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Abstract.

Air pollution leads to various health and societal issues. Modeling and predicting air pollution over space have important

implications in health studies, urban planning, and policy-making. Many statistical models have been developed to understand

the relationships between geospatial data and air pollution sources. An important aspect often neglected is spatial heterogene-

ity; however, the relationships between geographically distributed variables and air pollutants commonly vary over space. This5

study aims to evaluate and compare various spatial and non-spatial statistical modeling (including machine learning) methods

within different spatial groups. The spatial groups are defined by traffic- and population-related variables. Models are clas-

sified into local and global models. Local models use air pollution measurements from the Amsterdam area. Global models

use ground station observations in Germany and the Netherlands. We found that prediction accuracy differs substantially in

different spatial groups. Predictions for places near roads with high populations show poor prediction accuracy, while predic-10

tion accuracy increases in low population density areas for both local and global models. The prediction accuracy is further

increased in places far from roads for global models. Modeling of air pollution in different spatial groups shows that non-linear

methods can have higher prediction accuracy than linear methods. The spatial prediction patterns of global models show that

non-linear methods generally are less prone to overfitting than linear methods. Additionally, clusters of predicted air pollution

differ between models within cities despite similar prediction accuracy. The
::::
Also,

:::
the

:
influence of predictors on NO2 concentra-15

tions varies across different cities. Lastly, applying the same methods to the local dataset yields poor accuracymetrics, the linear

methods outperform non-linear methods, contrary to the results of
:::
For

:::
the

::::
local

:::::::
models,

::::::::::
accounting

::
for

::::::
spatial

:::::::::::::
autocorrelation

::::
does

:::
not

:::::::
improve

::::::::
accuracy,

:::
but

::::::::
modeling

:::::
spatial

::::::
groups

:::::
does.

:::::::::
Comparing

:::::
local

:::
and

:::::
global

:::::::::
prediction

:::::::
patterns

::::::
reveals

:::
that

:::::
local

::::::
models

::::::
capture

:::::::
regional

:::::::
clusters

::
of

::::
high

:::
air

::::::::
pollution

:::::
which

:::
are

::::
not

:::::::
detected

::
by

:
global models.

::::
These

:::::::
findings

::::::::
highlight

::::
that

:::::
solely

::::::
relying

:::
on

::::::
overall

:::::::::
prediction

:::::::
accuracy

::::
can

::
be

::::::::::
insufficient

:::
and

::::::::::
potentially

::::::::::
misleading,

:::::::::::
underscoring

:::
the

:::::::::
importance

:::
of20

:::::::::
considering

::::::
spatial

:::::::::
variability

:::
and

::::::
model

::::::::::
performance

::::::
within

:::::::
different

::::::
spatial

::::::
groups.

:

1 Introduction

Modeling and estimation of NO2 concentration levels are essential for understanding air pollution comprehensively, which is

important for
::::::::
estimating

::::
NO2::::::::::::

concentration
:::::
levels

:
is
::::::::
essential

::
for

::
a
::::::::::::
comprehensive

::::::::::::
understanding

::
of

::
air

:::::::::
pollution,

:::::
which

::::
plays

::
a

::::::
critical

:::
role

::
in

:
urban planning and making political decisions towards

::::::::::::
policy-making

::
to

:::::
foster a healthy society. Air pollutants25
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have been modeled at
:::::
across

:
various spatial scales, up to the globallevel. The

::::
from

:::::
local

::
to

::::::
global.

::::::
These

:
models can be

classified into
::::::
broadly

::::::::
classified

:::
into

:::::
three

:::::::::
categories: statistical models, chemical transportation models

::::::::
transport

::::::
models,

:
and

air dispersion models. The chemical transportation models aim at
:::::::
Chemical

::::::::
transport

::::::
models

:::
are

::::::::
typically

::::
used

:::
for large-scale

air pollution modeling. The ,
:::::
while

:
air dispersion models require detailedand spatially revolved ,

::::::::
spatially

:::::::
resolved

:
emission

data to model
:::::
capture

:
small-scale spatial variations in air

::::::::
variations

::
in
:
pollutants (Beelen et al., 2013). Statistical modeling is30

becoming more popular in

::
In

:::::
recent

:::::
years,

::::::::
statistical

:::::::::
modeling

:::
has

::::::
gained

::::::::
popularity

:::
for

:
high-resolution mapping at different spatial scales, due to an

increment
::::::
driven

::
by

:::
the

:::::::
increase in available predictors (i.e.

::::
e.g., GIS variables) and computational capability

::::::::::::
advancements

::
in

:::::::::::
computational

::::::::::
capabilities. Land Use Regression (LUR) is the most well-known statistical

:::::::
approach

:::
for

:
air pollution model-

ingapproach. LUR builds linear regression models
:
,
:::::
using

:::::
linear

:::::::::
regression to capture the spatial variability of traffic-related35

air pollution in urban areas. Most LUR models are based on measurements
:::
rely

:::
on

::::
data

:
from ground monitoring stations

(Hoek et al., 2008; Wang et al., 2020). Geostatistical methods such as kriging could further capture the
:::
like

:::::::
kriging

:::
can

::::::
further

::::::
account

:::
for spatial correlations between the observations. However, several studies favor

::::
have

::::::
favored

:
the simplicity of LURand

conclude that they outperform or are equivalent to ,
:::::
often

:::::::::
concluding

::::
that

::
it

:::::::
performs

:::
as

::::
well

::
as

::
or

::::::
better

::::
than geostatistical

methods (Hoek et al., 2008; Marshall et al., 2008; Beelen et al., 2013). However, most of these studies draw this conclusion40

purely
::::::
Notably,

:::::
these

::::::::::
conclusions

:::
are

:::::::
typically

:
based on prediction accuracy but not on

:::::
alone,

::::::
without

::::::::::
considering the models’

ability in uncertaintyquantification, scientific interpretation, and the integration of
::
to

:::::::
quantify

::::::::::
uncertainty,

:::::::
provide

::::::::
scientific

::::::::::::
interpretations,

::
or

::::::::
integrate known mechanisms (Lu et al., 2023). Specifically,

:::::
many

::::::
studies

::::::
neglect

:
optimal estimation of the

covariance function and the specification of priors of parameters in the geostatistical modelingare commonly not a priority of

these studies, or are neglected
:
in
:::::::::::
geostatistical

::::::::
modeling.45

Although the linear models have the advantage of being highly interpretable and can be extrapolated
:::::
While

:::::
linear

::::::
models

:::
are

:::::::::::
advantageous

:::
for

::::
their

::::::::::::
interpretability

::::
and

::::::
ability

::
to

:::::::::
extrapolate, they may not capture the complex

:::
fall

::::
short

:::
in

::::::::
capturing

:::
the

:::::::
complex

::::::::
processes

::
of

:
air emission, dispersion, and deposition processes (Wang et al., 2020). Data-driven,

:::::::::::::::
(Wang et al., 2020)

:
.

::
As

::
a

:::::
result,

::::::::::
data-driven, non-parametric models(most commonly known

::::::::::
—commonly

:::::::
referred

::
to

:
as machine learning methods

in air pollution mapping)
::::::
—have

::::::
become

:::::::::::
increasingly

:::::::
popular.

:::::
These

::::::
models, such as tree-based algorithmshave been more on50

trend in air pollution mapping, as these methods may better capture ,
:::
are

:::::
better

::::::
suited

::
for

::::::::
capturing

:
the non-linear relationships

between pollutants and predictors (Weichenthal et al., 2016; Reid et al., 2015; Lu et al., 2020). For example, Brokamp et al. (2017)

compare the
::::::::::::::::::::::::::::::::::::::::::::::::
(Weichenthal et al., 2016; Reid et al., 2015; Lu et al., 2020)

:
.
:::
For

:::::::
instance,

:::::::::::::::::::
Brokamp et al. (2017)

::::::::
compared

:
Land

Use Random Forest models (LURF) with the
::::::
models

::::
with

:
LUR models for elemental components of PM2.5 in the urban

area of
::2.5:::

in Cincinnati, Ohio, and find that the LURF shows a
:::::
found

::::
that

:::::
LURF

:::::::
models

:::::::::::
demonstrated

:
lower prediction er-55

ror variance for each elemental model with cross-validation. Kerckhoffs et al. (2019) report
:::::
across

::
all

:::::::::
elemental

::::::
models

:::::
when

:::::::::::::
cross-validated.

::::::::
Similarly,

::::::::::::::::::::
Kerckhoffs et al. (2019)

:::::::
reported

:
that machine learning algorithms,

:
such as bagging and random

forest, explain
::::::::
explained more variability in ultra-fine particle concentrations than multiple linear regression and regularized

regression techniques. Ameer et al. (2019) advocate that the
:::::::::
advocated

::
for

:
random forest regression is

:
as

:
the best technique

, compared to
::
for

::::::::
pollution

:::::::::
prediction

:::::
across

:::::::
varying

:::::::
datasets,

:::::::::
locations,

:::
and

:::::::::::::
characteristics,

::::::::::::
outperforming

:
decision tree re-60
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gression, Multi-Layer Perceptron
:::::::::
multi-layer

:::::::::
perceptron

:
regression, and gradient boosting regression, for pollution prediction

for data sets of varying size, location, and characteristics. Ren et al. (2020) conclude .
:::::::::::::::
Ren et al. (2020)

:::
also

:::::::::
concluded

:
that

non-linear machine learning methods achieve higher accuracy than the linear LUR, thereby stressing that a careful design of

::::::::::
emphasizing

:::
the

::::::::::
importance

::
of

::::::
careful hyperparameter tuning and flexible

:::::
robust data splitting and validations is important to

acquire stableand
::::::::
validation

::
to

::::::
ensure

:::::
stable,

:
reliable results. Chen et al. (2019) compare

::::::::
compared 16 algorithms to predict65

the
::
for

:::::::::
predicting

:
annual average fine particle (PM2.5

:::::
PM2.5) and nitrogen dioxide (NO2) concentrations across Europe, and

also conclude with a favor of the
:
.
::::
They

:::::
found

::::
that

:
ensemble tree-based methods and the difference is more prevalent for the

PM2.5 pollutant
::::
were

:::::::::
particularly

::::::::
effective

:::
for

::::::
PM2.5,

:
while NO2 model predictions show a

:::::
models

:::::::
showed

:
similar R2 . At

the same time,
:::::
values

::::::
across

:::::::
different

::::::::
methods.

::::::::::
Importantly,

::::
they

:::::::
reported

:
a high correlation is reported between the predicted

values of the various modelsused in the study. Furthermore, since they measure two pollutants,
:::::
various

:::::::
models,

::::::
noting

::::
that70

the most influential predictors differ
:::::::
differed substantially between pollutants. Satellite

::
For

::::::::
example,

:::::::
satellite observations and

dispersion model estimates were among the most influential predictors for PM2.5 concentrations, whereas the variation in
:::
key

::::::::
predictors

:::
for

::::::
PM2.5 ::::::::::::

concentrations,
:::::
while

:
NO2 is primarily attributable to

::::::::
variability

::::
was

::::::::
primarily

::::::
driven

::
by

:
traffic-related

variables. The major
::::::::
significant

:
contribution of road traffic to NO2 concentrations is

:2:::::
levels

::
is

::::::
further supported by Wong et al.

(2021), it was
:::
who

:
found that nitrogen is produced particularly

::::::::
emissions

:::
are

::::::::::
particularly

::::::::
influenced

:
by long-range transport ,75

::::
from gasoline-fueled passenger cars.

Over the past few years, there has been a notable rise in the utilization
:
In

::::::
recent

:::::
years,

:::
the

:::
use of statistical modeling for air

pollution mapping , leading to the emergence of
:::
has

::::::
surged,

::::::::
resulting

::
in numerous local and global air pollution maps . These

maps are now being increasingly utilized
:::::::
pollution

:::::
maps

::::
that

:::
are

::::::::::
increasingly

:::::::
applied in urban and health studies. However,

evaluating air pollution
::::
these

:
models and maps remains a challenge. One reason is the lack

::::::::::
challenging.

