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Abstract.

Air pollution leads to various health and societal issues. Modeling and predicting air pollution over space have important

implications in health studies, urban planning, and policy-making. Many statistical models have been developed to understand

the relationships between geospatial data and air pollution sources. An important aspect often neglected is spatial heterogene-

ity; however, the relationships between geographically distributed variables and air pollutants commonly vary over space. This5

study aims to evaluate and compare various spatial and non-spatial statistical modeling (including machine learning) methods

within different spatial groups. The spatial groups are defined by traffic- and population-related variables. Models are clas-

sified into local and global models. Local models use air pollution measurements from the Amsterdam area. Global models

use ground station observations in Germany and the Netherlands. We found that prediction accuracy differs substantially in

different spatial groups. Predictions for places near roads with high populations show poor prediction accuracy, while predic-10

tion accuracy increases in low population density areas for both local and global models. The prediction accuracy is further

increased in places far from roads for global models. Modeling of air pollution in different spatial groups shows that non-linear

methods can have higher prediction accuracy than linear methods. The spatial prediction patterns of global models show that

non-linear methods generally are less prone to overfitting than
::::::
sensitive

:::
to

:::::::
extreme

:::::
values

:::::::::
compared

::
to linear methods. Addi-

tionally, clusters of predicted air pollution differ between models within cities despite similar prediction accuracy. Also, the15

influence of predictors on NO2 concentrations varies across different cities. For the local models,
:::::
Using

:::
the

::::
local

::::::
dataset

:::
of

:::
our

:::::
study,

::::::::
explicitly accounting for spatial autocorrelation

::
in

:::
the

::::::::
universal

:::
and

:::::::
ordinary

::::::
kriging

:::::::
models does not improve accuracy,

but modeling spatial groups does
:
;
::::::::
however,

::::::::
analyzing

::::::::
prediction

:::::::::::
performance

:::::
across

::::::
spatial

::::::
groups

:::::::
provides

::::::::
valuable

::::::
insights.

Comparing local and global prediction patterns reveals that local models capture regional clusters of high air pollution which

are not detected by global models. These findings highlight that solely relying on overall prediction accuracy can be insuffi-20

cient and potentially misleading, underscoring the importance of considering spatial variability and model performance within

different spatial groups.

1 Introduction

Modeling and estimating NO2 concentration levels is essential for a comprehensive understanding of air pollution, which

plays a critical role in urban planning and policy-making to foster a healthy society. Air pollutants have been modeled across25
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various spatial scales, from local to global. These models can be broadly classified into three categories: statistical models,

chemical transport models, and air dispersion models. Chemical transport models are typically used for large-scale air pollution

modeling, while air dispersion models require detailed, spatially resolved emission data to capture small-scale variations in

pollutants (Beelen et al., 2013).

In recent years, statistical modeling has gained popularity for high-resolution mapping at different spatial scales, driven by30

the increase in available predictors (e.g., GIS variables) and advancements in computational capabilities. Land Use Regression

(LUR) is the most well-known statistical approach for air pollution modeling, using linear regression to capture the spatial

variability of traffic-related air pollution in urban areas. Most LUR models rely on data from ground monitoring stations

(Hoek et al., 2008; Wang et al., 2020). Geostatistical methods like kriging can further account for spatial correlations between

observations. However, several studies have favored the simplicity of LUR, often concluding that it performs as well as or35

better than geostatistical methods (Hoek et al., 2008; Marshall et al., 2008; Beelen et al., 2013). Notably, these conclusions are

typically based on prediction accuracy alone, without considering the models’ ability to quantify uncertainty, provide scientific

interpretations, or integrate known mechanisms (Lu et al., 2023). Specifically, many studies neglect optimal estimation of the

covariance function and the specification of priors in geostatistical modeling.

While linear models are advantageous for their interpretability and ability to extrapolate, they may fall short in capturing40

the complex processes of air emission, dispersion, and deposition (Wang et al., 2020). As a result, data-driven, non-parametric

models—commonly referred to as machine learning methods in air pollution mapping—have become increasingly popular.

These models, such as tree-based algorithms, are better suited for capturing the non-linear relationships between pollutants

and predictors (Weichenthal et al., 2016; Reid et al., 2015; Lu et al., 2020). For instance, Brokamp et al. (2017) compared

Land Use Random Forest (LURF) models with LUR models for elemental components of PM2.5 in Cincinnati, Ohio, and45

found that LURF models demonstrated lower prediction error variance across all elemental models when cross-validated.

Similarly, Kerckhoffs et al. (2019) reported that machine learning algorithms, such as bagging and random forest, explained

more variability in ultra-fine particle concentrations than multiple linear regression and regularized regression techniques.

Ameer et al. (2019) advocated for random forest regression as the best technique for pollution prediction across varying

datasets, locations, and characteristics, outperforming decision tree regression, multi-layer perceptron regression, and gradient50

boosting regression. Ren et al. (2020) also concluded that non-linear machine learning methods achieve higher accuracy than

linear LUR, emphasizing the importance of careful hyperparameter tuning and robust data splitting and validation to ensure

stable, reliable results. Chen et al. (2019) compared 16 algorithms for predicting annual average fine particle (PM2.5) and

nitrogen dioxide (NO2) concentrations across Europe. They found that ensemble tree-based methods were particularly effective

for PM2.5, while NO2 models showed similar R2 values across different methods. Importantly, they reported a high correlation55

between the predicted values of various models, noting that the most influential predictors differed substantially between

pollutants. For example, satellite observations and dispersion model estimates were key predictors for PM2.5 concentrations,

while NO2 variability was primarily driven by traffic-related variables. The significant contribution of road traffic to NO2

levels is further supported by Wong et al. (2021), who found that nitrogen emissions are particularly influenced by long-range

transport from gasoline-fueled passenger cars.60
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In recent years, the use of statistical modeling for air pollution mapping has surged, resulting in numerous local and global

pollution maps that are increasingly applied in urban and health studies. However, evaluating these models and maps remains

challenging. One challenge is the scarcity of air pollution measurements. Another is the varying focus on spatial heterogeneity

in air pollution. For example, He et al. (2022) acknowledge spatial heterogeneity in measurement stations by demonstrating

that the probability density functions of concentrations (NO, NO2, PM10, PM2.5) vary across different spatial categories (e.g.,65

urban traffic, suburban/rural traffic, urban industrial, suburban/rural industrial, urban background, suburban background, rural

background). However, their study does not model potential differences in prediction accuracy across these categories. A third

challenge is that most current statistical approaches assess only overall accuracy, neglecting spatial variation (Hoek et al., 2008;

Chen et al., 2019). Hoek et al. (2008) reported that LUR models typically explain 60-70% of the variation in NO2, but this

explained variation may be significantly lower near traffic. Chen et al. (2019) argued that many air pollution exposure studies70

fail to account for the characteristics of monitoring sites when performing cross-validation, potentially misrepresenting model

results. They suggest evaluating models using pollution data from monitoring sites that reflect the application locations (Chen

et al., 2019).

Finally, a consistent and coherent method for quantifying uncertainty in air pollution mapping is lacking. Shaddick et al.

(2020) pointed out that uncertainty in air pollutant measurements is rarely discussed. This inadequate evaluation can lead75

to overlooked biases, especially since non-parametric machine learning methods often lack extrapolation capabilities. When

predicted areas differ significantly in societal and environmental characteristics from training data, highly biased predictions

may result, which are not adequately evaluated in many studies (Shaddick et al., 2020).

Given the growing number of modeling and prediction techniques and the potential for misrepresented prediction maps

due to heterogeneity issues, this study aims to investigate: To what extent can statistical models predict NO2 concentrations80

using high-quality, high-temporal-resolution ground station measurements? How do the performance of these models and their

spatial accuracy vary? The study focuses on the Netherlands and Germany, using two datasets: the official national ground

station measurements from both countries (referred to as the global dataset) (OpenAQ, 2017; EEA, 2021), and the more densely

distributed ground station measurements from the Amsterdam area (referred to as the local dataset) (Gemeente Amsterdam,

2022). The global dataset includes 482 measurement stations covering 398,000 km2 with a point density of 0.0012 points85

per km2, while the local dataset includes 132 stations covering 196 km2 with a point density of 0.591 points per km2. The

study aims to compare and understand model behaviors and prediction patterns across 1) the two datasets, 2) different spatial

groups classified by proximity to traffic and population density, and 3) various statistical models, to evaluate the added value

of non-linear machine learning models and geostatistical approaches.

2 Methodology90

2.1 Data

The global and local datasets include the annual mean NO2 concentrations (measured in µg/m3) for the year 2017 (Ope-

nAQ, 2017; EEA, 2021). Figure 1 presents the distribution of NO2 concentrations at the global and local measurement
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stations.
::::
The

:::::
terms

:::::::
"global"

::::
and

::::::
"local"

:::
are

:::::::
chosen

::
to

::::::
reflect

:::
the

:::::::
relative

:::::
scale

::
of

:::
the

:::::::
datasets

:::::
with

:::::::
"global"

:::::::::::
representing

:
a
:::::::
broader,

::::::::::::
cross-national

::::::
dataset

::::
and

::::::
"local"

::::::::
focusing

::::::::::
specifically

::
on

:::::::::::
Amsterdam.

