

1 A global function of climatic aridity accounts for soil moisture stress on carbon 2 assimilation 3 Giulia Mengoli¹, Sandy P. Harrison^{2,3}, I. Colin Prentice^{1,3} 4 5 6 1: Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial 7 College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK 8 9 2: Department of Geography and Environmental Science, School of Archaeology, Geography 10 and Environmental Science (SAGES), University of Reading, Reading, RG6 6AH, UK 11 3: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth 12 System Science, Tsinghua University, Beijing 100084, China 13 14

Correspondence to: Giulia Mengoli (gmengoli@ic.ac.uk)

- 15 16
- 17

18 Abstract

19

20 The coupling between carbon uptake and water loss through stomata implies that gross primary production (GPP) can be limited by soil water availability through reduced leaf area and/or 21 22 reduced stomatal conductance. Vegetation and land-surface models typically assume that GPP 23 is highest under well-watered conditions and apply a stress function to reduce GPP with 24 declining soil moisture below a critical threshold, which may be universal or prescribed by 25 vegetation type. It is unclear how well current schemes represent the water conservation 26 strategies of plants in different climates. Here eddy-covariance flux data are used to investigate 27 empirically how soil moisture influences the light-use efficiency (LUE) of GPP. Well-watered 28 GPP is estimated using the P model, a first-principles LUE model driven by atmospheric data 29 and remotely sensed green vegetation cover. Breakpoint regression is used to relate the daily 30 value of the ratio $\beta(\theta)$ (flux-derived GPP/modelled well-watered GPP) to soil moisture, which 31 is estimated using a generic water-balance model. Maximum LUE, even during wetter periods, 32 is shown to decline with increasing climatic aridity index (AI). The critical soil-moisture 33 threshold also declines with AI. Moreover, for any AI, there is a value of soil moisture at which 34 $\beta(\theta)$ is maximized, and this value declines with increasing AI. Thus, ecosystems adapted to 35 seasonally dry conditions use water more conservatively (relative to well-watered ecosystems) 36 when soil moisture is high, but maintain higher GPP when soil moisture is low. An empirical 37 non-linear function of AI expressing these relationships is derived by non-linear regression, 38 and used to generate a $\beta(\theta)$ function that provides a multiplier for well-watered GPP as 39 simulated by the P model. Substantially improved GPP simulation is shown during both 40 unstressed and water-stressed conditions, compared to the reference model version that ignores 41 soil-moisture stress, and to an earlier formulation in which maximum LUE was not reduced. 42 This scheme may provide a step towards better-founded representations of carbon-water cycle 43 coupling in vegetation and land-surface models.

44 45

46 **1** Introduction

47

48 The tight coupling between carbon uptake and water loss via stomata (Cowan and Farquhar, 49 1977; Manzoni et al., 2011) implies that gross primary production (GPP) can be limited by

water availability through reduced vegetation cover and leaf area index, reduced stomatal conductance, or both. The reduction in evapotranspiration under water stress causes increased sensible heat flux, warming the atmosphere above the canopy, which in turn causes a further reduction in transpiration and plant carbon uptake (Seneviratne et al., 2010; Gentine et al., 2016; Grossiord et al., 2020). Thus, an understanding of how water stress impacts plant function is critical for predicting both the carbon cycle and climate implications of increasing drought (Gentine et al., 2019).

57

58 A GPP model based on eco-evolutionary optimality (EEO) theory, the P model (Wang et al., 59 2017; Cai and Prentice, 2020; Stocker et al., 2020), captures the trade-off between CO₂ uptake 60 and water loss. It produces realistic estimates of the seasonal and diurnal cycles of GPP under 61 well-watered conditions as well as or better than more complex models, despite having far fewer parameters (Stocker et al., 2020; Harrison et al., 2021; Mengoli et al., 2022). However, 62 63 it overestimates GPP in seasonally dry environments because although it accounts for the effect 64 of atmospheric dryness in reducing stomatal conductance, it does not account for any additional 65 impact of soil-moisture stress. Previous application of an empirical stress function to reduce 66 GPP from well-watered values under dry soil conditions (Stocker et al., 2020) produced only 67 a modest improvement in simulated GPP. Given the potential for EEO-based models to provide 68 robust representations of vegetation and land-surface exchanges with the atmosphere (Franklin 69 et al., 2020; Harrison et al., 2021; Mengoli et al., 2022), it is important to develop a well-70 founded approach to implement soil moisture stress in an EEO context.

71 Most vegetation and land-surface models assume that GPP at any location is maximal under 72 well-watered conditions (Bonan, 2019) and apply a stress function to reduce GPP as a function 73 of declining soil moisture when a critical threshold of soil water availability is reached. This 74 threshold may be universal, or prescribed by vegetation type (e.g. Best et al., 2011; Bousetta 75 et al, 2013; Oleson et al., 2013). However, in an analysis of the influence of soil moisture 76 stress on the evaporative fraction (EF, the fraction of available energy used for 77 evapotranspiration, of which transpiration is usually the largest component), Fu et al. (2021) 78 showed that the critical soil moisture threshold at which EF is reduced varies across biomes 79 and climates. Fu et al. (2022) further showed that climatic aridity controls both this threshold 80 (which occurs at lower soil moisture in drier climates) and the maximum EF under well-81 watered conditions, with vegetation in more arid climates using water more sparingly when 82 soil moisture is high, but continuing to extract water at a similar rate down to a lower threshold 83 value of soil moisture. Comparing grasslands and (dry) savannas, they also showed that the 84 EF response of grasslands yields higher annual GPP than if the same ecosystems adopted the 85 EF response of savannas, and vice versa. These findings are consistent with a shift from 86 isohydric to anisohydric stomatal regulation with increasing climatic aridity (McDowell, 2011; 87 Kumagai and Porporato, 2012; Konings and Gentine, 2017), and with the idea that stomatal 88 strategies might have the effect of maximizing carbon assimilation over the annual cycle.