::::
One

::::::::
challenge

::
is

:::
the80

::::::
scarcity

:
of air pollution measurements. A second reason may be attributable to a different

::::::
Another

::
is
:::
the

:::::::
varying

:
focus on

spatial heterogeneity in air pollution. For instance
::::::
example, He et al. (2022) acknowledge spatial heterogeneity in measurement

stations as they show
::
by

::::::::::::
demonstrating

:
that the probability density function

:::::::
functions

:
of concentrations (NO, NO2, PM10,

PM2.5) of
::2

,
:::::
PM10,

:::::::
PM2.5)

::::
vary

::::::
across different spatial categories (urban traffic;

:::
e.g.,

:::::
urban

::::::
traffic,

:
suburban/rural traffic;

urban industrial; ,
::::::

urban
::::::::
industrial,

:
suburban/rural industrial; urban background; suburban background;

:
,
:::::
urban

:::::::::::
background,85

:::::::
suburban

:::::::::::
background, rural background)show different patterns. However, the

:::
their

:
study does not focus on modeling

:::::
model

potential differences in prediction accuracy for every concentration type and spatial category
:::::
across

:::::
these

:::::::::
categories. A third

reason
:::::::
challenge

:
is that most of the current statistical modeling approaches only assess the overall accuracybut not the accuracy

over space
:::::
current

::::::::
statistical

::::::::::
approaches

:::::
assess

::::
only

::::::
overall

::::::::
accuracy,

::::::::
neglecting

::::::
spatial

:::::::
variation

:
(Hoek et al., 2008; Chen et al.,

2019). Hoek et al. (2008) state that a LUR model typically explains
:::::::
reported

:::
that

:::::
LUR

::::::
models

::::::::
typically

::::::
explain 60-70% of the90

variation in NO2. However, the
:2
,
:::
but

::::
this explained variation may be very low in areas

::::::::::
significantly

:::::
lower

:
near traffic. Chen

et al. (2019) argue that most of the previous
::::::
argued

:::
that

:::::
many

:
air pollution exposure assessment studies make no distinction in

::::::
studies

:::
fail

::
to

:::::::
account

:::
for the characteristics of the monitoring sites when performing cross-validation, potentially leading to

misrepresenting model results. Therefore, they opt to "evaluate
::::
They

:::::::
suggest

::::::::
evaluating

:
models using pollution data collected

3



from monitoring sites which represent
:::
that

::::::
reflect the application locations " (Chen et al., 2019, p.3). Lastly

:::::::::::::::
(Chen et al., 2019)95

:
.

::::::
Finally, a consistent and coherent uncertainty quantification method is lacking

::::::
method

::
for

::::::::::
quantifying

:::::::::
uncertainty

:
in air pol-

lution mapping . Shaddick et al. (2020) argue that the
::
is

:::::::
lacking.

::::::::::::::::::
Shaddick et al. (2020)

::::::
pointed

:::
out

::::
that uncertainty in air pol-

lutant measurements is only discussedin limited studies. A consequence of the inadequate evaluation is the non-extrapolating

property of most
:::::
rarely

:::::::::
discussed.

::::
This

:::::::::
inadequate

:::::::::
evaluation

:::
can

::::
lead

::
to

::::::::::
overlooked

::::::
biases,

::::::::
especially

:::::
since

:
non-parametric100

machine learning methods is commonly ignored. Areas to be predicted could differ considerably in their
::::
often

::::
lack

:::::::::::
extrapolation

::::::::::
capabilities.

:::::
When

::::::::
predicted

::::
areas

:::::
differ

:::::::::::
significantly

::
in societal and environmental properties compared to the

::::::::::::
characteristics

::::
from training data, yielding highly biased predictions

::::
may

:::::
result, which are not evaluated in multiple

:::::::::
adequately

::::::::
evaluated

::
in

::::
many

:
studies (Shaddick et al., 2020).

Given the increasing
::::::
growing

:
number of modeling and prediction techniques , and the presence of

:::
and

:::
the

::::::::
potential

:::
for105

misrepresented prediction maps due to heterogeneity issues, this study aims to understand
:::::::::
investigate:

:
to

:
To

:
what extent

can statistical models be used in predicting
:::::
predict

:
NO2 :2:

concentrations given
::::
using

:
high-quality, high-temporal resolution

::::::::::::::::::::
high-temporal-resolution

:
ground station measurements: how does

:
?
:::::
How

::
do

:
the performance of statistical

::::
these models differ

and how does it differ spatially
:::
their

:::::::
spatial

::::::::
accuracy

::::
vary? The study area is in

::::::
focuses

:::
on

:
the Netherlands and Germany.

Two datasetsare used. One is ,
:::::

using
::::

two
::::::::
datasets:

:
the official national ground station measurements of the two countries110

(OpenAQ, 2017; EEA, 2021),
::::
from

::::
both

::::::::
countries

::
(referred to as global dataset; and the other is the

:::
the

::::::
global

:::::::
dataset)

:::::::::::::::::::::::
(OpenAQ, 2017; EEA, 2021)

:
,
::::
and

:::
the more densely distributed ground station measurements of

::::
from

:
the Amsterdam area

(Gemeente Amsterdam, 2022),
:
(referred to as local dataset. The aims are

:::
the

::::
local

:::::::
dataset)

:::::::::::::::::::::::::
(Gemeente Amsterdam, 2022).

::::
The

:::::
global

::::::
dataset

:::::::
includes

::::
482

:::::::::::
measurement

:::::::
stations

:::::::
covering

:::::::
398,000

::::
km2

::::
with

::
a

::::
point

:::::::
density

::
of

::::::
0.0012

:::::
points

:::
per

:::::
km2,

:::::
while

::
the

:::::
local

::::::
dataset

:::::::
includes

::::
132

::::::
stations

::::::::
covering

:::
196

::::
km2

::::
with

:
a
:::::
point

::::::
density

::
of
:::::
0.591

::::::
points

:::
per

::::
km2.

::::
The

:::::
study

::::
aims

:
to com-115

pare and understand model behaviors and prediction patterns
:::::
across 1) of the two datasets, 2) in different spatial groups classi-

fied based on the distances
::
by

::::::::
proximity

:
to traffic and population densities

::::::
density, and 3) in using different

::::::
various statistical

models, to understand
:::::::
evaluate the added value of non-linear machine learning models and geostatistical models

:::::::::
approaches.

2 Methodology

2.1 Data120

The global-

:::
The

::::::
global and local datasets contain

::::::
include

:
the annual mean of NO2 concentrations , (measured in µg/m3, for

:::
m3)

:::
for

:::
the

:::
year

:
2017 (OpenAQ, 2017; EEA, 2021). Figure ?? shows the distributions

::
??

:::::::
presents

:::
the

::::::::::
distribution

:
of NO2 concentrations

at the global and local measurement stations.

The spatial distribution of NO2 measurement stations are shown in
:2 :::::::::::

measurement
:::::::
stations

::
is

:::::::
provided

::
in

:::
the

:
supplementary125

materials (figure
:::::
Figure 1a

:
,
::
1b). Urban areas generally have a higher density of measurement stations. The differences between

the global-
::::
This

::::
study

:::::::
focuses

::
on

:::
the

:::::::::
differences

::::::::
between

:::::
global

:
and local modelsare studied in Amsterdam. Less ,

::::::::::
particularly

4



::
in

::::::::::
Amsterdam,

:::::
while

::::
also

::::::::::
considering

:::
the

:::::
city’s

:::
less

:
densely populated areas around Amsterdam are included to examine the

effect of the urban area on the
::::
urban

::::::
impact

:::
on predicted NO2 concentration levels per local model

:::::::::::
concentrations

::
in

:::
the

:::::
local

::::::
models.130

To examine whether the prediction quality differs between
::::::
evaluate

:::::::
whether

::::::::
prediction

::::::
quality

::::::
varies

:::::
across areas with different

spatial characteristics (e.g.
:
, high vs. low road density), observations of the global and local datasets are split

::::::
divided into three

spatial groups based on population densities
::::::
density and traffic-oriented variables. Data for the year

::::::::
Population

::::
data

:::
for

:
2015

from the Global Human Settlement layer population grid is used for the population variable (JRC, 2015); The information

on road length in meters is derived
:::::
Layer

::
is

::::
used

::::::::::
(JRC, 2015)

:
,
:::
and

::::
road

::::::
length

::::::::::
information

::
is

:::::::
sourced

:
from OpenStreetMap135

(2019). Descriptive statistics of the variables that determine the
:::
for

:::
the

::::::::
variables

::::
used

::
to

::::::
define spatial groups are shown in

table
::::::::
presented

::
in

:::::
Table

:
1.

Table 1. Descriptive statistics for each relevant variable in the determination of
::::::
variables

:::::::::
determining

:
spatial groups for the local-

::::
local and

global datasets.

Variable
:::::
Dataset

:
Mean Min 25% 75% Max

Road class 1 100m (total length of highway (m))
Road class 1 100m (total length of highways [m])

Local data 2154.787 0 0 3001.109 12950.676

Global data 12.295 0 0 0 982.912

Road class 2 100m (total length of primary roads (m))
Road class 2 100m (total length of primary roads [m])

Local data 4018.626 0 2367.599 5348.419 9596.102

Global data 68.943 0 0 0 735.144

Road class 3 100m (total length of local roads (m))
Road class 3 100m (total length of local roads [m])

Local data 25838.098 6483.437 18085.396 33039.556 50712.625

Global data 272.059 0 29.281 406.097 1088.154

Population 1000m
Population 1000m

Local data 111157.013 20097.258 106347.117 128723.570 137546.047

Global data 6154.486 0 2204.520 9036.756 20300.887

The three spatial groups are defined as follows:

1. Urban: areas that are
::::::
Urban:

::::
Areas

:
within 100 meters of either road class 1 (highway) or

::::::::
highways)

:::
and

:
2 (primary

roads) and the population 1000 (population density within 1000 meters of every measurement station) values are
::::
with140

:::::::::
population

::::::
density in the highest 25%; or the

::::
areas

::::::
where

::::
both road class 3 (local roads) values and the population 1000

values are both
::::::::
population

::::::
density

:::
are

:
in the highest 25%.

2. Low population: areas that are
:::::::::
Suburban:

:::::
Areas within 100 meters of road class 1 and 2 and the population 1000 values

are
::::
with

:::::::::
population

::::::
density

:
in the lowest 75%; or the

::::
areas

::::::
where

:
road class 3 values are in the highest 25% and the

population 1000 values are
:::::::::
population

::::::
density in the lowest 75%.145

3. Far from roads: areas that are
::::::
Rural:

:::::
Areas further than 100 meters away of

::::
from

:
road class 1 and 2; or the

::::
areas

::::::
where

road class 3 values are in the lowest 75%.
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By applying this grouping 1,
::::
This

:::::::::::
classification

::::::
resulted

::
in
:
85 observations are classified

::::
being

:::::::
labeled as "urban", 138 as "low

population
:::::::
suburban",

:
and 259 as "far from roads

::::
rural", together compromising the

:::::::
totaling 482 observations of

:
in

:
the global

dataset. Since the local dataset contains fewer samples and is characterized by
:::::
Given

::
the

:
higher population density

:
in
:::
the

:::::
local150

::::::
dataset

:::
and

:::
its

::::::
smaller

::::::
sample

::::
size, the threshold is adjusted from 0.75 to 0.5 (i.e.

:::
for

:::::::
defining "urban" is now related to the

50% highest values rather than the 75% highest values). For the local dataset,
:::
was

:::::::
adjusted

::::
from

:::
the

::::
75th

:::::::::
percentile

::
to

:::
the

::::
50th

::::::::
percentile.

::::
This

::::::::::
adjustment

:::
was

:::::::::
necessary

::
to

:::::
better

::::::
capture

:::
the

:::::
high

:::::::::
population

::::::
density

::
in

:::
the

:::::
local

::::::
dataset

:::
and

:::::::
resulted

::
in

:
56

observations are attributable to the spatial group
:::::
being

::::::::::
categorized

::
as "urban",

:
,"
:
46 to

:
as

:
"low population",

:::::::::
suburban," and 30

to
::
as "far from roads

:::::
rural." . Supplementary, figure155

:::::
While

:::
this

::::::::::
adjustment

::::::::
introduces

:::::
some

:::::::::::
inconsistency

::::::::
between

:::
the

:::::
global

:::
and

:::::
local

:::::::::
definitions

::
of

:::::::
"urban,"

::
it

::::::
ensures

::::
that

:::
the

::::
local

::::::
model

::::::::
accurately

:::::::
reflects

:::
the

:::::
dense

:::::
urban

:::::::
context.

::::
The

:::::::
unequal

::::::::::
distribution

::
of

::::::::
instances

:::::
across

::::::
groups

::::::
could

::::::::
introduce

:::
bias

::::
into

:::
the

::::::::
statistical

:::::::
learning

::::::
models,

:::
but

:::
this

::::::::
threshold

:::::::::
adjustment

::::
was

::
an

:::::
initial

::::
step

::
to

:::::::
mitigate

::::
such

::::::
effects.

:::::::::::::
Supplementary

::::::
Figures 2 and 3 display the spatial distribution of observations through spatial groups , for the global- and local datasets, thereby

including information on the spatial groups. Supplementary figure
:::::
across

:::::
these

::::::
groups

:::
for

::::
both

:::::::
datasets,

:::::
while

:::::::::::::
Supplementary160

::::::
Figures 4 (global dataset) and 5 (local dataset) show the measured NO2 :2 ::::::::::::

concentrations per station.

