## Supplement of

# Nitrous Acid Budgets in Coastal Atmosphere: Insights into the Absence of a Daytime Marine Source

1

Xuelian Zhong et al.

5 *Correspondence to*: Hengqing Shen (hqshen@sdu.edu.cn) and Likun Xue (xuelikun@sdu.edu.cn)

#### Texts

#### S1. Sensitivity analysis of HONO in dust and photochemical periods

10

According to the parameter ranges in Table S4, we conducted a sensitivity analysis on the effects of different parameter selections on HONO concentrations during dust and photochemical pollution days. The results are provided in Figure S2 and Figure S3, and a summary of the findings can be found in Table S5. Overall, heterogeneous reactions of NO<sub>2</sub> during dust days and photolysis of nitrate during photochemical pollution days are important sources of HONO. However, the choice of different parameters can affect the relative importance of these pathways. In general, based on the current parameter selection, the HONO concentrations can be reasonably simulated, but future research should focus on more detailed studies of the parameters for different HONO formation pathways in various

15

environments.

#### S2. Calculation of enhancement factor (EF)

$$EF = \frac{P_{\text{missing}}}{JHNO_3 \times [pNO_3^-]}$$
(SE1)

$$\begin{split} P_{missing} &= & (SE2) \\ [HONO] \times J_{HONO} + [HONO] \times [OH] \times k_{OH+HONO} + [HONO] \times k_{deposition} - \\ [NO] \times [OH] \times k_{OH+NO} - [NO_2] \times (k_{ground} + k_{ground, hv} + k_{aerosol} + k_{aerosol, hv}) - \\ HONO_{emission} \end{split}$$

In Equation SE1, P<sub>missing</sub> represents the missing HONO production rate, which is calculated using 20 Equation SE2 with model results (10<sup>-9</sup> mol m<sup>-3</sup> s<sup>-1</sup>). [pNO<sub>3</sub><sup>-</sup>] denotes the particulate nitrate concentration (10<sup>-9</sup> mol m<sup>-3</sup>). To estimate the enhancement factor of J(pNO<sub>3</sub><sup>-</sup>), we subtract the contributions of HONO sources except for the photolysis of pNO<sub>3</sub><sup>-</sup>. The calculated EF value is approximately 4000, which is significantly higher than the EF value used in Equation 7 (around 118). The photolysis rate of pNO<sub>3</sub><sup>-</sup> increases to about 2.8×10<sup>-3</sup> s<sup>-1</sup>, which is substantially greater than the rates reported in previous studies 25 (no more than 10<sup>-3</sup> s<sup>-1</sup>) as summarized by Andersen et al. (2023).

### Tables

| Number | Sea case (less than 1 h traveling time over the land) | Number | Land case (less than 1 h traveling time over the sea) |
|--------|-------------------------------------------------------|--------|-------------------------------------------------------|
| 1      | 4/28 0:00-4:00                                        | 1      | 4/27 17:00–19:00, 21:00                               |
| 2      | 4/29 1:00-6:00                                        | 2      | 4/28 8:00-9:00, 15:00-19:00                           |
| 3      | 4/30 12:00-23:00                                      | 3      | 4/29 15:00-23:00                                      |
| 4      | 5/1 0:00-1:00                                         | 4      | 4/30 0:00-8:00                                        |
| 5      | 5/2 17:00-23:00                                       | 5      | 5/1 3:00-5:00, 8:00-16:00                             |
| 6      | 5/3 0:00-23:00                                        | 6      | 5/2 9:00-11:00                                        |
| 7      | 5/4 0:00-6:00                                         | 7      | 5/4 9:00-17:00, 22:00-23:00                           |
| 8      | 5/5 19:00-23:00                                       | 8      | 5/5 0:00-15:00                                        |
| 9      | 5/7 21:00-23:00                                       | 9      | 5/7 1:00-18:00                                        |
| 10     | 5/8 0:00-1:00                                         | 10     | 5/8 10:00-13:00                                       |
| 11     | 5/9 1:00-23:00                                        | 11     | 5/16 23:00                                            |
| 12     | 5/10 0:00-23:00                                       | 12     | 5/17 7:00-19:00, 23:00                                |
| 13     | 5/11 0:00-23:00                                       | 13     | 5/18 0:00-8:00                                        |
| 14     | 5/12 1:00-23:00                                       |        |                                                       |
| 15     | 5/13 0:00-23:00                                       |        |                                                       |
| 16     | 5/14 0:00, 2:00-23:00                                 |        |                                                       |
| 17     | 5/15 1:00-2:00, 6:00-9:00                             |        |                                                       |
| 18     | 5/18 17:00-18:00                                      |        |                                                       |

