
Simulations of carbon flux is of high importance but also very difficult. In this study, the 

authors applied the LUE model to simulate GPP and made modifications on the response of 

GPP to soil water. This should be interesting to broad readers within Earth science 

community. But the current depiction in this manuscript did not convince me as 

their manuscript seems too easy and incomplete. I would suggest a thorough major revision 

before I can be considered for the target journal. 

We are happy that the reviewer also considers that this work should be of broad interest for 

the modelling community. We believe that the simplicity of our approach is a strength. We 

will add material to address the reviewer’s specific concerns and thus improve the 

completeness of the manuscript. Below is a point-by-point response to the reviewer’s 

specific comments. 

Major points: 

1. There is no measure of statistical significance, and the description of the results lacks 

clarity. Currently, there are statistical numbers (PBIAS, Correlation coefficient), which 

are very useful. 

A primary aim of our work was to assess quantitatively whether the application of the 

new function reduced the error in magnitude that commonly affects LUE models 

(including the P model) when applied in dry environments. RMSE and bias are 

appropriate statistics for this purpose, as the reviewer recognizes. The improvements 

of our application are shown to be large. Statistical significance testing is not expected 

in this context. We therefore included the bias values in the table 1 and revised the 

caption as follows (the revised table 1 is at the end of this document): 

“Table 1: Statistics of P model performance (root mean squared error, RMSE, and 

percent bias, PBIAS) using the new soil moisture stress function (new) and the stress 

function used by Stocker et al. (2020) but applied in the sub-daily model used here, 

compared to P model performance with no soil moisture correction (ww). The sites 

are grouped by aridity index (AI) classes (see also Supplementary Table 1). “ 

We have also revised the third paragraph of the results to address Point 7 below and 

to clarify the basis for the evaluation of the results, and the caption of Fig. 2.  

“ Figure 2. Box-plot comparison of the fitted…Letters indicate whether the median values are 

significantly different based on the Kruskal-Wallis test, P < 0.05. Classes that are significantly 

different from one another are indicated by different letters.” 

We have added a sentence, to clarify the p-value threshold we used for the non-

parametric test: 

“The non-parametric Kruskal-Wallis test was used to determine whether there were 

significant differences in fitted parameter values among aridity classes. We used a P < 0.05 

to identify significant differences between the aridity groups.” 



2. In the methods part, the description of the P model is incomplete. In addition, the 

authos should add the calculation of GPP in the model and describe the design of 

expriment and model setting in detail. 

The P model has been fully described in other publications: the original version in 

GMD (Stocker et al., 2020) and the sub-daily version, used here, in JAMES (Mengoli 

et al., 2022). In order to avoid repeating information that has already been published, 

we only provide a general description of the P model in the Methods section of this 

paper to describe the key characteristics of the model. However, this comment made 

us realize that it would be useful to clarify one important aspect of this work, which is 

that the approach we have taken is not simply a modification of the P model but has 

more general utility. We have modified the abstract to make this clear as follows: 

“….Substantially improved GPP simulation is shown during both unstressed and water-

stressed conditions, compared to the reference model version that ignores soil-moisture stress, 

and to an earlier formulation in which maximum LUE was not reduced. Our results 

demonstrate (a) how climatic aridity modulates the response of GPP to soil moisture 

independently of plant functional types and (b) that this modulation satisfies an optimality 

criterion: i.e. that for any aridity value there is a soil moisture value at which the associated 

GPP response is maximal. These lessons are transferable to any LUE-based model, with re-

calibration of the functions as required. These results point the way towards a better approach 

to the simulation of soil moisture stress in different models and a better-founded 

representation of carbon-water cycle coupling in any vegetation or land-surface model.” 

And we have also included some additional explanatory text at the end of the 

introduction: 

“….The performance of the resulting model is compared with that of the uncorrected P model, 

and with a version of the sub-daily model that applies the soil-moisture stress function 

previously developed by Stocker et al. (2020). Results show that the function relating the 

reduction of assimilation due to low soil moisture varies systematically as a function of 

climatic aridity rather than being dependent on the type of vegetation. Moreover, the GPP 

reduction satisfies an optimality criterion: i.e. that for any aridity values there is a soil moisture 

value at which the associated GPP response function is maximal. The new function provides 

a promising approach to including soil moisture effects in a modelling framework and could 

be applied in other vegetation and land-surface models.” 

