                            |
| 344 | were dominant below 500m (Figure 3b2b). <u>Consequently</u> , This explained the relatively                      |
| 345 | high relative humidityRH during this period can be attributed todue to the mixing                                |
| 346 | between of dust plumes and with coastal sea breezes. This dust episode from 14:00,                               |
| 347 | October 29 to 3:00, <u>on</u> November 1 was <u>designated</u> defined as Stage P2.                              |
| 348 | Following After P2, PM <sub>10</sub> and PM <sub>2.5</sub> rose again and peaked at 5:00 and 9:00, on            |
| 349 | November 2 with the hourly concentration of 199 and $117\mu g/m^3$ , respectively. Different                     |
| 350 | from P1 and P2, the air masses during this stage originated from the Shandong                                    |
| 351 | Peninsula and the northern region of Jiangsu province, and then migrated over the                                |
| 352 | Yellow Sea and the East China Sea (Figure 3fFigure 2f). TypicallyUsually, the dust                               |
| 353 | plumes <u>tend to travel eastward, would transport further eastwards and impacting</u> the /                     |
| 354 | western Pacific region and even <u>distant faraway</u> -oceanic regions (Wang et al., 2018; /                    |
| 355 | Nagashima et al., 2016). However, in this case, the air masses evidently deviated                                |
| 356 | deflected and pushed the dust back to the mainland. The wind profiles on                                         |

| 1  | Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |
|----|--------------------------------------|-------------------------------------------------|-----|
| 1  | Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |
| 1  | Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |
| 1  | Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |
| -{ | Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |
|    |                                      |                                                 |     |

| Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |
|--------------------------------------|-------------------------------------------------|-----|
|                                      |                                                 |     |
| Formatted: Font:<br>Font color: Text | (Default) Times New Roman,<br>1, Pattern: Clear | 小四, |

|   | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
|---|-----------------------------------------------------------------------------------|-----|
|   |                                                                                   |     |
| 1 | Formatted: Font: (Default) Times New Roman,                                       | 小四, |
|   | Font color: Text 1, Pattern: Clear                                                |     |

| Formatted: Font: (Default) Times New Roman, 小 | 四, |
|-----------------------------------------------|----|

| 1  | Formatted: Font color: Text 1                                                     |     |
|----|-----------------------------------------------------------------------------------|-----|
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| 1  | Formatted: Font color: Text 1                                                     |     |
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| ł  | Formatted: Font color: Text 1                                                     |     |
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| -{ | Formatted: Font color: Text 1                                                     |     |
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| 1  | Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |



| Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
|-----------------------------------------------------------------------------------|-----|
| Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |
| Formatted: Font: (Default) Times New Roman,<br>Font color: Text 1, Pattern: Clear | 小四, |

Formatted: Font: (Default) Times New Roman, 小四, Font color: Text 1, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 小四, Font color: Text 1, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear



367

Figure 32. Wind profiles observed by a wind profiler radar on (a) October 29, (b) October 30, and (c) November 2. 48-hour backward trajectories simulated at the sampling site starting from (d) 4:00 AM, October 29, (e) 9:00 AM, October 30, and (f) 13:00 PM, November 2. The red, blue, and green trajectories represented starting altitudes of 100, 500, and 1500m, respectively.

| 374 | 3.2. Comparisons of aerosol chemical compositions among the three dust stages                                                                             |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 375 | Figure $34a$ shows the time-series of hourly aerosol chemical components,                                                                                 |
| 376 | including SNA (NO <sub>3</sub> <sup>-</sup> , SO <sub>4</sub> <sup>2-</sup> , and NH <sub>4</sub> <sup>+</sup> ), OM-(organic matters = $2*OC$ ), EC, and |
| 377 | mineral aerosols ([Minerals] - (2.2*Al+2.49*Si+1.63*Ca+2.42*Fe+1.94*Ti), (Malm-                                                                           |
| 378 | et al., 1994)) in PM <sub>2.5</sub> . During P1, the mean concentration of SNA was $49.9 \pm 31.6$                                                        |
| 379 | $\mu g/m^3.$ The mineral aerosols reached 16.4 $\pm$ 14.6 $\mu g/m^3,$ accounting for 19% in PM_{2.5}.                                                    |
| 380 | The contribution of OM to PM2.5 was almost identical to that of mineral aerosols                                                                          |
| 381 | (Figure <u>4b<u>3b</u>).</u>                                                                                                                              |







## 389

During P2, mineral aerosols increased to  $23.4\pm54.1\mu g/m^3$  and accounted for 33%in PM<sub>2.5</sub>, <u>representing</u> the highest among all three stages (Figure 4bFigure 3b). Due to the continuous dilution effect of dust on local anthropogenic pollutants, the concentrations and proportions of SNA in PM<sub>2.5</sub> were the lowest during this stage. For instance, NO<sub>3</sub><sup>-</sup> only accounted for 10% in PM<sub>2.5</sub>, indicating <u>a suppression of the nitrate</u> formation of nitrate was suppressed to a certain<u>some</u> extent. The level<u>s</u> of OM didn't <u>exhibit show</u>-obvious changes and averaged 10.1±2.1µg/m<sup>3</sup>, accounting for 21% in

397 PM<sub>2.5</sub>.

398 During P3, mineral aerosols averaged 11.9±2.7µg/m<sup>3</sup>, ranking the lowest among 399 all three stages. The proportion of mineral aerosols in PM2.5 decreased to 20%, 400 suggesting the dust backflow from the ocean was less enriched in mineral components. 401 Compared to P2, SNA showed significant increases and much stronger diurnal 402 variations during P3.  $SO_4^{2-}$ ,  $NO_3^{-}$ , and  $NH_4^+$  averaged 6.7 ± 2.4, 12.4 ± 8.9, and 5.4 ± 403 2.7µg/m<sup>3</sup>, respectively. As shown in Figure 4bFigure 3b, the contribution of nitrate to 404 PM<sub>2.5</sub> increased to 21%, while that of sulfate rose to 12%, the highest among all three 405 stages. The concentration of OM (9.3±3.2µg/m<sup>3</sup>) and its proportion (16%) of OM 406 during P3 were lower than the other two stages, likely which was probably due to the 407 unconventional unusual dust backflow transport pathway. 408 Enrichment factors (EFs) of the measured elements in PM2.5 were calculated by

- 409 using Al as a reference element, i.e., EF<sub>x</sub>=(X/Al)<sub>aerosol</sub>/(X/Al)<sub>enust</sub>), where X was the
- 410 element of interest. As shown in Figure 4c, elements such as Si, Fe, and Ca were less

Formatted: Font: (Default) Times New Roman, 小四, Font color: Text 1, Pattern: Clear

Formatted: Font: (Default) Times New Roman, 小四, Font color: Text 1, Pattern: Clear

| ( | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| ſ | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 411                                                                              | enriched as they mainly derived from the crust. While for anthropogenic elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                  |                                                    |                                              |                                                |                          |                                          |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------|----------------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------|------------------------------------------|
| 412                                                                              | including Cu, Zn, Pb, As, Cd, Sb, and Se, they were enriched by different extents with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 413                                                                              | EFs between 10 and 10,000. In addition, these elements above were more enriched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 414                                                                              | during P1 than P2 and P3. The dust transport pathway via inland areas during P1 should                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 415                                                                              | be the main cause as anthropogenic sources such as metallurgical industries, coal-fired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 416                                                                              | plants, and smelters were widely located in inland regions. Exceptions were found for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 417                                                                              | Ni and V, which were often used as tracers for heavy oil combustion. EFs of Ni and V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 418                                                                              | exhibited higher values during P3 than P1 and P2. Since the dust backflow transport                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 419                                                                              | pathway during P3 had almost two-days travelling durations over the East China Sea,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 420                                                                              | which was on the one of the busiest international shipping trade routes (Fan et al., 2016),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 421                                                                              | the enrichments of Ni and Vi were probably ascribed to the mixing between dust and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 422                                                                              | marine shipping emissions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                  |                                                    |                                              |                                                |                          |                                          |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 423                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                                  |                                                    |                                              |                                                |                          |                                          |
| 423<br>424                                                                       | <b><u>3.3. Unconventional features of the dust episodes</u></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( | Formatte                         | ed: Font:                                          | 小四, Bo                                       | ld                                             |                          |                                          |
| 423<br>424<br>425                                                                | <u>3.3. Unconventional features of the dust episodes</u><br>3.3. <u>1. Effect of uU</u> nusually <u>enhancedhigh</u> O <sub>3</sub> on the formation of secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( | Formatte                         | ed: Font:                                          | 小四, Bo                                       | ld                                             |                          |                                          |
| <ul> <li>423</li> <li>424</li> <li>425</li> <li>426</li> </ul>                   | <u>3.3. Unconventional features of the dust episodes</u><br>3.3. <u>1. Effect of uU</u> nusually <u>enhancedhigh</u> O <sub>3</sub> <del>on the formation of secondary</del><br><del>aerosols</del> -during <del>P2</del> <u>dust</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( | Formatte                         | ed: Font:                                          | 小四, Bo                                       | 1 d                                            |                          |                                          |
| 423<br>424<br>425<br>426<br>427                                                  | 3.3. Unconventional features of the dust episodes         3.3.1. Effect of uUnusually enhancedhigh O3 on the formation of secondary         acrosols during P2dust         Figure 5-4 shows the hourly near surface ozone concentrations and vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( | Formatte                         | ed: Font:                                          | 小四, Bo                                       | ld                                             |                          |                                          |
| 423<br>424<br>425<br>426<br>427<br>428                                           | <ul> <li>3.3. Unconventional features of the dust episodes</li> <li>3.3.1. Effect of uUnusually enhancedhigh O3 on the formation of secondary aerosols-during P2dust</li> <li>Figure 5-4 shows the hourly near surface ozone concentrations and vertical profiles of ozone during the study period. Interestingly, a few high O3 peaks occurred</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( | Formatte                         | əd: Font:                                          | 小四, Bo                                       | <u>l.d</u>                                     |                          |                                          |
| 423<br>424<br>425<br>426<br>427<br>428<br>429                                    | 3.3. Unconventional features of the dust episodes 3.3.1. Effect of uUnusually enhancedhigh O3 on the formation of secondary aerosols-during P2dust Figure 5-4 shows the hourly near surface ozone concentrations and vertical profiles of ozone during the study period. Interestingly, a few high O3 peaks occurred during the dust event (Figure 45a). O3 averaged 92.8 ± 52.8µg/m <sup>3</sup> during the dust,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ( | Formatte                         | ed: Font:                                          | 小四, Bo                                       | 1 d                                            |                          |                                          |
| 423<br>424<br>425<br>426<br>427<br>428<br>429<br>430                             | 3.3. Unconventional features of the dust episodes 3.3.1. Effect of uUnusually enhancedhigh O3 on the formation of secondary acrosols during P2dust Figure 5-4_shows the hourly near surface ozone concentrations and vertical profiles of ozone during the study period. Interestingly, a few high O3 peaks occurred during the dust event (Figure 45a). O3 averaged 92.8 ± 52.8µg/m <sup>3</sup> during the dust, about 50% higher than the non-dust days. Among the three dust stages, O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | Formatte                         | ed: Font:                                          | 小四, Bo                                       | 1 d                                            |                          |                                          |
| 423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431                      | 3.3. Unconventional features of the dust episodes3.3.1. Effect of uUnusually enhancedhigh O3 on the formation of secondaryacrosols during P2dustFigure 5-4 shows the hourly near surface ozone concentrations and verticalprofiles of ozone during the study period. Interestingly, a few high O3 peaks occurredduring the dust event (Figure 45a). O3 averaged 92.8 ± 52.8µg/m³ during the dust,about 50% higher than the non-dust days. Among the three dust stages, O3substantially increased from $35.9 \pm 36.4µg/m³$ during P1 to $80.7 \pm 41.2µg/m³$ during                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Formatte                         | ed: Font:                                          | 小四, Bo                                       | 1 d                                            |                          |                                          |
| 423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432               | <b>3.3.</b> Unconventional features of the dust episodes<br><b>3.3.1.</b> Effect of uUnusually enhanced high O <sub>3</sub> on the formation of secondary<br>acrosols during P2dust<br>Figure 5-4 shows the hourly near surface ozone concentrations and vertical<br>profiles of ozone during the study period. Interestingly, a few high O <sub>3</sub> peaks occurred<br>during the dust event (Figure 45a). O <sub>3</sub> averaged 92.8 $\pm$ 52.8µg/m <sup>3</sup> during the dust,<br>about 50% higher than the non-dust days. Among the three dust stages, O <sub>3</sub><br>substantially increased from 35.9 $\pm$ 36.4µg/m <sup>3</sup> during P1 to 80.7 $\pm$ 41.2µg/m <sup>3</sup> during<br>P2, and further rose to 104.0 $\pm$ 48.7µg/m <sup>3</sup> during P3. The low O <sub>3</sub> during P1 can be                                                                                                                                                                                      |   | Formatte<br>Formatte             | ed: Font:                                          | 小四, Bo<br>(Default)<br>Pattern:              | ld<br>) Times ]<br>Clear                       | New Roman,               | ,小四,                                     |
| 423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433        | <b>3.3.</b> Unconventional features of the dust episodes<br><b>3.3.1.</b> Effect of uUnusually enhancedhigh O <sub>3</sub> on the formation of secondary<br>acrosols-during P2dust<br>Figure 54 shows the hourly near surface ozone concentrations and vertical<br>profiles of ozone during the study period. Interestingly, a few high O <sub>3</sub> peaks occurred<br>during the dust event (Figure 45a). O <sub>3</sub> averaged 92.8 $\pm$ 52.8µg/m <sup>3</sup> during the dust,<br>about 50% higher than the non-dust days. Among the three dust stages, O <sub>3</sub><br>substantially increased from 35.9 $\pm$ 36.4µg/m <sup>3</sup> during P1 to 80.7 $\pm$ 41.2µg/m <sup>3</sup> during<br>P2 <sub>a</sub> and further rose to 104.0 $\pm$ 48.7µg/m <sup>3</sup> during P3. The low O <sub>3</sub> during P1 can be<br>attributedwas due to the cleansing effect of the strong dust associated with the strong-                                                                                |   | Formatte<br>Formatte             | ed: Font:                                          | 小四, Bo<br>(Default)<br>Pattern:              | ld<br>) Times 1<br>Clear                       | New Roman,               | , 小四,                                    |
| 423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433<br>434 | <b>3.3.</b> Unconventional features of the dust episodes<br><b>3.3.1.</b> Effect of ull nusually enhanced high O <sub>3</sub> on the formation of secondary<br>nerosols-during P2dust<br>Figure 5-4 shows the hourly near surface ozone concentrations and vertical<br>profiles of ozone during the study period. Interestingly, a few high O <sub>3</sub> peaks occurred<br>during the dust event (Figure 45a). O <sub>3</sub> averaged 92.8 $\pm$ 52.8µg/m <sup>3</sup> during the dust,<br>about 50% higher than the non-dust days. Among the three dust stages, O <sub>3</sub><br>substantially increased from 35.9 $\pm$ 36.4µg/m <sup>3</sup> during P1 to 80.7 $\pm$ 41.2µg/m <sup>3</sup> during<br>P2, and further rose to 104.0 $\pm$ 48.7µg/m <sup>3</sup> during P3. The low O <sub>3</sub> during P1 can be<br>attributed was due to the cleansing effect of the strong dust associated with the strong-<br>cold front, which was consistent with as similar as previous studies that reported |   | Formatte<br>Formatte<br>Font col | ed: Font:<br>lor: Auto,<br>ed: Font:<br>lor: Auto, | 小四, Bo<br>(Default)<br>Pattern:<br>(Default) | ld<br>) Times I<br>Clear<br>) Times I<br>Clear | New Roman,<br>New Roman, | <ul> <li>, 小四,</li> <li>, 小四,</li> </ul> |

- 435 <u>reduced low</u>-oxidants concentrations were usually observed during <u>intense strong</u> dust
- events (Benas et al., 2013). <u>Regarding As for</u> the relatively high O<sub>3</sub> during P2 and P3,
- 437 several causes may <u>contribute to this phenomenon</u>be responsible. Firstly, the mean
- 438 wind speed was low of 0.4 and 0.6 m/s during P2 and P3, respectively.
- 439 <u>Consequently Thus</u>, this weak synoptic system exerted <u>a</u> weak dilution effect on the
- 440 local air pollutants. <u>A numerical study conducted during a similar period suggested</u>
- that the reduction of boundary layer height and the warming of the lower atmosphere
- 442 <u>accelerated the ozone formation by ~1 ppbv/h (Wang et al., 2020).</u> Secondly, since
- the dust plume travelled mostly over the coastal and oceanic areas, <u>a portion part of</u>
- 444 O<sub>3</sub> could be transported from the high ozone oceanic areas (Wang et al., 2022b).
- Thirdly, the ozone lidar also <u>detected</u> observed high O<sub>3</sub> stripes during P2 and P3. As
- 446 shown in Figure 5b, the high O<sub>3</sub> profiles extended from the surface to around 1km and
- 447 the profile structure was similar to that of aerosol depolarization ratio. The subsidence
- 448 of dust particles <u>likely contributed to downward transport of</u>probably down drafted
- high-altitude O<sub>3e</sub> thereby influencing and also contributed to the elevated high O<sub>3</sub> near
- 450 the ground (Yang et al., 2022).

| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---------------------------------------|-----------------------|----------------|-----|--------|-----|
|                                       |                       |                |     |        |     |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|                                       |                       |                |     |        |     |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|                                       |                       |                |     |        |     |

| Formatted: Font:<br>Font color: Auto, | (Default) 7<br>Pattern: 0 | Times<br>Clear | New | Roman, | 小四, |
|---------------------------------------|---------------------------|----------------|-----|--------|-----|
|                                       |                           |                |     |        |     |
| Formatted: Font:<br>Font color: Auto, | (Default) (<br>Pattern: C | Times<br>Clear | New | Roman, | 小四, |
| Formatted: Font:<br>Font color: Auto, | (Default) (<br>Pattern: C | Times<br>Clear | New | Roman, | 小四, |
|                                       |                           |                |     |        |     |
| Formatted: Font:                      | (Default)                 | Times          | New | Roman, | 小四  |
| Formatted: Font:                      | (Asian) 宋                 | 体,小            | 四   |        |     |
| Formatted: Font:                      | (Default)                 | Times          | New | Roman, | 小四  |
| Formatted: Font:<br>Font color: Auto, | (Default) 7<br>Pattern: 0 | Times<br>Clear | New | Roman, | 小四, |

Formatted: Font color: Auto Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| - 1 |                                       |                       |                |     |        |     |
|-----|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| -   | Formatted: Font                       | color: Aut            | 0              |     |        |     |
| 1   | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| -   | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| Ľ   | Formatted: Font                       | color: Aut            | 0              |     |        |     |
|     | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |













| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---------------------------------------|-----------------------|----------------|-----|--------|-----|
|                                       |                       |                |     |        |     |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| Field Code Change                     | ed                    |                |     |        |     |
| Formatted: Not Hi                     | ghlight               |                |     |        |     |
| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |



523 Figure 9. Time series of PM<sub>10</sub>, NO<sub>2</sub>, and CO at Qingdao, Lianyungang, and Pudong.

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
|   |                                       |                       |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                       |                       |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   |                                       |                       |                |     |        |     |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| Formatted: Font:<br>Font color: Auto  | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |



The dust periods at these three sites are highlighted.

\$27 discussed in Section 3.2, enrichment factors of chemical tr and M 528 \$29 significantly during Ni varied 530 increased 4 and 1.8 times during P3 compared to P2, eetively. This indicated that 531 the dust had mixed with pollutants from marine vessel emissions and transported back



524







| 545 | should be related to the solubility of calcium during different dust stages. During P1,                                         |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 546 | the mean concentration of Ca reached the highest of $1.63\pm1.53\mu g/m^3$ while $Ca^{2+}$ was                                  |
| 547 | the lowest of 0.21 $\pm$ 0.20 $\mu g/m^3,$ thus resulting in the lowest Ca^{2+}/Ca ratio of 0.10 $\pm$ 0.08.                    |
| 548 | As discussed in Section 3.1, dust during P1 was the strongest and thus it contained                                             |
| 549 | higher fractions of minerals, primarily which were mainly in the form of insoluble metal                                        |
| 550 | oxides.–_The average concentrations of $Ca^{2+}$ and Ca during P2 were $0.33\pm0.28\mu g/m^3$                                   |
| 551 | and $1.11 \pm 0.46 \mu g/m_{a}^{3}$ respectively, resulting in with the higher Ca <sup>2+</sup> /Ca ratio of 0.27 ±             |
| 552 | 0.20. As a comparison, the average concentrations of Ca <sup>2+</sup> and Ca during P3 reached                                  |
| 553 | $0.34 \pm 0.20 \mu g/m^3$ and $0.78 \pm 0.27 \mu g/m^3$ , <u>respectively</u> , yielding the highest Ca <sup>2+</sup> /Ca ratio |
| 554 | of $0.38 \pm 0.19$ . The <u>significantly much</u> higher solubility of calcium during P3 should be                             |
| 555 | directly related to the prolonged presence lingerer of dust plumes over the open ocean.                                         |
| 556 | The abundant water vapor over the ocean could accelerate the dissolution of the                                                 |
| 557 | insoluble components in particles during the mixing between continental dust and                                                |
| 558 | oceanic air masses. Additionally, the backflow transport pathway facilitated the                                                |
| 559 | entrainment of sea salts and contributed to the increase of soluble calcium.                                                    |
| 560 | As discussed in Section 3.2, enrichment factors of V and Ni were the highest                                                    |
| 561 | during P3. Figure 10a5b provides additional insights by displaying further displays the                                         |
| 562 | time-series of V and Ni, which are typical tracers of oil combustions (Becagli et al.,                                          |
| 563 | 2012), and they varied significantly during the study period, and the mass                                                      |
| 564 | concentrations of V and Ni increased 4 and 1.8 times during P3 compared to P2,                                                  |
| 565 | respectively. This indicated that the dust had mixed with pollutants from marine vessel                                         |
| 566 | emissions and transported back to Shanghai. Consistently, the enrichment factors of Ni                                          |
| 567 | and V displayed higher values during P3 than P1 and P2 (Figure S3). The trends are                                              |
| 568 | substantiated in the ternary diagrams, which are commonly applied to illustrate the                                             |
| 1   |                                                                                                                                 |