Table S1. Summary of the "sea case" and "land case".

| Туре                | Site location                 | Periods                   | HONO<br>(pptv)  | NO <sub>2</sub><br>(ppbv) | HONO/NO <sub>2</sub> | References               |
|---------------------|-------------------------------|---------------------------|-----------------|---------------------------|----------------------|--------------------------|
| Coastal/<br>Islands | Mt. Lao                       | 27 Apr–19 May<br>2021     | 456±373         | 5.89±4.80                 | 0.13                 | This study               |
|                     | Qingdao<br>("sea case")       | 1 Jul–25 Aug<br>2019      | 216±207         | 3.1±2.6                   | 0.088                | Yang et al. (2021)       |
|                     | Coastal Shanghai              | 3–16 Jun 2017             | 650             | 11.05                     | 0.059                | Cui et al. (2019)        |
|                     | Hok Tsui                      | 1 Sep–19 Dec<br>2012      | 126±95          | 4.06±3.29                 | 0.03                 | Zha et al. (2014)        |
|                     | Cyprus                        | 7 Jul–3 Aug<br>2014       | 35±25           | 0.14±0.12                 | 0.33                 | Meusel et al.<br>(2016)  |
|                     | Changdao, Bohai               | 5 Oct–21 Nov<br>2016      | 270±230         | 4.8±3.3                   | 0.057                | Wen et al. (2019)        |
| Marine              | Cape Verde, North<br>Atlantic | 25 Nov–3 Dec<br>2015      | 0.84±1.00       | 0.038±0.025               | 0.025                | Crilley et al.<br>(2021) |
|                     | Bermuda Is, North<br>Atlantic | 17 Apr–13 May<br>2019     | 9.8±12.0        | 0.6±0.2                   | 0.02                 | Zhu et al. (2022)        |
|                     | Barrow, Alaska                | 13 Mar–14 Apr<br>2009     | $4.6\pm3.5^{d}$ | $0.038{\pm}0.021^{d}$     | 0.12 <sup>d</sup>    | Villena et al.<br>(2011) |
|                     | Beijing                       | 1 Apr–14 May<br>2016      | 1050±950        | 25.97±15.80               | 0.04                 | Wang et al.<br>(2017)    |
|                     | Jinan                         | Mar–May 2016 <sup>*</sup> | 1040            | 25.8                      | 0.052                | Li et al. (2018)         |
| Urban               | Guangzhou                     | 27 Sep–9 Nov<br>2018      | 740±700         | 50.8±17.2                 | 0.023                | Yu et al. (2022)         |
|                     | Zhengzhou                     | 9–31 Jan 2019             | 2500±1900       | 33±14                     | 0.076                | Hao et al.<br>(2020)     |
| Rural               | Dongying                      | 8 Feb–24 Mar<br>2017      | 260±280         | 10.41±9.11                | 0.025                | Gu et al. (2020)         |
|                     | Wangdu                        | 8 Jun–5 Jul<br>2014       | 910±480         | 14.5                      | 0.06                 | Liu et al. (2019)        |
|                     | New York                      | 26 Jun–14 Jul<br>1998     | 63±33           | 1.1±0.63 <sup>b</sup>     | 0.07°                | Zhou et al. (2002)       |

**Table S2.** Comparing HONO and NO<sub>2</sub> concentrations, as well as the HONO/NO<sub>2</sub> ratio at Mt. Lao with those observed at other sites.