We have also revised the discussion as follows:  

“This work was originally designed to improve the performance of the P model, which despite 

its relative simplicity has been shown to predict the diurnal and seasonal cycles of GPP under 

well-watered conditions as well as or better than more complex models (Stocker et al., 2020; 

Harrison et al., 2021; Mengoli et al., 2022). However, our intent is to present an approach that 

relies on a simple algorithm that could have more general utility in a modelling context.” 

We have also written the conclusion section, in response to comment 9 (see below), 

to highlight the general utility of the approach we are presenting. 



We provided the important details about the design of experiment and model setting 

in the original version of the manuscript. However, to make it clear that we are using 

a sub-daily version of the P model, we have specifically named this version and we 

have expanded the description in the methods section, as follows: 

“….The P model (Stocker et al., 2020) was modified by Mengoli et al. (2022) in order to 

simulate diurnal cycles, separating the instantaneous responses of GPP (with photosynthetic 

parameters fixed over the diurnal cycle) from the acclimation responses of those parameters 

on a time scale of around two weeks. This modified model (P-model subDaily v1.0.0) is used 

here to simulate daily GPP, as the daily sum of GPP computed on half-hourly timesteps. The 

sub-daily model can be run in two modes, either by using an exponential-weighted mean of 

the acclimating quantities or by using a 15-day running mean of midday temperature to 

determine acclimation. The two methods produce virtually identical results (Mengoli et al., 

2022). Here we use a 15-day running mean of midday temperature to determine acclimation. 

Mengoli et al (2022) showed that the P-model subDaily v1.0.0 accurately reproduces the 

diurnal cycle of GPP in well-watered sites but tends to overestimate GPP in drylands, because 

it does not account for any soil moisture limitation on GPP.” 

Then we have revised the text of the MS to introduce the version name of the sub-

daily model (P-model subDaily v1.0.0) we used for the analysis. We have also re-

ordered 2.1 section in the methods to clarify the difference between this version of 

the model and the original version of the model, and particularly with respect to the 

soil moisture stress function used in the original model, as follows: 

“The P model is a LUE model based on eco-evolutionary optimality theory for the trade-off 

between carbon uptake and water loss (Prentice et al., 2014) and the acclimation and/or 

adaptation of leaf-level photosynthesis to environmental conditions (Wang et al., 2017). The 

model is driven by air temperature, vapour pressure deficit (VPD), incident photosynthetic 

photon flux density (PPFD), the fraction of incident PPFD absorbed by leaves (fAPAR), 

elevation (to calculate atmospheric pressure) and the ambient partial pressure of carbon 

dioxide (ca). The model distinguishes C3 and C4 photosynthesis but does not require 

specification of distinct parameter values of any other plant functional types. When driven by 

satellite-derived fAPAR, it reproduces the seasonal cycle and interannual variability in GPP 

at flux sites from a range of natural vegetation types as well as geographic variation in GPP 

(Wang et al., 2014; Balzarolo et al., 2019; Stocker et al., 2020) and temporal trends in GPP at 

flux sites (Cai & Prentice, 2020).  

The P model (Stocker et al., 2020) was modified by Mengoli et al. (2022) in order to simulate 

diurnal cycles, separating the instantaneous responses of GPP (with photosynthetic 

parameters fixed over the diurnal cycle) from the acclimation responses of those parameters 

on a time scale of around two weeks. This modified model (P-model subDaily v1.0.0) is used 

here to simulate daily GPP, as the daily sum of GPP computed on half-hourly timesteps. The 

sub-daily model can be run in two modes, either by using an exponential-weighted mean of 

the acclimating quantities or by using a 15-day running mean of midday temperature to 

determine acclimation. The two methods produce virtually identical results (Mengoli et al., 

2022). Here we use a 15-day running mean of midday temperature to determine acclimation. 

Mengoli et al (2022) showed that the P-model subDaily v1.0.0 accurately reproduces the 

diurnal cycle of GPP in well-watered sites but tends to overestimate GPP in drylands, because 

it does not account for any soil moisture limitation on GPP. 