Spatial predictors

A
:::
We

::::::
utilized

::
a
:
set of variables with related data is already derived from Lu et al. (2020), including industrial areas from

OpenStreetMaps, road length from OpenStreetMaps
:::
data

:::
on

::::::::
industrial

:::::
areas,

::::
road

::::::
lengths,

:
population densityfrom GHS-POP165

R2019A population grid, and Earth night light from VIIRS in various buffers,
:::::
Earth

::::
night

::::::
lights, wind speedand temperatureat

2 m altitude from ERA-LAND 5 climate re-analysis model, elevationfrom 30 m Radar global product
:
,
::::::::::
temperature,

::::::::
elevation,

Tropomi level 3 NO2 of 2018
:2
, and global radiation. An overview of the variables derived from Lu et al. (2020) can be found in

supplementary material, table 1. We used the precipitation
::
A

:::::::
complete

:::
list

:::
of

::::
these

::::::::
variables

::
is

:::::::
available

::
in
:::
the

:::::::::::::
supplementary

:::::::
material

:::::
(Table

:::
1).

:::::::::::
Precipitation

::::
data

::::
was

:::::::
sourced

:
from weather stations (National Centers for Environmental Information,170

2017) and conducted spatial interpolation
:::::::::
interpolated

:
using ordinary kriging to cover the NO2 :2

measurement stations. Krig-

ing parameters can be found in supplementary, section parameters. The precipitation consists of average monthly precipitation

data, measured in millimeters. The building density is derived from the “
:::
are

::::::
detailed

::
in
:::
the

:::::::::::::
supplementary

:::::::
material.

:

:::::::
Building

::::::
density

::::
was

:::::::
obtained

::::
from

:::
the

:
"World Settlement Layer 2015”, which is publicly available on figshare (Marconcini et al., 2020)

. Taking building density as an explanatory variable, multiple studies use several measurement scales, consisting of buffers that175

vary in size. Beelen et al. (2013) used building density in buffers of
:
"
::::::
dataset

::::::::
available

:::
on

:::::::
Figshare

:::::::::::::::::::::
(Marconcini et al., 2020)

:
.
::
In

:::
line

:::::
with

:::::::
previous

::::::
studies

:::::::::::::::::::::::::::::::::::
(Beelen et al., 2013; Kheirbek et al., 2014)

:
,
:::
we

:::::::::
considered

:::::::
various

:::::
buffer

:::::
sizes

:
(100m, 300m,

500m, 1000m, and 5000m (sizes in radius) . Another study performed by Kheirbek et al. (2014) measures the correlation

between air pollution and building density via 15 circular buffers, ranging from 50m )
::::::
around

::::::::::::
measurement

::::::
stations

:
to 1000m.

Lu et al. (2020) also use buffers for one explanatory factor to encourage comprehensiveness within the methodology. Varying180

1The related code could be found in supplementary, Code 1
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buffer sizes are implemented in our study too. As several measuring stations are close to each other
::::::
account

:::
for

:::::
spatial

:::::::::
proximity

:::::
effects, especially in urban areas, the buffers are of sizes 100m, 500m, and 1000m. The Normalized Difference Vegetation Index

(NDVI ) values are obtained through NASA and are related to 2017 (NASA, 2017). The Dutch dataset for traffic volume is

obtained via
::::::
densely

:::::::::
populated

:::::
urban

:::::
areas.

:::::
NDVI

::::::
values

::::
were

::::::::
obtained

::::
from

::::::
NASA

::::::::::::
(NASA, 2017)

:
.

:::::
Traffic

:::::::
volume

::::
data

:::
was

:::::::
sourced

::::
from

:::
the

:
"Nationaal Dataportaal Wegverkeer" (NDW) (Rijkswaterstaat, 2017) whereas the185

German dataset for traffic volume is obtained via
::
in

:::
the

::::::::::
Netherlands

:::::::::::::::::::
(Rijkswaterstaat, 2017)

:::
and

:
"Bundesanstalt für Strassen-

wesen" (BAST) (Bundesanstalt für Strassenwesen, 2017). Both the NDW- and BAST-datasets are generated via
::
in

::::::::
Germany

:::::::::::::::::::::::::::::::::
(Bundesanstalt für Strassenwesen, 2017).

::::
This

::::
data,

:::::::::
generated

::
by

:
automatic counting stations. The traffic volume is expressed

in
:
,
::
is

:::::::::
expressed

::
as

:
average hourly traffic , measured over 2017, and in buffers of sizes

:::
with

::::::
buffer

::::
sizes

:::
of

:
25m, 50m,

100m, 400m, and 800m. The formula for calculating average hourly traffic can be found in supplementary, section equations
::
is190

:::::::
provided

::
in

:::
the

::::::::::::
supplementary

:::::::
material.

2.2 Modeling NO2 :2 globally and locally

2.2.1 Ensemble trees

The global models can be classified into
:::
use

:
two types of statistical learning methods. The first group composes

::::::
consists

:::
of

ensemble tree-based approachesconsisting of
:
,
::::::::
including random forest, Light Gradient Boosting (LightGBM), and Extreme195

Gradient Boosting (XGboost
::::::::
XGBoost). Hyperparameters are tuned based on the cross-validation error. For the random forest

model, the number of estimators is set to 1000; the min_samples _split equals ,
::::
with

::
a
:::::::::
minimum

:::::::
samples

::::
split

::
of

:
10; the

min_samples _leaf equals
:
,
::::::::
minimum

:::::::
samples

:::
per

::::
leaf

::
of 5; the maximum features used per tree is set to ,

:::::::::
maximum

:::::::
features

:::
per

:::
tree

::
of

:
4; the maximum depth is

:
,
:::
and

:
a
:::::::::
maximum

:::::
depth

::
of

:
10. For both the LightGBM and XGboost models , the number

of estimators is set to
::::
Both

::::::::::
LightGBM

:::
and

::::::::
XGBoost

:::::::
models

:::
use

:
50,000 ; the

:::::::::
estimators,

::::
with

::
a reg_alpha equals

:
of

:
2; the200

:
, reg_lambda equals

::
of 0; the

:
,
:
max_depth equals

::
of 5; the learning rate is

:
,
:::
and

::
a
:::::::
learning

::::
rate

::
of

:
0.0005. Additionally, the

gamma of
::
for the XGBoost model is set to 5. Further details can be found in supplementary material, section parameters. The

equations for the ensemble trees can be found in supplementary material, section equations
::
the

:::::::::::::
supplementary

:::::::
material.

2.2.2 Multiple linear regression
::::::
Linear

::::::::::
Regression

The key variables highlighted
:::
Key

::::::::
variables

:::::::::
identified by the random forest model are chosen

:::
used

:
as predictors in Mul-205

tiple Linear Regression (MLS).
:::::
MLR).

:::::::::::::
Regularization

:::::::::
techniques

:::::
such

::
as

:
Least Absolute Shrinkage and Selection Oper-

ator (LASSO) and Ridge regression regularize regression coefficients. The LASSO is different
:::
are

:::::::::
employed

::
to

:::::::
prevent

:::::::::
overfitting.

:::::::
LASSO

::::::
differs

:
from Ridge in that the penalty equals the

:
it

::::
uses

:::
the

:
sum of the absolute values of the coeffi-

cients (Ren et al., 2020). Consequently, coefficients can be equal to 0 which leads to feature selection
::
as

:
a
:::::::
penalty,

::::::::
allowing

::::
some

::::::::::
coefficients

::
to

:::
be

::::::
exactly

:::::
zero,

::::
thus

::::::::
enabling

::::::
feature

::::::::
selection

::::::::::::::
(Ren et al., 2020). The alpha for the

:::
both

:
LASSO and210

Ridge models are
:
is
:

tuned to 0.1, leading to the lowest MAE
:::::::::
optimizing

:::
for

:::
the

::::::
lowest

:::::
Mean

::::::::
Absolute

:::::
Error

:::::::
(MAE),

:::::
Root

:::::
Mean

::::::
Square

::::
Error

::::::::
(RMSE), RMSE, and highest R2 out of

::::::
among options ranging from 0.1 to 1 with a step

:
in

::::::::::
increments of
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0.1. The parameters and equations for the linear regression, error term, Ridge regression, and LASSO regression can be found

in supplementary material, section parameters and section equations, respectively.

2.2.3
::::::::::::
Mixed-Effects

::::::
Model

::::
and

:::::::
Kriging215

2.2.4 Mixed-effects model and kriging

To use the
:::
Due

::
to

:::
the

::::
poor

:::::::::::
performance

::
of

:::::::
random

:::::
forest,

::::::::::
LightGBM,

::::
and

::::::::
XGBoost

:::::::::::::
(Supplementary

:::::
Table

:::
4),

:::
and

::
to

::
a

:::::
lesser

:::::
extent

:::::::
LASSO

:::
and

:::::
Ridge

::::::::::::::
(Supplementary

:::::
Table

::
5),

:::::::::
alternative

:::::::
methods

:::::
were

:::::::
selected

::
for

:::
the

:::::
local

::::::
dataset.

:

::
To

::::::::::
incorporate spatial information, we add

:::
also

:::::::
employ

:
mixed-effects modeling and kriging methods. With

:
In

:
the mixed-

effects model, fixed and random effects are included. Fixed effects
:::::
effects consist of the most influential predictors,

:
while ran-220

dom effects account for potential spatial trendsin the data. The spatial character of the observation, i.e. whether an observationis

situated in an urbanarea, low-populated area, or far from roads area, accounts for the
::::::
context

::
of

:::
an

::::::::::::::::::
observation—whether

::
it

:
is
::::::

urban,
:::::::::
suburban,

::
or

::::::::::::
rural—serves

::
as

::
a random effect in the model. In contrast, the linear model composes all the fixed

effectswhile neglecting
::::
only

:::::::
includes

:::::
fixed

::::::
effects,

:::::::
thereby

::::::::
ignoring the possibility of observation clustering. Ordinary and

Universal kriging225

:::::::
Ordinary

::::
and

::::::::
universal

::::::
kriging

::::::::
methods

:
are used for local modeling. The R package automap (Hiemstra et al., 2008) is

used for the initialization of
:::::::::
automap

:::::::
package

::
in

::
R

:::::::::::::::::::
(Hiemstra et al., 2008)

:
is
:::::::::
employed

::
to

:::::::
initialize

:::
the

:
covariance parame-

ters. Details are found
:::::::
provided in the supplementary material section parameters and equations. For the

::::::::
materials

:::::
under

:::
the

::::::::::
"Parameters"

::::
and

::::::::::
"Equations"

:::::::
sections.

::::
Two

:::::::
separate

::::::::::::
models—one

:::
that

:::::::
accounts

:::
for

::::::
spatial

::::::
groups

:::
and

::::
one

:::
that

::::
does

::::::::
not—are

::::::
created

:::::
using

:
universal kriging and linear modeling method, two models are created with and without separating between230

spatial groups. When accounting for spatial groups, a model is created for each spatial group. Eventually, eleven models are

:::::::
methods.

::::
This

:::::
leads

::
to

::
a

::::
total

::
of

::::::
eleven

::::::
models

:::::
being

:
fit and compared,

:
: five using the global dataset and six using the local

dataset. The relevant equations can be found in supplementary material, section equations
:::::::
Relevant

::::::::
equations

:::
are

::::::::
included

::
in

::
the

:::::::::::::
supplementary

::::::::
materials.

2.3 Feature selection235

We first select features
::::::
Feature

:::::::
selection

:
for global models based on the Shapley value (Shapley, 1953). The variable selection

removes irrelevant or strongly
::
is

::::::
initially

:::::
based

:::
on

::::::
Shapley

::::::
values

:::::::::::::
(Shapley, 1953)

:
.
:::::
While

:::
the

:::::::
Variance

:::::::
Inflation

::::::
Factor

:::::
(VIF)

::
is

:::::::
effective

:::
for

:::::::
detecting

:::::::::::::::
multicollinearity,

:
it
::::
does

:::
not

:::::::
consider

::::::
feature

::::::::::
importance

::
or

::::::::::
interactions.

:::::::
Shapley

:::::
values

:::
are

::::::::
preferred

:::
for

::::
their

::::::::::::
comprehensive

::::::::::
evaluation,

:::::
which

:::::
aligns

::::
with

::::
our

::::
goal

::
of

:::::::::
enhancing

:::::
model

:::::::::::
performance

:::
and

:::::::::::::
interpretability.

::::
VIF

::::::
results

::
are

::::::::
available

::
in

:::
the

::::::::::::
supplementary

::::::::
materials

:::::::
(Tables

:
2
::::
and

::
3).