89 In this paper, we analyse daily GPP derived from 67 eddy-covariance flux towers representing 90 a wide range of hydroclimates. We fit breakpoint regressions to account for the impact of soil 91 moisture (θ) on light use efficiency (LUE), expressed as the ratio $\beta(\theta)$ of flux-derived GPP to 92 GPP as predicted by the P model for well-watered conditions. We analyse fitted values of both 93 the maximum $\beta(\theta)$ and the critical threshold of θ as non-linear functions of the climatic aridity 94 index (AI), defined as the ratio of annual potential evapotranspiration (PET) to annual 95 precipitation. These relationships are used to generate a family of $\beta(\theta)$ functions, dependent on 96 AI, which can serve as multipliers of the modelled, well-watered GPP. The performance of the

97 resulting model is compared with that of the uncorrected P model, and with a version that98 applies the soil-moisture stress function previously developed by Stocker et al. (2020).

99 100

101 2 Methods

102 103 *2.1 The P model*

104 The P model is a LUE model based on eco-evolutionary optimality theory for the trade-off 105 between carbon uptake and water loss (Prentice et al., 2014) and the acclimation and/or 106 adaptation of leaf-level photosynthesis to environmental conditions (Wang et al., 2017). The 107 model is driven by air temperature, vapour pressure deficit (VPD), incident photosynthetic 108 photon flux density (PPFD), the fraction of incident PPFD absorbed by leaves (fAPAR), 109 elevation (to calculate atmospheric pressure) and the ambient partial pressure of carbon dioxide 110 (c_a) . The model distinguishes C_3 and C_4 photosynthesis but does not require specification or 111 parameterization of any further plant functional types. When driven by satellite-derived 112 fAPAR, it reproduces the seasonal cycle and interannual variability in GPP at flux sites from a range of natural vegetation types as well as geographic variation in GPP (Wang et al., 2014; 113 114 Balzarolo et al., 2019; Stocker et al., 2020) and temporal trends in GPP at flux sites (Cai & 115 Prentice, 2020). The P model was modified by Mengoli et al. (2022) in order to simulate diurnal 116 cycles, separating the instantaneous responses of GPP (with photosynthetic parameters fixed 117 over the diurnal cycle) from the acclimation responses of those parameters on a time scale of 118 around two weeks. This modified model is used here to simulate daily GPP, as the daily sum 119 of GPP computed on half-hourly timesteps.

120 Given the known tendency of the P model to overestimate GPP under dry conditions, the FULL 121 configuration of the current standard P model Pv1.0 (Stocker et al., 2020) includes an empirical 122 water stress function (also based on eddy-covariance flux data) that approaches 1 at a threshold 123 value of θ (θ^*), where θ is plant-available water expressed as a fraction of soil water-holding 124 capacity, and θ^* is set to 0.6. The function declines more steeply with decreasing θ in drier 125 climates, with climatic moisture quantified by an estimate of the ratio (α) of actual 126 evapotranspiration (AET) to potential evapotranspiration (PET). This function is used in Pv1.0 127 (FULL) as a multiplier of the modelled, well-watered GPP.

128 2.2 Flux tower data

129 GPP and meteorological data at 67 flux tower sites (Supplementary Table 1) were obtained 130 from the FLUXNET2015 data set (Pastorello et al., 2020). We used GPP based on the daytime 131 partitioning method (Lasslop et al., 2010; Pastorello et al., 2020). FLUXNET2015 provides the 132 meteorological variables required to run the P model, including air temperature, VPD and 133 PPFD on a half-hourly timestep. However, it does not provide fAPAR. We obtained fAPAR at 134 each site from the data set produced by Stocker et al. (2020) from the MODIS MCD15A3H 135 Collection 6 data set (Myneni et al., 2015). The original data set has a spatial resolution of 500 136 m and a temporal resolution of four days. Stocker et al. (2020) filtered these data to remove 137 points where clouds were present and derived daily data by linear interpolation. We used a subset of the sites from Stocker et al. (2020), chosen to cover the full range of aridity with no 138 139 major gaps. Meteorological data and MODIS data were not available for some sites/years, so 140 analyses and simulations were based on different years at different sites (Supplementary Table 141 1). We only used the half-hourly records from each of the selected sites where the quality 142 control flags indicated that the observations were "good".

143 2.3 Calculation of the GPP reduction factor

144 We calculated the ratio $\beta(\theta)$ between flux-derived and modelled, well-watered GPP at each site 145 and day. Our approach differs from that of Stocker et al. (2020) in three key respects. First, our 146 fitted stress function is allowed to take values < 1 under well-watered conditions. We thus 147 allow for the possibility that ecosystems adapted to arid climates use water more conservatively 148 even when soil moisture is abundant. Second, in order to ensure consistency of the soil moisture 149 calculation across sites, we calculate daily soil moisture using the Simple Process-led 150 Algorithms for Simulating Habitats (SPLASH) model (version 1: Davis et al., 2017) with 151 simulated soil moisture converted to relative soil water content (θ) by dividing by the generic 152 bucket size in SPLASH (150 mm). Third, we use AI (the ratio of PET to annual precipitation) 153 rather than α as a climatological index, because of its wider use in the literature and because 154 its calculation is independent of the SPLASH model's estimation of AET.