:::::
While

::::
the

:::::::
"global"

::::::
dataset

:::::::
includes

:::::
only95

:::
two

::::::::::
neighboring

:::::::::
countries,

::::
this

::::::::::
terminology

::::::::::
emphasizes

:::
its

:::::
wider

:::::
scope

:::::::::
compared

::
to

:::
the

:::::
local

:::::::
dataset.

::::
The

:::::
global

:::::::
dataset

::::::::
comprises

::::::
ground

::::::
station

::::::::::::
measurements

::::
from

::::::::
Germany

::::
and

::
the

:::::::::::
Netherlands,

:::::
while

:::
the

::::
local

::::::
dataset

:::::::
includes

::::
data

:::::
from

::::::
ground

:::::::::::
measurement

::::::
stations

::::::::::
specifically

::
in

:::
the

::::::::::
Amsterdam

::::
area.

:

Figure 1. Distribution of NO2 concentrations in the global (yellow) and local (blue) datasets.

The spatial distribution of NO2 measurement stations is provided in the supplementary materials (Figure 1a, 1b). Urban areas

generally have a higher density of measurement stations. This study focuses on the differences between global and local100

models, particularly in Amsterdam, while also considering the city’s less densely populated areas to examine the urban impact

on predicted NO2 concentrations in the local models.

To evaluate whether prediction quality varies across areas with different spatial characteristics (e.g., high vs. low road density),

the global and local datasets are divided into three spatial groups based on population density and traffic-oriented variables.

Population data for 2015 from the Global Human Settlement Layer is used (JRC, 2015), and road length information is sourced105

from OpenStreetMap (2019). Descriptive statistics for the variables used to define spatial groups are presented in Table 1.

The three spatial groups are defined as follows:

1. Urban: Areas within 100 meters of road class 1 (highways) and 2 (primary roads) and with population density in the

highest 25%; or areas where both road class 3 (local roads) values and population density are in the highest 25%.

2. Suburban: Areas within 100 meters of road class 1 and 2 with population density in the lowest 75%; or areas where110

road class 3 values are in the highest 25% and population density in the lowest 75%.

3. Rural: Areas further than 100 meters from road class 1 and 2; or areas where road class 3 values are in the lowest 75%.
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Table 1. Descriptive statistics of variables determining spatial groups for the local and global datasets.

Variable Dataset Mean Min 25% 75% Max

Road class 1 100m (total length of highways [m])
Local 2154.787 0 0 3001.109 12950.676

Global 12.295 0 0 0 982.912

Road class 2 100m (total length of primary roads [m])
Local 4018.626 0 2367.599 5348.419 9596.102

Global 68.943 0 0 0 735.144

Road class 3 100m (total length of local roads [m])
Local 25838.098 6483.437 18085.396 33039.556 50712.625

Global 272.059 0 29.281 406.097 1088.154

Population 1000m
Local 111157.013 20097.258 106347.117 128723.570 137546.047

Global 6154.486 0 2204.520 9036.756 20300.887

This classification resulted in 85 observations being labeled as "urban", 138 as "suburban", and 259 as "rural", totaling 482

observations in the global dataset. Given the higher population density in the local dataset and its smaller sample size
::
of

:::
the

::::
local

::::::
dataset, the threshold for defining "urban" was adjusted from the 75th percentile to the 50th percentile . This adjustment115

was necessary to better capture the high population density in the local dataset and resulted in
:::::
having

::
a

:::::::::
converging

:::::
effect

:::
on

::
the

::::::::
different

:::::
group

:::::
sizes.

::::::::
Moreover,

:::
the

:::::::
increase

::
in

:::::::
samples

::::::::
classified

::
as

:::::::
"urban"

::
is

:::::::::
encouraged

:::
as

:
a
:::::
result

::
of

:::
the

::::::::
relatively

::::
high

:::::::::::
heterogeneity

::
in

:::
this

::::::
group.

::::
The

::::
local

::::::
dataset

:::::::
consists

::
of 56 observations being categorized

:::
that

:::
are

::::::::
classified as "urban," 46 as

"suburban," and 30 as "rural."

While
::::::::
Although this adjustment introduces some inconsistency between the global and local definitions of "urban," it ensures120

that the local model accurately reflects the dense urban context. The
::::::::
addresses

::
the

::::::::
challenge

:::
of unequal distribution of instances

across groups
::
in

:::
the

::::
local

:::::::
dataset,

:::::
which

:
could introduce bias into the statistical learning models, but this threshold adjustment

was .
::::
The

::::::::
threshold

:::::::::
adjustment

:::::::::
represents

:
an initial step to mitigate such effects

::
by

::::::::
ensuring

:
a
:::::

more
::::::::
balanced

::::::::::::
representation

::
of

::::::
spatial

::::::::::::
characteristics

:::::
within

:::
the

:::::
local

::::::
model. Supplementary Figures 2 and 3 display

::::
show

:
the spatial distribution of ob-

servations across
::::::
between

:
these groups for both datasets, while Supplementary Figures 4 and 5 show the measured NO2125

concentrations per station.

Spatial predictors

We utilized a set of variables derived from Lu et al. (2020), including data on industrial areas, road lengths, population density,

Earth night lights, wind speed, temperature, elevation, Tropomi level 3 NO2, and global radiation. A complete list of these130

variables is available in the supplementary material (Table 1). Precipitation data was sourced from weather stations (National

Centers for Environmental Information, 2017) and interpolated using ordinary kriging to cover the NO2 measurement stations.

Kriging parameters are detailed in the supplementary material.

Building density was obtained from the "World Settlement Layer 2015" dataset available on Figshare (Marconcini et al.,

2020). In line with previous studies (Beelen et al., 2013; Kheirbek et al., 2014), we considered various buffer sizes (100m,135
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500m, 1000m) around measurement stations to account for spatial proximity effects, especially in densely populated urban

areas. NDVI values were obtained from NASA (NASA, 2017).

Traffic volume data was sourced from the "Nationaal Dataportaal Wegverkeer" (NDW) in the Netherlands (Rijkswaterstaat,

2017) and "Bundesanstalt für Strassenwesen" (BAST) in Germany (Bundesanstalt für Strassenwesen, 2017). This data, gen-

erated by automatic counting stations, is expressed as average hourly traffic over 2017, with buffer sizes of 25m, 50m, 100m,140

400m, and 800m. The formula for calculating average hourly traffic is provided in the supplementary material.

2.2 Modeling NO2 globally and locally

2.2.1 Ensemble trees

The global models use two types of statistical learning methods. The first group consists of ensemble tree-based approaches,

including random forest , Light Gradient Boosting (LightGBM), and Extreme Gradient Boosting (XGBoost). Hyperparameters145

are tuned based on cross-validation error. For the random forest model, the number of estimators is set to 1000, with a minimum

samples split of 10, minimum samples per leaf of 5, maximum features per tree of 4, and a maximum depth of 10. Both

LightGBM and XGBoost models use
:::
The

::::::::
XGBoost

::::::
model

::::
uses

:
50,000 estimators, with a reg_alpha of 2, reg_lambda of 0,

max_depth of 5, and a learning rate of 0.0005. Additionally, the gamma for the XGBoost model is set to 5. Further details can

be found in the supplementary material.
:
,
::::::
section

::::::::::
parameters.

:::::::::::
Additionally,

:::
the

:::::
Light

:::::::
Gradient

::::::::
Boosting

:::::::::::
(LightGBM)

::::::
model150

:::
was

:::::
tested

:::
but

:::
did

:::
not

:::::
yield

::::::::::
significantly

:::::::
different

::::::
results

:::::::::
compared

::
to

::::::::
XGBoost.

::::
The

:::::
results

:::
of

:::::::::
LightGBM

:::::::
analyses

:::
are

::::::
shown

::
in

:::
the

:::::::::::::
supplementary

:::::::
material

::::::
(Figure

:::::
6a-c,

::
7).

:

2.2.2 Multiple Linear Regression

Key variables identified by the random forest model are used as predictors in Multiple Linear Regression (MLR). Regular-

ization techniques such as Least Absolute Shrinkage and Selection Operator (LASSO) and Ridge regression are employed to155

prevent overfitting. LASSO differs from Ridge in that it uses the sum of the absolute values of the coefficients as a penalty,

allowing some coefficients to be exactly zero, thus enabling feature selection (Ren et al., 2020). The alpha for both LASSO

and Ridge models is tuned to 0.1, optimizing for the lowest Mean Absolute Error (MAE), Root Mean Square Error (RMSE),

and highest R2 among options ranging from 0.1 to 1 in increments of 0.1. The parameters and equations for the
:::::::
Detailed

:::::::::
parameters

:::
and

:::::::::::
mathematical

:::::::::::
formulations

:::
for linear regression, error term

:::::
terms, Ridge regression, and LASSO regression can160

be found in supplementary material, section parameters and section equations, respectively.
:::
are

:::::
given

::
in

:::
the

:::::::::::::
supplementary

:::::::
material

::::::
(section

::::::::::
Parameters

:::
and

::::::
section

::::::::::
Equations).