:::::::
Feature

:::::::
selection

:::::
aims

::
to

::::::
remove

::::::::
irrelevant

:::
or

:::::
highly

:
correlated240

predictors that would otherwise
::::
could

:
generate unstable estimates (Araki et al., 2018). Feature selection is based on examining

the Shapley values of

::::::
Shapley

::::::
values

:::
are

:::::::::
calculated

:::
for each feature (i.e.predictor). The Shapley value for a feature value j is determined by the

contribution ϕj of feature j
:
,
::::::::
predictor)

:::::
based

:::
on

::
its

:::::::::::
contribution

::
ϕj:

to the prediction , in this case, NO2::
of

::::
NO2:

concentration
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levels, compared to the average prediction of
:::::
across

:
the dataset (Shapley, 1953). The contribution of a feature is calculated245

by examining the difference between
:::::::::
determined

::
by

:::::::::
comparing

:::
the

:::::::::
difference

::
in

:
the response variable that is obtained when

the feature is present in comparison to the response variable that is obtained when the feature
:::::
versus

:::::
when

::
it is absent (i.e.

:
,

marginal contribution) (Algaba et al., 2019; Shapley, 1953). The formula for calculating the Shapley value
:::::::
Shapley

:::::
values

:
can

be found in supplementary material, section equations. In our study, the
::
the

::::::::::::
supplementary

:::::::::
materials.

::
In

:::
this

::::::
study, feature selection is based on an

:::::
guided

:::
by

:::
the

:
out-of-sample performance of

::
in

:
a
:
10-fold cross-validation,250

which
::::::
repeated

:::::::
random

::::::::
sampling

:::::::::
validation,

::::::
where

:::::::
Shapley

:::::
values

:::
are

:::::::::
calculated

:
in each iteration calculates shapely values

in
::
of the random forest models. The ranking of predictors is

::::::::
Predictors

:::
are

::::::
ranked

:
based on the median of the Shapley value

in
:::::::
Shapley

:::::
value

:::::
across

:
all iterations. The relative positions of each predictor for

:::::
using the median-based approach can be

found in supplementary material, figure 6. The
:::
are

:::::::::
illustrated

::
in

:::
the

:::::::::::::
supplementary

::::::::
materials

::::::
(Figure

:::
6),

::::
with

::::
the Shapley

ranking of one fold is shown in supplementary material, figure
:
a
:::::
single

::::
fold

::::::
shown

::
in

::::::
Figure

:
7. To determine the preferred255

number of predictor variables, a
:
A

:
random forest algorithm is applied to each number of most influential features, based on

the average median ranking, ranging from the
::::::::
iteratively

::
to
:::::::::

determine
:::
the

:::::::
optimal

::::::
number

:::
of

:::::::::
predictors,

::::::
starting

::::
with

:::
the

:
two

most influential
::::::::
predictors

::::
and

:::::::::
extending to the thirty most influential features. Thereafter, the RMSE and R2

::::
The

::::::
RMSE

:::
and

:::
R2

::::::
metrics

:
are used to determine

:::::::
evaluate the optimal number of predictorsused for modeling. The number of predictor

variables and the
:::
their

::::::::::::
corresponding

:
evaluation scores (R2, RMSE) are shown in figure

::::::
Figures

:
1a , and figure

::
and

:
1b. A260

remarkable prediction accuracy improvement is obtained
:::::::
Notably,

:::::::::
prediction

:::::::
accuracy

::::::::::
significantly

::::::::
improves

:
when considering

at least twelve predictors. However, ,
::::::::
although the improvement is marginal considering more than twelve predictors

::::::
beyond

:::
this

::::::
number.

Due to the poor performance by the random forest modelover all the
:
’s
:::::

poor
:::::::::::
performance

::::::
across

::
all

:
local station mea-

surements (supplementary material, figure 8 a-c) ,
::::::::::::
Supplementary

:::::::
Figures

:::::
8a-c) and per spatial group (supplementary, table265

2
::::::::::::
Supplementary

:::::
Table

::
5), the random forest algorithm is not applicable to identify the (number of )

::::::
deemed

:::::::::
unsuitable

:::
for

:::::::::
identifying

:::
the

::::::
number

:::
of variables for the local models. Rather, the

:::::::
Instead, best subset regression is used for variable selec-

tion for the
::
in local models. This approach consists of testing

::::
tests all possible combinations of predictor variables (Kassambara,

2018). The maximum number of predictors considered is 30.
:
,
::::
with

::
a

::::::::
maximum

:::
of

::
30

:::::::::
predictors

::::::::::
considered. The statistical

criteria considered are the
::::::
include adjusted R2, Mallows CP,

:::
and

:
Bayesian Information Criteria (BIC) scores. Nine

::
As

:
a
::::::
result,270

:::
nine

:
features are identified for

::
the

:
local models.

2.4 Model comparison

In global modeling, comparisons are made between
::::::
among tree-based models, namely, the

::
—random forest, LightGBM, and

XGBoostmodels; and the linear models, namely
:::::
—and

:::::
linear

:::::::::
models—LASSO and Ridgemodels. In

:
.
:::
For

:
local modeling,

comparisons are made between
::
we

::::::::
compare linear models, mixed effect

::::::::::
mixed-effect models, and kriging models; For every275

model , the spatial groups are compared in terms of
:
.
::::
Each

::::::
model

::
is

::::::::
evaluated

:::::
based

::
on

:
R2, RMSE, and MAE. These metrics

are commonly applied
:
,
:::::
which

:::
are

:::::::
standard

:::::::
metrics

::
in

::
the

::::
field

:
(Rybarczyk and Zalakeviciute, 2018; Ameer et al., 2019; Chang

et al., 2020). Furthermore
::::::::::
Additionally, the prediction patterns of the local- and global mappings are examined. The mobile
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(a) Number of features and corresponding R2 score (b) Number of features and corresponding RMSE score

Figure 1. Out-of-sample performance in ten-fold cross-validation
::::::
repeated

::::::
random

:::::::
sampling

::::::::
validation: number of features and correspond-

ing model performance (global).

NO2 map (Kerckhoffs et al., 2019) of the same study area is used as a benchmark to further understand the performance of

each model
::::
local

:::
and

::::::
global

::::::
models

:::
are

::::::::
analyzed.

:::
To

:::::::::
benchmark

:::
the

::::::
model

:::::::::::
performance,

:
a
:::::::

mobile
::::
NO2::::

map
::
of

:::
the

:::::
study

::::
area280

::::::::::::::::::::
(Kerckhoffs et al., 2019)

:
is
:::::
used

:::
for

:::::::::
comparison. Table 2 shows

:::::::
provides

:::
an

:::::::
overview

:::
of the global and local models, relevant

selected predictors in sequential order of importance, and relevant
:::::
along

::::
with

:::::::
selected

:::::::::
predictors

::::
and evaluation methods.

Predictions based on the
:::
The global models are made for different areas with different

::::::
applied

::
to

:::::
areas

::::
with

:::::::
varying

:
demo-

graphic characteristics, including two big cities of more than
::::
large

:::::
cities

:::::
with

::::::::::
populations

::::::::
exceeding

:
700,000 inhabitants,

:
(Amsterdam and Hamburg; a middle-sized city (

:
),
::

a
:::::::::
mid-sized

::::
city

::::
with

:
around 350,000 inhabitants ) Utrecht

:::::::
(Utrecht),285

and a small city (around
:::
with

::::::::::::
approximately

:
70,000 inhabitants ) Bayreuth

::::::::::
(Bayreuth).

:::::
Local

:::::
model

::::::::::
predictions

:::
are

:::::::
applied

:::::::::
exclusively

::
to

::::::::::
Amsterdam. Predictions derived from the local model were applied to Amsterdam only. Table 3 shows model

complexity and the potential presence of a spatial component
:::::::::
summarizes

:::
the

::::::::::
complexity

:::
of

:::
the

:::::::
models

:::
and

:::::
how

::::::
spatial

::::::::::
components

:::
are

::::::::
accounted

:::
for.
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Table 2. Global and local models defined by selected predictors, models evaluated, and how models are evaluated.

Model Selected predictors Models evaluated Evaluation

Global model population_3000 random forest cross validation over the entire area

road_class_3_3000 XGboost cross validation over different land types

trafbuf25 LightGBM comparing with Kerckhoffs et al. (2019)

population_1000 LASSO

nightlight_450 Ridge

nightlight_3150

trafbuf50

road_class_3_300

bldden100

ndvi

road_class_2_25

trop_mean_filt_2019

Local model population 1000
:::::::::::::
nightlight_4950

:
linear model cross validation over the entire area

nightlight_450 linear model separating for spatial groups cross validation over different land types

nightlight_4950
::::::::::::::
road_class_3_100 mixed-effects model comparing with Kerckhoffs et al. (2019)

population_3000
::::::::
trafbuf50 ordinary kriging

road_class_1_5000
:::::
3_300

:
universal kriging

road_class_2_1000 universal kriging separating for spatial groups

road_class_2_5000

road_class_3_100
:::::::::::::
population_3000

road_class_3_300
::::::
1_5000

11



Table 3. Features of the global and local models regarding model complexity and how the spatial component is considered.

Model Model complexity Accounting for the spatial component

Linear regression No regularization Classifying between land types and fitting a

model in each class.
LASSO L2 regularization Not explicitly

Ridge L1 regularization Not explicitly

Mixed effect
:::::::::
Mixed-effect

:
No regularization Classifying between land types and including

the classes as a random variable.
Kriging No regularization Covariance matrix based on Euclidean dis-

tance (second-order stationarity); Classifying

between land types and fitting a model in each

class.
Random forest Controlled by hyperparameters: number of

trees, minimum number of samples for split-

ting, minimum number of samples per leaf,

maximum features per tree, maximum depth,

bootstrapping

Not explicitly

XGBoost Controlled by hyperparameters: number of esti-

mators, alpha, lambda, learning rate, maximum

depth

Not explicitly

LightGBM Controlled by hyperparameters: number of esti-

mators, alpha, lambda, learning rate, maximum

depth, gamma

Not explicitly

3 Results290

3.1 Models

3.1.1 Global models

Evaluating the different linear-
::::::::::
Evaluations

::
of

:::
the

:::::::
different

:::::
linear

:
and non-linear models is done by performing out-of-sample

performances of 20-fold cross-validation, thereby examining
:::
were

:::::::
carried

:::
out

:::::
using

::::::::
repeated

::::::
random

:::::::::
sampling

:::::::::
validation,

::::::::
performed

:::
20

:::::
times.

::::
This

::::::::
approach

:::::::
enabled

::
us

::
to
::::::
assess the variance and median statistics per

::
for

:::::
each model in terms of R2,295

MAE
:
, and RMSE (figure

:::::
Figure

:
2a, figure

:::::
Figure 2b, and figure

:::::
Figure

:
2c). We found the 20 folds lead to stable estimations.

:::
The

:::::::
repeated

::::::::
sampling

::::::::
provided

:::::
stable

::::::::
estimates.

:

With
::::
When

::::::::::
comparing out-of-sample performances of

::
via

:
20-fold cross-validation

:::::::
repeated

:::::::
random

::::::::
sampling

::::::::
validation, the

linear models (i.e.LASSO and Ridge) score similarly to ,
:::::::
LASSO

::::
and

:::::::
RIDGE)

::::::::
exhibited

::::::::::::
performances

::::::
similar

::
to
:::::

those
:::

of

12



(a) R2 (b) RMSE (c) MAE

Figure 2. The out-of-sample
:::::::::::
Out-of-sample performances of

::::::
evaluated

:::::
using 20-fold cross-validation

:::::::
repeated

:::::
random

::::::::
sampling

:::::::
validation:

performance per model (a) R2, (b) RMSE,
:::
and (c) MAE(global). The upper-

::::
Upper

:
and lower Quartiles

::::::
quartiles

:
indicate variability;

:
. RF =

random forest, LGB = LightGBM, XGB = XGBoost.

the non-linear models, especially the R2
:::::::::
particularly

::
in

:::::
terms

:::
of

:::
R2 and RMSE. Generally

::::::
Among

:::
the

::::::
models, the random300

forest model performs the best out of the considered global models according to the
::::::::::
consistently

:::::::::::
outperformed

::::::
others,

::::
with

:::
the

::::::
highest median R2, median

:::::
lowest RMSE, and median

:::::
lowest

:
MAE. The robustness of the random forest model is relatively

high too, this is implied by the lowest standard deviation of
:::::
further

:::::::::::
emphasized

::
by

:::
its

:::::::
minimal

:::::::
standard

::::::::
deviation

::
in
:

R2 and

RSME (figure
:::::
RMSE

:::::::
(Figure 2a and figure

:::::
Figure

:
2b).

Accounting for spatial information305

We examine the differences between
::::::
further

::::::::::
investigated

::
the

::::::::
influence

::
of

::::::
spatial

:::::::::::
heterogeneity

::
by

:::::::::
comparing

::::::
model

:::::::::::
performances

:::::
across different spatial groups when predicting using the global model. The descriptive statistics per spatial group also indicate

interesting differences in terms of NO
:::::::::
Descriptive

:::::::
statistics

:::
for

::::
NO2 concentration levels (table

::::::::::::
concentrations

::
in

::::
each

::::::
spatial

:::::
group

:::::
reveal

::::::
distinct

::::::::::
differences

:::::
(Table

:
4).