Given the known tendency of the P model to overestimate GPP under dry conditions, the 

FULL configuration of the current standard P model Pv1.0 (Stocker et al., 2020) includes an 

empirical water stress function (also based on eddy-covariance flux data) that approaches 1 at 

a threshold value of θ (θ*), where θ is plant-available water expressed as a fraction of soil 

water-holding capacity, and θ* is set to 0.6. The function declines more steeply with 

decreasing θ in drier climates, with climatic moisture quantified by an estimate of the ratio (α) 

of actual evapotranspiration (AET) to potential evapotranspiration (PET). This function is 

used in Pv1.0 (FULL) as a multiplier of the modelled, well-watered GPP, in a similar way to 

the function proposed here, but has not been applied in the sub-daily model used here.” 

And we have emphasized where the model settings can be found rephrasing the 

sentence under the code and data availability section as follows: 

“….The code for the new soil moisture stress function and for running the P-model subDaily 

v1.0.0 version as applied in this study is archived on Zenodo…” 

3. The organization of the manuscript and presentation of the results need some 

improvement, current manuscript seems too easy, and the authos can add another 

part of results about regional comparison between the original model, the revised 

model and remote sensing GPP products. 

We included comparisons between the original sub-daily model, the sub-daily model 

including the new stress function and the sub-daily model using the original stress 

function from Stocker et al. (2020) in the original manuscript. However, we agree that 

comparisons with another remote sensing GPP product would be useful and have 

now added a comparison with the current, improved version of the widely used 

MODIS GPP product. We show that our model compares very well with the MODIS 

product, but has the advantage of being theory based and parameter sparse.  

We have revised the abstract to indicate that we have made this comparison: 

“… Substantially improved GPP simulation is shown during both unstressed and water-

stressed conditions, compared to the reference model version that ignores soil-moisture stress, 

and to an earlier formulation in which maximum LUE was not reduced. The model 

performance is similar to that of the most recent version of the MODIS GPP product.” 

We have modified the introduction to indicate that we have made this comparison: 

“…The performance of the resulting model is compared with that of the uncorrected P model, 

with a version of the sub-daily model that applies the soil-moisture stress function previously 

developed by Stocker et al. (2020) and with the MODIS remotely sensed GPP product 

(Running and Zhao, 2021).” 

We have modified the section 2.7 of the methods section as follows: 

“…We compared the predictions of GPP obtained using this new soil-moisture stress function 

to GPP simulated by the P-model subDaily v1.0.0 with (a) no soil-moisture stress and (b), the 

soil-moisture stress function used in Pv1.0, at all of the flux-tower sites, with meteorological 

data provided for the site in the FLUXNET2015 data set and fAPAR data from Stocker et al. 



(2020). We also compared these predictions with the current, improved version of the widely 

used MODIS GPP product (MOD17A2HGF v0.61: Running and Zhao, 2021; 

https://doi.org/10.5067/MODIS/MOD17A2HGF.061) The goodness-of-fit between each of 

the modelled estimates of GPP and the flux-derived GPP at each site was quantified by the 

root mean squared error (RMSE).” 

We have included an additional paragraph to describe the comparison with the 

MODIS product in the results, including a new figure (Fig.7) and table (Table 2) in the 

main text and additional figures in the SI, as follows: 

“ Comparison of the new soil-moisture stress function with MODIS GPP shows a similar level 

of performance (Figure 7; Supplementary Figures 12-14). The average RMSE for the P model 

and MODIS at arid sites is 6.67 and 5.80 gC m2 8-d–1 respectively, and the range of  RMSE 

values (Table 2) is comparable (3.51-11.08 gC m2 8-d–1 for the P model; 3.50-9.83 gC m2 8-

d–1 for MODIS GPP). The average RMSE at semi-arid sites is 13.98 and 14.66 gC m2 8-d–1 

for the P model and MODIS respectively, with ranges between 3.84-39.41 gC m2 8-d–1(P 

model) and 4.62-51.60 gC m2 d–1 (MODIS GPP). The average RMSE at humid sites is 19.61 

and 16.80 gC m2 8-d–1 for the P model and MODIS, respectively, and again the ranges are 

comparable (P model: 6.17 to 40.95 gC m2 8-d–1 ; MODIS 6.40 to 30.06 gC m2 8-d-1). “  

We have also added text in the discussion: 