<sup>a</sup> Only the daytime data; <sup>b</sup> NO<sub>x</sub>; <sup>c</sup> HONO/NO<sub>x</sub>; <sup>d</sup> clean days.

| D                                                   | Sea ca                                    | ase                      | Land c                                    | Land case                   |  |  |
|-----------------------------------------------------|-------------------------------------------|--------------------------|-------------------------------------------|-----------------------------|--|--|
| Parameters                                          | Daytime                                   | Nighttime                | Daytime                                   | Nighttime                   |  |  |
| HONO (ppbv)                                         | $0.42\pm0.25$                             | $0.32\pm0.27$            | $0.51\pm0.22$                             | $0.31\pm0.20$               |  |  |
| HONO/NO <sub>2</sub>                                | $0.10\pm0.08$                             | $0.12\pm0.11$            | $0.08\pm0.05$                             | $0.06\pm0.02$               |  |  |
| NO (ppbv)                                           | $1.4 \pm 0.7$                             | $0.2\pm0.2$              | $1.8 \pm 1.1$                             | $0.2\pm0.1$                 |  |  |
| NO <sub>2</sub> (ppbv)                              | $5.2\pm1.9$                               | $3.5\pm2.2$              | $8.4\pm4.3$                               | $5.0\pm2.3$                 |  |  |
| O <sub>3</sub> (ppbv)                               | $59.4 \pm 10.3$                           | $59.7 \pm 11.5$          | $63.4\pm13.3$                             | $59.9 \pm 11.9$             |  |  |
| CO (ppbv)                                           | $251\pm59$                                | $234\pm74$               | $335\pm115$                               | $263\pm87$                  |  |  |
| SO <sub>2</sub> (ppbv)                              | $0.7\pm0.4$                               | $0.6\pm0.4$              | $1.4\pm0.8$                               | $0.8\pm0.3$                 |  |  |
| PM <sub>2.5</sub> (µg m <sup>-3</sup> )             | $13.2\pm5.8$                              | $14.9\pm13.9$            | $29.9\pm22.8$                             | $21.1\pm14.9$               |  |  |
| PM <sub>10</sub> (µg m <sup>-3</sup> )              | $32.7\pm20.1$                             | $57.3\pm79.6$            | $88.2\pm95.2$                             | $135.7 \pm 147.4$           |  |  |
| $C_{1}(2) = -3$                                     | $4.71 \times 10^{-4}$                     | 4.57×10 <sup>-4</sup>    | 6.51×10 <sup>-4</sup>                     | 7.54×10 <sup>-4</sup>       |  |  |
| $Sa(m^2 m^3)$                                       | $\pm 3.39 \times 10^{-4}$                 | $\pm 4.58{	imes}10^{-4}$ | $\pm$ 3.07×10 <sup>-4</sup>               | $\pm$ 5.23×10 <sup>-4</sup> |  |  |
| pNO <sub>3</sub> <sup>-</sup> (µg m <sup>-3</sup> ) | $1.3\pm0.5$                               | $1.4 \pm 1.6$            | $10.0\pm3.3$                              | $2.6\pm0.01$                |  |  |
| TEMP (°C)                                           | $15.2\pm3.0$                              | $13.9\pm2.2$             | $18.7\pm3.8$                              | $15.1\pm3.6$                |  |  |
| RH (%)                                              | $76.3\pm25.9$                             | $75.2\pm24.6$            | $47.3\pm20.3$                             | $49.5\pm17.9$               |  |  |
| WS (m s <sup>-1</sup> )                             | $1.1 \pm 0.6$                             | $1.0\pm0.7$              | $0.8\pm0.5$                               | $0.5\pm0.3$                 |  |  |
| $JNO_{2}(s^{-1})$                                   | $4.3{\times}10^{-3}\pm1.8{\times}10^{-3}$ | _                        | $4.5{\times}10^{-3}\pm1.8{\times}10^{-3}$ | _                           |  |  |

Table S3. Summary of statistics (mean  $\pm$  SD) of HONO and related parameters in the "sea case" and the "land case".