**Formatted:** Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|------|--------|-----|
| 1 | Formatted: Not S                      | uperscript,           | / Subse        | crip | t      |     |
|   | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
| , |                                       |                       |                |      |        |     |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New  | Roman, | 小四, |
|   |                                       |                       |                |      |        |     |

| _ | Formatted:<br>Font color: | Font:<br>Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------|----------------|-----------------------|----------------|-----|--------|-----|
|   | Formatted:                | Font:          | 小四                    |                |     |        |     |
| _ | Formatted:                | Font:          | 小四                    |                |     |        |     |

|   | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| / | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
| - | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 569 | relative abundances of three components and infer the source variations (Bozlaker et      |
|-----|-------------------------------------------------------------------------------------------|
| 570 | al., 2019; Cwiertny et al., 2008; Laskin et al., 2005). As shown in the Cu-Cr-V ternary   |
| 571 | diagram (Fig. 5c), the dust samples during P1 were positioned away from the V-apex.       |
| 572 | As a comparison, the dust samples during P2 exhibited greater scattering, manifesting     |
| 573 | enhanced anthropogenic contributions, e.g., from chrome plating industries (Hammond       |
| 574 | et al., 2008). Compared to P2, the dust samples during P3 moved toward the V-apex,        |
| 575 | indicating a higher contribution from oil combustions (Becagli et al., 2012), A similar   |
| 576 | pattern was observed in the As-Zn-Ni ternary diagram (Fig. 5d). The majority of dust      |
| 577 | samples during P2 spanned across the diagram, reflecting contributions from mixed         |
| 578 | anthropogenic sources. Reciprocally, P3 was closer to the Ni-apex. These lines of         |
| 579 | evidences collectively confirmed that the dust had mixed with pollutants from marine      |
| 580 | vessel emissions over one of the busiest international shipping trade routes (Fan et al., |
| 581 | 2016) and was subsequently transported back to Shanghai.                                  |
| 582 |                                                                                           |
| 583 | 3.4. Formation of secondary aerosols during the dust long-range transport                 |

 584
 3.4.1. Comparison of typical chemical tracers

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear Formatted: Font: 小四

| <b>Formatted:</b> Font: 小四                                                               |    |
|------------------------------------------------------------------------------------------|----|
|                                                                                          |    |
| Formatted: Font: 小四                                                                      |    |
| <b>Formatted:</b> Font: (Default) Times New Roman, 小<br>Font color: Auto, Pattern: Clear | 四, |
| Formatted: Font: 小四                                                                      |    |
| Formatted: Font: (Default) Times New Roman, 小<br>Font color: Auto, Pattern: Clear        | 四, |
| Formatted: Font: (Default) Times New Roman, 小<br>Font color: Auto, Pattern: Clear        | 四, |
| Formatted: Font: (Default) Times New Roman, 小<br>Font color: Auto, Pattern: Clear        | 四, |
| <b>Formatted:</b> Font: (Default) Times New Roman, 小<br>Font color: Auto, Pattern: Clear | 四, |
| Formatted: Font: (Default) Times New Roman, 小<br>Font color: Auto, Pattern: Clear        | 四, |

Formatted: Font: Bold



| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
|---------------------------|----------------|-------------|-----------------|----------------|-----|--------|-----|
| Formatted:                | Not H          | ighli       | ight            |                |     |        |     |
| Formatted:<br>Font color: | Font:<br>Auto, | (Det<br>Pat | fault)<br>tern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:<br>Font color: | Font:<br>Auto, | (Det<br>Pat | fault)<br>tern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Not H          | ighli       | ight            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:<br>Font color: | Font:<br>Auto, | (Det<br>Pat | fault)<br>tern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:<br>Font color: | Font:<br>Auto, | (Det<br>Pat | fault)<br>tern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted:<br>Font color: | Font:<br>Auto, | (Det<br>Pat | fault)<br>tern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |
| Formatted:<br>Font color: | Font:<br>Auto, | (Det<br>Pat | fault)<br>tern: | Times<br>Clear | New | Roman, | 小四, |
| Formatted:                | Font:          | Not         | Bold            |                |     |        |     |

| 598 | higher SNA relative to Ca. In terms of comparing P2 and P3, the average SNA/Ca ratio                                       | Formatted  |                       |      |
|-----|----------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|------|
| 599 | during P3 was 3 times that of P2, indicating that the formation of secondary inorganic                                     |            |                       |      |
| 600 | aerosols was more prominent during the dust backflow. Regarding the NO <sub>3</sub> /SO <sub>4</sub> <sup>2</sup> , ratios |            |                       |      |
| 601 | (Fig. 6b), they were close between NDS and P2, with NO <sub>3</sub> , slightly exceeding SO <sub>4</sub> <sup>2-</sup> ,   |            |                       |      |
| 602 | The range of $NO_3^{-}/SO_4^{2^-}$ was the largest during P3 with a mean value of around 2,                                |            |                       |      |
| 603 | suggesting that the dust backflow was more conducive to the accumulation of nitrate.                                       |            |                       |      |
| 604 | The nitrogen oxidation ratio (NOR = $NO_3^{-}/(NO_3^{-} + NO_2)$ ) and the sulfur oxidation ratio                          |            |                       |      |
| 605 | $(SOR = SO_4^{2^-}/(SO_4^{2^-} + SO_2))$ were further used to gauge the extent of nitrate and sulfate                      |            |                       |      |
| 606 | formation, both showing trends of P3>NDS>P2 (Fig. 6c & 6d). It should be noted that                                        |            |                       |      |
| 607 | NOR and SOR cannot be used to realistically characterize the extent of nitrogen and                                        |            |                       |      |
| 608 | sulfur oxidation during transport-dominated pollution cases, as upstream aging aerosols                                    |            |                       |      |
| 609 | can significantly increase the above ratios (Ji et al., 2018). In the following discussion,                                |            |                       |      |
| 610 | we will focus on the formation mechanism of SNA during different dust stages.                                              |            |                       |      |
| 611 | The results of SOC/OC ratios differed from the above analysis that SOC/OC was                                              | Formatted: | Font: Not Bold        |      |
| 612 | lower during P3 than during P2 and NDS (Fig. 6e), suggesting that the formation of                                         | Formatted: | Indent: First line: 2 | 2 ch |
| 613 | secondary organic aerosols was not favored via the dust backflow. This may be due to                                       |            |                       |      |
| 614 | its maritime transport pathway as the emission intensity of volatile organic compounds                                     |            |                       |      |
| 615 | from the ocean is much lower than that from land sources consequently, the lacking                                         |            |                       |      |
| 616 | of organic aerosol precursors could be the main cause for the lower SOC/OC ratios                                          |            |                       |      |
| 617 | during P3. Finally, the $Ca_{A}^{2+}/NH_{A}^{+}$ ratio was employed to assess the relative                                 |            |                       |      |
| 618 | contributions of alkaline chemical components (Fig. 6f), As expected, this ratio during                                    |            |                       |      |
| 619 | the two dust stages was much higher than that of NDS, indicating the important                                             |            |                       |      |
| 620 | contribution of dust to alkaline metal ions. The Ca <sup>2+</sup> /NH <sub>4</sub> <sup>+</sup> ratio was higher during P3 |            |                       |      |
| 621 | (0.15) than during P2 (0.10), which aligned with the findings presented in Section 3.2.                                    |            |                       |      |

i



#### 623 3.4.2. Distinct formation processes of secondary aerosols between P2 and P3

622

Formatted: Subscript

| Font: | Not                                                                                                      | Bold                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Font: | Not                                                                                                      | Bold                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Font: | Not                                                                                                      | Bold                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Font: | Not                                                                                                      | Bo1d                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Font: | Not                                                                                                      | Bold,                                                                                                                    | Subscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Font: | Not                                                                                                      | Bold,                                                                                                                    | Superscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Font: | Not                                                                                                      | Bo1d                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Font: | Not                                                                                                      | Bold,                                                                                                                    | Subscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Font: | Not                                                                                                      | Bold,                                                                                                                    | Superscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Font: | Not                                                                                                      | Bold                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Font: | Not                                                                                                      | Bold                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Font: | Not                                                                                                      | Bold,                                                                                                                    | Subscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Font: | Not                                                                                                      | Bold,                                                                                                                    | Superscript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Font: | Not                                                                                                      | Bold                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font:<br>Font: | Font:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:NotFont:Not | Font:     Not     Bold       Font:     Not     Bold |