“We have developed an empirical function to take account of soil-moisture stress in the P 

model. The previous introduction of an empirical function to account for soil-moisture stress 

(Stocker et al., 2020) produced some improvement in the simulation of GPP by focusing on 

reducing GPP when soil moisture was below a critical threshold of the β(θ) ratio. By 

incorporating a reduction in the maximum level of the β(θ) ratio with increasing aridity, we 

have further improved the performance of the model when using this function in the sub-daily 

model. The performance of the P-model subDaily v1.0.0 is similar to that of the most recent 

and improved gap-filled version of MODIS GPP (MOD17A2HGF v 0.61). MODIS is a 

widely used product but uses a PFT-specific parametrization, whereas the P model makes no 

distinctions by PFTs. Furthermore, whereas MODIS is empirically based, the P model has a 

strong theoretical basis in eco-evolutionary optimality theory, allowing it to take account of 

the impact of changing CO2 on assimilation in a natural way. Thus, our theory-based and 

parameter-sparse model provides an alternative approach that performs as well as the MODIS 

product. “ 

We have included the source of the MODIS data in the code and data availability 

statement: 

“Meteorological, satellite and gridded climate datasets for this research is available in these 

in-text data citation references: Pastorello et al. (2020), [Creative Commons (CC-BY 4.0) 

license], Stocker B. (2020, December 24), [http://doi.org/10.5281/zenodo.4392703], Harris 

et al. (2020), [https://doi.org/10.1038/s41597-020-0453-3], Running & Zhao (2021) , 

[https://doi.org/10.5067/MODIS/MOD17A2HGF.061]” 

We added the appropriate citation to the reference list: 

“Running, S., Zhao, M.: MODIS/Terra Gross Primary Productivity Gap-Filled 8-Day L4 

Global 500m SIN Grid V061 [Data set]. NASA EOSDIS Land Processes Distributed Active 



Archive Center. Accessed 2023-09-28 from 

https://doi.org/10.5067/MODIS/MOD17A2HGF.061, 2021 “ 

The caption of the new figure 7 is: 

“Figure 7. Comparison of simulated gross primary production including the new soil-

moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at nine sites 

representing the range of climatological aridity. Note that the scale varies between the rows. 

Plots for all the flux tower sites are given in Supplementary Figures 12-14.” 

The captions of the new SI figures (note that the figures are displayed at the end of 

this document together with the new table 2) are: 

Supplementary Figure 12: Comparison of simulated gross primary production including the 

new soil-moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at flux tower sites 

classified as arid (aridity index, AI > 5). 

Supplementary Figure 13: Comparison of simulated gross primary production including the 

new soil-moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at flux tower sites 

classified as semi-arid (aridity index, AI = between 2 and 5). 

Supplementary Figure 14: Comparison of simulated gross primary production including the 

new soil-moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at flux tower sites 

classified as humid (aridity index, AI < 2). 

https://doi.org/10.5067/MODIS/MOD17A2HGF.061


 

 

 

 



4. In the abstract, the authors didn’t fully explain the performances of the revised model, 

and the abstract looks unat [sic] 

We have re-written part of the abstract in order to emphasize the performance of the 

revised model and also to highlight the more general implications of this research. 

Please see text in the response to the second comment.  

5. Introduction: Line 71-88: Poorly literature citation, relevant literature on critical 

drought thresholds that affect GPP should be added. (Li et al., 2023. Global variations 

in critical drought thresholds that impact vegetation) 

We recognize that our presentation of the recent literature on critical drought 

thresholds was rather brief. However, much of this literature focuses on greenness 

whereas our focus is on quantifying the effect of soil moisture on the light-use 

efficiency of GPP. In fact, the P model uses greenness as input. We have clarified this 

in the new paragraph in the introduction, and expanded our general discussion of the 

literature as follows: 

 

“There is evidence that soil moisture, rather than atmospheric demand, is the principal 

constraint on GPP in arid and semi-arid ecosystems (Xu et al., 2023; Pei et al., 2020; Dubey 