155 2.4 Breakpoint regression analysis

156

157 We used breakpoint regression (Toms and Lesperance, 2003) to estimate the maximum level of the $\beta(\theta)$ ratio under well-watered conditions, and the critical threshold below which the ratio 158 159 declines linearly towards the wilting point, at each site. Before this analysis, we removed values of flux-derived GPP below the 5th percentile (which gave highly variable $\beta(\theta)$ ratios) and 160 observations with greater than the 99th percentile of θ , which would otherwise have dominated 161 162 the regression at many well-watered sites. Preliminary analyses showed that the intercept was 163 generally close to zero and that imposing the constraint $\beta(0) = 0$ had little effect at the great 164 majority of sites (Supplementary Figure 1). We therefore imposed this constraint resulting in a 165 regression model with just two parameters, the maximum level of $\beta(\theta)$ (y) and the critical 166 threshold of θ (ψ):

167
$$\beta(\theta) = \min[y, (y/\psi) \times \theta]$$

(1)

168 The non-parametric Kruskal-Wallace test was used to determine whether there were significant169 differences in fitted parameter values among aridity classes.

170

171 2.5 Calculation of the aridity index

172

173 The length of the meteorological records in FLUXNET2015 is too short to calculate a 174 climatological index at most sites. We therefore derived AI using climate data for a 20-year 175 period (2001-2020) from the CRU TS 4.06 gridded climate data set (Harris et al., 2020). We 176 obtained precipitation data directly from the CRU data set and calculated PET using 177 temperature, precipitation and cloud cover from this data set as inputs to SPLASH version 1 178 (Davis et al., 2017). Of the 67 selected sites, nine were classed as arid (AI > 5), 22 as semi-arid 179 (2 < AI < 5) and 36 as humid (AI < 2) (Table 1, Supplementary Table 1). We removed two 180 sites classified as arid (AU-Lox, AI = 6.32, and US-Wkg, AI = 6.34) and one classified as 181 semi-arid (AU-RDF, AI = 2.16), either because they were irrigated crops (AU-Lox, AU-RDF) 182 or because the presence of extensive wetlands indicate that they were groundwater-fed (US-183 Wkg). The derivation of the stress function was thus eventually based on analysis of 64 sites. 184

(3)

185 2.6 Dependencies of parameters on aridity

- 186 The breakpoint regression yielded values of two parameters (y, ψ) for each of the 64 sites. We 187 fitted relationships for each parameter as functions of site AI using non-linear regression. Both
- 188 parameters were fitted with a power function:

189 parameter = min
$$[a.AI^b, 1]$$
 (2)

- 190 where *b* is expected to be negative. This function is bounded above in order to avoid potential 191 values > 1 in extremely wet sites, although none were present in the data set.
- 192 2.7 Application
- 193

194 Equations (1) and (2) determine a unique $\beta(\theta)$ function for each value of AI. This function was 195 applied as a multiplier of modelled GPP:

196
$$GPP_{new} = GPP_{ww} \times \beta(\theta)$$

197 where GPP_{new} is the revised, soil-moisture corrected GPP, GPP_{ww} is the GPP simulated by the 198 P model without soil-moisture correction, and $\beta(\theta)$ is given by equation (1) with parameter 199 values derived from equation (2) as a function of site AI. We compared the predictions of GPP 200 obtained using this new soil-moisture stress function to the uncorrected GPP, and with 201 predictions obtained using the implementation of soil-moisture stress in Pv1.0 at all of the flux-202 tower sites, with meteorological data provided for the site in the FLUXNET2015 data set and 203 fAPAR data from Stocker et al. (2020). The goodness-of-fit between modelled and flux-204 derived GPP at each site was quantified by the root mean squared error (RMSE).

205

206 3 Results

207 The response of LUE to water stress could be described by equation (1) (Figure 1, 208 Supplementary Figure 2). Both the maximum assimilation level and the critical threshold at 209 which soil moisture stress starts to impact LUE were found to vary with aridity. The maximum 210 assimilation level under well-watered conditions becomes progressively lower from humid 211 through semi-arid to arid sites (Figure 2). The difference between humid, semi-arid and arid 212 sites is significant. The critical threshold is also reduced, such that water stress sets in at higher 213 soil moisture in humid sites than in semi-arid or arid sites (Figure 2). This difference is also 214 significant. Moreover, the slope of the stress function below the critical threshold becomes 215 progressively steeper with increasing aridity. Thus, plants growing in more arid environments 216 have a lower maximum LUE overall, but sustain this level under drier soil conditions (Figure 217 3). These relationships were also evident when the intercept was not constrained to zero 218 (Supplementary Figure 3).

Figure 1. Examples of the fitted maximum $\beta(\theta)$ ratio (the ratio of actual flux-derived to modelled well-watered gross primary production) and its response to relative soil moisture below the critical threshold (green line) for three sites representing the range of climatological aridity levels. The $\beta(\theta)$ ratio and relative soil water content are both unitless. Note that the scale above 1 has been compressed for visualization purposes. Plots for all the sites used in the analysis are given in Supplementary Figure 2.

229 230

Figure 2. Box-plot comparison of the fitted maximum $\beta(\theta)$ ratio (the ratio of actual fluxderived to modelled well-watered gross primary production) (above) and the critical threshold value of soil moisture (below) under arid, semi-arid and humid conditions. Arid sites have AI > 5, semi-arid sites have AI between 2 and 5, and humid sites have AI < 2. The black line is the median, the box is the interquartile range and the whiskers show the range, with outliers shown as asterisks. Letters indicate whether the sets of values are significantly different based on the Kruskal-Wallace test.

239 240

Figure 3. Values of the fitted maximum $\beta(\theta)$ ratio (the ratio of actual flux-derived to modelled well-watered gross primary production) and the critical threshold value of soil moisture against the climatic aridity index (AI), showing non-linear regressions of both parameters against AI.

245

Both model parameters showed non-linear relationships with AI that could be fitted using equation (2) (Figure 4). Although there were some outliers, these do not seem to be related to either vegetation type (Supplementary Figure 4) or the seasonal concentration of precipitation (Supplementary Figure 5). The derived equations for the maximum $\beta(\theta)$ level (y) and the critical threshold of $\theta(\psi)$ are as follows:

251
$$y = \min [0.62 \text{ AI}^{-0.45}, 1]$$
 (4)
252
253 and
254
255 $\psi = \min [0.34 \text{ AI}^{-0.60}, 1]$ (5)
256
257

258

Figure 4. Predicted $\beta(\theta)$ ratio (the ratio of actual flux-derived to modelled well-watered gross primary production) functions based on the regressions shown in Figure 3, for different levels of the aridity index (AI).