2.2.3 Mixed-Effects Model and Kriging

Due to the poor
:::
The

:
performance of random forest, LightGBM, and XGBoost (Supplementary Table 4), and to a lesser extent

::
2),

:
LASSO and Ridge (Supplementary Table 5) , alternative methods were selected

::
3)

:::
are

:::::::::::
unsatisfactory

:
for the local dataset.165
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To incorporate spatial information, we also employ
:::::
Spatial

::::::::
modeling

::::::::::
approaches

::::::::
including mixed-effects modeling and krig-

ing methods. In
::
are

:::::::
applied.

:

:::::::::::
Mixed-effects

:::::::
models

:::::
could

:::::::
capture

::::::::::
hierarchical

:::
or

:::::::
grouped

:::::::::
structures.

:::
In

:::
our

::::::
study,

:::
the

:::::
fixed

::::::
effects

::::::::::
correspond

::
to
:

the

mixed-effects model, fixed effects consist of the most influential predictors, while random effects account for potential spatial170

trends. The spatial context of an observation—whether it is
::::
such

::
as

:::::::::
population

:::::::
density,

::::
road

::::::
length,

::::
and

::::
other

::::::::::::
traffic-related

::::::::
variables,

:::::
which

:::
are

::::::::
assumed

::
to

::::
have

:::::::::
consistent

:::::
effects

::::::
across

:::
the

:::::
entire

:::::
study

::::::
region.

::::
The

:::::::
random

:::::
effects

:::::::
capture

:::
the

::::::
spatial

:::::
trends

:::::::
specific

::
to

:::::::
different

::::::::::
geographic

::::::
regions,

:::::
such

::
as urban, suburban, or rural —serves as a random effect in the model. In

contrast, the linear model only includes fixed effects, thereby ignoring the possibility of observation clustering.
::
and

:::::
rural

:::::
areas.

:::
For

:::::::
instance,

:::::
local

::::::::::
topography,

:::::::::
vegetation,

::
or

:::::::
specific

:::::
traffic

:::::::
patterns

::
in

:
a
::::::
region

:::
can

:::::
create

::::::
unique

::::::
spatial

::::::
trends.

:::::
These

::::::
spatial175

:::::
groups

::::::::
represent

:::
the

::::::::
variation

::
in

:::::
NO2 ::::::::::::

concentrations
:::
due

:::
to

::::
local

::::::::::::
environmental

::::::
factors

::::
and

:::
are

:::::::
modeled

:::
as

::::::
random

:::::::
effects,

:::::::
allowing

:::
the

:::::
model

::
to
:::::::
account

:::
for

::::::
spatial

::::::::::::
autocorrelation

::::::
within

:::::::
regions.

Ordinary
:::
This

:::::::::
modeling

:::::::
approach

::
is
:::::::
suitable

:::::::
because

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::::::::
pollutants

::::
such

::
as

::::
NO2::

is
::::
not

::::::
random

::::
and

::::
tends

::
to

:::::
show

::::::
clusters

::
or

::::::::
gradients

::
in

::::::
traffic,

:::
land

::::
use,

:::
and

:::::::::
population

:::::::
density.

::
By

::::::::
modeling

:::
the

::::::
spatial

::::::
context

::
as

:::::::
random

::::::
effects,

::
we

:::::::
capture

::::
these

::::::
spatial

:::::::::::
dependencies

:::
and

:::::::::
potentially

:::::::
improve

:::
the

:::::::
accuracy

::
of

::::::::::
predictions

::
in

:::::::
different

::::
areas

::::::::::::::::::::::::::::::::::::::
(Mullen and Birkeland, 2008; Lee et al., 2020)180

:
.

::::::
Kriging

::
is

:::
the

::::::::
Gaussian

::::::
process

:::::::::
developed

::
in

::::::::::
Geoscience.

::::
The

:::::::
residuals

::
of

::
a
:::::
linear

::::::::
regression

::::::
model

:::
are

:::::::::
considered

::
as

:::::::
random

:::::::
variables

::::
and

:
a
::::::::::

covariance
:::::::
function

::
is
:::::::::

modeled.
::
It

::::::::
estimates

::::
NO2:::::::::::::

concentrations
:::::
based

:::
on

:::
the

::::::
spatial

:::::::::::
relationships

:::
of

:::
the

::::::::::
observations

::
as

:::::
NO2 :

is
::
a
::::::::
relatively

::::::
smooth

::::::
spatial

:::::::
process.185

::
In

:::
this

:::::
study,

::::::::
ordinary

:
and universal kriging methods are used for local modeling .

::
are

:::::::
applied.

::::::::
Ordinary

::::::
kriging

::::::::
assumes

:::
that

:::
the

:::::
mean

:::
of

:::
the

:::::::
variable

:::::
being

::::::::
predicted

:::
is

:::::::
constant

:::
but

::::::::
unknown

:::::
over

:::
the

:::::
entire

:::::
study

:::::
area.

::
It

:::::::
focuses

::
on

:::::::::
modeling

:::::::
spatially

::::::::
correlated

:::::::
random

::::::::
variation

:::::::
without

::::::::
assuming

::::
any

:::::
global

::::::
trend.

::::::::
Universal

::::::
kriging

::::::::
assumes

:::
that

::::
the

:::::::
variable

:::::
being

:::::::
predicted

::::
has

:
a
:::::::::::
deterministic

::::
trend

::::
(e.g.

:::::
linear

::
or

:::::::::::
polynomial).

:
The automap package in R (Hiemstra et al., 2008) is employed

::::
used to initialize the covariance parameters . Details are provided in the supplementary materials under the "Parameters" and190

"Equations" sections
:::
and

::
to

:::::::
perform

:::
the

::::::
kriging

:::::::::::
interpolation. Two separate models —one that accounts for spatial groups

:::
are

::::::
created,

::::
one

:::
that

:::::::::::
incorporates

:::
the

::::::
spatial

::::::
groups

::::::
(urban,

:::::::::
suburban,

:::::
rural) and one that does not—are created using universal

kriging and linear modeling methods. This leads to a total of eleven models being
:
.
:::::
These

::::::
models

::::
help

::
to
::::::::
compare

:::
the

::::::
impact

::
of

:::::
spatial

:::::::
context

::
on

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::
predictions

:::::::::::::::::::::::::::::
(Idir et al., 2021; Khan et al., 2023)

:
.

::
In

::::
total,

:::
ten

::::::
models

:::
are

:
fit and compared: five

::::
four using the global dataset and six using the local dataset. Relevant equations195

are included
:
,
:::::::
enabling

::
a
::::::::::::
comprehensive

:::::::::
evaluation

::
of

::::::
model

::::::::::
performance

::::::
across

:::::::
different

:::::::::::
geographical

::::::
scales.

::::
The

::::::::
equations

::
for

:::::::
kriging

:::
and

:::
the

:::::
linear

:::::
model

:::
are

::::::::
provided in the supplementary materials,

:::::
under

:::
the

:::::::::::
"Parameters"

:::
and

::::::::::
"Equations"

:::::::
sections.
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2.3 Feature selection

Feature selection for global models is initially based on Shapley values (Shapley, 1953). While the Variance Inflation Factor

(VIF) is effective for detecting multicollinearity, it does not consider feature importance or interactions. Shapley values are200

preferred for their comprehensive evaluation, which aligns with our goal of enhancing model performance and interpretability.

VIF results are available in the supplementary materials (Tables 2 and 3
:
4
::::
and

:
5). Feature selection aims to remove irrelevant

or highly correlated predictors that could generate unstable estimates (Araki et al., 2018).

Shapley values are calculated for each feature (i.e. , predictor) based on its contribution ϕj to the prediction of NO2 :2

concentration levels, compared to the average prediction across the dataset (Shapley, 1953). The contribution of a feature is205

determined by comparing the difference in the response variable when the feature is present versus when it is absent (i.e.,

marginal contribution) (Algaba et al., 2019; Shapley, 1953). The formula for calculating Shapley values can be found in the

supplementary materials.

In this study, feature selection is guided by the out-of-sample performance in a 10-fold repeated random sampling validation,

where Shapley values are calculated in each iteration of the random forest models. Predictors are ranked based on the median210

Shapley value across all iterations. The relative positions of each predictor using the median-based approach are illustrated

in the supplementary materials (Figure 6)
::::::::::::
Supplementary

:::::::
Figures

::
8

:::
and

::
9, with the Shapley ranking of a single fold shown

in Figure 7.
::
2.

:::
The

:::::
most

:::::::::
influential

::::::::
predictors

:::
for

:::
the

::::::
global

::::::
models

:::::::
include

::::::::
nightlight

::::::::
intensity

::::::
(450m

:::
and

::::::
3150m

::::::::
buffers),

:::::::::
population

::::::
density

:::::::
(1000m

:::
and

::::::
3000m

::::::::
buffers),

::::
road

::::
class

:::::
(class

::
2
:::::
within

:::::
25m

:::
and

::::
class

::
3
::::::
within

:::::
300m

:::
and

::::::
3000m

::::::::
buffers),

:::
trop

:::::
mean

::::
filter

:::::
2018,

::::::::
building

::::::
density

::::::
(100m

::::::
buffer),

::::::
NDVI,

::::
and

:::::
traffic

::::::
buffers

:::::
(25m

:::
and

::::
50m

::::::::
buffers).