& Ghosh 2023). It has also been shown that GPP is substantially reduced (much more than 

total ecosystem respiration) in response to drought (e.g. Shi et al., 2020). Liu et al. (2020) 

showed that soil moisture is the dominant water stress on vegetation over 70% of the global 

land area.  However, the response of GPP to water stress in models from the previous round 

of the Coupled Model Intercomparison Project, CMIP5, is too strong (Huang et al., 2016) and 

representation of the soil moisture effects on GPP remains one of the largest sources of 

uncertainty in carbon cycle models (Trugman et al., 2018). Many studies have focused on the 

impact of drought on vegetation greenness (e.g. Li et al., 2023), but soil moisture stress also 

impacts light-use efficiency (LUE) directly, which further reduces GPP (Lv et al., 2023; Xing 

et al., 2023). Thus, it is important to take account of the impact of soil moisture stress on LUE 

as well as on vegetation greenness.” 

 

 

We have updated the reference list including these new references. 

6. Figure1: Although the authors use breakpoint regression analysis, I hardly find the 

relationship between scatters and fitting lines. 

Breakpoint regression analysis has been widely used for this purpose, i.e. to identify 

critical soil-moisture thresholds below which there is a steep decline of evaporative 

fraction and/or GPP. We performed breakpoint regression analysis based on the data 

for each site independently, so these “broken-stick’’ models are the actual fitted 

regressions based on the data as shown in Figure 1. The technique is powerful, able 

to extract information from noisy data that would be impossible to derive by visual 

inspection. The results are coherent internally and with other published results – 

showing that plants’ ability to extract water from dry soils, supporting photosynthesis, 

is enhanced as climatic aridity increases. However, we agree that it was hard to 



distinguish where the bulk of the data was concentrated in the original figures and 

that reader could be confused by the scatter in the observations. We have produced 

a new version of the figure where we use a heat map approach to show the density 

of the data points - this makes it clearer that the break point analysis identifies 

threshold based on the region where there is a high density of observations. The new 

figure is given in the response to the second reviewer. 

7. Line 265-278: The description in this paragraph makes it difficult to see the 

improvement of the revised model compared to the original model, and the 

presentation must be revised. Currently, there are statistical numbers(PBIAS, 

Correlation coefficient), which are very useful. In addition, the average percentage 

reduction in RMSE in arid, semi-arid, and humid regions should be calculated 

separately for further clarification. 

We have revised the paragraph to further clarify the text generally as noted above, 

and we have also provided the RMSE reduction for the three aridity classes as 

suggested. The new text reads as follows: 

“ Implementation of the new empirical soil-moisture stress function produced a substantial 

improvement in model performance compared to simulations with no soil-moisture stress 

function (Figure 6, Supplementary Figures 6-8). At sites classified as arid (AI >5), simulations 

that did not account for soil-water stress produced an overestimation of maximum GPP 

between 2 and 8 gC m2 d-1. (The only exception to this was AU-Lox where the P model 

predictions that did not account for soil-water stress accurately matched the observed 

magnitude of GPP; see Supplementary Figure 4. This site is an irrigated orchard). The 

overestimation of peak GPP at sites classified as semi-arid (AI between 2-5) was of a similar 

magnitude (2 to 10 gC m2 d-1). Even at sites classified as humid (AI < 2), there was a 

noticeable improvement in performance at most sites (Figure 6; Supplementary Figure 8). The 

improved performance compared to the version of the P model with no soil-moisture stress 

function is reflected in the RMSE values (Table 1).  The RMSE for arid sites ranged from 

0.51 to 1.46 gC m2 d-1 compared to 2.07 to 4.01 gC m2 d-1 when no stress function was applied. 

All of the arid sites showed a reduction in RMSE, with an average reduction in RMSE of 

69.26%. The RMSE for semi-arid sites ranged from 0.46 to 5.0 gC m2 d-1 compared to 1.63 

to 5.6 gC m2 d-1 when no stress function was applied. All but four of the 21 semi-arid sites 

showed a reduction in RMSE, with an average reduction in RMSE of 47.28%. The RMSE for 

humid sites ranged from 1.05 to 5.23 gC m2 d-1 compared to 1.75 to 13.08 gC m2 d-1 when no 

stress function was applied. All but five of the 36 humid sites showed a reduction in RMSE, 

with an average reduction of 42.1%. 

8. I admit the revised model reduced the overestimation of GPP compared to the 

original model, however, the revised model can’t capture the peaks of GPP, and at 

some sites (US-SRG, US-Var), the revised model overestimated GPP in the non-

growing season. The authors should be further analyzed these results. 