35 Daytime period: 07:00-17:00; Nighttime period: 17:00-07:00.

| HONO production pathways                                       | Parameters                        | Parameter values     |                      |                      |  |
|----------------------------------------------------------------|-----------------------------------|----------------------|----------------------|----------------------|--|
| HONO production pairways                                       |                                   | Lower                | Recommended          | Upper                |  |
| Direct emission                                                | kemission                         | 0.4%                 | 0.8%                 | 1.6%                 |  |
| $NO_2 + H_2O \xrightarrow{aerosol surface} HONO + HNO_3$       | $\gamma_{a}$                      | 1.6×10 <sup>-6</sup> | 8×10 <sup>-6</sup>   | 1.6×10 <sup>-5</sup> |  |
| $NO_2 + H_2O \xrightarrow{\text{ground surface}} HONO + HNO_3$ | $\gamma_{ m g}$                   | 2×10-7               | 1×10 <sup>-6</sup>   | 2×10 <sup>-6</sup>   |  |
| $NO_2 + hv \xrightarrow{aerosol surface} HONO$                 | $\gamma_{a,hv}$                   | 8×10-6               | 4×10 <sup>-5</sup>   | 8×10 <sup>-5</sup>   |  |
| $NO_2 + hv \xrightarrow{\text{ground surface}} HONO$           | $\gamma_{g,hv}$                   | 4×10 <sup>-6</sup>   | 2×10 <sup>-5</sup>   | 4×10 <sup>-5</sup>   |  |
| $pNO_3^- + hv \rightarrow HONO$                                | J(pNO <sub>3</sub> <sup>-</sup> ) | 1.7×10 <sup>-5</sup> | 8.3×10 <sup>-5</sup> | 1.6×10 <sup>-4</sup> |  |

 Table S4. Parameterizations used for sensitivity simulations.

| Cases                                       | NO + OH  | Direct<br>emission | NO <sub>2</sub> +<br>aerosol | NO <sub>2</sub> + ground | NO <sub>2</sub> +<br>aerosol +<br>hv | NO <sub>2</sub> +<br>ground +<br>hv | $pNO_3^- + hv$ |
|---------------------------------------------|----------|--------------------|------------------------------|--------------------------|--------------------------------------|-------------------------------------|----------------|
| $k_{\text{emission}} = 0.4\%$               | 25%(27%) | 0%(1%)             | 5%(4%)                       | 0%(0%)                   | 53%(27%)                             | 5%(7%)                              | 12%(34%)       |
| $k_{emission} = 1.6\%$                      | 25%(26%) | 2%(3%)`            | 4%(4%)                       | 0%(0%)                   | 52%(26%)                             | 5%(7%)                              | 12%(33%)       |
| $\gamma_a = 1.6{\times}10^{-6}$             | 25%(20%) | 1%(2%)             | 1%(1%)                       | 0%(0%)                   | 55%(30%)                             | 5%(8%)                              | 13%(39%)       |
| $\gamma_a = 1.6{\times}10^{-5}$             | 24%(19%) | 1%(1%)             | 9%(8%)                       | 0%(0%)                   | 50%(28%)                             | 4%(7%)                              | 12%(36%)       |
| $\gamma_g = 1.6{\times}10^{-6}$             | 25%(20%) | 1%(2%)             | 5%(4%)                       | 0%(0%)                   | 53%(29%)                             | 5%(8%)                              | 12%(37%)       |
| $\gamma_g = 1.6{\times}10^{-5}$             | 25%(20%) | 1%(2%)             | 5%(4%)                       | 0%(1%)                   | 53%(29%)                             | 5%(8%)                              | 12%(37%)       |
| $\gamma_{a,\rm hv}=8{\times}10^{\text{-}6}$ | 36%(24%) | 1%(2%)             | 9%(6%)                       | 0%(0%)                   | 21%(8%)                              | 9%(10%)                             | 24%(50%)       |
| $\gamma_{a,\rm hv}=8{\times}10^{\text{-5}}$ | 20%(16%) | 0%(1%)             | 3%(3%)                       | 0%(0%)                   | 66%(44%)                             | 3%(6%)                              | 8%(28%)        |
| $\gamma_{g,hv}=8{\times}10^{\text{-}6}$     | 25%(21%) | 1%(2%)             | 5%(5%)                       | 0%(0%)                   | 55%(31%)                             | 1%(2%)                              | 13%(40%)       |
| $\gamma_{g,hv}=8{\times}10^{\text{-5}}$     | 24%(19%) | 1%(1%)             | 4%(4%)                       | 0%(0%)                   | 50%(27%)                             | 9%(14%)                             | 12%(34%)       |
| $J(pNO_3) = 1.7 \times 10^{-5}$             | 27%(26%) | 1%(2%)             | 5%(6%)                       | 0%(0%)                   | 59%(42%)                             | 5%(11%)                             | 12%(12%)       |
| $J(pNO_3) = 1.6 \times 10^{-4}$             | 23%(16%) | 1%(1%)             | 4%(3%)                       | 0%(0%)                   | 47%(22%)                             | 4%(6%)                              | 20%(52%)       |