Table 4. Descriptive
::::::
statistics

::
of
:
NO2 statistics

:::::::::::
concentrations for each spatial group , measured (in µg/m3

:::
m3).

Group Count Mean Sd. Min 25% 50% 75% Max

Urban 85 38.865 13.065 15.768 28.172 38.076 47.923 78.882

Low population
:::::::
Suburban 138 27.601 9.769 7.872 19.876 26.876 34.407 56.706

far from roads
::::
Rural 259 16.653 8.341 2.122 10.331 15.892 22.518 48.887

Table 5 describes the performances, in terms of R2
:::::
details

:::
the

:::::::::::
performance

:::::::
metrics

:::
(R2, RMSE, and MAE,

:::::
MAE)

:
for each310

spatial groupper model. For each model, the observations far from roads perform considerably better than observations close to

roads, for both urban and low-population groups. The non-linear models outperform the linear models when the data is trained
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on observations in the groups "far away from roads" and "low population". For urban areas, the performances between the

linear and non-linear methods are less distinguishable which might be explained by the relatively low number of observations.

:::::::::
Non-linear

::::::
models

:::::::::::
outperformed

:::::
linear

::::
ones

::
in

::::::::
suburban

:::
and

::::
rural

:::::
areas,

:::::
while

::::::::::::
performances

::::
were

:::
less

:::::::::::::
distinguishable

::
in

:::::
urban315

:::::
areas,

:::::
likely

:::
due

::
to

:::
the

:::::::
smaller

::::::
sample

::::
size. Ensemble tree-based methodsobtained poor prediction accuracy

:
,
::::
such

::
as

:::::::
random

:::::
forest,

:::::::
showed

:::::
lower

:::::::
accuracy

::
in

:::::
urban

:::::
areas, possibly due to the relatively limited number of observations and heterogeneous

character of data in the "urban" class
::::::
limited

:::
and

:::::::::::::
heterogeneous

:::::
nature

::
of

:::
the

::::
data

::
in

:::
this

::::::
group.

14



Urban Suburban Rural

Models R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Non-linear

RF
Mean

:::::
Mean 0.271 10.994 8.964 0.387 7.285 5.361 0.712 4.189 3.007

SD.
:::
SD

:
0.099 1.298 0.950 0.185 1.323 0.762 0.102 0.983 0.550

LightGBM
Mean

:::::
Mean 0.175 11.631 9.477 0.367 7.381 5.468 0.725 4.075 2.872

SD.
:::
SD

:
0.145 0.226 0.955 0.226 1.513 0.739 0.120 1.040 0.537

XGboost
Mean

:::::
Mean 0.228 11.230 9.147 0.426 7.060 5.228 0.737 3.991 2.774

SD.
:::
SD

:
0.150 1.014 0.807 0.183 1.340 0.687 0.116 1.096 0.530

Linear

Ridge
Mean

:::::
Mean 0.328 10.491 8.617 0.348 7.517 5.703 0.696 4.358 3.211

SD.
:::
SD

:
0.127 1.080 0.860 0.167 1.139 0.606 0.103 1.133 0.564

LASSO
Mean

:::::
Mean 0.265 10.936 9.017 0.282 7.859 6.047 0.613 4.912 3.749

SD.
:::
SD

:
0.177 1.159 1.040 0.201 1.105 0.672 0.119 1.153 0.678

Table 5. Model performance per spatial group (CV = 20). RMSE and MAE are represented in NO2 (µg/m3
:::
m3)values.

Spatial prediction patterns

Figure 3 shows the NO2 spatial predictions for
:::::::
presents

:::
the

::::::
spatial

:::::::::
predictions

:::
of

::::
NO2::::::::::::

concentrations
::::::
across the Amsterdam320

area per model, a-c show the
:::
for

::::
each

::::::
model.

::::::
Panels

:::
(a)

::
to

:::
(c)

:::::
depict

::::
the

:::::::::
predictions

:::::
from non-linear spatial predictions , d

and e show the linear techniques
::::::
models,

:::::
while

::::::
panels

:::
(d)

:::
and

:::
(e)

:::::::
illustrate

:::
the

::::::
results

::::
from

:::::
linear

::::::
models. Generally, the linear

models are shown to be more prone to overfittingas extreme values influence these prediction maps compared to non-linear

techniques (i.e.
:::::
linear

::::::
models

::::::
exhibit

:
a
::::::
higher

::::::::
tendency

::
for

::::::::::
overfitting,

::
as

::::
their

::::::::
prediction

:::::
maps

:::
are

:::::
more

::::::::
influenced

:::
by

:::::::
extreme

:::::
values

::::
(i.e.,

::::::::::::
concentrations

:
below 15 µg/m3

::
m3 or above 50 µg/m3)

:::
m3)

::::::::
compared

::
to
:::
the

:::::::::
non-linear

:::::::::
techniques. Interestingly,325

linear techniques identify a high
::
the

:::::
linear

:::::::
models

::::::
identify

::
a
:::::::::
significant NO2 hot spot

::::::
hotspot in the southwestern part of the

study areathat is not identified ,
::::::
which

::
is

:::
not

:::::::
captured

:
by the non-linear techniques. Generally, high pollution

:::::::
models.

::::::
Across

::
all

:::::::
models,

:::::::
however,

::::::::
elevated

:::::::
pollution

:::::
levels

:::
are

::::::::::
consistently

::::::::
observed

:
along major roads (highways, national roads) and

:::
and

::
in some urban areas(e.g. Haarlem ) are obvious (supplementary, figure ,

::::
such

:::
as

:::::::
Haarlem

::::
(see

::::::::::::
Supplementary

::::::
Figure

:
9).

Figures 4 show the spatial patterns of the predicted NO2 concentrations for Hamburg (aand
:
, b), Utrecht (cand d),

:::
d),

:
and330

Bayreuth (eand f) for ,
::
f)
:::::
using

:
the random forest and Ridge models. The

:::::::::
Regression

:::::::
models.

:::::::::
Predictions

:::::
from other models

(LightGBM, XGboost
::::::::
XGBoost, LASSO) for Hamburg, Utrecht, and Bayreuth (both zoomed in and out) can be found in

supplementary sections figure
::::
these

:::::
cities,

::::::::
including

::::
both

:::::::::
zoomed-in

::::
and

::::::::::
zoomed-out

:::::
views,

:::
are

::::::::
provided

::
in

:::
the

::::::::::::
supplementary

::::::
sections

::::::::
(Figures 10a-c, figure 11a-c, figure 12a-c, figure 13a-erespectively. Comparing

:
).
:

:::::::::
Comparing

:::
the

::::::::
prediction

:
maps of these cities , there are

::::::
reveals noticeable differences in prediction

:::::
spatial

:
patterns. A most335

important
:::
key

:
finding is that

:
in

:::::::::
Hamburg, the highest air pollution seems to be situated

:::::
levels

:::
are

::::::::::
concentrated

:
around major
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roadsin Hamburg while
:
,
:::::
while

::
in

:::::::
Utrecht, the urban center accounts for the highest air pollution concentrationsin Utrecht. The

high
::::::
exhibits

:::
the

:::::::
highest

::::
NO2:::::::::::::

concentrations.
::::
This

:
correlation between major roads and high air pollution could

:::::::
elevated

:::
air

:::::::
pollution

::
in

::::::::
Hamburg

::::
can be reasonably explained considering that Hamburg is the

::
by

:::
the

:::::
city’s

::::
high

:::::
traffic

::::::::::
congestion,

::
as

::
it

::::
ranks

:
69th of

::::::
among the most congested cities in the world

:::::::
globally (Tomtom, 2021). Interestingly, the highest

::::
there

:::
are

::::
also340

:::::
spatial

::::::::::
differences

::
in

:::
the

::::::::
predicted

:
NO2 concentration levels among highways differ in spatial patterns

::::::::::::
concentrations

:::::
along

::::::::
highways between the random forest and Ridge models, for example, the .

:::
For

::::::::
instance,

::
in

::::::::
Hamburg,

:::
the

:::::
Ridge

::::::
model

:::::::
predicts

::::
high

::::
NO2:::::

levels
:::::
along

:
highways in the southeastern and western part of the Hamburg area contain high NO2 levels for the

Ridge models while a nuanced identification is related to the random forest prediction for the same area. In the random forest

prediction map for Hamburg, air pollution among
::::
parts

::
of

:::
the

::::
city,

:::::::
whereas

:::
the

:::::::
random

:::::
forest

:::::
model

::::::::
provides

:
a
:::::
more

:::::::
nuanced345

:::::
spatial

:::::::::::
identification

:::
of

:::::
these

:::::
areas.

::::
The

:::::::
random

:::::
forest

::::::::::
predictions

:::::::
highlight

:::::
more

::::::::::
pronounced

:::
air

::::::::
pollution

:::::
along

:
roads in

the center and northern part of the city is more pronounced
::::::
central

:::
and

::::::::
northern

::::
parts

:::
of

::::::::
Hamburg,

:
compared to the Ridge

modelequivalence. Additionally.
:

::::::::::
Furthermore, the magnitude of high air pollution

::::::::
pollution

:::::
levels related to major roads is considerably higher for Hamburg

, compared to
::::::::::
significantly

::::::
greater

::
in

::::::::
Hamburg

::::
than

::
in

:
Utrecht and Bayreuth. Still

::::::::::
Nevertheless, the relationship between the350

presence of roads and heavier air pollution concentration is identifiable for
::::
road

:::::::
presence

::::
and

::::::
higher

:::
air

:::::::
pollution

::::::
levels

::
is

::::::
evident

::
in both Utrecht and Bayreuth, especially with the Ridge model predictions. For

:::::::::
particularly

::
in

:::
the

:::::::::
predictions

:::::
from

:::
the

:::::
Ridge

::::::
model.

::
In Utrecht, the urban center is more pronounced in terms of

:::::::::
prominently

::::::::
identified

:::
as

:
a high NO2 concentration

levels,
:::
area

:
compared to Hamburg and Bayreuth. Moreover

::::::::::
Additionally, the Ridge model applied to Utrecht identifies more

clusters (i.e. scattering) of
::
for

:::::::
Utrecht

::::::
shows

:::::
more

::::::
clusters

:::
of

:::::::
elevated

:
NO2 values

:::::
levels in the periphery. In comparison,355

the predicted NO,
::::::::

whereas
:::
the

::::::
random

::::::
forest

:::::
model

:::::::
predicts

::
a

::::
more

::::::::
scattered

::::::::::
distribution

::
of

::::
NO2 values are more scattered

::::::::::::
concentrations in the urban centerfor the random forest when compared to the Ridge model. Again, this difference in prediction

patterns between a linear and non-linear model is apparent for
:
,
::::::
similar

::
to

:::
the

::::::
pattern

:::::::
observed

::
in

:
the Amsterdam area. Bayreuth

::::::::
Bayreuth,

::
on

::::
the

::::
other

:::::
hand,

:
is characterized by moderate air pollution and very low

:::::::
pollution

:::::
levels,

:::::
with

::::
very

:::
low

:::::
NO2360

::::::::::::
concentrations (<15 µg/m3) pollution in

:::
m3)

::
in

:::
the rural areas surrounding the city- some clusters .

::::::::
However,

:::::
some

:::::::
clusters

::
of

:::::
higher

:::::
NO2 :::::

levels exceeding the 15 µg/m3 benchmark are noticeable that correspond to other villages in the area, hinting

to the influence of
::
m3

::::::::::
benchmark

:::
are

::::::::
observed

::
in

:::
the

::::::
vicinity

::
of
:::::

other
:::::::
villages,

:::::::::
suggesting

::::
that

:
population or building density

on air pollution
::::
may

:::::::
influence

:::
air

::::::::
pollution

:::::
levels

::
in

:::::
these

:::::
areas (see also supplementary, figure

::::::::::::
Supplementary

:::::::
Figures 13a-

e). Supplementary , figure
::::::
Figure 14 shows the

:::::::
provides

::
a distribution of predicted NO2 per global model for each

::::
NO2365

::::::::::::
concentrations

::
for

:::::
each

:::::
global

::::::
model

:::
and

:
location.
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(a) (b) (c)

(d) (e)

Figure 3. Spatial patterns of predicted NO2 (100m), measured in µg/m3, per model for Amsterdam - non-linear models (top): (a) = random

forest, (b) = LightGBM, (c) = XGboost
:::::::
XGBoost; linear models (bottom): (d) = LASSO, (e) = Ridge. Extent = 30km x 30km

17



(a) (b) (c)

(d) (e) (f)

Figure 4. Spatial patterns of predicted NO2 (100m), measured in µg/m3, per model for Hamburg (extent = 30km x 30km), Utrecht (extent =

25km x 25km) and Bayreuth (extent = 10km x 10km) - top: from left to right, random forest (Hamburg), Ridge (Hamburg), random forest

(Utrecht); bottom: from left to right, Ridge (Utrecht), random forest (Bayreuth), Ridge (Bayreuth)
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3.1.2 Local models

The performances

:::
The

:::::::::::
performance of the local models are composed of the

:::
was

::::::::
assessed

::::
using

:
R2, RMSE, and MAE

::::::
metrics. Table 6 shows the

model performances for
:::::::::
summarizes

:::
the

::::::::::
performance

:::
of the linear model, the mixed-effects model, the ordinary kriging model,370

and the universal kriging model, whereby the
::
all

::::::::
evaluated

:::::
using leave-one-out cross-validationis applied. The .