It is true that the model does not properly capture some peak values of GPP and 

overestimates GPP outside the growing season at some sites. We will raise these 

issues in the Discussion as follows: 



“The application of the new function substantially reduces the overestimation of GPP 

compared to the original model, and to the moisture stress function developed by Stocker et 

al. (2020) when applied in the sub-daily model.  However, the model does not always capture 

peaks in GPP shown by the observations; it also overestimates GPP outside the growing 

season at some sites (e.g. US-Var). It is difficult to identify the causes of specific mismatches 

between eddy-covariance-derived and simulated GPP on particular days or weeks because 

such mismatches can have multiple causes. In addition to possible issues with the model itself, 

there is uncertainty in the partitioning of measured net ecosystem exchange to GPP versus 

ecosystem respiration (particularly during the non-growing season) and unavoidable 

discrepancies between the satellite-derived pixel data and the footprint of the flux tower.“ 

9. The conclusion part should be added to the manuscript. 

We will add a Conclusion section as follows: 

“We have derived a new empirical function to account for the soil moisture effect on the light 

use efficiency of GPP as a function of climatological aridity. The new function provides a 

constraint on both the maximum level of GPP and on the critical soil moisture threshold with 

increasing climatological aridity. Climatological aridity provides a measure of the degree to 

which water is likely to be limiting at some time during the growing season. The new 

formulation is thus consistent with the idea that plants adopt water conservation strategies to 

optimize assimilation over the whole growing season in the climate to which they are adapted. 

The new formulation produces improved simulation of GPP at flux tower site from arid, 

semiarid and humid regions, both during water-stressed conditions and during unstressed 

periods. Although this new function is tested in the context of the existing LUE model (the P 

model), it is generic and could easily be applied in other models, including land-surface 

schemes.” 

 

New Figures and Tables 

Supplementary Figure 12: Comparison of simulated gross primary production including the 

new soil-moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at flux tower sites 

classified as arid (aridity index, AI > 5). 

Supplementary Figure 13: Comparison of simulated gross primary production including the 

new soil-moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at flux tower sites 

classified as semi-arid (aridity index, AI = between 2 and 5). 

Supplementary Figure 14: Comparison of simulated gross primary production including the 

new soil-moisture stress function (GPPnew) and the gross primary production simulated by 

MOD17A2HGF v0.61 (GPPMODIS) against flux-derived values (GPPobs) at flux tower sites 

classified as humid (aridity index, AI < 2). 

Table 2: Statistics of P model performance (root mean squared error, RMSE, and percent bias, 

PBIAS) using the new soil moisture stress function (new) compared to MOD17A2HGF 

v0.61performance (MODIS). The sites are grouped by aridity index (AI) classes (see also 

Supplementary Table 1). 



 

 



 

 



 

 



 

 



Site ID AI ARIDITY RMSE(new) RMSE(MODIS) 
PBIAS  

(new) 

PBIAS 

(MODIS) 