:::::::::
Descriptive

::::::::
statistics215

::
of

:::
the

::::
most

:::::::::
influential

::::::::
predictors

:::
for

:::
the

:::::
global

:::::::
models

:::
are

::
in

::::
table

::
2.

:

A random forest algorithm is applied iteratively to determine the optimal number of predictors, starting with the two most

influential predictors and extending to the thirty most influential features. The RMSE and R2 metrics are used to evaluate

the optimal number of predictors. The number of predictor variables and their corresponding evaluation scores (R2, RMSE)220

are shown in Figures 3a and 3b. Notably
:
In

::::::::
particular, prediction accuracy significantly improves

:::::::
improves

:::::::::::
significantly when

considering at least twelve predictors, although the improvement is marginal beyond this number.

Due to the random forest model’s poor performance across all local station measurements (Supplementary Figures 8a-c
::::
10a-c)225

and per spatial group (Supplementary Table 5
:
2), the random forest algorithm is deemed unsuitable for identifying the number

of variables for the local models. Instead, best subset regression is used for variable selection in local models. This approach

tests all possible combinations of predictor variables (Kassambara, 2018), with a maximum of 30 predictors considered. The

statistical criteria include adjusted R2, Mallows CP, and Bayesian Information Criteria (BIC) scores. As a result, nine features

are identified for the local models.
:::
The

:::::
most

::::::::
influential

:::::::::
predictors

:::
for

:::
the

::::
local

::::::
models

:::::::
include

::::::::
nightlight

::::::::
intensity

:::::
(450m

::::
and230

::::::
4950m

::::::
buffer),

:::::::::
population

::::::
density

:::::::
(3000m

::::::
buffer),

::::
road

:::::
class

:::::
(class

:
1
::::::
within

::::::
5000m;

:::::
class

:
2
::::::
within

::::::
1000m

:::
and

::::::
5000m

:::::::
buffers;

8



Figure 2.
::::::
Shapley

::::::
ranking

::
of

:
a
:::::
single

:::
fold

:::::
using

::
the

:::::
global

::::::
dataset.

::::
road

::::
class

::
3
::::::
within

:::::
100m

::::
and

:::::
300m

::::::::
buffers),

:::
and

::::::
traffic

:::::
buffer

:::::
(50m

:::::::
buffer).

::::::::::
Descriptive

::::::::
statistics

::
of

:::
the

:::::
most

:::::::::
influential

::::::::
predictors

:::
for

:::
the

::::
local

::::::
models

:::
are

::
in
:::::
table

::
3.

2.4 Model comparison

In global modeling, comparisons are made among tree-based models—random forest , LightGBM, and XGBoost—and linear235

models—LASSO and Ridge. For local modeling, we compare linear models, mixed-effect models, and kriging models. Each

model is evaluated based on R2, RMSE, and MAE, which are standard metrics in the field (Rybarczyk and Zalakeviciute, 2018;

Ameer et al., 2019; Chang et al., 2020).
:::
For

::::::
model

:::::::::
evaluation,

:::::::::::
leave-one-out

:::::::::::::
cross-validation

:::::::::
(LOOCV)

::
is

::::::::
employed

:::
for

:::::
local

::::::
models,

:::::
while

::
a
:::::
75/25

::::::::
train-test

::::
split

::
is

::::
used

:::
for

::::::
global

:::::::
models. Additionally, the prediction patterns of the local and global

models are analyzed. To benchmark the model performance, a mobile NO2 map of the study area (Kerckhoffs et al., 2019)240

:::::::::::::::::::::::::::::::::::
(Kerckhoffs et al., 2019; Yuan et al., 2023) is used for comparison.

:::
This

::::
map

::::::::
provides

:::::::
detailed

::::::
spatial

::::::::::
information

::::::::
collected

::
by

::::
two

::::::
Google

::::::
Street

:::::
View

::::
cars

:::::::::::
continuously

:::::::::
measuring

::::
NO2::

at
::

a
:::::::::
frequency

::
of

::
1
:::
Hz

::
in

::::::::::
Amsterdam

:::::
from

::::
May

:::
25,

::::::
2019,

::
to

:::::
March

::::
15,

::::
2020

::::::::
(stopped

::::
due

::
to

:::
the

::::::::::
COVID-19

::::::::
lockdown

:::::::
policy).

:::
We

:::::::::::
acknowledge

::::
that

:::
the

::::::::
temporal

:::::::::
resolution

::
of

::::
this

9



Table 2.
:::::::::
Descriptive

:::::::
statistics

:::
for

:::::
global

::::::::
predictors.

:::::::::
bldden100

::
=

::::
Built

::::
area

:::::
100m

:::::
buffer,

::::
ndvi

::
=
::::::::::

Normalized
::::::::
Difference

:::::::::
Vegetation

:::::
Index,

::::::::::::
nightlight_3150

:
=
::::::::
Nightlight

::::::
3150m

:::::
buffer,

:::::::::::
nightlight_450

::
=
::::::::
Nightlight

:::::
450m

:::::
buffer,

:::::::::::::
population_1000

::
=

::::::::
Population

::
in

::::
1km

::::
grid,

::::::::::::
population_3000

::
=

::::::::
Population

::
in

::::
3km

::::
grid,

::::::::::::
road_class_2_25

::
=

::::
Total

:::::
length

::
of

::::::
primary

:::::
roads

:::
25m

:::::
buffer,

::::::::::::::
road_class_3_300

::
=

::::
Total

:::::
length

:
of
::::

local
:::::
roads

::::
300m

:::::
buffer,

:::::::::::::::
road_class_3_3000

:
=
::::
Total

:::::
length

::
of

::::
local

:::::
roads

:::::
3000m

:::::
buffer,

:::::::
trafbuf25

::
=

:::::
Traffic

::::
count

::::
25m

:::::
buffer,

:::::::
trafbuf50

::
=

:::::
Traffic

::::
count

::::
50m

:::::
buffer,

::::::::::::::::
trop_mean_filt_2018

:
=
:::::::::
TROPOMI

::::
2018

::::
mean

::::::
vertical

::::::
column

:::::
density

::::::
Variable

: :::
Unit

: :::
25th

: :::
50th

: ::::
75th

::::
Mean

: :::::
Median

: ::::
Max

:::
Min

:

::::::::
bldden100

::
%

:::
0.4

:::
0.88

: ::::
0.99

::::
0.68

:::
0.88

:
1
: :

0
:

:::
ndvi

: :::::::
(x10,000)

: ::::::
2285.75

:::::
3153.5

: ::::::
4199.25

::::::
3331.37

:::::
3153.5

: ::::
7775

:::
747

:

::::::::::::
nightlight_3150

::::::::::
Wcm−2sr−1

:::
2.9

:::
8.2

::::
16.51

: ::::
11.04

: :::
8.2

::
101

: :
0
:

:::::::::::
nightlight_450

::::::::::
Wcm−2sr−1

:::
4.62

: ::::
14.01

::::
22.4

::::
15.34

: ::::
14.01

::::
84.32

: :
0
:

::::::::::::
population_1000

: ::::
count

::::::
2204.52

::::::
5945.54

::::::
9036.76

::::::
6154.49

::::::
5945.54

::::::
20300.89

: :
0
:

::::::::::::
population_3000

: ::::
count

::::::
11452.7

:::::::
33821.94

::::::
61824.05

: ::::::
41489.44

: :::::::
33821.94

::::::::
165271.38

:
0
:

::::::::::::
road_class_2_25

: ::
m

:
0

:
0 0

: ::::
14.57

: :
0

:::::
164.93

:
0
:

:::::::::::::
road_class_3_300

: ::
m

:::::
930.85

: ::::::
2447.69

::::::
3403.39

::::::
2314.03

::::::
2447.69

::::::
7239.33

:
0
:

::::::::::::::
road_class_3_3000

: ::
m

:::::::
70823.23

:::::::
134524.3

::::::::
193091.82

::::::::
136692.07

:::::::
134524.3

::::::::
444277.31

:
0
:

:::::::
trafbuf25

::::
count

:
0

:
0 0

: ::::
128.7

: :
0

::::::
5112.96

:
0
:

:::::::
trafbuf50

::::
count

:
0

:
0 0

: :::::
146.89

:
0

::::::
5112.96

:
0
:

:::::::::::::::
trop_mean_filt_2018

: :::::::
mol/cm2

: :
0

:
0 0

:
0
: :

0 0
: :

0

:
*

:::
The

:::::
values

::
for

::::
trop

::::
mean

:::
filt

::::
2018

::
are

::::
very

:::::
small,

::
on

:::
the

::::
order

::
of

:::::
10−5.

Table 3.
::::::::
Descriptive

:::::::
statistics

:::
for

::::
local

::::::::
predictors.