:::::::
Among

:::::
these,

::
the

:
ordinary kriging model shows

::::::
exhibits the poorest performance. The

:::::
Figure

:
5
:::::::::
illustrates

:::
the spatial prediction patterns are

shown in figure 5). The
::
for

:::::
each

::::::
model.

:::::::
Notably,

:::
the

:
universal kriging model performs considerably better than the ordinal

kriging model . The
::::::::::
outperforms

:::
the

::::::::
ordinary

:::::::
kriging

:::::
model

:::::::::::
significantly.

:::::::::
However,

:::
the

:
simple linear model outperforms

::::::::
surpasses the universal kriging method in terms of prediction accuracy. Accounting for

::::::::::
Incorporating

:
spatial groups as random375

effects yields
::
in

:::
the

:::::::::::
mixed-effects

::::::
model

::::
leads

::
to

:
a higher R2, a lower RMSE , and a lower MAE

:::
and

:::::
lower

::::::
RMSE

:::
and

::::::
MAE,

::::::::
indicating

::::::::
improved

::::::
model

::::::::::
performance.

Table 6. Model Performance Using Leave-One-Out Cross-Validation

R2 RMSE (µg/m3
::
m3) MAE (µg/m3

::
m3)

ordinary kriging 0.072 8.542 7.052

linear model 0.307 7.412 5.955

mixed-effects model 0.326 7.315 5.808

UK
:::::::
universal

::::::
kriging

:
(model + kriged residuals) 0.277 7.749 6.097

Table 7 shows the model results per
::::::
provides

::::::
model

:::::::::::
performance

::::::
metrics

:::
for

::::
each

:
spatial group, again based on

::::
using

:
leave-

one-out cross-validation. Similar to the results of the global model , the resultsfor the local models indicate that models trained380

on "urban " observations
::::::::
Consistent

:::::
with

:::
the

:::::
global

::::::
model

:::::::
results,

::::
local

:::::::
models

::::::
trained

:::
on

:::::
urban

::::::::::
observations

:::::
tend

::
to

:
per-

form poorly. However, the proximity to the road
:::::::::::
Interestingly,

::::::::
proximity

:::
to

:::::
roads does not necessarily influence the model

performancesince the
:::::::
correlate

::::
with

::::::
model

:::::::::::
performance,

::
as

:::
the

::::::::
suburban

:::::
group

:::::::
exhibits

::
a

:::::
higher

:
R2 of the "low population"

class is higher than the R2 of the "far from roads" class. In contrast to the models trained on the global dataset
:::
than

:::
the

:::::
rural

:::::
group.

::::::::
Contrary

::
to

:::::
global

::::::
models, which perform best in "far from roads" areas, the models trained on the local dataset perform385

the best in areas with low populations and proximity to roads. A plausible explanation is
:::
rural

:::::
areas,

:::::
local

::::::
models

:::::::
achieve

::::
their

:::
best

:::::::::::
performance

::
in

::::::::
suburban

:::::
areas.

:::::
This

::::::::
difference

:::::
may

::::
stem

:::::
from

:::
the

:::
fact

:
that observations in "far from roads" areas for

::::
rural

::::
areas

::::::
within

:
the local dataset are more similar to observations in the urban and low-population areas when compared to

::::
those

::
in

:::::
urban

::::
and

::::::::
suburban

::::
areas

::::
than

::
in

:
the global dataset, as the predictor valuesare distributed more uniformly in the local

dataset
::
due

::
to
::
a
::::
more

:::::::
uniform

::::::::::
distribution

::
of

::::::::
predictor

::::::
values.390
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Table 7.
:::::
Model

::::::::::
Performance

:::
Per

:::::
Spatial

:::::
Group

::::
(CV

:
=
::::::::::::
Leave-One-Out

:::::::::::::
Cross-Validation).

::::::
RMSE

:::
and

::::
MAE

::
in

:::::
µg/m3

Urban Suburban Rural

Models R2
:

2 RMSE MAE R2
:

2 RMSE MAE R2
:

2 RMSE MAE

ordinary kriging 0.072 8.257 6.772 0.223 8.558 6.575 0.072 9.029 8.303

linear model 0.140 7.890 6.360 0.509 6.8
::::
6.800 5.301 0.147 7.390 6.202

mixed-effects model 0.141 7.874 6.316 0.524 6.505 5.298 0.115 7.404 5.644

UK (model + kriged residuals)
universal kriging

0.161
0.161

8.068
8.068

6.27
6.270

0.487
0.487

6.938
6.938

5.174
5.174

0.037
0.037

7.19
7.190

8.299
8.299

:::::
(model

::
+

:::::
kriged

:::::::
residuals)

Spatial prediction patterns

Figure 5 shows
::::::
displays

:
the predicted NO2 patterns based on the local dataset. The prediction map of

::
for the linear model (a) is

fairly similar to the prediction maps of the
::::
quite

:::::
similar

::
to
:::::
those

:::
for

:::
the mixed-effects (c) model and universal kriging (e) model:

the modelsidentify
::::::
models,

::::
with

:::
all

:::::::::
identifying

:
a high NO2 concentration cluster at

:
in

:
the northwestern part of Amsterdam.

Further examination reveals
::::::
analysis

::::::::
suggests that this cluster is likely highly influenced by the predictor "road class 2 5000"395

(i.e.
:
, primary roads within 5000m), as this predictor shows

:::::::
exhibits a similar cluster at

:
in
:

the same location (supplementary,

figure
:::
see

::::::::::::
Supplementary

:::::::
Figures 15, figure 16a-i). Two

:::
The

::::
two

:
models that account for the spatial groups first,

:::::
spatial

:::::::
groups before the modeling process , show comparable

patterns whereby
::::::::::::
(mixed-effects

:::
and

::::::::
universal

:::::::
kriging)

::::::
display

::::::::::
comparable

::::::
patterns

::::::
where the influence of roads is obvious via

::::::
evident,

:::::
either

:::::::
through the predictors themselves or the spatial groups

::::::::
groupings

:
(see also supplementary, figure

::::::::::::
Supplementary400

:::::
Figure

:
17). The relative

::::::::
relatively low NO2 values along the roads in the outer Amsterdam area can be attributed to the spatial

grouping divisions. To extend, the presence of predictor values with high standard deviations can impact the NO2 values for that

::::
High

:::::::
standard

:::::::::
deviations

::
in

::::::::
predictor

:::::
values

::::::
within

:
a
:
specific spatial group

:::
can

:::::
affect

:::
that

:::::::
group’s

::::
NO2:::::::::

predictions, potentially

leading to overestimation or underestimation in certain parts of the prediction area. The patterns that are along the roads belong

to the spatial group "low population" whereby observations within this group are in the vicinity of roads(<100m). Comparing405

this spatial group to the spatial group"far from roads"
::::
areas.

:

:::
The

::::
high

:::::
NO2 :::::

values
:::::
along

:::::
roads

:::
are

::::::::
primarily

:::::::::
associated

::::
with

:::
the

::::::::
suburban

::::::
spatial

:::::
group,

::::::
where

::::::::::
observations

:::
are

:::::::
located

:::::
within

::::
100

::::::
meters

::
of

::::::
roads.

:::::::::
Compared

::
to

:::
the

:::::
rural

:::::
group, the data distribution for every predictor in low population

::::
each

:::::::
predictor

::
in
:::

the
::::::::

suburban
::::::

group is substantially differentthan the data distribution for every predictor in the group "far from

roads", leading to different learning patterns which explain the relative
::::::
distinct

:::::::
learning

:::::::
patterns

::::
that

::::::
explain

::::
the

::::::::
relatively410

high prediction values along the roads (supplementary, figure
::::
roads

::::
(see

:::::::::::::
Supplementary

::::::
Figures

:
18a-i). At some places

::
In

:::::
some

:::::::
instances, negative predicted values are apparent albeit few. This is likely a cause of the training dataset having different feature

characteristics than the testing dataset. Comparing the
::::::::
observed,

:::::
albeit

:::::
rarely.

::::::
These

::::
may

:::::
result

::::
from

:::::::::::
discrepancies

:::
in

::::::
feature

:::::::::::
characteristics

::::::::
between

:::
the

::::::
training

::::
and

:::::
testing

::::::::
datasets.
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:::::::::
Comparing local prediction patterns to the global prediction patterns ,

::::::
reveals

:::
that

:::
the

::::
local

:::::::
models

::::::
identify

:
a cluster of high415

air pollution in the northwestern part of Amsterdam is visible in some local models that is not visible in
:::
that

:
the global models

(as discussed, these models refer to the general linear-, mixed-effects-, and universal kriging models). A possible explanation

for why the cluster is identified in the local dataset, as opposed to the global dataset, could be the difference in
::
do

:::
not

::::::
detect.

::::
This

::::::::::
discrepancy

:::::
could

::
be

::::
due

::
to

::::::::::
differences

::
in

:::
the spatial distribution of NO2 :2

values between the local-
::::
local and global

datasets, resulting in different learning patterns between the local- and global models (figure ??). Supplementary, figure 19420

shows the distribution of predicted NO2 per local model.
::::::
leading

::
to

:::::::
distinct

:::::::
learning

::::::
patterns

:::
in

::
the

:::::::::
respective

::::::
models

:::::::
(Figure

:::
??).

:::::::::
Moreover,

:::::::
Figures

:
3
::::

and
::
5

:::::::::
underscore

:::
the

:::::::::
challenge

::
of

:::::::::
comparing

::::::
spatial

:::::::::
variations

:::::::
between

::::::
global

:::
and

:::::
local

:::::::
models,

::::
given

:::::
their

:::::::
differing

::::::::::
algorithms.

:::::
Local

:::::::
models,

::::
with

::::
their

:::::
focus

:::
on

::::::
specific

::::::
spatial

:::::::::
groupings

:::
and

:::::::
detailed

:::::::::
predictors,

:::::::
capture

:::::::
regional

::::::
clusters

::::
that

:::::
global

::::::
models

::::
may

::::::::
overlook

::
or

::::::::::::
underrepresent

::::
due

::
to

::::
their

:::::::
broader

:::::
scope.

:
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(a) (b) (c)

(d) (e) (f)

Figure 5. Spatial patterns of predicted NO2 (µg/m3) at 100m resolution based on
::
the

:
local dataset - top: left = linear model, middle = linear

model separating for spatial groups, right = mixed-effects model; bottom: left = ordinary kriging, middle = universal kriging, right = universal

kriging separating for spatial groups
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Model comparison425

Figure 6 shows the correlation in predicted NO2 :2:
values for the local-

::::
local

:
and global models, as well as the mobile NO2

map of
:2::::

map
:::::

from
:
Kerckhoffs et al. (2019) (referred to

:
as

:
the open NO2 dataset)which is

:2:::::::
dataset),

::::::
which

::::
was used as a

benchmark . Some extreme values of predictions are present in the local linear model that accounts for spatial groups and the

universal kriging model that accounts for spatial groups, resulting in a relatively low correlation with the open NO2 dataset.430

We removed these extreme values to further understand the correlations between the mentioned models and
:::::::::::::
(supplementary

:::::
figure

::::
20).

::
To

::::::::
improve

:::
the

::::::
clarity

::
of

:
the open NO2 dataset. A

:::::::::
correlations

::::::::
between

:::
the

::::::
models

::::
and

:::
the

::::
open

:::::
NO2:::::::

dataset,

::
we

:::::::::
addressed

:::::
some

:::::::
extreme

:::::::::
prediction

::::::
values.

:::::
These

:::::::
outliers

::::
were

::::::::
removed

::
to

:::::::
prevent

::::
them

:::::
from

:::::::
skewing

:::
the

:::::::
analysis

::::
and

::
to

::::::
provide

::
a
:::::
more

:::::::
accurate

::::::::::::
representation

::
of

:::
the

:::::::::::
correlations.

:::
We

::::::::
selected

:
a
:
manual threshold of 85 is chosen as the upper

boundsince this is ,
:::::
based

:::
on

:
the maximum value of

:::::::
observed

::::::
across

:
the ten models (excluding the two where the outlier435

detection is
:::::
outlier

::::::::
detection

::::
was applied first). The lower bound is set to

::::
was

::
set

::
at
:

0. The correlation matrix with extreme

prediction
::::
these

:::::::
extreme

::::::::::
predictions filtered out is visible in supplementary , figure 20.

:::::
shown

:::
in

::::::::::::
supplementary

::::::
figure

:::
21.