| 635  | and NO3: displayed the most significant correlations with O3 and Ox (O3+NO2), while                                                           | (           | Formatted                            |   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|---|
| 626  |                                                                                                                                               |             | Formatted                            |   |
| 020  | even negatively correlated with ALWC. In regard of the obvious ozone enhancement                                                              |             | Formatted: Font: Not Bold, Subscript |   |
| 637  | phenomenon as discussed in Section 3.3.1, photochemistry should be the main pathway                                                           |             | Formatted: Font: Not Bold Subscript  |   |
|      |                                                                                                                                               |             | Formatted: Font: Not Bold            |   |
| 638  | for the secondary aerosol formation rather than the liquid phase processing. In addition,                                                     |             | Formatted: Font: Not Bold, Subscript |   |
|      |                                                                                                                                               |             | Formatted: Font: Not Bold            |   |
| 639  | SO <sub>4</sub> <sup>2-</sup> and NO <sub>3</sub> <sup>-</sup> also showed moderate correlations with elemental Ca, suggesting that           | (           | Formatted                            |   |
| - 10 |                                                                                                                                               | $\square$   | Formatted: Font: Not Bold            | ) |
| 640  | dust acted as a carrier to transport these salts, which can be derived from background                                                        | X           | Formatted                            |   |
| 641  | minerals in dust (Wu et al., 2022) and dust heterogeneous reactions during the transport                                                      | $\bigwedge$ | Formatted                            |   |
| 642  | (Huang et al., 2010a),/                                                                                                                       |             |                                      |   |
| 643  | As for P3, it showed a distinctly different correlation heatmap from P2. While                                                                | A           | Formatted                            |   |
| 644  | $SO_4^{2-}$ still demonstrates a correlation with O3, the relationship between NO <sub>3</sub> and O <sub>3</sub> /                           |             |                                      |   |
| 645  | (as well as Ox) disappeared. On the contrary, both $SO_4^2$ , and $NO_3$ , show significant /                                                 |             |                                      |   |
| 646  | correlations with ALWC. During P3, the average RH reached 76%, providing favorable                                                            |             |                                      |   |
| 647  | conditions for liquid-phase reactions. Furthermore, by relating NO <sub>3</sub> <sup>-</sup> and the                                          |             |                                      |   |
| 648  | multiplication of ALWC and NO <sub>2</sub> , the correlation coefficient ( $R^2 = 0.41$ ) was further                                         |             |                                      |   |
| 649  | improved (Figure S4a). Similar results were observed by relating NO3 <sup>-</sup> to the                                                      | 1           | Formatted                            | ) |
| 650  | multiplication of ALWC and NO <sub>2</sub> *O <sub>3</sub> *NO <sub>2</sub> (a proxy of N <sub>2</sub> O <sub>5</sub> , (Huang et al., 2021)) |             | Field Code Changed                   | ) |
| 651  | (Figure S4b), confirming the dominant reaction pathway of nitrogen oxides to nitrate                                                          | 1           | Formatted                            |   |
| 652  | via the aqueous phase reactions. As a result, NO3 <sup>-</sup> was also strongly correlated with /                                            |             |                                      |   |
| 653  | HONO (Figure S4c), typically deriving from the heterogeneous reactions of NO <sub>2</sub> on /                                                |             |                                      |   |
| 654  | the surface of moist particles (Alicke et al. (2002).                                                                                         | (           | Field Code Changed                   |   |
| 655  | In addition, unlike P2, both SO42- and NO3- showed moderate to significant                                                                    |             |                                      |   |
| 656  | correlations with $Na_4^+$ . Since neither $SO_4^{2-}$ nor $NO_3^-$ correlated with Ca, it can be inferred                                    | (           | Formatted                            |   |
| 657  | that sea salts played a more important role in the transport of air pollutant during the                                                      |             |                                      |   |
| 658  | dust backflow over the ocean. To assess whether dust or sea salts participated in the                                                         |             |                                      |   |

| 659 | heterogeneous reactions of secondary aerosol during P3, the ISORROPIA II model was                                                                                                                                                 |             |                                     |      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|------|
| 660 | run with different scenarios. Figure S5 shows the model performance for $SO_4^{2-}$ , $NO_3^{-}$ ,                                                                                                                                 |             |                                     |      |
| 661 | $\underline{NH_4^+}$ , and $\underline{NH_3}$ based on the $\underline{SO_4^{2-}}$ - $\underline{NO_3^-}$ - $\underline{NH_4^+}$ - $\underline{Cl^-}$ - $\underline{NH_3}$ - $\underline{HCl}$ - $\underline{HNO_3}$ system. After |             |                                     |      |
| 662 | adding Ca <sup>2+</sup> into this thermodynamic equilibrium system, the correlations between the                                                                                                                                   |             |                                     |      |
| 663 | simulations vs observations for all four species were lowered with different extents                                                                                                                                               |             |                                     |      |
| 664 | (Figure S6). If Na <sup>+</sup> was added into the thermodynamic equilibrium system. the model                                                                                                                                     |             |                                     |      |
| 665 | performance was slightly improved (Figure S7). This corroborated that the                                                                                                                                                          |             | Formatted: Not Highlight            |      |
| 666 | heterogeneous reactions on dust were very limited while sea salts were intensively                                                                                                                                                 |             |                                     |      |
| 667 | involved in the formation of secondary inorganic aerosols during the dust backflow.                                                                                                                                                |             |                                     |      |
| 668 | To further explore the influencing factors affecting the formation of secondary-                                                                                                                                                   |             | Formatted: Indent: First line: 2 ch |      |
| 669 | inorganic aerosols, we examined the role of NH3 in different stages, representing by the                                                                                                                                           |             | Formatted                           | )    |
| 670 | relationship between the gas-particle partitioning of ammonia ( $\varepsilon(NH_{4}^{+})$ , defined as the                                                                                                                         | -1          | Formatted                           |      |
| 671 | ratio between particle phase ammonia (NH <sub>4</sub> <sup>+</sup> ) and total ammonia (NH <sub>x</sub> = NH <sub>3</sub> +NH <sub>4</sub> <sup>+</sup> ))                                                                         |             |                                     |      |
| 672 | and the total acids $(SO_{4,2}^{2} + NO_{3,2})$ . As shown in Figure 7c, it is obvious that the total /                                                                                                                            | /           |                                     |      |
| 673 | acids strongly co-varied with $\varepsilon(NH_{4}^{+})$ . Higher $\varepsilon(NH_{4}^{+})$ resulted in higher                                                                                                                      | <           | Formatted                           |      |
| 674 | concentrations of secondary aerosols. Moreover, under similar $\mathcal{E}(NH_{a}^{+})$ conditions,                                                                                                                                | Z           | Formatted Formatted                 | <br> |
| 675 | higher NH <sub>3</sub> promoted stronger formation of secondary aerosols. Thus, both NH <sub>3</sub> and                                                                                                                           |             |                                     |      |
| 676 | $\varepsilon(NH_{4}^{+})$ collectively determined the aerosol formation potential. The mean states of                                                                                                                              |             | Formatted                           |      |
| 677 | <u>P2, P3, and NDS are compared in Figure 7c, P2 had the lowest <math>\varepsilon(NH_4^+)</math> with the mean</u>                                                                                                                 |             | Formatted: Font: 小四                 |      |
| 678 | value of 0.21, despite the relatively high concentrations of NH3 during this period (7.9                                                                                                                                           | $\bigwedge$ | Formatted                           | )    |
| 679 | $\pm$ 1.0 $\mu$ g/m <sup>3</sup> ). The relatively low gas-particle partitioning of ammonia limited the /                                                                                                                          | /           |                                     |      |
| 680 | neutralization of the acidic components. In contrast, NH3 during P3 was the highest                                                                                                                                                |             |                                     |      |
| 681 | during the study period (9.8 ± 1.8 $\mu$ g/m <sup>3</sup> ), and $\epsilon$ (NH <sup>+</sup> ), (0.34) was only slightly lower                                                                                                     |             | Formatted: Font: 小四                 |      |
| 682 | than that during NDS, thus effectively fostering the formation of secondary inorganic                                                                                                                                              |             |                                     |      |

| 684 | To explain this phenomenon, the uptake coefficient of NH <sub>3</sub> ( $\gamma_{NH3}$ ) on particles,                              |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|---|
| 685 | which is one of the important parameters affecting the gas-particle partitioning of                                                 |   |
| 686 | ammonia, was calculated. Figure 7d shows the decreasing trend of $\gamma_{NH3}$ with the                                            |   |
| 687 | increase of dust intensity (using Ca as an indicator). This coincided with a multi-year                                             | 1 |
| 688 | observational study in Beijing and Shijiazhuang, where $\gamma_{NH3}$ obviously increased due                                       | ( |
| 689 | to significant decline in alkali earth metal contents from the dust emission sources                                                |   |
| 690 | <u>during 2018 – 2020 (Liu et al., 2022), Thus, this partially explained why <math>\varepsilon(NH_4^+)</math> was</u>               |   |
| 691 | relatively low during P2, which was ascribed to the reduced uptake capacity of NH3 on                                               |   |
| 692 | particles.                                                                                                                          |   |
| 693 | The ion balance calculation indicated that the total anions and cations are in ideal                                                | Ľ |
| 694 | equilibrium (Figure S8, regression slope = 0.99, $R_2^2 = 0.99$ ), indicating that both $NH_4^{\pm}$                                |   |
| 695 | and alkali metal cations (including Na <sup>+</sup> , K <sup>+</sup> , Mg <sup>2+</sup> , and Ca <sup>2+</sup> ) contributed to the |   |
| 696 | neutralization of acids to varying degrees. The ratio of alkali metal cations/total anions                                          |   |
| 697 | (AMC/TA) was used to color the data points in Figure 7d, showing an opposite trend                                                  |   |
| 698 | between AMC/TA and YNH3. During P2, the mean value of AMC/TA reached 21%,                                                           | ( |
| 699 | implying that the neutralization of acids by NH <sub>2</sub> had been significantly suppressed, thus                                | ( |
| 700 | explaining `the decrease in the NH3 uptake coefficient at high dust intensity. In contrast,                                         |   |
| 701 | the AMC/TA ratio decreased to 11% during P3, indicating a reduced competition                                                       |   |
| 702 | between NH <sub>3</sub> and the alkali dust components. Finally, we also compared the aerosol pH                                    |   |
| 703 | at different stages, which was 3.2, 3.0, and 2.8 during P2, P3, and NDS, respectively.                                              |   |
| 704 | The relatively high aerosol acidity at P3 and NDS favored the uptake of alkaline gases                                              |   |
| 705 | (Liu et al., 2022), which also contributed to the higher ( $\gamma_{NH3}$ ) at these two stages.                                    |   |
| 706 |                                                                                                                                     |   |
|     |                                                                                                                                     |   |

| -{ | Formatted: | Font: | 小四, | Subscript |
|----|------------|-------|-----|-----------|
| -( | Formatted: | Font: | 小四  |           |
| Ľ  | Formatted: | Font: | 小四, | Subscript |
| Y  | Formatted: | Font: | 小四  |           |
| -{ | Formatted: | Font: | 小四  |           |
| -{ | Formatted: | Font: | 小四  |           |
|    |            |       |     |           |

| - | Formatted: | Font: | 小四  |           |  |
|---|------------|-------|-----|-----------|--|
|   |            |       |     |           |  |
| - | Formatted: | Font: | 小四  |           |  |
|   |            |       |     |           |  |
| - | Formatted: | Font: | 小四  |           |  |
| - | Formatted: | Font: | 小四  |           |  |
| Ľ | Formatted: | Font: | 小四  |           |  |
| Ì | Formatted: | Font: | 小四  |           |  |
| Ľ | Formatted: | Font: | 小四, | Subscript |  |
| Y | Formatted: | Font: | 小四  |           |  |

| Formatted: | Superscript |
|------------|-------------|
| Formatted: | Subscript   |
| Formatted: | Superscript |
|            |             |
| Formatted: | Subscript   |
|            |             |
| Formatted: | Subscript   |
|            |             |
| Formatted: | Subscript   |
|            |             |