AU-TTE 7.17 arid 4.01 4.27 702.7 692.2 

AU-ASM 6.97 arid 7.51 5.96 -2.2 20.7 

AU-Cpr 6.36 arid 5.51 4.45 -24.7 18.3 

US-Wkg 6.34 not used 6.96 6.78 14.2 -19.4 

AU-Lox 6.32 not used 52.43 41.96 -75.5 -57 

US-Whs 5.89 arid 7.19 5.49 74.6 32.7 

AU-GWW 5.75 arid 3.51 3.45 -18.1 7.4 

US-SRG 5.08 arid 11.08 9.83 7.4 -7.1 

US-SRM 5.02 arid 7.86 7.13 -5.4 -4.6 

US-Cop 3.99 semiarid 3.84 4.62 112.2 145.2 

AU-Ync 3.96 semiarid 7.99 9.91 156.1 241.9 

ES-Ln2 3.84 semiarid 6.86 9.92 1080.4 1594.5 

AU-Stp 3.71 semiarid 10.11 7.62 -15.4 19.8 

AU-Emr 3.08 semiarid 7.75 11.1 47.6 84.8 

AU-Gin 2.93 semiarid 12.56 8.6 -40.8 18.1 

AR-SLu 2.89 semiarid 39.41 51.59 -56.3 -74.2 

ES-LgS 2.88 semiarid 5.49 8.27 -10.7 47.7 

CN-Du2 2.7 semiarid 11.15 9.28 89.8 63.8 

ZA-Kru 2.69 semiarid 23.02 15.19 -51.3 12 

US-AR2 2.61 semiarid 10.04 9.05 61.2 15.2 

US-AR1 2.49 semiarid 15.48 15.85 -17.4 -29.1 

AU-Whr 2.39 semiarid 10.64 6.86 -35.3 -9.2 

CN-HaM 2.34 semiarid 12.64 14.71 -40.8 -56.8 

AU-Dry 2.32 semiarid 15.49 12.06 -40.5 -17.6 

IT-Noe 2.26 semiarid 12.55 19.84 -39.7 49.7 

US-Ton 2.23 semiarid 10.02 8.71 -21 5.1 

US-Var 2.22 semiarid 9.52 13.97 39.2 64.4 

ZM-Mon 2.18 semiarid 24.53 17.68 -50.2 -14.7 

AU-RDF 2.16 not used 17.93 23.67 -1.6 28.7 

US-ARb 2.04 semiarid 25.27 29.53 -21.4 -34 

US-ARc 2.04 semiarid 19.62 23.62 -22.9 -32.8 



AU-DaS 1.81  humid 21.7 22.01 -48.1 -31.3 

AU-Rig 1.81  humid 13.51 14.97 -6.2 -2.3 

AU-DaP 1.8  humid 24.87 23.36 -32.1 -6.4 

AU-Wom 1.75 humid 15.75 14.04 -23.7 4.7 

IT-Cp2 1.73 humid 22.62 14.21 -33.5 -2.5 

AU-Wac 1.69  humid 19.49 20.18 -37.3 19 

FR-Pue 1.57  humid 11.57 10.92 -14.6 8.2 

AU-Ade 1.55 humid 26.83 24.76 -52.8 -43 

AU-How 1.46  humid 24.62 17.08 -51.2 -22 

CA-SF3 1.41 humid 6.17 12.08 8.2 23.8 

FR-Fon 1.39 humid 26.27 12.05 -34.2 3.6 

IT-Col 1.35 humid 25.12 20.47 -23.9 0.9 

AU-Tum 1.34 humid 28.98 22.33 -32.4 -16.3 

IT-SRo 1.34 humid 20.78 14.64 -34.7 -13.7 

US-KS2 1.21 humid 40.95 17.2 88.1 24.6 

CA-Man 1.19 humid 21.68 16.62 85.6 33.5 

CA-NS4 1.19 humid 10.51 8.85 45.1 29.7 

DE-Gri 1.18 humid 21.36 18.19 -34.9 -27.8 

IT-MBo 1.18 humid 15.58 13.19 -3.1 -18.4 

RU-Ha1 1.11 humid 7.48 6.4 -16.4 -14.6 

FR-LBr 1.1 humid 15.57 12.29 -30.6 -20.2 

US-Wi6 1.08 humid 14.74 21.4 59.1 86.6 

AR-Vir 1.02 humid 23.03 26.32 -21.5 -20 

US-PFa 1.02 humid 13.32 16.33 46.6 54.7 

US-Syv 1.01 humid 13.98 10.97 15.6 -9.7 

RU-Fyo 0.97 humid 15.41 15.45 -20.1 -26.6 

BE-Bra 0.91 humid 9.3 6.62 -6.8 0 

FI-Hyy 0.87 humid 14.8 10.17 -11.7 -18.9 

NL-Hor 0.84 humid 13.34 12.57 -6.1 -6.8 

CH-Oe1 0.8 humid 28.33 30.06 -30.2 -37.2 

BR-Sa3 0.78 humid 38.47 26.22 31 -21 

CZ-BK2 0.78 humid 20.05 19.45 24.1 21.3 

DE-RuR 0.78 humid 21.85 16.78 37.1 -24.8 



BE-Vie 0.73 humid 16.21 19.69 -22.5 -35.2 

CH-Fru 0.71 humid 28.03 23.37 44.5 -34.8 

IT-Tor 0.63 humid 13.73 13.66 38.6 -34.7 

 