**Table S5.** The relative contributions of different sources in the sensitivity tests of dust period40 (photochemical pollution period).



Figure S1. Time series of JNO<sub>2</sub> used in the model.



**Figure S2.** Sensitivity modeling results for various HONO sources during dust periods, considering both upper and lower parameter values.



Figure S3. Sensitivity modeling results for various HONO sources during photochemical pollution periods, considering both upper and lower parameter values.



**Figure S4.** Sensitivity modeling results for various HONO sources in "sea case", considering both upper and lower parameter values.



Figure S5. Model results of the sensitivity tests for NO<sub>2</sub> heterogeneous reactions on aerosol and ground surfaces in the "sea case". In case 1, uptake coefficients of 8×10<sup>-5</sup> and 4×10<sup>-5</sup> were used for aerosol and ground surfaces, respectively; in case 2, 2×10<sup>-4</sup> and 1×10<sup>-4</sup> were used, and in case 3, 4×10<sup>-4</sup> and 2×10<sup>-4</sup> were used.



**Figure S6.** Correlation analysis of the daytime (7:00–17:00) missing HONO production rate ( $P_{missing}$ ) with measured parameters in the "sea case".

80

90

- Andersen, S. T., Carpenter, L. J., Reed, C., Lee, J. D., Chance, R., Sherwen, T., Vaughan, A. R., Stewart, J., Edwards, P. M., and Bloss, W. J.: Extensive field evidence for the release of HONO from the photolysis of nitrate aerosols, Sci. Adv., 9, https://doi.org/10.1126/sciadv.add6266, 2023.
- Crilley, L. R., Kramer, L. J., Pope, F. D., Reed, C., Lee, J. D., Carpenter, L. J., Hollis, L. D. J., Ball, S. M., and Bloss, W. J.: Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?, Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, 2021.
- Cui, L., Li, R., Fu, H., Li, Q., Zhang, L., George, C., and Chen, J.: Formation features of nitrous acid in
   the offshore area of the East China Sea, Sci Total Environ, 682, 138-150, https://doi.org/10.1016/j.scitotenv.2019.05.004, 2019.
  - Gu, R., Zheng, P., Chen, T., Dong, C., Wang, Y. n., Liu, Y., Liu, Y., Luo, Y., Han, G., Wang, X., Zhou, X., Wang, T., Wang, W., and Xue, L.: Atmospheric nitrous acid (HONO) at a rural coastal site in North China: Seasonal variations and effects of biomass burning, Atmos. Environ., 229, 117429, https://doi.org/10.1016/j.atmosenv.2020.117429, 2020.
  - Hao, Q., Jiang, N., Zhang, R., Yang, L., and Li, S.: Characteristics, sources, and reactions of nitrous acid during winter at an urban site in the Central Plains Economic Region in China, Atmos. Chem. Phys., 20, 7087-7102, https://doi.org/10.5194/acp-20-7087-2020, 2020.
- Li, D., Xue, L., Wen, L., Wang, X., Chen, T., Mellouki, A., Chen, J., and Wang, W.: Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations, Atmos. Environ., 182, 296-306, https://doi.org/10.1016/j.atmosenv.2018.03.033, 2018.
  - Liu, Y. H., Lu, K. D., Li, X., Dong, H. B., Tan, Z. F., Wang, H. C., Zou, Q., Wu, Y. S., Zeng, L. M., Hu, M., Min, K. E., Kecorius, S., Wiedensohler, A., and Zhang, Y. H.: A Comprehensive Model Test of the HONO Sources Constrained to Field Measurements at Rural North China Plain, Environ. Sci. Technol., 53, 3517-3525, https://doi.org/10.1021/acs.est.8b06367, 2019.
- Meusel, H., Kuhn, U., Reiffs, A., Mallik, C., Harder, H., Martinez, M., Schuladen, J., Bohn, B., Parchatka, U., Crowley, J. N., Fischer, H., Tomsche, L., Novelli, A., Hoffmann, T., Janssen, R. H. H., Hartogensis, O., Pikridas, M., Vrekoussis, M., Bourtsoukidis, E., Weber, B., Lelieveld, J., Williams, J., Pöschl, U., Cheng, Y., and Su, H.: Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO, Atmos. Chem. Phys., 16, 14475-14493, https://doi.org/10.5194/acp-16-14475-2016, 2016.
- Villena, G., Wiesen, P., Cantrell, C. A., Flocke, F., Fried, A., Hall, S. R., Hornbrook, R. S., Knapp, D., Kosciuch, E., Mauldin, R. L., McGrath, J. A., Montzka, D., Richter, D., Ullmann, K., Walega, J., Weibring, P., Weinheimer, A., Staebler, R. M., Liao, J., Huey, L. G., and Kleffmann, J.: Nitrous acid (HONO) during polar spring in Barrow, Alaska: A net source of OH radicals?, J. Geophys. Res. Atmos., 116, D00R07, https://doi.org/10.1029/2011jd016643, 2011.
  - Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal formation and daytime budget, Sci. Total Environ., 587-588, 350-359, https://doi.org/10.1016/j.scitotenv.2017.02.159, 2017.