262 263

263

265 Implementation of the new soil-moisture stress function produced a substantial improvement 266 in model performance compared to simulations with no soil-moisture stress function (Figure 5, Supplementary Figures 6-8). At arid sites, simulations that did not account for soil-water 267 stress overestimated maximum GPP by 2 to 8 g C m² d⁻¹. (The only exception to this was AU-268 269 Lox where the P model predictions that did not account for soil-water stress accurately matched 270 the observed magnitude of GPP; see Supplementary Figure 4. This site is an irrigated orchard.) 271 Model performance also generally improved at semi-arid and even humid sites (Figure 5; 272 Supplementary Figure 8). The RMSE values (Table 1) for arid sites ranged from 0.51 to 1.46 gC m² d⁻¹, compared to 2.07 to 4.01 gC m² d⁻¹ when no stress function was applied. All of the 273 274 arid sites showed a reduction in RMSE. The RMSE for semi-arid sites ranged from 0.46 to 5.0 gC m² d⁻¹, compared to 1.63 to 5.6 gC m² d⁻¹ when no stress function was applied. All but four 275 of the 22 semi-arid sites showed a reduction in RMSE. The RMSE for humid sites ranged from 276 1.05 to 5.23 gC m² d⁻¹, compared to 1.75 to 13.08 gC m² d⁻¹ when no stress function was 277 278 applied. All but five of the 36 humid sites showed a reduction in RMSE.

281 Figure 5. Examples of how the new soil-moisture stress function modifies simulated gross 282 primary production (GPPnew) at nine sites representing the range of climatological aridity. The 283 new model is compared to the simulated level of GPP under well-watered conditions (GPP_{ww}), 284 and to flux-derived values (GPPobs). Note that the scale varies between the rows. Plots for all 285 the flux tower sites are given in Supplementary Figures 6-8.

286	Table 1: Statistics of P model performance (root mean squared error, RMSE) using the new
287	soil moisture stress function (new) and the previous stress function (Pv1.0) from Stocker et al.
288	(2020), compared to P model performance with no soil moisture correction (ww). The sites are

(2020), compared to P model performance with no soil moisture correction (ww). The sites are grouped by aridity index (AI) classes (see also Supplementary Table 1). 289

Site ID	AI	AI class	RMSE (ww)	RMSE (new)	RMSE (v1.0)
AU-TTE	7.17	arid	2.07	0.51	0.94
AU-ASM	6.97	arid	2.47	0.96	1.02
AU-Cpr	6.36	arid	2.83	0.77	0.87
US-Wkg	6.34	not used	3.93	0.9	1.86
AU-Lox	6.32	not used	2.15	7.03	5.79
US-Whs	5.89	arid	3.4	0.93	1.68
AU-GWW	5.75	arid	2.57	0.53	1.1
US-SRG	5.08	arid	4.01	1.46	2.25
US-SRM	5.02	arid	2.82	1.04	1.45
US-Cop	3.99	semiarid	1.89	0.46	1.05
AU-Ync	3.96	semiarid	2.75	0.67	1.7
ES-Ln2	3.84	semiarid	3.92	0.77	1.71
AU-Stp	3.71	semiarid	2.62	1.33	1.44
AU-Emr	3.08	semiarid	4.39	1.03	2.87
AU-Gin	2.93	semiarid	3.22	1.61	1.71
AR-SLu	2.89	semiarid	2.07	5	2.13
ES-LgS	2.88	semiarid	3.33	0.78	1.69
CN-Du2	2.7	semiarid	4.53	1.47	3.02
ZA-Kru	2.69	semiarid	2.14	3.3	1.82
US-AR2	2.61	semiarid	3.88	1.39	2.59
US-AR1	2.49	semiarid	3.1	1.5	2.15
AU-Whr	2.39	semiarid	3.13	1.41	1.63
CN-HaM	2.34	semiarid	1.63	1.68	1.02
AU-Dry	2.32	semiarid	3.31	1.85	1.63
IT-Noe	2.26	semiarid	4.04	1.61	1.86
US-Ton	2.23	semiarid	4.39	1.4	3.05
US-Var	2.22	semiarid	5.6	1.27	4.01
ZM-Mon	2.18	semiarid	3.11	3.2	1.88
AU-RDF	2.16	not used	4.34	2.3	3.46
US-ARc	2.04	semiarid	3.46	2.54	2.43
US-ARb	2.04	semiarid	4.02	2.91	3.05
AU-DaS	1.81	humid	2.3	2.9	1.56
AU-Rig	1.81	humid	3.91	1.81	3.45
AU-DaP	1.8	humid	3.76	3.21	2.66