:::::::::::
nightlight_450

::
=
::::::::
Nightlight

:::::
450m

:::::
buffer,

::::::::::::
nightlight_4950

::
=

::::::::
Nightlight

:::::
4950m

::::::
buffer,

::::::::::::
population_3000

::
=

::::::::
Population

::
in

::::
3km

::::
grid,

::::::::::::::
road_class_1_5000

:
=
:::::

Total
:::::
length

::
of

::::::
highway

::::::
5000m

:::::
buffer,

:::::::::::::::
road_class_2_1000

:::::
=Total

:::::
length

:
of
:::::::

primary
::::
roads

::::::
1000m

:::::
buffer,

::::::::::::::
road_class_2_5000

::::::
=Total

:::::
length

::
of

::::::
primary

::::
roads

::::::
5000m

:::::
buffer,

:::::::::::::
road_class_3_100

::::::
=Total

:::::
length

::
of

::::
local

::::
roads

::::
100m

::::::
buffer,

:::::::::::::
road_class_3_300

:::::
=Total

:::::
length

::
of

::::
local

::::
roads

:::::
300m

:::::
buffer,

:::::::
trafbuf50

::
=

:::::
Traffic

::::
count

::::
50m

:::::
buffer

::::::
Variable

: ::::
Unit

::::
25th

::::
50th

::::
75th

::::
Mean

: ::::::
Median

::::
Max

:::
Min

:

:::::::::::
nightlight_450

::::::::::
Wcm−2sr−1

::::
31.24

: ::::
38.97

: ::::
50.3

::::
42.03

: ::::
38.97

: ::::
98.39

: :::
3.96

:

::::::::::::
nightlight_4950

::::::::::
Wcm−2sr−1

::::
28.82

: ::::
32.91

: ::::
33.99

: ::::
30.15

: ::::
32.91

: ::::
35.97

: :::
5.11

:

::::::::::::
population_3000

: ::::
count

::::::::
106347.12

::::::::
121186.11

::::::::
128723.57

::::::::
111157.01

::::::::
121186.11

::::::::
137546.05

:::::::
20097.26

::::::::::::::
road_class_1_5000

: :
m

::::::
83586.9

::::::
88910.18

: ::::::
96428.33

: ::::::
88821.13

: ::::::
88910.18

: ::::::::
137238.88

:::::::
24270.47

::::::::::::::
road_class_2_1000

: :
m

:::::
2367.6

::::::
4032.19

::::::
5348.42

::::::
4018.63

::::::
4032.19

:::::
9596.1

:
0

::::::::::::::
road_class_2_5000

: :
m

::::::
54638.17

: ::::::
61129.2

::::::
64151.61

: ::::::
58553.23

: ::::::
61129.2

::::::
71428.22

: :::::::
24435.52

:::::::::::::
road_class_3_100

: :
m

:::::
182.82

:::::
359.38

:::::
548.96

:::::
374.29

:::::
359.38

::::::
1057.03

:
0

:::::::::::::
road_class_3_300

: :
m

::::::
1774.06

::::::
2574.59

::::::
3433.76

::::::
2713.63

::::::
2574.59

::::::
6283.23

:
0

:::::::
trafbuf50

::::
count 0

:
0
: :::::

132.67
:::::

294.66 0
: ::::::

3976.16
:
0
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(a) Number of features and corresponding R2 score (b) Number of features and corresponding RMSE score

Figure 3. Out-of-sample performance in ten-fold repeated random sampling validation: number of features and corresponding model perfor-

mance (global).

:::::::::
benchmark

::::
data

::::::
differs

::::
from

::::
the

::::::
coarser

::::::::
temporal

:::::
scales

:::::
used

::
in

:::
our

:::::::
models.

::::
The

::::::::::
Kerckhoffs

::
et

:::
al.

::::::
(2019)

::::
data

:::::::::
represents

:::::::::::
measurements

::::
over

::::::::
specific,

::::::
limited

::::
time

:::::::
periods,

:::::
while

:::
our

::::::
models

:::::::
address

:::::::::
predictions

::::
over

:::::::
broader

::::::::
temporal

:::::
spans.

:::::::
Despite245

:::
this

:::::::
temporal

::::::::::::
inconsistency,

:::
the

:::::::
detailed

::::::
spatial

:::::::::
granularity

::
of

:::
the

:::::::::
Kerckhoffs

::
et

::
al.

::::
map

::::::::
provides

:::::::
valuable

:::::::
insights

:::
and

:::::::
remains

::
an

::::::::::
appropriate

:::::::
standard

:::
for

::::::::
assessing

::::::
spatial

::::::::
prediction

:::::::
quality. Table 4 provides an overview of the global and local models,

along with selected predictors and evaluation methods. The global models are applied to areas with varying demographic

characteristics, including two large cities with populations exceeding 700,000 (Amsterdam and Hamburg), a mid-sized city

with around 350,000 inhabitants (Utrecht), and a small city with approximately 70,000 inhabitants (Bayreuth).
:::
The

:::::::::
resolution250

::
of

:::
the

:::::::
analysis

:
is
::::::

100m,
::::
with

::::
TIF

::::
files

::
of

::::::::
predictors

:::::::::
converted

:::
into

:::::
100m

::::
grid

::::
cells

:::
for

:::::
these

:::::::
regions.

:::
The

:::::::::
influential

::::::::
predictor

:::::::::
information

::::
(for

::::::
global

:::::::
models,

:::
see

::::::
Tables

:
2
::::
and

::
4;

:::
for

::::
local

:::::::
models,

:::
see

::::::
Tables

::
3
:::
and

:::
4)

::
is

::::::::::
recalculated

::
at

:::::
100m

:::::::::
resolution

::
for

:::
the

::::::
extent

::
of

:::
the

:::::::::::::
aforementioned

:::::::
regions.

:::::::::
Thereafter

:::::
100m

:::
by

:::::
100m

::::
grid

::::
cells

:::::::::
containing

::::::::
predictor

::::::::::
information

:::
are

:::::
used

::
to

::::::
predict

::::
NO2::::::

values
:::
for

:::
the

::::::::
respective

:::::
100m

:::::
grids,

::::::
based

::
on

:::
the

::::::
trained

:::::
local

:::
and

::::::
global

:::::::
models.

:::
The

:::::
100m

::::
grid

:::::::::
resolution

:
is
::::::::::
consistently

:::::::
applied

::
in

:::
the

:::::::::
predictions

:::
for

::::
both

:::::
local

:::
and

::::::
global

:::::::
models. Local model predictions are applied exclusively to255

Amsterdam. Table 5 summarizes the complexity of the models and how spatial components are accounted for.
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Table 4. Global and local models defined by selected predictors, models evaluated, and how models are evaluated.

Model Selected predictors Models evaluated Evaluation

Global model population_3000 random forest cross validation over the entire area

road_class_3_3000 XGboost cross validation over different land types

trafbuf25 LightGBM
::::::
LASSO

:
comparing with Kerckhoffs et al. (2019)

population_1000 LASSO
:::::
Ridge

:

nightlight_450 Ridge

nightlight_3150

trafbuf50

road_class_3_300

bldden100

ndvi

road_class_2_25

trop_mean_filt_2019

Local model nightlight_4950 linear model cross validation over the entire area

nightlight_450 linear model separating for spatial groups cross validation over different land types

road_class_3_100 mixed-effects model comparing with Kerckhoffs et al. (2019)

trafbuf50 ordinary kriging

road_class_3_300 universal kriging

road_class_2_1000 universal kriging separating for spatial groups

road_class_2_5000

population_3000

road_class_1_5000

12



Table 5. Features of the global and local models regarding model complexity and how the spatial component is considered.

Model Model complexity Accounting for the spatial component

Linear regression No regularization Classifying between land types and fitting a

model in each class.
LASSO L2 regularization Not explicitly

Ridge L1 regularization Not explicitly

Mixed-effect No regularization Classifying between land types and including

the classes as a random variable.
Kriging No regularization Covariance matrix based on Euclidean dis-

tance (second-order stationarity); Classifying

between land types and fitting a model in each

class.
Random forest Controlled by hyperparameters: number of

trees, minimum number of samples for split-

ting, minimum number of samples per leaf,

maximum features per tree, maximum depth,

bootstrapping

Not explicitly

XGBoost Controlled by hyperparameters: number of esti-

mators, alpha, lambda, learning rate, maximum

depth

Not explicitly

LightGBM
Controlled by hyperparameters: number of

estimators, alpha, lambda, learning rate,

maximum depth, gamma

Not explicitly

3 Results

3.1 Models

3.1.1 Global models

Evaluations of the different linear and non-linear models were carried out using repeated random sampling validation, per-260

formed 20 times. This approach enabled us to assess
::
In

::::
each

::::::::
iteration,

::::
75%

::
of

:::
the

::::
data

:::
was

::::
used

:::
for

:::::::
training

:::
and

:::
the

:::::::::
remaining

::::
25%

:::
for

::::::
testing.

::::
This

::::::::
approach

:::::::
allowed

::
us

::
to

:::::::
evaluate the variance and median statistics for each model in terms of R2, MAE,

and RMSE (Figure 4a, Figure 4b, and Figure 4c). The repeated sampling provided stable estimates.