105

- Wen, L., Chen, T., Zheng, P., Wu, L., Wang, X., Mellouki, A., Xue, L., and Wang, W.: Nitrous acid in marine boundary layer over eastern Bohai Sea, China: Characteristics, sources, and implications, Sci Total Environ, 670, 282-291, https://doi.org/10.1016/j.scitotenv.2019.03.225, 2019.
- Yang, J., Shen, H., Guo, M.-Z., Zhao, M., Jiang, Y., Chen, T., Liu, Y., Li, H., Zhu, Y., Meng, H., Wang,
   W., and Xue, L.: Strong marine-derived nitrous acid (HONO) production observed in the coastal atmosphere of northern China, Atmos. Environ., 244, https://doi.org/10.1016/j.atmosenv.2020.117948, 2021.
- Yu, Y., Cheng, P., Li, H., Yang, W., Han, B., Song, W., Hu, W., Wang, X., Yuan, B., Shao, M., Huang, Z., Li, Z., Zheng, J., Wang, H., and Yu, X.: Budget of nitrous acid (HONO) at an urban site in the
  fall season of Guangzhou, China, Atmos. Chem. Phys., 22, 8951-8971, https://doi.org/10.5194/acp-22-8951-2022, 2022.
  - Zha, Q., Xue, L., Wang, T., Xu, Z., Yeung, C., Louie, P. K. K., and Luk, C. W. Y.: Large conversion rates of NO<sub>2</sub> to HNO<sub>2</sub> observed in air masses from the South China Sea: Evidence of strong production at sea surface?, Geophys. Res. Lett., 41, 7710-7715, https://doi.org/10.1002/2014gl061429, 2014.
  - Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., and Demerjian, K.: Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State, J. Geophys. Res. Atmos., 107, ACH 13-11-ACH 13-11, https://doi.org/10.1029/2001jd001539, 2002.

Zhu, Y., Wang, Y., Zhou, X., Elshorbany, Y. F., Ye, C., Hayden, M., and Peters, A. J.: An investigation
 into the chemistry of HONO in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda, Atmos. Chem. Phys., 22, 6327-6346, https://doi.org/10.5194/acp-22-6327-2022, 2022.