AU-Wom	1.75	humid	5.63	2.26	4.25
IT-Cp2	1.73	humid	6.05	2.49	4.1
AU-Wac	1.69	humid	3.79	2.54	2.54
FR-Pue	1.57	humid	5.22	1.56	3.6
AU-Ade	1.55	humid	2.3	3.5	1.88
AU-How	1.46	humid	2.83	3.23	2.01
CA-SF3	1.41	humid	4.38	1.12	3.61
FR-Fon	1.39	humid	3.04	3.39	2.59
IT-Col	1.35	humid	4.95	3.32	3.59
IT-SRo	1.34	humid	4.34	2.75	2.9
AU-Tum	1.34	humid	4.51	3.78	3.76
US-KS2	1.21	humid	13.08	5.23	12.65
CA-Man	1.19	humid	5.38	2.06	4.94
CA-NS4	1.19	humid	4.09	1.48	3.82
DE-Gri	1.18	humid	2.32	2.87	2.07
IT-MBo	1.18	humid	4.51	2.13	4.09
RU-Ha1	1.11	humid	1.75	1.05	1.58
FR-LBr	1.1	humid	3.27	2.18	2.56
US-Wi6	1.08	humid	5.5	2.18	5.46
US-PFa	1.02	humid	4.33	1.91	4.26
AR-Vir	1.02	humid	4.24	2.9	3.87
US-Syv	1.01	humid	4.88	2	4.84
RU-Fyo	0.97	humid	2.92	2.14	2.79
BE-Bra	0.91	humid	3.01	1.32	3
FI-Hyy	0.87	humid	2.96	1.97	2.86
NL-Hor	0.84	humid	3.31	1.73	3.14
CH-Oe1	0.8	humid	3.67	3.94	3.67
DE-RuR	0.78	humid	6.42	2.96	6.4
CZ-BK2	0.78	humid	5.74	3.16	5.73
BR-Sa3	0.78	humid	11.1	5.04	11.03
BE-Vie	0.73	humid	2.54	2.33	2.54
CH-Fru	0.71	humid	7.17	3.85	7.17
IT-Tor	0.63	humid	3.83	2.14	3.83

290

The new soil-moisture stress function also performed substantially better that the stress function used in Pv1.0, reducing the overestimation of peak GPP across arid, semi-arid and humid sites (Figure 6; Supplementary Figures 9-11). The RMSE for arid sites ranged from 0.51 to 1.46 gC m² d⁻¹ compared to 0.87 to 2.25 gC m² d⁻¹ when the Pv1.0 moisture-stress function was applied. All of these sites showed reduced RMSE. The RMSE for semi-arid sites ranged from 0.46 to 5.0 gC m² d⁻¹ compared to 1.02 to 4.01 gC m² d⁻¹ when the Pv1.0 moisture-stress

- 297 function was applied. All but six of these 22 sites showed reduced RMSE. The RMSE for
- humid sites ranged from 1.05 to 5.23 gC m² d⁻¹ compared to 1.56 to 12.65 gC m² d⁻¹ when the 298
- 299 Pv1.0 moisture-stress function was applied. All but eight of these 36 sites showed reduced
- 300 RMSE.

— GPPnew — GPPobs — GPPv1.0

301 302 Figure 6. Comparison of simulated gross primary production including the new soil-moisture 303 stress function (GPP_{new}) and the original stress function (GPP_{v1.0}) from Stocker et al. (2020) 304 against flux-derived values (GPPobs) at nine sites representing the range of climatological 305 aridity. Note that the scale varies between the rows. Plots for all the flux tower sites are given 306 in Supplementary Figures 9-11.

307

308 4 Discussion

309

310 We have developed an empirical function to take account of soil-moisture stress in the P model. 311 The previous introduction of an empirical function to account for soil-moisture stress (Stocker 312 et al., 2020) produced some improvement in the simulation of GPP by focusing on reducing 313 GPP when soil moisture was below a critical threshold of the $\beta(\theta)$ ratio. By incorporating a 314 reduction in the maximum level of the $\beta(\theta)$ ratio with increasing aridity, we have further 315 improved the performance of the model.

316 The reduction in the maximum level of LUE with increasing aridity is consistent with the 317 analyses of Fu et al. (2022), which focused on EF. The climatological aridity index provides a 318 measure of the degree to which water is likely to be limiting (to both EF and LUE) at some 319 time during the growing season. The fact that there is a limitation on EF and LUE – even during 320 intervals with abundant soil moisture – in more arid climates suggests an underlying optimality 321 principle: that plants adopt water conservation strategies to optimize assimilation over the 322 whole growing season in the climate to which they are adapted (Manzoni et al., 2011b; Vico 323 et al., 2013; Fu et al., 2022). Moreover, as also noted by Fu et al. (2022) for EF, the slope of 324 $\beta(\theta)$ against θ (y/ ψ in equation (1)) becomes steeper with increasing aridity. This is a 325 consequence of the values of the exponent of AI in equations (4) and (5) (0.60 > 0.45, hence 326 y/ψ is an increasing function of AI). It implies that for every value of AI, there is a value of θ 327 for which the associated LUE exceeds that of all other $\beta(\theta)$ functions; and that this value 328 declines as AI increases.

329

330 It is well known that some plants continue to photosynthesize at higher levels of drought stress 331 than others, a behaviour that reflects variability in the strictness of stomatal regulation (Tardieu 332 and Simmoneau, 1998; McDowell et al., 2008). However, both strict (isohydric) regulation and 333 less strict (anisohydric) regulation can occur within the same community (e.g. Mediavilla and 334 Escudero 2003; Cruz de Souza et al., 2020: Raffelsbauer et al., 2023) and species may show 335 variable regulation over the season and between years (Klein, 2014; Konings and Gentine, 336 2017). Thus, although there is some evidence that this behaviour is environmentally controlled 337 (Manzoni et al., 2011; McDowell, 2011; Kumagai and Porporato, 2012; Zhou et al., 2014; 338 Konings and Gentine, 2017), consistent with our finding that the critical threshold become 339 lower as climatological aridity increases, it is likely that plant communities often show a 340 diversity of responses. Our results indicate considerable scatter in both fitted parameters, whose 341 origin and potential adaptive significance would repay more detailed study.