When comparing out-of-sample performances via 20-fold repeated random sampling validation, the linear models (i.e., LASSO

and RIDGE
::::
Ridge) exhibited performances similar to those of the non-linear models, particularly in terms of R2 and RMSE.265

Among the models, the random forest consistently outperformed others, with the highest median R2, lowest RMSE, and lowest

13



(a) R2 (b) RMSE (c) MAE

Figure 4. Out-of-sample performances evaluated using 20-fold repeated random sampling validation: (a) R2, (b) RMSE, and (c) MAE.

Upper and lower quartiles indicate variability. RF = random forest, LGB = LightGBM, XGB = XGBoost.

MAE. The robustness of the random forest model is further emphasized by its minimal standard deviation in R2 and RMSE

(Figure 4a and Figure 4b).

Accounting for spatial information

We further investigated the influence of spatial heterogeneity by comparing model performances
::::::::::
performance across different270

spatial groups using the global model
:::::
dataset. Descriptive statistics for NO2 concentrations in each spatial group reveal distinct

differences (Table 6).

Table 6. Descriptive statistics of NO2 concentrations for each spatial group (in µg/m3).

Group Count Mean Sd. Min 25% 50% 75% Max

Urban 85 38.865 13.065 15.768 28.172 38.076 47.923 78.882

Suburban 138 27.601 9.769 7.872 19.876 26.876 34.407 56.706

Rural 259 16.653 8.341 2.122 10.331 15.892 22.518 48.887

Table 7 details the performance metrics (R2, RMSE, MAE) for each spatial group. Non-linear models outperformed linear ones

in suburban and rural areas, while performances were less distinguishable in urban areas, likely due to the smaller sample size.

Ensemble tree-based methods, such as random forest, showed lower accuracy in urban areas, possibly due to the limited and275

heterogeneous nature of the data in this group.
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Urban Suburban Rural

Models R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Non-linear

RF
Mean 0.271 10.994 8.964 0.387 7.285 5.361 0.712 4.189 3.007

SD 0.099 1.298 0.950 0.185 1.323 0.762 0.102 0.983 0.550

Mean 0.175 11.631 9.477 0.367 7.381 5.468 0.725 4.075 2.872 SD 0.145 0.226 0.955 0.226 1.513 0.739 0.120 1.040 0.537
XGboost

Mean 0.228 11.230 9.147 0.426 7.060 5.228 0.737 3.991 2.774

SD 0.150 1.014 0.807 0.183 1.340 0.687 0.116 1.096 0.530

Linear

Ridge
Mean 0.328 10.491 8.617 0.348 7.517 5.703 0.696 4.358 3.211

SD 0.127 1.080 0.860 0.167 1.139 0.606 0.103 1.133 0.564

LASSO
Mean 0.265 10.936 9.017 0.282 7.859 6.047 0.613 4.912 3.749

SD 0.177 1.159 1.040 0.201 1.105 0.672 0.119 1.153 0.678
Table 7. Model performance per spatial group (CV = 20). RMSE and MAE are represented in NO2 (µg/m3).

Spatial prediction patterns

Figure 5 presents the spatial predictions of NO2 concentrations across the Amsterdam area for each model. Panels (a) to (c
:::
and

::
(b) depict the predictions from non-linear models, while panels (d

:
c) and (e

:
d) illustrate the results from linear models. Generally,

linear models exhibit a higher tendency for overfitting, as their prediction maps are more influenced by extreme values (i.e.,280

concentrations below 15 µg/m3 or above 50 µg/m3) compared to the non-linear techniques. Interestingly, the linear models

identify a significant NO2 hotspot in the southwestern part of the study area, which is not captured by the non-linear models.

Across all models, however, elevated pollution levels are consistently observed along major roads and in some urban areas,

such as Haarlem (see Supplementary Figure 9
::
11).

Figures 6 show the spatial patterns of predicted NO2 concentrations for Hamburg (a, b), Utrecht (c, d), and Bayreuth (e, f) using285

the random forest and Ridge Regression models. Predictions from other models (LightGBM, XGBoost, LASSO
:
,
:::::::::
LightGBM)

for these cities, including both zoomed-in and zoomed-out views, are provided in the supplementary sections (Figures 10a-c,

11a-c,
:::::::::::::
Supplementary

::::::
Figures

:
12a-c, 13a-e)

:::::
13a-c,

:::::
14a-c,

::::
and

:::::
15a-e.

Comparing the prediction maps of these cities reveals noticeable differences in spatial patterns. A key finding is that in

Hamburg, the highest air pollution levels are concentrated around major roads, while in Utrecht, the urban center exhibits the290

highest NO2 concentrations. This correlation between major roads and elevated air pollution in Hamburg can be reasonably

explained by the city’s high traffic congestion, as it ranks 69th among the most congested cities globally (Tomtom, 2021).

Interestingly, there are also spatial differences in the predicted NO2 concentrations along highways between the random forest

and Ridge models. For instance, in Hamburg, the Ridge model predicts high NO2 levels along highways in the southeastern and

western parts of the city, whereas the random forest model provides a more nuanced spatial identification of these areas. The295
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random forest predictions highlight more pronounced air pollution along roads in the central and northern parts of Hamburg,

compared to the Ridge model.

Furthermore, the magnitude of high pollution levels related to major roads is significantly greater in Hamburg than in Utrecht

and Bayreuth. Nevertheless, the relationship between road presence and higher air pollution levels is evident in both Utrecht

and Bayreuth, particularly in the predictions from the Ridge model. In Utrecht, the urban center is more prominently identified300

as a high NO2 concentration area compared to Hamburg and Bayreuth. Additionally, the Ridge model for Utrecht shows more

clusters of elevated NO2 levels in the periphery, whereas the random forest model predicts a more scattered distribution of NO2

concentrations in the urban center, similar to the pattern observed in the Amsterdam area.

Bayreuth, on the other hand, is characterized by moderate pollution levels, with very low NO2 concentrations (<15 µg/m3)

in the rural areas surrounding the city. However, some clusters of higher NO2 levels exceeding the 15 µg/m3 benchmark are305

observed in the vicinity of other villages, suggesting that population or building density may influence air pollution levels in

these areas (see also Supplementary Figures 13a-e
::::
15a-e). Supplementary Figure 14

::
16

:
provides a distribution of predicted NO2

concentrations for each global model and location.
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(a) (b)

(c)

(d
:
c) (e

:
d)

Figure 5. Spatial patterns of predicted NO2 (100m), measured in µg/m3, per model for Amsterdam - non-linear models (top): (a) = random

forest, (b) = LightGBM, (c) = XGBoost; linear models (bottom): (dc) = LASSO, (e
:
d) = Ridge. Extent = 30km x 30km
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(a) (b) (c)

(d) (e) (f)

Figure 6. Spatial patterns of predicted NO2 (100m), measured in µg/m3, per model for Hamburg (extent = 30km x 30km), Utrecht (extent =

25km x 25km) and Bayreuth (extent = 10km x 10km) - top: from left to right, random forest (Hamburg), Ridge (Hamburg), random forest

(Utrecht); bottom: from left to right, Ridge (Utrecht), random forest (Bayreuth), Ridge (Bayreuth)
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3.1.2 Local models

The performance of the local models was assessed using R2, RMSE, and MAE metrics. Table 8 summarizes the performance of310

the linear model, mixed-effects model, ordinary kriging model, and universal kriging model, all evaluated using leave-one-out

cross-validation. Among these, the ordinary kriging model exhibits the poorest performance. Figure 7 illustrates the spatial

prediction patterns for each model. Notably, the universal kriging model outperforms the ordinary kriging model significantly.

However, the simple linear model surpasses the universal kriging method in terms of prediction accuracy. Incorporating spatial

groups as random effects in the mixed-effects model leads to a higher R2, and lower RMSE and MAE, indicating improved315

model performance.

Table 8. Model Performance Using Leave-One-Out Cross-Validation

R2 RMSE (µg/m3) MAE (µg/m3)

ordinary kriging 0.072 8.542 7.052

linear model 0.307 7.412 5.955

mixed-effects model 0.326 7.315 5.808

universal kriging (model + kriged residuals) 0.277 7.749 6.097

Table 9 provides model performance metrics for each spatial group, again using leave-one-out cross-validation. Consistent with

the global model results, local models trained on urban observations tend to perform poorly.
::::
This

::::
poor

:::::::::::
performance

::
is

:::::
likely

:::::
caused

:::
by

:::
an

::::::::
imbalance

::::::::
between

:::
the

::::::::
relatively

:::
few

:::::::
number

::
of

:::::::
samples

::::
and

:::
the

::::::::
relatively

::::
high

::::::::::::
heterogeneity.

::::
This

:::::::::
imbalance320

:::
may

::::::
hinder

:::
the

:::::::
models’

::::::
ability

::
to

:::::::
capture

:::
the

:::::::::
variability

:::::
within

:::::
urban

::::::
areas,

::::::::::
contributing

::
to

::::
their

::::::
poorer

:::::::::::
performance

::
in

::::
this

:::::
group.