The global models are highly correlated, with the LASSO model being the least correlated with other global models. The

correlations between ordinary kriging model and other models are also low, which is expected as the covariance function has

a small length scale.
::::::
Another

::::::
reason

:::
for

:::
this

::::::::::
discrepancy

::
is

::::::::
kriging’s

::::::::
stationary

::::::::::
assumption,

::::::
which

:::
can

::::
lead

::
to

:::::::
different

::::::
results440

::::::::
compared

::
to

:::::::
models

:::
that

:::
do

:::
not

::::
rely

:::
on

:::
this

::::::::::
assumption.

:
Comparing the models to the open NO2 dataset, the local models

generally show more similarity than global models. This is not surprising as the local model dataset is also from Amsterdam.

::::
Table

::
8
:::::
shows

:::
the

::::::::
residuals

:::
per

:::::
global

::::
and

::::
local

::::::
model.

::::
The

::::
ridge

::::::::
emerged

::
as

:::
the

::::
most

:::::::
accurate

::::
with

:::
the

::::::
lowest

:::::
mean

:::::::
residual

:::::
(0.31),

:::::::::
indicating

::
it

::::::
closely

:::::::
matched

:::::
actual

:::::
open

::::
NO2::::::

dataset
::::::
values.

::::::::::
Conversely,

:::
the

:::::::
LASSO

::::::
model,

:::::::
despite

::
its

::::
high

:::::::
internal

:::::::::
correlation,

::::
had

::::::::
relatively

:::::
higher

::::::::
residuals

:::
and

:::::::
showed

:::
less

:::::::::
similarity

::
in

::::::::
prediction

:::::::
patterns

:::::::::
compared

::
to

::::
other

::::::
global

:::::::
models.445

:::::::::
LightGBM

:::
and

:::::::::
XGBoost

:::
also

:::::::::
performed

::::
well

::::
but

::::
with

::::::
slightly

::::::
higher

::::::::
residuals

::::
than

:::
the

:::::
Ridge

::::::
model.

:::
In

:::::::
contrast,

:::
the

:::::
local

:::::
linear

::::::
models,

::::::::::::
mixed-effects

::::::
model,

:::::::
ordinary

:::::::
kriging,

:::
and

::::::::
universal

::::::
kriging

::::::::
generally

::::::::
displayed

:::::
higher

::::::::
residuals,

::::
with

::::::::
ordinary

::::::
kriging

::::::
having

:::
the

::::::
largest

:::::
mean

:::::::
residual

::::::
(4.71).

::::
This

::::::::
suggests

::::
that

::::
local

:::::::
models

:::
had

:::::::
greater

::::::::
prediction

::::::
errors

::::::::
compared

:::
to

:::::
global

:::::::
models.

::
A

::::::
spatial

:::::::::
comparison

:::
of

:::
the

::::::::
predicted

::::
NO2:::::::::::

concentration
::::::
values

:::::::
between

:::
the

::::
open

:::::
NO2 ::::::

dataset
:::
and

:::
the

::::::
global

:::
and

::::
local

:::::::
models

::
are

::::::
shown

::
in

::::::::::::
supplementary

::::::::
materials

:::::
figure

:::::
22a-e

::::
and

:::::
23a-f

::::::::::
respectively.

:
450
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Table 8.
:::::::
Residual

::::::
statistics

:::
for

:::
the

:::::::
difference

:::::::
between

:::::
model

::::::::
predictions

:::
and

::::
open

::::
NO2::::::

dataset.

:::::
Model

:::
Type

: ::::
Mean

: ::::::
Median

::
SD

: :::
Min

:::
Max

:

::::::
Random

:::::
forest

:::::
Global

: :::
0.68

::::
2.77

:::
8.48

:::::
-54.54

::::
17.98

::::::
LASSO

:::::
Global

: :::
1.24

::::
2.50

:::
9.03

:::::
-53.92

::::
25.00

:::::
Ridge

:::::
Global

: :::
0.31

::::
1.55

:::
8.82

:::::
-53.70

::::
25.06

::::::::
LightGBM

: :::::
Global

: :::
0.56

::::
2.29

:::
8.76

:::::
-55.83

::::
22.85

:::::::
XGBoost

:::::
Global

: :::
0.67

::::
2.43

:::
8.98

:::::
-57.94

::::
24.48

:::::
Linear

::::
Local

:::
1.87

::::
3.56

:::
8.61

:::::
-55.16

::::
28.17

:::::
Linear

:::::
spatial

:::::
groups

: ::::
Local

:::
2.25

::::
3.09

::::
15.22

: :::::
-58.21

:::::
384.63

:

::::::::::
Mixed-effects

:::::
model

: ::::
Local

:::
2.51

::::
4.10

:::
8.54

:::::
-53.75

::::
26.70

:::::::
Universal

::::::
kriging

::::
Local

:::
1.83

::::
3.46

:::
8.30

:::::
-54.58

::::
29.08

:::::::
Universal

::::::
kriging

:::::
spatial

:::::
groups

: ::::
Local

:::
1.99

::::
2.76

::::
14.56

: :::::
-56.75

:::::
369.05

:

:::::::
Ordinary

:::::
kriging

: ::::
Local

:::
4.71

::::
6.64

:::
9.57

:::::
-57.21

::::
30.71
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Figure 6. Comparing model predictions whereby the numbers equal the Pearson correlation coefficient. RF: Random Forest, LGB: Light-

GBM, XGB: XGBoost, LR: linear regression, LRsp: Linear Regression accounting for spatial groups, MEM: Mixed-Effects Model, UK:

Universal Kriging, UKsp: Universal Kriging accounting for spatial groups, OK: Ordinary Kriging, no2: mobile NO2 map.

4 Discussion

While several studies
::::::
Several

::::::
studies

::::
have applied statistical modeling to ground station measurements and geospatial predic-

tors for NO2 modeling and mapping, the influence
::::::::
mapping,

:::
but

:::
the

::::::
impact of spatial heterogeneity has not been discussed in

detail. This is pursued in our studythrough model comparisons between using
:::::
often

::::
been

::::::::::
overlooked.

::
In

:::
this

:::::
study,

:::
we

:::::::
address

:::
this

:::
gap

:::
by

:::::::::
comparing spatial and non-spatial techniques and at

:::::::
modeling

:::::::::
techniques

::::::
across different spatial scales. Belowwe455

discuss important findings of this study and
:
,
:::
we

::::::
discuss

:::
the

:::
key

:::::::
findings

::::
and

::::::
provide

:
our perspectives.

Relationship between predictors and other pollutants
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For both the global and local datasets, traffic and population density variables are selected among
::::::
emerge

::
as

:
the most in-

fluential predictors, this agrees with the finding
::::::
aligning

::::
with

:::
the

:::::::
findings

:
of Beelen et al. (2013), which show that including460

these variables encourages
:::::::::
emphasize

:::
the

:::::::::
importance

::
of
:::::

these
::::::::
variables

:::
for

:::::::::
improving prediction accuracy. Additionally, the

high
:::
The

::::::
strong influence of traffic on NO2 concentrations agrees with the findings

:::
also

:::::::
supports

:::
the

::::::::::
conclusions

:
of Lu et al.

(2020) and Chen et al. (2019). As the sources for different pollutants may
:::::::
However,

:::::
since

:::::::
sources

::
of

:::::::
different

:::::::::
pollutants vary

(Chen et al., 2019), the modeling results of
::
for

:
NO2 concentrations may not be extensible

::::::
directly

::::::::
applicable

:
to other pollutants.

Accounting for spatial groups465

For the global dataset, the differences between the
:::::::::::::::::::::::::::
Meyer and Pebesma (2021, 2022)

:::::
argue

::::
that

:::
the

:::::::
growing

:::::::::
popularity

:::
of

:::::
global

:::::::
models,

::::
due

::
to

::::
their

::::::
ability

:::
to

::::::
capture

:::::
both

:::::
linear

:::
and

:::::::::
non-linear

::::::::::::
relationships,

::::
may

::::
lead

::
to
::::::::::::::

misinformation.
::::::
While

:
a
::::::::::
well-trained

::::::
global

::::::
model

:::
can

:::::
make

:::::::
accurate

::::::::::
predictions

::::::
where

:::::
global

:::::::::
predictors

:::
are

::::::::
available,

::
it
::::
may

::::::::
perform

:::::
poorly

:::
in

::::::
regions

:::::
where

::::::::
predictor

::::::
values

::::
differ

:::::::::::
significantly

::::
from

:::
the

:::::::
training

::::
data.

:
470

::
In

:::
this

:::::
study,

:::
the

:::::::::
differences

:::::::
between

:
linear and non-linear techniques are negligible based on accuracy assessment matrices.

The random forest models obtained the
:::::::
minimal

:::::
when

::::::
applied

:::
to

:::
the

::::::
global

:::::::
dataset.

::::::::
Although

::::
the

::::::
random

::::::
forest

::::::
model

:::::::
generally

::::::::
performs

::::
best

::
(highest R2and the

:
,
:
lowest MAE)but ,

:
the R2 of the Ridge

::::::
RIDGE

:::::
model

:
is higher than

:::
that

:::
of

the LightGBM and XGBoost models. When accounting for the spatial groups- urban, low population, and far from roads -

::::::::
However,

:::::
when

:::::::::
accounting

:::
for

::::::
spatial

:::::::::::::
groups—urban,

:::::::::
suburban,

:::
and

:::::::
rural—the differences in model performance between475

linear and non-linear techniques become more distinguishable, whereby the
::::::::::
pronounced,

::::
with

:
non-linear models perform

better for observations far away from roads, where data generally is
:::::::
generally

::::::::::::
outperforming

::::::
linear

:::::::
models,

:::::::::
particularly

:::
in

::::
rural

:::::
areas

:::::
where

::::
data

:::
are

:
more homogeneous. However, in urban areas, the model performances between linear and

::::
This

::::::
finding

:::::::
confirms

::::
with

:::::::
studies

::
by

:::::::::::::::::::::
Weichenthal et al. (2016)

:
,
::::::::::::::
Reid et al. (2015)

:
,
:::::::::::::::
Chen et al. (2019),

::::
and

:::::::::::::
Lu et al. (2020),

::::::
which

::::::
suggest

::::
that non-linear models are less pronounced, and the model performances are all unsatisfactory. These findings are480

against the conclusions of several studies
::::::::
techniques

::::::::
typically

::::::
provide

:::::
better

::::::::::
predictions.

::::
Our

::::::
results

::::::
support

:::
the

::::::::
argument

:::
by

:::::::::::::::::::::::
Meyer and Pebesma (2021) that non-linear models could achieve better predictions ((Weichenthal et al., 2016), (Reid et al., 2015)

, (Chen et al., 2019), (Lu et al., 2020)). In this study, we used
:::::::
perform

:::::
better

::
in

:::::
areas

::::::
where

:::
the

::::::::::::
environmental

::::::::
variables

:::
are

::::::
similar

::
to

::::
those

::
in
:::
the

:::::::
training

::::
data.

:

::::::::
Although

::::::
various

:::::::::::::
cross-validation

::::::::
methods

:::
are

::::::::
available,

::::
with

:::::
some

::::::::::
researchers

:::::::::
advocating

:::
for

::::::
spatial

::::::::::::::
cross-validation

::
to485

:::::
better

::::::
capture

:::::::::::::
autocorrelation,

:::
we

:::::
opted

:::
for random bootstrap cross-validationinstead of spatial cross-validation, following the

arguments regarding spatial and .
:::::::::
According

:::
to

:::::::::::::::::
Wadoux et al. (2021)

:
, standard cross-validation in Wadoux et al. (2021) and

Lu et al. (2023).
:::
(i.e.,

::::::::
ignoring

:::::::::::::
autocorrelation)

::::::
results

::
in

::::
less

::::
bias

::::
than

::::::
spatial

::::::::::::::
cross-validation.

::::
They

::::
also

:::::
argue

::::
that

::::::
spatial

:::::::::::::
cross-validation

:::::::
methods

::::
lack

:::::::::
theoretical

:::::::::::
underpinning

:::
and

::::::
should

:::
not

:::
be

::::
used

:::
for

::::
map

::::::::::
assessment.

:::::::
Standard

::::::::::::::
cross-validation

:
is
::::::::
sufficient

:::
for

::::::::
clustered

::::
data

::::::::
scenarios

::::::::::::::::::::::::::::::
(Wadoux et al., 2021; Lu et al., 2023)

:
.490

The heterogeneous data nature of urban areas renders poor statistical modeling performance , which has gone unnoticed in

studies not controlling for spatial heterogeneity. The
::
In

:::::
urban

::::::
areas,

:::
the

:::::
more

::::::::::::
heterogeneous

:::::
nature

:::
of

:::
the

::::
data

:::::::
reduces

:::
the
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::::::::::
performance

::::
gap

:::::::
between

:::::
linear

::::
and

:::::::::
non-linear

::::::::::
techniques,

::::
with

::::
both

::::::::::
performing

::::::
poorly.