| Formatted: | Subscript |
|------------|-----------|
|------------|-----------|

Formatted: Subscript



| 721 | concentrations were at its troughs during daytime when O3-peaked. Thus,                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 722 | photochemical reactions didn't play an important role in the formation of nitrate during                                   |
| 723 | <del>this stage</del>                                                                                                      |
| 724 | Figure 11c investigates the conjoint impact of multiple parameters on the                                                  |
| 725 | formation of nitrate. In general, NO3 <sup>-</sup> was more favored under higher NO2, which was                            |
| 726 | obviously expected as NO3 <sup>-</sup> could be either formed by the photochemical oxidation of                            |
| 727 | $NO_2$ -by OH radicals at daytime (Hertel et al., 2012) or produced by hydrolysis of $N_2O_5$                              |
| 728 | from the oxidation of NO2-by O3-at nighttime (Ge et al., 2017). In addition, the                                           |
| 729 | formation of higher NO3 <sup>-</sup> was accompanied with higher ALWC and HONO, implying                                   |
| 730 | the role of aqueous phase reactions rather than the photochemical reactions. Figure 11e-                                   |
| 731 | 11g separately investigate the relationship between NO3 <sup>-</sup> and various parameters. NO3 <sup>-</sup>              |
| 732 | moderately correlated with ALWC ( $\mathbb{R}^2 = 0.38$ ). By relating NO <sub>3</sub> <sup>-</sup> and the multiplication |
| 733 | of ALWC and NO <sub>2</sub> , the correlation coefficient ( $\mathbb{R}^2 = 0.41$ ) was further improved (Figure           |
| 734 | 11f), indicating the reaction pathway of NO2 to nitrate in the aqueous phase. Figure 11g                                   |
| 735 | also observed strong correlation between NO <sub>3</sub> <sup>-</sup> and HONO ( $\mathbb{R}^2 - 0.57$ ). Alieke et al.    |
| 736 | (2002) proposed that the heterogeneous reactions of NO2 on the surface of moist                                            |
| 737 | particles produced both nitrate and HONO, i.e.,                                                                            |
| 738 | $2NO_2 + H_2 O \longrightarrow HONO + HNO_3$                                                                               |
| 739 | Compared to the mean ALWC (11.8 $\pm$ 17.1µg/m <sup>3</sup> ) during P2, ALWC during P3                                    |
| 740 | was much higher of $29.1 \pm 38.0 \mu g/m^3$ . This was mainly ascribed to the higher                                      |
| 741 | atmospheric water vapor during P3, which was evidently caused by the backflows of                                          |
| 742 | oceanic air masses. The different levels of ALWC between P2 and P3 caused divergent                                        |
| 743 | role of aqueous processing in the secondary aerosol formation.                                                             |
| 744 | As for sulfate, its temporal variation during P3 was quite different from NO3 <sup>-</sup> that                            |
|     | 39                                                                                                                         |





Figure 12. (a) Time series of sulfate, Na<sup>+</sup>, and Ca<sup>2+</sup>/Ca during P3. Linearbetween sulfate and (b) PM<sub>10</sub>, (c) Na<sup>+</sup>, (d) O<sub>3</sub>, and (e) ALWC.

To assess whether dust or sea salts participated in the heterogeneous reactions of
 secondary aerosol during P3, the ISORROPIA II model was run with different scenarios.
 Figure S1 shows the model performance for SO4<sup>2-</sup>, NO3<sup>-</sup>, NH4<sup>+</sup>, and NH3 based on the
 40

755

756

757

758

SO4<sup>2-</sup>=NO3<sup>-</sup>=NH4<sup>+</sup>=Cl<sup>-</sup>=NH3=HCl=HNO3 system. After adding Ca<sup>2+</sup> into this
 thermodynamic equilibrium system, the correlations between the simulations vs
 observations for all four species were lowered with different extents (Figure S2). This
 indicated that Ca<sup>2+</sup> was not internally mixed with sulfate and nitrate and probably
 suggested that the heterogeneous reactions on dust were very limited.

Then  $Na^+$ -was added into the thermodynamic equilibrium system (Figure S3). It could be seen the model performance was slightly improved. The correlation coefficients of the four species were closer to the unity and the regression slopes were also more parallel to the y-x line. This suggested that sea salts were involved in the formation of secondary inorganic aerosols during the dust backflow. This also explained the strong correlation between  $SO_4^{2-}$  and  $Na^+$  during P3.

773

774

## **3.4.3.** <u>3.5.</u> Estimation of transported and secondarily formed particles during P3

775 As discussed in the previous sections, the sources of aerosols observed during P3 776 could <u>originate be derived</u> from both aged aerosols <u>transported</u> via the dust backflows 777 and secondary formation. In this section, we aimed to estimate the contribution of 778 transport and secondary formation to the main aerosol species, respectively, based on 779 the simultaneous measurements at the Pudong site and the Lianyungang site. As 780 discussed in Section 3.4.1, Lianyungang acted as an upstream region of where dust 781 transport drifted awaying from the mainland. The duration of dust duration observed at 782 Lianyungang was approximately from about 5:00, on October 30 to 16:00, on 783 October 31, about 46 hours ahead of the dust invasion observed at Pudong (Figure 982). 784 To assess the extents of transported air pollutants, black carbon (BC) was used as 785 a reference aerosol component. As shown in Figure <u>\$459</u>, one BC pollution episode on

| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|---|---------------------------------------|-----------------------|----------------|-----|--------|-----|
| 1 | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |
|   | Formatted: Font:<br>Font color: Auto, | (Default)<br>Pattern: | Times<br>Clear | New | Roman, | 小四, |

| 1   |                                                                                                   |        |                                 |                  |                       |                |             |        |
|-----|---------------------------------------------------------------------------------------------------|--------|---------------------------------|------------------|-----------------------|----------------|-------------|--------|
| 786 | October 30 at Lianyungang was observed. <u>CorrespondinglyConsistently</u> , another BC           | F      | <b>Cormatted:</b><br>Cont color | Font:<br>: Auto, | (Default)<br>Pattern: | Times<br>Clear | New Roman   | n, 小四, |
| 787 | pollution episode on November 2 emerged at Pudong on November 2 emerged after                     |        |                                 |                  |                       |                |             |        |
| 788 | about 46 hours. Since the air mass trajectory from Lianyungang to Pudong                          |        |                                 |                  |                       |                |             |        |
| 789 | predominantly traversedwas mostly over the ocean, and considering that and BC had                 | F      | ormatted:                       | Font:            | (Default)             | Times          | New Romai   | ı, 小四, |
| 790 | has no secondary sources, it <del>could</del> can be reasonably assumed that the differences of   | F<br>F | Cont color                      | Font:            | (Default)             | Times<br>Clear | New Roman   | ı, 小四, |
| 791 | BC concentrations between these two sites was were ascribed to the removal processes              | F      | formatted:                      | Font:            | (Default)             | Times          | New Romai   | n, 小四, |
| 792 | of particles                                                                                      | F      | Cont color                      | : Auto,          | Pattern:              | Clear          |             |        |
| 1)2 | of particles.                                                                                     |        |                                 |                  |                       |                |             |        |
| 793 | To determine the removal fractions of aerosols during dust transport, we first We                 | F      | <b>Formatted:</b><br>Font color | Font:<br>: Auto, | (Default)<br>Pattern: | Times<br>Clear | New Roman   | n, 小四, |
| 794 | further defined the average concentrations of various aerosol components during the               |        |                                 |                  |                       |                |             |        |
| 795 | preceding previous five hours of the dust at Pudong as their background concentrations            | F      | formatted:                      | Font:            | (Default)             | Times          | New Romai   | 1. 小四. |
| 155 | preceding previous intenders of the dust at 1 adoing as their background concentrations.          | F      | Cont color                      | : Auto,          | Pattern:              | Clear          | iten itemai | , , ,  |
| 796 | Then, a coefficient $k$ was derived to calculate the removal fractions of aerosols during         |        |                                 |                  |                       |                |             |        |
| 797 | the dust transport as below.                                                                      |        |                                 |                  |                       |                |             |        |
| 798 |                                                                                                   |        |                                 |                  |                       |                |             |        |
| 799 | $k = \frac{AV_{LYG,BC} - (AV_{PD,BC} - BKG_{PD,BC})}{AV_{PD,BC} - BKG_{PD,BC}}$                   |        |                                 |                  |                       |                |             |        |
| 000 | AV <sub>LYG,BC</sub>                                                                              |        |                                 |                  |                       |                |             |        |
| 800 |                                                                                                   |        |                                 |                  |                       |                |             |        |
| 801 | $AV_{LYG,BC}$ and $AV_{PD,BC}$ represent the average concentration of BC at Lianyungang           |        |                                 |                  |                       |                |             |        |
| 802 | and Pudong during their respective dust period. BKGPD, BC represents the background               |        |                                 |                  |                       |                |             |        |
| 803 | concentration of BC at Pudong. By aAssuming that other aerosol species were removed               |        |                                 |                  |                       |                |             |        |
| 804 | at-with a similar efficiency as BC, the amounts of transported aerosol species from               |        |                                 |                  |                       |                |             |        |
| 805 | Lianyungang to Pudong can be estimated as below.                                                  |        |                                 |                  |                       |                |             |        |
| 806 | $TP_{PD,i} = AV_{LYG,i} \times (1 - k)$                                                           |        |                                 |                  |                       |                |             |        |
| 807 | $TP_{PD,i}$ represents the transported amounts for <u>of</u> aerosol species <i>i</i> . Then, the |        |                                 |                  |                       |                |             |        |
| 808 | secondarily formed aerosol species <i>i</i> at Pudong can be calculated as below.                 |        |                                 |                  |                       |                |             |        |
| 809 | $SF_{PD,i} = AV_{PD,i}$ - $BKG_{PD,i}$ - $TP_{PD,i}$                                              |        |                                 |                  |                       |                |             |        |
| 810 | Figure 13.8 shows the results of the transported and the secondarily formed aerosol               |        |                                 |                  |                       |                |             |        |
|     |                                                                                                   |        |                                 |                  |                       |                |             |        |



- 824
- 825



Figure 138. The apportioned concentrations of the major aerosol species during

P3.

828

826

\$27

829

830 4. Conclusion

Formatted: Font: (Default) Times New Roman, 小四, Font color: Auto, Pattern: Clear

| 831 | During October 29 to November 2, 2019, a long-lasting dust event was observed in                                                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 832 | Shanghai based on a synergy measurement of near surface air pollutants, aerosol lidar,                                                       |
| 833 | wind profiling lidar, and air masses trajectory modeling. During the whole dust period,                                                      |
| 834 | the mean concentrations of $PM_{2.5}$ and $PM_{10}$ reached 53.3 $\pm$ 20.5 $\mu g/m^3$ and 172.4 $\pm$                                      |
| 835 | 70.2µg/m3. Different from most dust events, this dust event was characterized of                                                             |
| 836 | exceptionally high relative humidity (71 $\pm$ 26%) and low wind speed (0.54 $\pm$ 0.59m/s).                                                 |
| 837 | Due to this stagnant synoptic condition, the mean concentrations of main gaseous                                                             |
| 838 | pollutants such as O <sub>3</sub> , SO <sub>2</sub> , and NO <sub>2</sub> reached $86.0 \pm 47.8 \mu g/m^3$ , $11.8 \pm 3.4 \mu g/m^3$ , and |
| 839 | $63.3 \pm 27.9 \mu g/m^3$ , respectively, even higher than those during the non-dust period.                                                 |

840 The dust event was divided into three stages from P1 - P3. P1 was a short dust 841 episode from 4:00 - 13:00, October 29, when wind profiles showed dominant northwest 842 winds from the ground to the altitudes of around 2km, indicating the presence of a \$43 strong synoptic system. P2 was a dust episode from 14:00, October 29 to 3:00, 844 November 1, when RH was moderately high of  $70 \pm 26\%$  and the southeasterlies 845 prevailed with partial air masses from coastal regions. P3 was a rarely observed dust 846 backflow transport episode from 4:00, November 1 to 23:00, November 2. The air 847 masses originated from the Shandong Peninsula and the northern region of Jiangsu 848 province, and then migrated over the Yellow Sea and the East China Sea. RH reached 849 the highest of  $76 \pm 24\%$  among the three stages of the dust event.