:
Interestingly, proximity to roads does not necessarily correlate with model performance, as the suburban group exhibits

a higher R2 than the rural group. Contrary to
::::::
Unlike global models, which perform best in rural areas, local models achieve

their best performance
::::::
perform

::::
best in suburban areas. This difference may stem from the fact that

:::
arise

:::::::
because

:
observations

in rural areas within the local dataset are more similar to those in urban and suburban areas than in the global dataset, due to a325

more uniform distribution of predictor values.
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Table 9. Model Performance Per Spatial Group (CV = Leave-One-Out Cross-Validation). RMSE and MAE in µg/m3

Urban Suburban Rural

Models R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

ordinary kriging 0.072 8.257 6.772 0.223 8.558 6.575 0.072 9.029 8.303

linear model 0.140 7.890 6.360 0.509 6.800 5.301 0.147 7.390 6.202

mixed-effects model 0.141 7.874 6.316 0.524 6.505 5.298 0.115 7.404 5.644

universal kriging 0.161 8.068 6.270 0.487 6.938 5.174 0.037 7.190 8.299
(model + kriged residuals)

Spatial prediction patterns

Figure 7 displays the predicted NO2 patterns based on the local dataset. The prediction map for the linear model (a) is quite

similar to those for the mixed-effects (c) and universal kriging (e) models, with all identifying a high NO2 concentration

cluster in the northwestern part of Amsterdam. Further analysis suggests that this cluster is likely influenced by the predictor330

"road class 2 5000" (i.e., primary roads within 5000m), as this predictor exhibits a similar cluster in the same location (see

Supplementary Figures 15, 16a-i
:::
17,

::::
18a-i).

The two models that account for spatial groups before the modeling process (mixed-effects and universal kriging) display

comparable patterns where the influence of roads is evident, either through the predictors themselves or the spatial groupings

(see also Supplementary Figure 17
::
19). The relatively low NO2 values along roads in the outer Amsterdam area can be attributed335

to the spatial grouping divisions. High standard deviations in predictor values within a specific spatial group can affect that

group’s NO2 predictions, potentially leading to overestimation or underestimation in certain areas.

The high NO2 values along roads are primarily associated with the suburban spatial group, where observations are located

within 100 meters of roads. Compared to the rural group, the data distribution for each predictor in the suburban group is

substantially different, leading to distinct learning patterns that explain the relatively high prediction values along roads (see340

Supplementary Figures 18a-i
::::
20a-i). In some instances, negative predicted values are observed, albeit rarely. These may result

from discrepancies in feature characteristics between the training and testing datasets.

Comparing local prediction patterns to global prediction patterns reveals that the local models identify a cluster of high

air pollution in the northwestern part of Amsterdam that the global models do not detect. This discrepancy could be due to

differences in the spatial distribution of NO2 values between the local and global datasets, leading to distinct learning patterns in345

the respective models (Figure 1). Moreover, Figures 5 and 7 underscore the challenge of comparing spatial variations between

global and local models, given their differing algorithms. Local models, with their focus on specific spatial groupings and

detailed predictors, capture regional clusters that global models may overlook or underrepresent due to their broader scope.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Spatial patterns of predicted NO2 (µg/m3) at 100m resolution based on the local dataset - top: left = linear model, middle = linear

model separating for spatial groups, right = mixed-effects model; bottom: left = ordinary kriging, middle = universal kriging, right = universal

kriging separating for spatial groups
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Model comparison

350

Figure 8 shows the correlation in predicted NO2 values for the local and global models, as well as the mobile NO2 map

from Kerckhoffs et al. (2019) (referred to as the open NO2 dataset), which was used as a benchmark (supplementary figure

20
::::::::::::
Supplementary

::::::
Figure

:::
22). To improve the clarity of the correlations between the models and the open NO2 dataset, we

addressed some extreme prediction values. These outliers were removed to prevent them from skewing the analysis and to

provide a more accurate representation of the correlations. We selected a manual threshold of 85 as the upper bound, based on355

the maximum value observed across the ten models (excluding the two where outlier detection was applied first). The lower

bound was set at 0. The correlation matrix with these extreme predictions filtered out
::::::::
(including

::::::::::
LightGBM

::::::
results)

:
is shown

in supplementary figure 21.
::::::::::::
Supplementary

:::::
Figure

:::
23.

:
The global models are highly correlated, with the LASSO model being

the least correlated with other global models. The correlations between
::
the

:
ordinary kriging model and other models are low,

which is expected as the covariance function has a small length scale. Another reason for this discrepancy is kriging’s stationary360

assumption, which can lead to different results compared to models that do not rely on this assumption. Comparing the models

to
:::::
When

:::::::::
comparing

:::
the

::::::
models

::::
with

:
the open NO2 dataset, the local models generally show more similarity than global mod-

els. This is not surprising as the local model dataset is also from Amsterdam. Table 10 shows the residuals per global and local

model. The ridge
:::::
model emerged as the most accurate with the lowest mean residual (0.31), indicating it closely matched actual

open NO2 dataset values. Conversely, the LASSO model, despite its high internal correlation, had relatively higher residuals365

and showed less similarity in prediction patterns compared to other global models. LightGBM and XGBoost also performed

well but with slightly higher residuals than the Ridge model. In contrast, the local linear models, mixed-effects model, ordinary

kriging, and universal kriging generally displayed higher residuals, with ordinary kriging having the largest mean residual

(4.71). This suggests that local models had greater prediction errors compared to global models. A spatial comparison of the

predicted NO2 concentration values between the open NO2 dataset and the global and local models are shown in supplementary370

materials figure 22a-e and 23a-f respectively.
::::::::::::
Supplementary

:::::::
Figures

:::::
24a-e

:::
and

:::::
25a-f

::::::::::
respectively.

::
A

::::::
spatial

::::::::::
comparison

::
of

:::
the

:::::
global

::::
and

:::::
local

:::::
model

::::::::::
predictions

::::
with

:::
the

:::::::::::
measurement

::::::
station

:::
data

::::
can

::
be

:::::
found

::
in
:::::::::::::
Supplementary

::::::
Figures

:::
26

:::
and

:::
27.

:
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Table 10. Residual statistics for the difference between model predictions and open NO2 dataset.

Model Type Mean Median SD Min Max

Random forest Global 0.68 2.77 8.48 -54.54 17.98

LASSO Global 1.24 2.50 9.03 -53.92 25.00

Ridge Global 0.31 1.55 8.82 -53.70 25.06

LightGBM Global 0.56 2.29 8.76 -55.83 22.85 XGBoost Global 0.67 2.43 8.98 -57.94 24.48

Linear Local 1.87 3.56 8.61 -55.16 28.17

Linear spatial groups Local 2.25 3.09 15.22 -58.21 384.63

Mixed-effects model Local 2.51 4.10 8.54 -53.75 26.70

Universal kriging Local 1.83 3.46 8.30 -54.58 29.08

Universal kriging spatial groups Local 1.99 2.76 14.56 -56.75 369.05

Ordinary kriging Local 4.71 6.64 9.57 -57.21 30.71

23



Figure 8. Comparing model predictions whereby the numbers equal the Pearson correlation coefficient. RF: Random Forest, LGB:

LightGBM, XGB: XGBoost, LR: linear regression, LRsp: Linear Regression accounting for spatial groups, MEM: Mixed-Effects Model,

UK: Universal Kriging, UKsp: Universal Kriging accounting for spatial groups, OK: Ordinary Kriging, no2: mobile NO2 map.

24



4 Discussion

Several studies have applied statistical modeling to ground station measurements and geospatial predictors for NO2 mapping,

but the impact of spatial heterogeneity has often been overlooked. In this study, we address this gap by comparing spatial and375

non-spatial modeling techniques across different spatial scales. Below, we discuss the key findings and provide our perspec-

tives.

Relationship between predictors and other pollutants

For both global and local datasets, traffic and population density emerge as the most influential predictors, aligning with380

the findings of Beelen et al. (2013), which emphasize the importance of these variables for improving prediction accuracy. The

strong influence of traffic on NO2 concentrations also supports the conclusions of Lu et al. (2020) and Chen et al. (2019). How-

ever, since sources of different pollutants vary (Chen et al., 2019), the modeling results for NO2 may not be directly applicable

to other pollutants.

Accounting for spatial groups385

Meyer and Pebesma (2021, 2022) argue that the growing popularity of global models, due to their ability to capture both

linear and non-linear relationships, may lead to misinformation. While a well-trained global model
::::::::
Although

:::::
global

:::::::
models

can make accurate predictions where global predictors are available, it may perform poorly in regions where predictor values

differ
:
in
:::::::
regions

:::::
where

:::
the

::::::::
predictor

:::::::
variables

:::
are

::::::::::::::
well-represented

::
in

:::
the

:::::::
training

::::
data,

::::
their

::::::::::
performance

::::
may

:::::::
degrade

::
in

:::::
areas390

::::
with

:::::::
predictor

::::::
values

:::
that

:::::::
deviate significantly from the training data

:::::
range,

::::::::::
highlighting

:::
the

::::
risk

::
of

:::::
spatial

::::
bias

::
in

::::::::::
predictions.