342

343 This work was designed to improve the performance of the P model, which despite its relative 344 simplicity has been shown to predict the diurnal and seasonal cycles of GPP under well-watered 345 conditions as well as or better than more complex models (Stocker et al., 2020; Harrison et al., 346 2021; Mengoli et al., 2022). How best to represent soil moisture in this context is a challenge. 347 We have opted for a minimalist approach, using SPLASH. SPLASH is a single-bucket model 348 that considers only water that is held between the wilting point and field capacity, and does not 349 account for variation in water holding capacity among soils. The x-intercept of the breakpoint relationship corresponds to the wilting point. We have constrained breakpoint regressions 350 351 through the origin since little information was lost by doing so. In reality, the permanent wilting 352 point varies across species (Koepke et al., 2010; Bartlett et al., 2012) but is also strongly 353 affected by soil properties (Czyż and Dexter, 2012; Chagas Torres et al., 2021), aspects that 354 we have ignored. By using a generic soil water-balance model we have also intentionally 355 decoupled AET (computed by SPLASH on the assumption that the ratio AET/PET is

proportional to relative soil water content) from GPP, thus disregarding the feedback by which seasonal changes in GPP can influence the seasonal time course of AET and soil moisture. This research therefore represents a step towards an empirically well-founded representation of the interactions between carbon and water cycling. A next step will involve the interactive coupling of transpiration and GPP in a land-surface modelling framework.

361

362 Code and data availability. The sub-daily P model is implemented in RStudio and is available 363 on Zenodo (Mengoli G. 2023. https://doi.org/10.5281/zenodo.8018599) and through GitHub 364 public repository: https://github.com/GiuliaMengoli/P-model_subDaily_under the GNU v2.0 365 license (Mengoli et al. 2022). The new soil moisture stress function and the code to reproduce 366 the results used in this study is archived on Zenodo (Mengoli G. 2023. https://doi.org/10.5281/zenodo.8018299) under GNU v2.0 license together with inputs data for 367 368 two sites analysed in this study. The code for the SPLASH model v.1.0, in four programming 369 languages (FORTRAN, C++, Phython, R) is available on Zenodo (Devis et al. 2017. https://doi.org/10.5281/zenodo.376293) 370 and part of 371 https://bitbucket.org/labprentice/splash/src/master/ under GNU Lesser General License (Devis 372 et al. 2017). Meteorological, satellite and gridded climate datasets for this research is available 373 in these in-text data citation references: Pastorello et al. (2020), [Creative Commons (CC-BY 374 4.0) license], Stocker B. (2020, December 24), [http://doi.org/10.5281/zenodo.4392703], Harris et al. (2020), [https://doi.org/10.1038/s41597-020-0453-3] 375

Author contributions. Conceptualization: GM, SPH and ICP; methodology: GM and ICP; data
 analysis: GM; writing, first draft: GM and SPH; final draft: all authors.

378 *Competing interests.* The authors declare no competing interests.

379 Financial support and acknowledgments. GM and ICP acknowledge support from the 380 European Research Council (787203 REALM) under the European Union's Horizon 2020 research programme. SPH acknowledges support from the ERC-funded project GC2.0 (Global 381 Change 2.0: Unlocking the past for a clearer future, grant number 694481). This work is a 382 383 contribution to the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy 384 385 Schmidt by recommendation of the Schmidt Futures program. GM acknowledges Carlo Trotta 386 for providing technical assistance with the code and David Sandoval and Victor Flo for useful 387 discussions.

388	References
389	
390	Balzarolo, M., Peñuelas, J., Veroustraete, F.: Influence of landscape heterogeneity and spatial
391	resolution in multi-temporal in situ and MODIS NDVI data proxies for seasonal GPP
392	synamics, Remote Sens., 11, 1656. 2019.
393	Bartlett, M.K., Scoffoni, C., and Sack, L.: The determinants of leaf turgor loss point and
394	prediction of drought tolerance of species and biomes; A global meta-analysis, Ecol. Lett.,
395	15, 393-405, https://doi.org/10.1111/j.1461-0248.2012.0175.x, 2012.
396	Best, M.J., Pryor, M., Clark, D.B., Rooney, G.G., Essery, R.L.H., Ménard, C.B., Edwards,
397	J.M., Hendry, M.A., Porson, A., Gedney, N., Mercado, L.M., Sitch, S., Blyth, E., Boucher,
398	O., Cox, P.M., Grimmond, C.S.B., and Harding, R.J.: The Joint UK Land Environment
399	Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model
400	Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
401	Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge Univ. Press,
402	Cambridge, 2019.
403	Boussetta, S., Balsamo, G., Beljaars, A., Agusti-Panareda, A., Calvet, JC., Jacobs, C., van
404	den Hurk, B., Viterbo, P., Lafont, S., Dutra, E., Jarlan, L., Balzarolo, M., Papale, D., and
405	van der Werf, G.: Natural land carbon dioxide exchanges in the ECMWF Integrated
406	Forecasting System: Implementation and offline validation, J. Geophys. Res. Atmos., 118,
407	5923-5946, http://dx.doi.org/10.1002/jgrd.50488, 2013.
408	Cai, W., and Prentice, I.C.: Recent trends in gross primary production and their drivers:
409	analysis and modelling at flux-site and global scales, Environ. Res. Lett., 15, 124050,
410	2020.
411	Chagas Torres, L., Keller, T., Paiva de Lima, R., Tormena, C.A., Veras de Lima, H., and
412	Balazero Giarola, N.F.: Impacts of soil type and crop species on permanent wilting of
413	plants, Geoderma, 384, 114798, https://doi.org/10.1016/j.geoderma.2020.114798, 2021.
414	Cowan, I.R., and Farquhar, G. D.: Stomatal function in relation to leaf metabolism and
415	environment, Symp. Soc. Exp. Biol., 31, 471–505, 1977.
416	Cruz de Souza, B., Dantas Carvalho, E.C., Oliveira, R.S., Soares de Araujo, F.,
417	Alves de Lima, A.L., Nogueira Rodal, M.J.: Drought response strategies of deciduous
418	and evergreen woody species in a seasonally dry neotropical forest, Oecologia 194, 221-
419	236, https://doi.org/10.1007/s00442-020-04760-3, 2020
420	Czyż, E.A., and Dexter, A.R.: Plant wilting can be caused either by the plant or by the soil,
421	Soil Res., 50, 708-713, 2012.
422	Davis, T.W., Prentice, I.C., Stocker, B.D., Thomas, R.T., Whitley, R.J., Wang, H., Evans,
423	B.J., Gallego-Sala, A.V., Sykes, M.T., and Cramer, W.: Simple process-led algorithms for
424	simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and
425	plant-available moisture, Geosci. Model Develop., 10, 689–708. Zenodo.
426	https://doi.org/10.5281/zenodo.376293, 2017.
427	Davis, T.W., Prentice, I.C., Stocker, B.D., Thomas, R.T., Whitley, R.J., Wang, H., Evans,
428	B.J., Gallego-Sala, A.V., Sykes, M.T., and Cramer, W.: Simple process-led algorithms for
429	simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and
430	plant-available moisture, Geosci. Model Develop., 10, 689–708, 2017.
431	Franklin, O., Harrison, S.P., Dewar, R., Farrior, C.E., Brannström, A., Dieckmann, U.,
432	Pietsch, S., Falster, D., Cramer, W., Loreau, M., Wang, H., Makela, A., Rebel, K.T.,
433	Meron, E., Schymanski, S.J., Rovenskaya, E., Stocker, B.D., Zaehle, S., Manzoni, S., van
434	Oljen, M., Wright, I.J., Clais, P., van Bodegom, P., Penuelas, J., Hothansl, F., Terrer, C.,
455	Soudzhovskala, N.A., Midgley, G., and Prentice, I.C.: Organizing principles for
430	vegetation dynamics, Nature Plants, 10.1038/8414/7-020-0655-X, 2020.