::::
This

:
poor prediction accuracy in

urban areas is worrisome given that
:::::::::
concerning,

::
as

:
the impact of air pollution can depend on the surrounding environment, i.e.

people who live in the vicinity of
:
is
:::::
often

::::
more

::::::
severe

::
in

:::::
these

::::::
regions

:::
due

::
to

:::::::::
proximity

::
to traffic-heavy roads (which are often495

more present in , or around urban areas) and/or industries facing higher exposure to air pollution (He et al., 2022). Though

spatial grouping greatly improves the predicting
:::::
roads

:::
and

::::::::
industrial

:::::
areas

:::::::::::::
(He et al., 2022)

:
.
:::::
While

::::::
spatial

::::::::
grouping

::::::::
improves

::::::::
predictive reliability, it can present counter-intuitive patterns. For instance, in some areas, the

:::
lead

::
to

:::::::::::::
counterintuitive

::::::::
patterns,

::::
such

::
as

:::::
lower predicted NO2 concentration levels are lower along roads than the concentration levels of the rural surroundings.

::::::::::::
concentrations

:::::
along

:::::
roads

::::::::
compared

:::
to

::::::::::
surrounding

:::::
rural

:::::
areas.

:::::::::::
Additionally,

::::::::
adjusting

:::
the

:::::::::
threshold

:::
for

:::::::
defining

:::::::
"urban"500

::
in

:::
the

::::
local

::::::
dataset

:::::
from

::::
0.75

::
to

::::
0.5,

:::
due

::
to
::::::

higher
:::::::::
population

:::::::
density

:::
and

:::::
fewer

::::::::
samples,

::::
was

::::::::
necessary

::
to

:::::
more

:::::::::
accurately

:::::::
represent

::::::
urban

:::::
areas.

::::
This

::::::::::
adjustment,

::::::
while

:::::::
affecting

::::
the

:::::::::::
classification

::
of

:::::::
"urban"

::::::
areas,

::
is

::::::
crucial

:::
for

:::::::::
improving

::::::
model

::::::::
relevance

:::
and

:::::::
accuracy

::
in
:::::::::::
high-density

:::::::
regions.

:::::::::
Therefore,

::::
while

::::::
spatial

::::::::
grouping

::::::::
enhances

::::::::
prediction

:::::::::
reliability,

:::
the

::::::::
definition

::
of

::::::
"urban"

::::::
varies

:::::::
between

:::::::
datasets

:::
and

:::
can

::::::::
influence

::::::
model

::::::::::
performance

::::
and

:::::::::::
interpretation.

:

::::::::
Moreover,

::::::::::::::::
Patelli et al. (2023)

:::::::
identify

::::
three

:::::
main

::::::::
categories

:::
for

:::::::::
integrating

::::::
random

::::::
forests

::::
with

::::::
spatial

::::
data:

:::::::::::::
pre-processing,505

:::::::::::
in-processing,

::::
and

::::::::::::::
post-processing.

::
In

::::
our

:::::
study,

::::
the

::::
link

:::::::
between

:::::::
random

:::::
forest

:::::::::::
performance

::::
and

::::::
spatial

::::::
groups

::::
can

:::
be

:::::::::
considered

:
a
::::
form

:::
of

:::::::::::::
post-processing.

::::::::
However,

:::::
there

:
is
::::::::
potential

:::
for

:::::
better

:::::::::
integration

::
of

::::::
spatial

:::
data

::::
into

::::::::
ensemble

:::::::::
tree-based

::::::
models,

::::
such

:::
as

::::::
random

:::::::
forests,

::
to

::::::
further

:::::::
improve

::::::::
predictive

:::::::::::
performance

::::::::::::::::
(Patelli et al., 2023).

:

::::::
Global

:::
and

:::::
local

:::::::::
predictions

510

::
In

:::::::::
comparing

:::::
global

::::
and

::::
local

:::::::
models,

::::
each

::::::::
approach

:::
has

:::::::
distinct

:::::::
strengths

::::
and

:::::::::
limitations.

::::::
Local

::::::
models,

:::::::
tailored

::
to

:::::::
specific

:::::
spatial

:::::::::
groupings

:::
and

::::::::::::
incorporating

:::::::
detailed

:::::::::
predictors,

:::::
excel

::
at

::::::::
capturing

:::::::
regional

:::::::
clusters

::::
and

:::::::
nuances.

::::::
These

::::::
models

::::
can

::::::
identify

:::::::
patterns

::::
and

::::::::
variations

::::
that

:::::::
broader,

::::::
global

::::::
models

:::::
might

:::::
miss

::
or

:::::::::::
inadequately

::::::::
represent.

:::
On

:::
the

:::::
other

:::::
hand,

::::::
global

::::::
models

:::
are

::::::::
designed

::
to

:::::::
capture

::::::::::
overarching

::::::
trends

:::::
across

::::::
larger

::::
areas

::::
but

:::::
often

:::::::
overlook

::::
the

::::
finer

:::::
local

:::::
details

:::::::
crucial

:::
for

:::::::
accurate

:::::::::
predictions

::
in

:::::::
specific

:::::::
regions.515

:::
The

:::::::
findings

::
of

::::::::::::::::
Yuan et al. (2023)

::::::
support

:::
this

:::::::::
distinction,

:::::::::::
highlighting

:::
that

:::::::::
integrating

:::::::::
large-scale

:::::::::
stationary

::::::::::::
measurements

::::
with

::::
local

::::::
mobile

::::
data

::::::::
improves

::::::::
modeling

:::::::::::
performance

::
in

:::::
urban

:::::
areas

:::
by

:::::::::
accounting

:::
for

::::
finer

::::::
spatial

:::::::::
variations.

:::::
Their

:::::
study

::::::::::
underscores

:::
the

:::::::::
limitations

::
of

::::::
global

::::::
models,

::::::
which,

:::::
while

:::::::::
providing

:
a
:::::
broad

:::::::::
overview,

::::
may

:::
fail

::
to

::::::
capture

:::
the

:::::::
detailed

:::::
local

::::::::
variations

::::::::
necessary

:::
for

::::::
precise

::::::::::
predictions.

:::
By

:::::::::
combining

:::::
global

::::
and

::::
local

::::
data,

::
a
::::
more

::::::::
accurate

:::
and

:::::::
nuanced

::::::::
depiction

::
of

:::
air

:::::::
pollution

:::
can

:::
be

::::::::
achieved,

::::::::::
particularly

::
in

:::::::
complex

:::::
urban

:::::::::::
environments

::::::
where

::::
local

::::::
details

:::
are

::::::
critical.

:
520

Spatially varying on
:::::
Spatial

::::::::
variation

::
in

:
feature importance

While the feature importance is equal between
:::::
feature

::::::::::
importance

::::
may

:::
be

::::::::
consistent

::::::
across

:
cities, the influence of

::::::
specific

predictors on NO2 concentrations differs between the citiesstudied. For instance
::
can

:::::
vary

::::::::::
significantly

::::::::
between

:::::
cities.

::::
For

:::::::
example, building density and population are more prevalent

::::::::
significant

:
contributors to air pollution in Utrecht, compared to525

Hamburg, while
::::::
whereas

:
traffic has a higher influence

::::::
greater

::::::
impact

:
on high NO2 concentrations in Hamburg, compared to
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Utrecht. Additionally, global models are applied to different cities
:
.
::::::::
Applying

:::::
global

:::::::
models with the same predictors . As the

case cities unravel that high NO2 can be attributed to different predictors per city , applying models with different features may

yield better prediction results. An important condition is that every city has enough
:::::
across

:::::::
different

:::::
cities

::::
may

:::
not

::::
yield

:::::::
optimal

::::::
results;

::::::
instead,

:::::::
models

::::::
tailored

::
to

:::
the

:::::::
specific

:::::::::
conditions

:::
and

::::::::
dominant

:::::::::
predictors

::
of

::::
each

:::
city

::::
may

:::::::
provide

:::::
better

::::::::::
predictions.530

::::::::
However,

::
an

::::::::
important

:::::::::::
consideration

::
is
::::
that

::::
each

:::
city

:::::
must

::::
have

:
a
::::::::
sufficient

:::::::
number

::
of observations to avoid unreliable predic-

tions.

Model quality

535

The limited number of observations in the local dataset poses a problem in fitting complicated models. Outliers are omitted

after the model predictionsto deal with unreliable predictions
::::::::
challenges

:::
for

::::::
fitting

:::::::
complex

:::::::
models.

:::
To

:::::::
address

:::::::::
unreliable

:::::::::
predictions,

:::::::
outliers

::::
were

::::::::
removed

::::
after

::::::
model

:::::::::
predictions. Transforming the original data could avoid data out of

:::::::::
potentially

::::
avoid

::::::::::
predictions

:::::
falling

::::::
outside

:::
the

::::::::
plausible range (e.g.<

:
,
:::::
below

:
0 mg

::
µg/m3). In our

::::::::
However,

::
in

:::
this

:
study, such transformation,

e.g.,
:::::::::::::
transformations,

:::
like

:
a log transformation, is

::::
were

:
not applied. Airborne

::::::::
Although

:::::::
airborne pollutant concentrations are of-540

ten positively skewed (Maranzano et al., 2020). However, Lu et al. (2023) examined several techniques such as transformations,

likelihood functions, and loss functions to address the issue of non-Gaussian distributions but suggested the ,
::::::::::::::
Lu et al. (2023)

:::::
found

:::
that

:::
the

:
best modeling results were obtained without data transformation and using Gaussian likelihood(i.e. instead of

using e.g. a Gamma likelihood, which matches the best with the data distributionin the study).

:
,
::::
even

::::
when

:::::
other

::::::::::
distributions

::::
like

:::::::
Gamma

:::::
might

:::::
better

:::::
match

:::
the

::::
data

::::::::::
distribution. Moreover, while the LASSO and Ridge545

models seem
:::::
appear

:
useful with the global dataset, the predictions are unsatisfactory

:::
their

::::::::::
predictions

::::
were

::::
less

::::::::::
satisfactory

with the local dataset. In this study, traffic volumes are a prevalent feature, however, no distinction is made between traffic

types (e.g.
::::
were

:
a
:::::::::
significant

:::::::
feature,

:::
yet

::
no

:::::::::
distinction

::::
was

:::::
made

:::::::
between

:::::::
different

:::::
types

::
of
::::::

traffic
::::
(e.g.,

:
cars, buses, trucks),

car
::::::
vehicle

:
types (e.g.

:
, electric, diesel), and engine typeswhile such aspects

:
or

:::::::
engine

:::::
types,

:::
all

::
of

::::::
which are known to be

influential to
::::::::
influence air pollution (Wong et al., 2021). For instance

:::::::
example, distinguishing between vehicle types may550

show that relatively many trucks are on specific roads(e.g. going
:::::
could

:::::
reveal

::::
that

::::::
certain

:::::
roads,

:::::
such

::
as

:::::
those

::::::
leading

:
to or

from the port of Hamburg)
:
,
::::
have

::
a
::::::
higher

:::::::::
proportion

::
of

::::::
trucks,

:
which might explain certain

:::::::
localized

:
clusters of high NO2

concentrations. Further studies may attempt to integrate spatial dependence in random forest (Patelli et al., 2023)
:::::
Future

::::::
studies

::::
could

:::::::
explore

:::::::::
integrating

::::::
spatial

::::::::::
dependence

::::
into

::::::
random

:::::
forest

:::::::
models

::::::::::::::::
(Patelli et al., 2023)

::
to

:::::::::
potentially

:::::::
enhance

:::::::::
predictive

::::::::::
performance.555

5 Conclusions

In this study, we understand the spatial heterogeniety
:::::::::::
heterogeneity

:
of NO2 modeling through

::
by comparing various linear

and non-linear statistical models at different scales (local vs. global). One of the key findings of this study is that the model

performance varies little with models of different levels of complexity, but spatially in various population, traffic, and urban
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settings. Non-linear techniques predict better in areas far from roads and in areasnear roads with low population density
::::
rural560

:::
and

::::::::
suburban

::::
areas, compared to linear models. Global model prediction accuracy is considerably higher in areas far from roads

than in areas near roads. Methods preferred in global modeling appear to be unfavorable in local modeling. The relatively few

NO2 observations used in the local models could explain why non-linear models perform poorly. We also found that modeling

the spatial autocorrelation does not improve the local modeling accuracy, but modeling spatial groups does. Lastly, prediction

patterns show that nonlinear
::::::::
non-linear models are less prone to overfitting compared to linear methods, and different modeling565

techniques lead to different NO2 clusters in the prediction map. Our results suggest that only looking at the overall prediction

accuracy is insufficient and can be misleading.

Code and data availability

Codes and data are available via: https://github.com/FoekeBoersma/A-close-look-at-using-national-ground-stations-for-the-
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