In this study, the differences between linear and non-linear techniques are minimal when applied to the global dataset. Al-

though the random forest model generally performs best (highest R2, lowest MAE), the R2 of the RIDGE model is higher than

that of the LightGBM and XGBoost models
::::::::
XGBoost

:::::
model. However, when accounting for spatial groups—urban, suburban,

and rural—the differences in model performance between linear and non-linear techniques become more pronounced, with non-395

linear models generally outperforming linear models, particularly in rural areas where data are more homogeneous. This finding

confirms with studies by Weichenthal et al. (2016), Reid et al. (2015), Chen et al. (2019), and Lu et al. (2020), which suggest

that non-linear techniques typically provide better predictions. Our results support the argument by Meyer and Pebesma (2021)

that non-linear models perform better in areas where the environmental variables are similar to those in the training data.

Although various cross-validation methods are available, with some researchers advocating for spatial cross-validation to400

better capture autocorrelation, we opted for random bootstrap cross-validation. According to Wadoux et al. (2021), standard

cross-validation (i.e. , ignoring autocorrelation) results in less bias than spatial cross-validation. They also argue that spatial

cross-validation methods lack theoretical underpinning and should not be used for map assessment. Standard cross-validation

is sufficient for clustered data scenarios (Wadoux et al., 2021; Lu et al., 2023).
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:
A
:::::::::

significant
:::::::::

limitation
::
of

::::
the

:::::
study

:::::
setup

::
is

:::
the

:::
fact

::::
that

:::
the

:::::
most

::::::::::::
heterogeneous

::::::
group

::::::
(urban)

::
is
:::
the

:::::
least

::::::::::
represented405

::
in

:::::
terms

::
of

:::::::
number

::
of

::::
data

::::::
points,

::
at

::::
least

:::
for

::::
the

:::::
global

:::::::
dataset.

:
In urban areas, the more heterogeneous nature of the data

reduces the performance gap between linear and non-linear techniques, with both performing poorly. This poor prediction

accuracy in urban areas is concerning, as the impact of air pollution is often more severe in these regions due to proximity to

traffic-heavy roads and industrial areas (He et al., 2022). While
::::::::
Although spatial grouping improves predictive reliability, it can

lead to counterintuitive patterns, such as lower predicted NO2 concentrations along roads compared to surrounding rural areas.410

Additionally, adjusting
:
In

:::
the

:::::
local

::::::
dataset,

:
the threshold for defining "urban" in the local dataset from

::::
areas

:::
was

:::::::
adjusted

:::::
from

::
the

:::::
upper

:::::
75%

::::::
quartile

:
(0.75to )

::
to
:::
the

:::::::
median

:
(0.5, due to higher population density and fewer samples, was necessary to more

accurately represent
:
).

::::
This

::::::::::
adjustment

:::
was

:::::::::
necessary

:::
due

::
to

:::
the

:::::::
limited

::::::
sample

::::
size,

::::::
which

:::::::
required

::
a

::::::
broader

:::::::::
definition

::
to

:::::
ensure

::::::::
sufficient

::::
data

::::::::
coverage

:::
for urban areas. This adjustment, while affecting the classification

:::::::
However,

::::
this

::::::
change

::::
also

::::::
resulted

::
in
::

a
:::
less

::::::::
stringent

::::::::
definition

:
of "urban" areas, is crucial for improving model relevance and accuracy in high-density415

regions. Therefore, while spatial grouping enhances prediction reliability, the definition of "urban" varies between datasets and

can influence model performance and interpretation.

Moreover, Patelli et al. (2023) identify three main categories for integrating random forests with spatial data: pre-processing,in-processing,

and post-processing. In our study, the link between random forest performance and spatial groups can be considered a form

of post-processing. However, there is potential for better integration of spatial data into ensemble tree-based models, such as420

random forests, to further improve predictive performance (Patelli et al., 2023).

:
"
:::::::::
potentially

::::::::
including

::::
areas

::::
with

:::::
lower

::::::::::
population

:::::::
densities.

::::::
While

:::
this

:::::::::
adjustment

:::::::
expands

:::
the

:::::::
number

::
of

:::::::
training

:::::::
samples

:::::::
available

:::
for

:::
the

:::::
most

::::::::::::
heterogeneous

:::::
group

:::::::
(urban),

::
it
:::::::::
introduces

::
a
::::::::
limitation

:::
by

:::::::
diluting

:::
the

:::::
urban

:::::
group

::::
and

::::::::
affecting

:::
the

:::::::::::
comparability

::
of

:::::::
results.

::::
This

:::::::
trade-off

::::::::::
underscores

:::
the

:::::::::
challenges

::
of
:::::::::

balancing
::::
data

::::::::::::
representation

::::
with

::::::::
statistical

:::::::::
robustness

::
in

:::::
spatial

::::::::
analyses.

:
425

Global and local predictions

In comparing global and local models, each approach has distinct strengths and limitations. Local models, tailored to spe-

cific spatial groupings and incorporating detailed predictors, excel at capturing regional clusters and nuances. These models

can identify patterns and variations that broader, global models might miss or inadequately represent. On the other hand, global430

models are designed to capture overarching trends across larger areas but often overlook the finer local details crucial for

accurate predictions in specific regions.

The findings of Yuan et al. (2023) support this distinction, highlighting that integrating large-scale stationary measurements

with local mobile data improves modeling performance in urban areas by accounting for finer spatial variations. Their study

underscores the limitations of global models, which, while providing a broad overview, may fail to capture the detailed local435

variations necessary for precise predictions. By combining global and local data, a more accurate and nuanced depiction of air

pollution can be achieved, particularly in complex urban environments where local details are critical.
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Spatial variation in feature importance

While feature importance may be consistent across cities, the influence of specific predictors on NO2 concentrations can440

vary significantly between cities. For example, building density and population are more significant contributors to air pollu-

tion in Utrecht, whereas traffic has a greater impact on high NO2 concentrations in Hamburg. Applying global models with

the same predictors across different cities may not yield optimal results; instead, models tailored to the specific conditions and

dominant predictors of each city may provide better predictions. However, an important consideration is that each city must

have a sufficient number of observations to avoid unreliable predictions.445

Model quality

The limited number of observations in the local dataset poses challenges for fitting complex models. To address unreliable

predictions, outliers were removed after model predictions. Transforming the original data could potentially avoid predictions450

falling outside the plausible range (e.g., below 0 µg/m3). However, in this study, such transformations, like a log transforma-

tion, were not applied. Although airborne pollutant concentrations are often positively skewed (Maranzano et al., 2020), Lu

et al. (2023) found that the best modeling results were obtained without data transformation and using Gaussian likelihood,

even when other distributions like Gamma might better match the data distribution. Moreover, while the LASSO and Ridge

models appear useful with the global dataset, their predictions were less satisfactory with the local dataset. In this study, traffic455

volumes were a significant feature, yet no distinction was made between different types of traffic (e.g., cars, buses, trucks),

vehicle types (e.g., electric, diesel), or engine types, all of which are known to influence air pollution (Wong et al., 2021). For

example, distinguishing between vehicle types could reveal that certain roads, such as those leading to or from the port of Ham-

burg, have a higher proportion of trucks, which might explain localized clusters of high NO2 concentrations. Future studies

could explore integrating spatial dependence into random forest models (Patelli et al., 2023) to potentially enhance predictive460

performance.

5 Conclusions

In this study, we understand
::::::::
investigate

:
the spatial heterogeneity of NO2 modeling by comparing various linear and non-linear

statistical models at different scales (local vs. global). One of the key findings of this study is that the model performance varies

little with models of different levels of complexity, but spatially in various population, traffic, and urban settings. Non-linear465

techniques predict better in rural and suburban areas, compared to linear models. Global model prediction accuracy is consid-

erably higher in areas far from roads than in areas near roads. Methods preferred in global modeling appear to be unfavorable

in local modeling. The relatively few NO2 observations used in the local models could explain why non-linear models perform

poorly. We
:::::
Using

:::
the

:::::
local

::::::
dataset

::
of

:::
our

:::::
study,

:::
we

:
also found that modeling the spatial autocorrelation

:::::::
explicitly

::::::::::
accounting

::
for

::::::
spatial

:::::::::::::
autocorrelation

::
in

:::
the

::::::::
universal

::::
and

:::::::
ordinary

:::::::
kriging

::::::
models

:
does not improve the local modeling accuracy, but470
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modeling spatial groups does
::::::::
accuracy;

::::::::
however,

::::::::
analyzing

:::::::::
prediction

:::::::::::
performance

::::::
across

:::::
spatial

:::::::
groups

:::::::
provides

::::::::
valuable

::::::
insights. Lastly, prediction patterns show

::
the

::::::
spatial

:::::::::
prediction

:::::::
patterns

::
of

::::::
global

::::::
models

:::::::
indicate that non-linear models are

less prone to overfitting compared to
:::::::
methods

:::
are

::::::::
generally

:::
less

:::::::
sensitive

::
to
::::::
spatial

:::::::::
variability

::::
than linear methods, and different

modeling techniques lead to different NO2 clusters in the prediction map. Our results suggest that only looking at the overall

prediction accuracy is insufficient and can be misleading.475
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