During P2, mineral aerosols accounted for 33% in PM<sub>2.5</sub>, the highest among all three stages. Abnormally high O<sub>3</sub> concentrations were observed, much higher than the non-dust days. This was partially due to the weak synoptic system that exerted weak dilution effect on the local air pollutants. Also, part of O<sub>3</sub> could be transported from the high ozone oceanic areas. The ozone lidar observed that the subsidence of dust particles probably down drafted high-altitude O<sub>3</sub> and also contributed to the high O<sub>3</sub> near the
ground. As a result, sulfate and nitrate moderately correlated with O<sub>3</sub> while had almost
no correlation with ALWC, indicating that the formation of secondary aerosols during
P2 should be mainly promoted via the gas-phase oxidations.

859 During P3, a special phenomenon of dust backflow was observed and confirmed 860 by various evidences. Two upstream sites (Qingdao and Lianyungang) showed dust 861 occurrences about 48 hours ahead that of Shanghai, consistent with the transport 862 duration of the dust backflow from the Shandong Peninsula to Shanghai over the Yellow 863 Sea and the East China Sea. As a result, <u>Tthe highest Ca<sup>2+</sup>/Ca ratio of  $0.38 \pm 0.19$  was</u> 864 observed during P3, which should be due to that the lingerer of dust plumes over the 865 open ocean-facilitated efficient solubility of calcium. In additionMoreover, the mass 866 concentrationscontributions of V and Ni significantly increased, indicating the mixing 867 between dust and marine vessel emissions. The highest Ca<sup>2±</sup>/Ca ratio of  $0.38 \pm 0.19$ 868 observed during P3, which should be due to that the lingerer of dust plumes over 869 the open ocean facilitated efficient solubility of calcium. Different from P2, nitrate **\$**70 didn't correlate with O<sub>3</sub>, while it was favored under high NO<sub>2</sub> and significantly 871 correlated with ALWC but not with O3, and strongly correlated with HONO, indicating \$72 its aqueous-phase the reaction pathway of NO2 to nitrate in the aqueous phase. As 873 for Also, sulfate and nitrate exhibited, the moderate to strong correlations with between \$74 SO4<sup>2-</sup> and Na<sup>+</sup>-, suggesting sea salts as a medium for the heterogeneous reactions. ed \$75 that a portion of sulfate was aged and directly transported by the oceanic air masses. 876 The ISORROPIA II modeling added Na<sup>+</sup> into the 877 SO4<sup>2=</sup>=NO3<sup>=</sup>=NH4<sup>+</sup>=Cl<sup>=</sup>=NH3=HCl=HNO3 system and found the models performances 878 of simulating the major aerosol and gaseous species could be improved. As a

| 879 | comparison, the models performances became worse after adding Ca <sup>2+</sup> . This suggested                               |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------|---|
| 880 | that sea salts participated in the secondary aerosol formation while dust heterogeneous                                       |   |
| 881 | reactions were limited during P3                                                                                              |   |
| 882 | By analyzing various chemical tracers, the formation extent of SNA was found                                                  | F |
| 883 | much stronger during P3 than during P2. Both NH <sub>3</sub> and $\varepsilon(NH_4^+)$                                        | F |
| 884 | $(NH_4^+/(NH_3+NH_4^+))$ determined the concentrations of SNA. To explain the relatively                                      |   |
| 885 | <u>high</u> $\epsilon(NH_4^+)$ values during P3, the uptake coefficient of NH <sub>3</sub> ( $\gamma_{NH3}$ ) on particles is |   |
| 886 | calculated. $\gamma_{NH3}$ negatively varied with the intensity of dust, which were attributed to                             |   |
| 887 | two factors. Higher contributions of alkali metal components suppressed the                                                   |   |
| 888 | neutralization capacity of NH3 on acids, thereby lowering $\gamma_{NH3}$ during P2. Also,                                     |   |
| 889 | relatively high aerosol pH during P2 didn't facilitate the uptake of NH3 and the                                              |   |
| 890 | subsequent aerosol formation.                                                                                                 |   |
| 891 | Based on a simplifiede method, the amounts of transported and secondarily formed                                              |   |
| 892 | particles during P3 were quantified. It was calculated that about 45% and 31% of $\mathrm{NO_3}^-$                            |   |
| 893 | was contributed by secondary formation and transport, respectively. In contrast, the                                          |   |
| 894 | transported $SO_4^{2-}$ accounted for about 42% of its total mass concentration while the rest                                |   |
| 895 | was from its background concentration with negligible secondary formation. OM was                                             |   |
| 896 | dominated by transport (57%) while its secondary formation only accounted for about                                           |   |
| 897 | 13%.                                                                                                                          |   |
| 898 |                                                                                                                               |   |
| 899 | Data Availability Statement                                                                                                   |   |
| 900 | All data used in this study can be requested upon the corresponding author                                                    |   |
| 901 | (huangkan@fudan.edu.cn).                                                                                                      |   |
| 902 |                                                                                                                               |   |

Formatted: Left

Formatted: Subscript

# 903 Author contributions

| 904 | KH, QF, and YD designed this study. JH, FY, YL, and JC performed data                             |
|-----|---------------------------------------------------------------------------------------------------|
| 905 | collection. DL and KH performed data analysis and wrote the paper. All have                       |
| 906 | commented on and reviewed the paper.                                                              |
| 907 |                                                                                                   |
| 908 | Competing interests                                                                               |
| 909 | The authors declare that they have no conflict of interest.                                       |
| 910 |                                                                                                   |
| 911 | Acknowledgments                                                                                   |
| 912 | This work was financially supported by the National Science Foundation of China                   |
| 913 | (42175119).                                                                                       |
| 914 |                                                                                                   |
| 915 |                                                                                                   |
| 916 | References                                                                                        |
| 917 | Alicke, B., Platt, U., and Stutz, J.: Impact of nitrous acid photolysis on the total hydroxyl     |
| 918 | radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di           |
| 919 | Ozono study in Milan, J. Geophys. ResAtmos., 107, 18, 10.1029/2000jd000075, 2002.                 |
| 920 | Ansari, A. S. and Pandis, S. N.: An analysis of four models predicting the partitioning of        |
| 921 | semivolatile inorganic aerosol components, Aerosol Science And Technology, 31, 129-153,           |
| 922 | 10.1080/027868299304200, 1999.                                                                    |
| 923 | Arimoto, R., Ray, B. J., Lewis, N. F., Tomza, U., and Duce, R. A.: Mass-particle size             |
| 924 | distributions of atmospheric dust and the dry deposition of dust to the remote ocean, J. Geophys. |
| 925 | ResAtmos., 102, 15867-15874, 10.1029/97jd00796, 1997.                                             |
| 926 | Barkley, A., Olson, N., Prospero, J., Gatineau, A., Panechou, K., Maynard, N.,                    |
| 927 | Blackwelder, P., China, S., Ault, A., and Gaston, C.: Atmospheric Transport of North African      |
| 928 | Dust - Bearing Supermicron Freshwater Diatoms to South America: Implications for Iron             |
| 929 | Transport to the Equatorial North Atlantic Ocean, Geophysical Research Letters, 48,               |
| 930 | 10.1029/2020GL090476, 2021.                                                                       |
| 931 | Becagli, S., Sferlazzo, D. M., Pace, G., di Sarra, A., Bommarito, C., Calzolai, G., Ghedini,      |
| 932 | C., Lucarelli, F., Meloni, D., Monteleone, F., Severi, M., Traversi, R., and Udisti, R.: Evidence |
| 933 | for heavy fuel oil combustion aerosols from chemical analyses at the island of Lampedusa: a       |
|     | 47                                                                                                |

possible large role of ships emissions in the Mediterranean, Atmos. Chem. Phys., 12, 34793492, 10.5194/acp-12-3479-2012, 2012.

Benas, N., Mourtzanou, E., Kouvarakis, G., Bais, A., Mihalopoulos, N., and Vardavas, I.:
Surface ozone photolysis rate trends in the Eastern Mediterranean: Modeling the effects of

938 aerosols and total column ozone based on Terra MODIS data, Atmospheric Environment, 74,
939 1-9, 10.1016/j.atmosenv.2013.03.019, 2013.

940 Bernard, F., Cazaunau, M., Grosselin, B., Zhou, B., Zheng, J., Liang, P., Zhang, Y., Ye, X.,

941 Daële, V., Mu, Y., Zhang, R., Chen, J., and Mellouki, A.: Measurements of nitrous acid (HONO)

942 in urban area of Shanghai, China, Environmental Science and Pollution Research, 23, 5818943 5829, 10.1007/s11356-015-5797-4, 2016.

Bozlaker, A., Prospero, J. M., Price, J., and Chellam, S.: Identifying and Quantifying the
Impacts of Advected North African Dust on the Concentration and Composition of Airborne
Fine Particulate Matter in Houston and Galveston, Texas, J Geophys Res-Atmos, 124, 1228212300, 10.1029/2019jd030792, 2019.

948 Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., and Grassian,

V. H.: Characterization and acid-mobilization study of iron-containing mineral dust source
 materials, J Geophys Res-Atmos, 113, Artn D05202

951 10.1029/2007jd009332, 2008.

Dall'Osto, M., Harrison, R. M., Coe, H., and Williams, P.: Real-time secondary aerosol
formation during a fog event in London, Atmospheric Chemistry And Physics, 9, 2459-2469,
10.5194/acp-9-2459-2009, 2009.

Fan, Q. Z., Zhang, Y., Ma, W. C., Ma, H. X., Feng, J. L., Yu, Q., Yang, X., Ng, S. K. W.,
Fu, Q. Y., and Chen, L. M.: Spatial and Seasonal Dynamics of Ship Emissions over the Yangtze

957 River Delta and East China Sea and Their Potential Environmental Influence, Environmental

958 Science & Technology, 50, 1322-1329, 10.1021/acs.est.5b03965, 2016.

959 Feng, X., Mao, R., Gong, D.-Y., Zhao, C., Wu, C., Zhao, C., Wu, G., Lin, Z., Liu, X., Wang,

960 K., and Sun, Y.: Increased Dust Aerosols in the High Troposphere Over the Tibetan Plateau

From 1990s to 2000s, Journal of Geophysical Research: Atmospheres, 125, e2020JD032807,
 https://doi.org/10.1029/2020JD032807, 2020.