437	Fu, Z., Ciais, P., Makowski, D., Bastos, A., Stoy, P.C., Ibrom, A., Knohl, A., Migliavacca,
438	M., Cuntz, M., Sigut, L., Peichl, M., Loustau, D., El-Madany, T. S., Buchmann, N.,
439	Gharun, M., Janssens, I., Markwitz, C., Grunwald, T., Rebmann, C., Molder, M.,
440	Varlagin, A., Mammarella, I., Kolari, P., Bernhofer, C., Heliasz, M., Vincke, C., Pitacco,
441	A., Cremonese, E., Foltynova, L., and Wigneron, J.P.: Uncovering the critical soil
442	moisture thresholds of plant water stress for European ecosystems, Glob Chang. Biol., 28,
443	2111–2123, 2021.
444	Fu, Z., Ciais, P., Feldman, A.F., Gentine, P., Makowski, D., Prentice, I.C., Stoy, P.C., Bastos,
445	A., and Wigneron, J-P.: Critical soil moisture thresholds of plant water stress in terrestrial
446	ecosystems, Sci. Adv., 8, eabq7827, 2022.
447	Gentine, P., Chhang, A., Rigden, A., and Salvucci, G.: Evaporation estimates using weather
448	station data and boundary layer theory, Geophys. Res. Lett, 43, 11,661-611,670, 2016.
449	Gentine, P., Green, J.K., Guérin, M., Humphrey, V., Seneviratne, S.I., Zhang, Y., and Zhou,
450	S.: Coupling between the terrestrial carbon and water cycles—A review, Environ. Res.
451	Lett., 14, 083003, 2019.
452	Grossiord, C., Buckley, T.N., Cernusak, L.A., Novick, K.A., Poulter, B., Siegwolf, R.T.,
453	Sperry, J.S., and McDowell, N.G.: Plant responses to rising vapor pressure deficit, New
454	Phytol., 226 , 1550–1566, 2020.
455	Harris, I., Osborn, T.J., Jones, P. and Lister, D.: Version 4 of the CRU TS monthly high-
456	resolution gridded multivariate climate dataset. Sci Data 7, 109,
457	https://doi.org/10.1038/s41597-020-0453-3, 2020.
458	Harrison, S.P., Cramer, W., Franklin, O., Prentice, I.C., Wang, H., Brännström, Å., de Boer,
459	H., Dieckmann, U., Joshi, J., Keenan, T.F., Lavergne, A., Manzoni, S., Mengoli, G.,
460	Morfopoulos, C., Peñuelas, J., Pietsch, S., Rebel, K.T., Ryu, Y., Smith, N.G., Stocker,
461	B.D., and Wright, I.J.: Eco-evolutionary optimality as a means to improve vegetation and
462	land-surface models, New Phyt., 231: 2125-2141, doi: 10.1111/nph.17558, 2021.
463	Klein, T.: The variability of stomatal sensitivity to leaf water potential across tree species
464	indicates a continuum between isohydric and anisohydric behaviours, Funct. Ecol., 28,
465	1313-1320, https://doi.org/10.1111/1365-2435.12289, 2014.
466	Koepke, D.F., Kolb, T.E., and Adams, H.D.: Variation in woody plant mortality and dieback
467	from severe drought among soils, plant groups, and species within a northern Arizona
468	ecotone, Oecologia, 163, 1079–1090, https://doi.org/10.1007/s00442-010-1671-8, 2010.
469	Konings, A.G., and Gentine, P.: Global variations in ecosystem-scale isohydricity, Glob.
470	Chang. Biol., 23, 891–905, 2017.
471	Kumagai T, and Porporato A .: Strategies of a Bornean tropical rainforest water use as a
472	function of rainfall regime: isohydric or anisohydric? Plant Cell Environ., 35, 61–71,
473	doi: 10.1111/j.1365-3040.2011.02428.x, 2012.
474	Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., Stoy, P., and
475	Wohlfahrt, G.: Separation of net ecosystem exchange into assimilation and respiration
476	using a light response curve approach: Critical issues and global evaluation, Glob. Change
477	Biol., 16, 187–208, https://doi.org/10.1111/j.1365-2486.2009.02041.x, 2010.
478	Manzoni, S., Katul, G., Fay, P.A., Polley, H.W., and Porporato, A.: Modeling the vegetation-
479	atmosphere carbon dioxide and water vapor interactions along a controlled CO2 gradient,
480	Ecol. Modelling, 222, 653-665, https://doi.org/10.1016/j.ecolmodel.2010.10.016, 2011a.
481	Manzoni, S., Vico, G., Katul, G., Fay, P.a., Polley, W., Palmroth, S., and Porporato, A.:
482	Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-
483	analysis across plant functional types and climates, Funct. Ecol., 25, 456–467, 2011b.
484	McDowell N.G.: Mechanisms linking drought, hydraulics, carbon metabolism, and
485	vegetation mortality. Plant Physiol., 155, 1051–1059, 2011.