Ge, X. L., He, Y. A., Sun, Y. L., Xu, J. Z., Wang, J. F., Shen, Y. F., and Chen, M. D.:
Characteristics and Formation Mechanisms of Fine Particulate Nitrate in Typical Urban Areas
in China, Atmosphere, 8, 12, 10.3390/atmos8030062, 2017.

Ginoux, P., Prospero, J. M., Torres, O., and Chin, M.: Long-term simulation of global dust
distribution with the GOCART model: correlation with North Atlantic Oscillation,
Environmental Modelling & Software, 19, 113-128, <u>https://doi.org/10.1016/S1364-</u>
8152(03)00114-2, 2004.

970 Goodman, M. M., Carling, G. T., Fernandez, D. P., Rey, K. A., Hale, C. A., Bickmore, B.

971 R., Nelson, S. T., and Munroe, J. S.: Trace element chemistry of atmospheric deposition along

972 the Wasatch Front (Utah, USA) reflects regional playa dust and local urban aerosols, Chemical

973 Geology, 530, 10.1016/j.chemgeo.2019.119317, 2019.

974 Hammond, D. M., Dvonch, J. T., Keeler, G. J., Parker, E. A., Kamal, A. S., Barres, J. A., 975 Yip, F. Y., and Brakefield-Caldwell, W.: Sources of ambient fine particulate matter at two 976 community Detroit, Michigan, Atmos. Environ., 42, 720-732, sites in 977 10.1016/j.atmosenv.2007.09.065, 2008.

978 Hertel, O., Skjoth, C. A., Reis, S., Bleeker, A., Harrison, R. M., Cape, J. N., Fowler, D.,

979 Skiba, U., Simpson, D., Jickells, T., Kulmala, M., Gyldenkaerne, S., Sorensen, L. L., Erisman,

J. W., and Sutton, M. A.: Governing processes for reactive nitrogen compounds in the European
atmosphere, Biogeosciences, 9, 4921-4954, 10.5194/bg-9-4921-2012, 2012.

982 Hilario, M. R. A., Cruz, M. T., Cambaliza, M. O. L., Reid, J. S., Xian, P., Simpas, J. B.,

983 Lagrosas, N. D., Uy, S. N. Y., Cliff, S., and Zhao, Y. J.: Investigating size-segregated sources

984 of elemental composition of particulate matter in the South China Sea during the 2011 Vasco

cruise, Atmospheric Chemistry And Physics, 20, 1255-1276, 10.5194/acp-20-1255-2020, 2020.
Hsu, S.-C., Lee, C. S. L., Huh, C.-A., Shaheen, R., Lin, F.-J., Liu, S. C., Liang, M.-C., and
Tao, J.: Ammonium deficiency caused by heterogeneous reactions during a super Asian dust
episode, Journal of Geophysical Research: Atmospheres, 119, 6803-6817,

989 10.1002/2013jd021096, 2014.

Huang, K., Fu, J. S., Lin, N.-H., Wang, S.-H., Dong, X., and Wang, G.: Superposition of
Gobi Dust and Southeast Asian Biomass Burning: The Effect of Multisource Long-Range
Transport on Aerosol Optical Properties and Regional Meteorology Modification, Journal of
Geophysical Research: Atmospheres, 124, 9464-9483, <u>https://doi.org/10.1029/2018JD030241</u>,
2019.

- Huang, K., Zhuang, G., Li, J., Wang, Q., Sun, Y., Lin, Y., and Fu, J. S.: Mixing of Asian
  dust with pollution aerosol and the transformation of aerosol components during the dust storm
  over China in spring 2007, Journal of Geophysical Research, 115, 10.1029/2009jd013145,
  2010a.
- Huang, K., Zhuang, G. S., Li, J. A., Wang, Q. Z., Sun, Y. L., Lin, Y. F., and Fu, J. S.: Mixing
  of Asian dust with pollution aerosol and the transformation of aerosol components during the

1001 dust storm over China in spring 2007, J Geophys Res-Atmos, 115, Artn D00k13

1002 10.1029/2009jd013145, 2010b.

Huang, X., Ding, A. J., Gao, J., Zheng, B., Zhou, D. R., Qi, X. M., Tang, R., Wang, J. P.,
 Ren, C. H., Nie, W., Chi, X. G., Xu, Z., Chen, L. D., Li, Y. Y., Che, F., Pang, N. N., Wang, H.

1005 K., Tong, D., Qin, W., Cheng, W., Liu, W. J., Fu, Q. Y., Liu, B. X., Chai, F. H., Davis, S. J.,

Zhang, Q., and He, K. B.: Enhanced secondary pollution offset reduction of primary emissionsduring COVID-19 lockdown in China, Natl Sci Rev, 8, ARTN nwaa137

1008 10.1093/nsr/nwaa137, 2021.

Jeong, G. Y.: Bulk and single-particle mineralogy of Asian dust and a comparison with itssource soils, J Geophys Res-Atmos, 113, Artn D02208

1011 10.1029/2007jd008606, 2008.

1012 Ji, Y., Qin, X. F., Wang, B., Xu, J., Shen, J. D., Chen, J. M., Huang, K., Deng, C. R., Yan,

1013 R. C., Xu, K. E., and Zhang, T.: Counteractive effects of regional transport and emission control

1014 on the formation of fine particles: a case study during the Hangzhou G20 summit, Atmos Chem
1015 Phys, 18, 13581-13600, 10.5194/acp-18-13581-2018, 2018.

Jiang, Y., Zhuang, G., Wang, Q., Huang, K., Deng, C., Yu, G., Xu, C., Fu, Q., Lin, Y., Fu,
J. S., Li, M., and Zhou, Z.: Impact of mixed anthropogenic and natural emissions on air quality
and eco-environment—the major water-soluble components in aerosols from northwest to
offshore isle, Air Quality, Atmosphere & Health, 11, 521-534, 10.1007/s11869-018-0557-5,
2018.

Laskin, A., Wietsma, T. W., Krueger, B. J., and Grassian, V. H.: Heterogeneous chemistry
of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, and
ICP-MS study, J Geophys Res-Atmos, 110, Artn D10208

1024 10.1029/2004jd005206, 2005.

Li, T., Wang, Y., Zhou, J., Wang, T., Ding, A. J., Nie, W., Xue, L. K., Wang, X. F., and
Wang, W. X.: Evolution of trace elements in the planetary boundary layer in southern China:
Effects of dust storms and aerosol-cloud interactions, J Geophys Res-Atmos, 122, 3492-3506,
10.1002/2016jd025541, 2017.

- Liang, Y., Liu, Y., Wang, H., Li, L., Duan, Y., and Lu, K.: Regional characteristics of
  ground-level ozone in Shanghai based on PCA analysis, Acta Scientiae Circumstantiae, 38,
  3807-3815, 2018.
- Liu, H., Liu, S., Xue, B., Lv, Z., Meng, Z., Yang, X., Xue, T., Yu, Q., and He, K.: Groundlevel ozone pollution and its health impacts in China, Atmospheric Environment, 173, 223-230,
  https://doi.org/10.1016/j.atmosenv.2017.11.014, 2018.
- Liu, J., Ding, J., Rexiding, M., Li, X., Zhang, J., Ran, S., Bao, Q., and Ge, X.:
  Characteristics of dust aerosols and identification of dust sources in Xinjiang, China,
  Atmospheric Environment, 262, 118651, <u>https://doi.org/10.1016/j.atmosenv.2021.118651</u>,
  2021.
- 1039 Liu, Y. C., Zhan, J. L., Zheng, F. X., Song, B. Y., Zhang, Y. S., Ma, W., Hua, C. J., Xie, J.
- 1040 L., Bao, X. L., Yan, C., Bianchi, F., Petaja, T., Ding, A. J., Song, Y., He, H., and Kulmala, M.:
- 1041 Dust emission reduction enhanced gas-to-particle conversion of ammonia in the North China

- 1042 Plain, Nat Commun, 13, ARTN 6887
- 1043 10.1038/s41467-022-34733-4, 2022.
- 1044Ma, S. Q., Zhang, X. L., Gao, C., Tong, Q. S., Xiu, A. J., Zhao, H. M., and Zhang, S. C.:1045Simulating Performance of CHIMERE on a Late Autumnal Dust Storm over Northern China,
- 1046 Sustainability-Basel, 11, ARTN 1074
- 1047 10.3390/su11041074, 2019.

Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and
seasonal trends in particle concentration and optical extinction in the United States, Journal of
Geophysical Research: Atmospheres, 99, 1347-1370, <u>https://doi.org/10.1029/93JD02916</u>, 1994.
Mentel, T. F., Bleilebens, D., and Wahner, A.: A study of nighttime nitrogen oxide
oxidation in a large reaction chamber—the fate of NO2, N2O5, HNO3, and O3 at different
humidities, Atmospheric Environment, 30, 4007-4020, <u>https://doi.org/10.1016/1352-</u>
2310(96)00117-3, 1996.

- Nagashima, K., Suzuki, Y., Irino, T., Nakagawa, T., Tada, R., Hara, Y., Yamada, K., and
  Kurosaki, Y.: Asian dust transport during the last century recorded in Lake Suigetsu sediments,
  Geophysical Research Letters, 43, 2835-2842, <u>https://doi.org/10.1002/2015GL067589</u>, 2016.
- 1058 Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium
  1059 model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123-152,
  1060 10.1023/a:1009604003981, 1998.
- 1061Patel, A. and Rastogi, N.: Chemical Composition and Oxidative Potential of Atmospheric1062PM10overtheArabianSea,ACSEarthSpaceChem.,4,112-121,106310.1021/acsearthspacechem.9b00285, 2020.
- Perez, N., Pey, J., Reche, C., Cortes, J., Alastuey, A., and Querol, X.: Impact of harbour
  emissions on ambient PM10 and PM2.5 in Barcelona (Spain): Evidences of secondary aerosol
  formation within the urban area, Science Of the Total Environment, 571, 237-250,
  10.1016/j.scitotenv.2016.07.025, 2016.
- Petetin, H., Sciare, J., Bressi, M., Gros, V., Rosso, A., Sanchez, O., Sarda-Estève, R., Petit,
  J. E., and Beekmann, M.: Assessing the ammonium nitrate formation regime in the Paris
  megacity and its representation in the CHIMERE model, Atmos. Chem. Phys., 16, 1041910440, 10.5194/acp-16-10419-2016, 2016.
- Shen, L., Zhao, C., Ma, Z., Li, Z., Li, J., and Wang, K.: Observed decrease of summer sealand breeze in Shanghai from 1994 to 2014 and its association with urbanization, Atmospheric
  Research, 227, 198-209, https://doi.org/10.1016/j.atmosres.2019.05.007, 2019.
- Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., and McElroy, M.
  B.: Fine-particle pH for Beijing winter haze as inferred from different thermodynamic
- 1077 equilibrium models, Atmos. Chem. Phys., 18, 7423-7438, 10.5194/acp-18-7423-2018, 2018.

Su, L., Yuan, Z., Fung, J. C. H., and Lau, A. K. H.: A comparison of HYSPLIT backward
trajectories generated from two GDAS datasets, Science of The Total Environment, 506-507,
527-537, https://doi.org/10.1016/j.scitotenv.2014.11.072, 2015.

1081 Sun, P., Nie, W., Wang, T., Chi, X., Huang, X., Xu, Z., Zhu, C., Wang, L., Qi, X., Zhang,

1082 Q., and Ding, A.: Impact of air transport and secondary formation on haze pollution in the

Yangtze River Delta: In situ online observations in Shanghai and Nanjing, Atmospheric
 Environment, 225, 117350, https://doi.org/10.1016/j.atmosenv.2020.117350, 2020.

Tang, M., Cziczo, D. J., and Grassian, V. H.: Interactions of Water with Mineral Dust
Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation,
Chemical Reviews, 116, 4205-4259, 10.1021/acs.chemrev.5b00529, 2016.

1088 Tang, M. J., Huang, X., Lu, K. D., Ge, M. F., Li, Y. J., Cheng, P., Zhu, T., Ding, A. J.,

1089 Zhang, Y. H., Gligorovski, S., Song, W., Ding, X., Bi, X. H., and Wang, X. M.: Heterogeneous

reactions of mineral dust aerosol: implications for tropospheric oxidation capacity, Atmos
Chem Phys, 17, 11727-11777, 10.5194/acp-17-11727-2017, 2017.

1092Tian, R., Ma, X., Sha, T., Pan, X., and Wang, Z.: Exploring dust heterogeneous chemistry1093over China: Insights from field observation and GEOS-Chem simulation, Science of The Total

1094 Environment, 798, 149307, <u>https://doi.org/10.1016/j.scitotenv.2021.149307</u>, 2021.

1095 Vicars, W. C. and Sickman, J. O.: Mineral dust transport to the Sierra Nevada, California:
1096 Loading rates and potential source areas, Journal of Geophysical Research, 116,
1097 10.1029/2010jg001394, 2011.

1098Wang, G., Chen, J., Xu, J., Yun, L., Zhang, M., Li, H., Qin, X., Deng, C., Zheng, H., Gui,1099H., Liu, J., and Huang, K.: Atmospheric processing at the sea-land interface over the South1100China Sea: secondary aerosol formation, aerosol acidity, and role of sea salts, Journal of1101GeophysicalResearch:Atmospheres,n/a,e2021JD036255,1102https://doi.org/10.1029/2021JD036255,

1103 Wang, G. C., Chen, J., Xu, J., Yun, L., Zhang, M. D., Li, H., Qin, X. F., Deng, C. R., Zheng,

1104 H. T., Gui, H. Q., Liu, J. G., and Huang, K.: Atmospheric Processing at the Sea-Land Interface

1105 Over the South China Sea: Secondary Aerosol Formation, Aerosol Acidity, and Role of Sea

1106 Salts, J. Geophys. Res.-Atmos., 127, 10.1029/2021jd036255, 2022a.

Wang, G. H., Cheng, C. L., Huang, Y., Tao, J., Ren, Y. Q., Wu, F., Meng, J. J., Li, J. J.,
Cheng, Y. T., Cao, J. J., Liu, S. X., Zhang, T., Zhang, R., and Chen, Y. B.: Evolution of aerosol
chemistry in Xi'an, inland China, during the dust storm period of 2013-Part 1: Sources,
chemical forms and formation mechanisms of nitrate and sulfate, Atmospheric Chemistry And

1111 Physics, 14, 11571-11585, 10.5194/acp-14-11571-2014, 2014.

Wang, H. C. and Lu, K. D.: Determination and Parameterization of the HeterogeneousUptake Coefficient of Dinitrogen Pentoxide (N2O5), Prog Chem, 28, 917-933,

1114 10.7536/Pc151225, 2016.

Wang, J. J., Zhang, M. G., Bai, X. L., Tan, H. J., Li, S., Liu, J. P., Zhang, R., Wolters, M.
A., Qin, X. Y., Zhang, M. M., Lin, H. M., Li, Y. N., Li, J., and Chen, L. Q.: Large-scale transport
of PM2.5 in the lower troposphere during winter cold surges in China, Sci Rep, 7, 10,
10.1038/s41598-017-13217-2, 2017.

1119Wang, L., Du, H., Chen, J., Zhang, M., Huang, X., Tan, H., Kong, L., and Geng, F.:1120Consecutive transport of anthropogenic air masses and dust storm plume: Two case events at1121Shanghai,China,AtmosphericResearch,127,1122https://doi.org/10.1016/j.atmosres.2013.02.011, 2013.

Wang, N., Zheng, P., Wang, R., Wei, B., An, Z., Li, M., Xie, J., Wang, Z., Wang, H., and
He, M.: Homogeneous and heterogeneous atmospheric ozonolysis of acrylonitrile on the
mineral dust aerosols surface, Journal of Environmental Chemical Engineering, 9, 106654,
https://doi.org/10.1016/j.jece.2021.106654, 2021.

1127 Wang, Q., Wang, X., Huang, R., Wu, J., Xiao, Y., Hu, M., Fu, Q., Duan, Y., and Chen, J.-

1128 M.: Regional Transport of PM 2.5 and O 3 Based on Complex Network Method and Chemical

1129 Transport Model in the Yangtze River Delta, China, Journal of Geophysical Research:1130 Atmospheres, 127, 10.1029/2021JD034807, 2022b.

Wang, Z., Pan, X. L., Uno, I., Chen, X. S., Yamamoto, S., Zheng, H. T., Li, J., and Wang,
Z. F.: Importance of mineral dust and anthropogenic pollutants mixing during a long-lasting
high PM event over East Asia, Environ. Pollut., 234, 368-378, 10.1016/j.envpol.2017.11.068,
2018.

Wang, Z. L., Huang, X., Wang, N., Xu, J. W., and Ding, A. J.: Aerosol-Radiation
Interactions of Dust Storm Deteriorate Particle and Ozone Pollution in East China, J Geophys
Res-Atmos, 125, ARTN e2020JD033601

1138 10.1029/2020JD033601, 2020.

West, J. J., Ansari, A. S., and Pandis, S. N.: Marginal PM25: Nonlinear Aerosol Mass
Response to Sulfate Reductions in the Eastern United States, Journal of the Air & Waste
Management Association, 49, 1415-1424, 10.1080/10473289.1999.10463973, 1999.

- Wu, C., Zhang, S., Wang, G., Lv, S., Li, D., Liu, L., Li, J., Liu, S., Du, W., Meng, J., Qiao,
  L., Zhou, M., Huang, C., and Wang, H.: Efficient Heterogeneous Formation of Ammonium
  Nitrate on the Saline Mineral Particle Surface in the Atmosphere of East Asia during Dust Storm
  Periods, Environmental Science & Technology, 54, 15622-15630, 10.1021/acs.est.0c04544,
- 1146 2020.

Wu, F., Cheng, Y., Hu, T. F., Song, N., Zhang, F., Shi, Z. B., Ho, S. S. H., Cao, J. J., and
Zhang, D. Z.: Saltation-Sandblasting Processes Driving Enrichment of Water- Soluble Salts in

1149 Mineral Dust, Environ Sci Tech Let, 9, 921-928, 10.1021/acs.estlett.2c00652, 2022.

Xie, S. D., Yu, T., Zhang, Y. H., Zeng, L. M., Qi, L., and Tang, X. Y.: Characteristics of
PM10, SO2, NO, and O-3 in ambient air during the dust storm period in Beijing, Sci Total
Environ, 345, 153-164, 10.1016/j.scitotenv.2004.10.013, 2005.

1153 Xu, J., Chen, J., Zhao, N., Wang, G. C., Yu, G. Y., Li, H., Huo, J. T., Lin, Y. F., Fu, Q. Y.,

Guo, H. Y., Deng, C. R., Lee, S. H., Chen, J. M., and Huang, K.: Importance of gas-particle
partitioning of ammonia in haze formation in the rural agricultural environment, Atmospheric
Chemistry and Physics, 20, 7259-7269, 10.5194/acp-20-7259-2020, 2020.

Xu, P., Zhang, J. K., Ji, D. S., Liu, Z. R., Tang, G. Q., Hu, B., Jiang, C. S., and Wang, Y.
S.: Evaluating the Effects of Springtime Dust Storms over Beijing and the Associated
Characteristics of Sub-Micron Aerosol, Aerosol Air Qual Res, 17, 680-692,
10.4209/aaqr.2016.05.0195, 2017.

Yang, Y., Wang, Z. L., Lou, S. J., Xue, L., Lu, J. P., Wang, H. Y., Wang, J. D., Ding, A. J.,
and Huang, X.: Strong ozone intrusions associated with super dust storms in East Asia, Atmos
Environ, 290, ARTN 119355

1164 10.1016/j.atmosenv.2022.119355, 2022.

Yu, S. C., Dennis, R., Roselle, S., Nenes, A., Walker, J., Eder, B., Schere, K., Swall, J., and
Robarge, W.: An assessment of the ability of three-dimensional air quality models with current
thermodynamic equilibrium models to predict aerosol NO3, J. Geophys. Res.-Atmos., 110,
10.1029/2004jd004718, 2005.

Zhang, D., Iwasaka, Y., Shi, G., Zang, J., Hu, M., and Li, C.: Separated status of the natural dust plume and polluted air masses in an Asian dust storm event at coastal areas of China, Journal of Geophysical Research (Atmospheres), 110, D06302, 10.1029/2004jd005305, 2005.
Zhang, S. P., Xing, J., Sarwar, G., Ge, Y. L., He, H., Duan, F. K., Zhao, Y., He, K. B., Zhu,

L. D., and Chu, B. W.: Parameterization of heterogeneous reaction of SO2 to sulfate on dust
with coexistence of NH3 and NO2 under different humidity conditions, Atmos Environ, 208,
133-140, 10.1016/j.atmosenv.2019.04.004, 2019.

Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L., and Zhou, Q. Q.: What is the real role of
iron oxides in the optical properties of dust aerosols?, Atmos Chem Phys, 15, 12159-12177,
10.5194/acp-15-12159-2015, 2015.

Zhao, D., Xin, J., Wang, W., Jia, D., Wang, Z., Xiao, H., Liu, C., Zhou, J., Tong, L., Ma,
Y., Wen, T.-X., Wu, F.-K., and Wang, L.: Effects of the sea-land breeze on coastal ozone
pollution in the Yangtze River Delta, Science of The Total Environment, 807,
10.1016/j.scitotenv.2021.150306, 2021.

Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T.,
Kimoto, T., Chang, D., Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter
haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions,

- 1186 Atmos Chem Phys, 15, 2969-2983, 10.5194/acp-15-2969-2015, 2015.
- 1187 Zheng, Y., Zhao, T., Che, H., Liu, Y., Han, Y., Liu, C., Xiong, J., Liu, J., and Zhou, Y.: A
- 1188 20-year simulated climatology of global dust aerosol deposition, Science of The Total
- 1189 Environment, 557-558, 861-868, <u>https://doi.org/10.1016/j.scitotenv.2016.03.086</u>, 2016.
- 1190