486 487	McDowell, N., Pockman, W.T., Allen, C.D., Breshears, D.D., Cobb, N., Kolb, T., Plaut. J., Sperry, J., West, A., and Williams, D.G.: Mechanisms of plant survival and mortality
488	during drought: why do some plants survive while others succumb to drought? New Phyt.
489	178, 719–739, 2008.
490	Mediavilla, S., Escudero, A.: Stomatal responses to drought at a Mediterranean site: A
491	comparative study of co-occurring woody species differing in leaf longevity. Tree Physiol.
492	23. 987–996. https://doi.org/10.1093/treephys/23.14.987. 2003.
493	Mengoli, G., Agusti-Panareda, A. Boussetta, S., Harrison, S.P., Trotta, C., Prentice, I.C.:
494	Ecosystem photosynthesis in land-surface models: a first-principles approach
495	incorporating acclimation. J. Adv. Mod. Earth Syst., 14, e2021MS002767, https://doi.
496	org/10.1029/2021MS002767. 2022.
497	Mengoli, G.: GiuliaMengoli/P-model new water stress function: v1.0.0 - P-
498	model SoilMoistureStressFx (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8018299,
499	2023.
500	Mengoli G.: GiuliaMengoli/P-model subDaily: v1.0.0 - Sub-daily P model (v1.0.0). Zenodo.
501	https://doi.org/10.5281/zenodo.8018599, 2023.
502	Myneni, R., Knyazikhin, Y., and Park, T.: MOD15A3H MODIS/Combined Terra+Aqua Leaf
503	Area In- dex/FPAR Daily L4 Global 500m SIN Grid V006, Data set, NASA EOSDIS
504	Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD15A3H.006, 2015.
505	Oleson, K., Lawrence, D.M., Bonan, G.B., Drewniak, B., Huang, M., Koven, C.D., Levis, S.,
506	Li, F., Riley, W.J., Subin, Z.M., Swenson, S., Thornton, P.E., Bozbiyik, A., Fisher, R.,
507	Heald, C.L., Kluzek, E., Lamarque, JF., Lawrence, P.J., Leung, L.R., Lipscomb, W.
508	Muszala, S.P., Ricciuto, D.M., Sacks, W.J., Sun, Y., Tang, J., and Yang, ZL.: Technical
509	description of version 4.5 of the Community Land Model (CLM). NCAR Technical Note
510	NCAR/TN-503+STR, 420 pp., DOI: 10.5065/D6RR1W7M, 2013.
511	Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y. W., et al.: The
512	FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data,
513	Sci. Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 2020.
514	Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., and Wright, I. J.: Balancing the costs of
515	carbon gain and water transport: Testing a new theoretical framework for plant functional
516	ecology, Ecol. Lett., 17, 82–91, https://doi.org/10.1111/ele.12211, 2014.
517	Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B.,
518	and Teuling, A.J.: Investigating soil moisture-climate interactions in a changing climate:
519	A review, Earth Sci. Rev., 99, 125–161, 2010.
520	Stocker, B.: stineb/ingestr: Dummy release for Zenodo (Version v1.1). Zenodo.
521	http://doi.org/10.5281/zenodo.4392703, 2020.
522	Stocker, B. D., Wang, H., Smith, N. G., Harrison, S. P., Keenan, T. F., Sandoval, D., et al.: P-
523	model v1.0: An optimality-based light use efficiency model for simulating ecosystem
524	gross primary production Geosci. Model Dev., 13, 1545–1581, https://doi.
525	org/10.5194/gmd-13-1545-2020, 2020.
526	Tardieu, F., and Simmoneau, T.: Variability among speciies of stomatal control under
527	fluctuating soil water status andd evaporative demands: Modelling isohydric and
528	anisohydric behaviours, J. Experiment. Bot., 49, 419-432, 1998.
529	Toms, J.D., and Lesperance, M.L.: Piecewise regression: A tool for identifying ecological
530	thresholds, Ecology, 84, 2034-2041, https://doi.org/10.1890/02-0472, 2003.
531	Vico, G., Manzoni, S., Palmroth, S., Weih, M., and Katul, G.: A perspective on optimal leaf
532	stomatal conductance under CO2 and light co-limitations, Agric. Forest Meteorol. 182-
533	183, 191-199, 2013.
534	Wang, H., Prentice, I.C., and Davis, T.W.: Biophysical constraints on gross primary
535	production by the terrestrial biosphere, Biogeosci., 11, 5987-6001, 2014.

- 536 Wang, H., Prentice, I.C., Keenan, T.F., Davis, T.W., Wright, I.J., Cornwell, W.K., et al.
- 537 Towards a universal model for carbon dioxide uptake by plants, Nature Plants, 3, 734–
- 538 741, https://doi.org/10.1038/s41477-017-0006-8, 2017.
- 539 Zhou, S., Medlyn, B., Sabaté, S., Sperlich, D., and Prentice, I.C.: Short-term water-stress
- 540 impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ
- 541 consistently among tree species from contrasting climates, Tree Physiol., 34, 1035-1046,
- 542 2014.
- 543