Exploring the amplied role of HCHO during the wintertime ozone

and PM_{2.5} pollution in a coastal city of southeast China

Youwei Hong^{a,b,c,d,g*}, Keran Zhang^{a,b,d}, Dan Liao^f, Gaojie Chen^{a,b,c}, Min Zhaoⁱ, Yiling Lin^{a,b,e}, Xiaoting Ji^{a,b,c}, Ke Xu^{a,b,g}, Yu Wu^{a,b,e}, Ruilian Yu^e, Gongren Hu^e, Sung-Deuk Choi^h, Likun Xue^{i*}, Jinsheng Chen^{a,b,c}

^aCenter for Excellence in Regional Atmospheric Environment, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China

^bFujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China

^cUniversity of Chinese Academy of Sciences, Beijing, 100049, China

^dCollege of Resources and Environment, Fujian Agriculture and Forest University, Fuzhou 350002, China

eCollege of Chemical Engineering, Huaqiao University, Xiamen, 361021, China

^fCollege of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China

^gSchool of Life Sciences, Hebei University, Baoding, 071000, China

^hDepartment of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea

ⁱEnvironment Research Institute, Shandong University, Qingdao, 266237, China

*Corresponding author E-mail: Youwei Hong (ywhong@iue.ac.cn); Likun Xue (xuelikun@sdu.edu.cn)

Fig S1. Location of the observation site in a coastal city of Southeast China

Fig S2. The correlation of PM_{2.5} and MDA8 O3 concentrations during the whole periods

Fig S3. Inter-annual mean concentrations of criteria air pollutants in Xiamen, a coastal city of Southeast China

Fig S4. The concentrations and percentages of OC, EC, and BC during the whole periods

Fig S5. The factor profiles and the contribution of various sources to $PM_{2.5}$ by the positive matrix factorization (PMF) model analysis. The bars represent the concentrations of various species and the dots represent the contributions of species to the factors.

Fig.S6 Backward trajectory clusters at the monitoring site under different periods

Fig.S7 The distribution of fire spots around the monitoring site under different periods (FromtheFireInformationforResourceManagementSystem,https://firms.modaps.eosdis.nasa.gov/firemap/)

Fig S8.The correlations between (a) $\rm NH_4^+$ and $\rm SO_4^{2-}$, (b) $\rm NH_4^+$ and $\rm NO_3^-$, and (c) $\rm NH_4^+$ and $\rm NO_3^-+SO_4^{2-}$

Fig S9. The correlations between liquid water content (LWC) of aerosols and concentrations of secondary inorganic aerosol (SIA, including SO₄²⁻, NO₃⁻ and NH₄⁺)

Fig S10. The net O₃ production rates modeled by the OBM with or without HCHO mechanism

Fig S11. The ROx concentrations modeled by the OBM with or without HCHO mechanism

	Pre-EP1	EP1	Pre-EP2	EP2
PM _{2.5} (µg m ⁻³)	9.03±6.28	51.94±19.02	33.53±10.41	35.34±23.51
$PM_{10}(\mu g m^{-3})$	13.68±10.51	74.43±24.40	57.46±21.11	58.21±28.98
O ₃ (µg m ⁻³)	60.82±18.57	67.12±44.73	76.58±31.83	58.98±47.97
CO(µg m ⁻³)	531.02±63.18	742.86±121.34	379.17±95.65	577.98±97.24
SO ₂ (µg m ⁻³)	9.16±3.47	13.74±7.61	16.26±2.68	18.20±6.58
NO ₂ (µg m ⁻³)	12.40±7.00	31.38±14.20	22.01±10.82	32.56±11.08
NO(µg m ⁻³)	1.5±1.31	5.56±9.51	2.04±14.29	6.13±8.02
Ox(µg m ⁻³)	73.22±12.78	98.50±29.45	88.59±21.32	91.54±29.57
BC(µg m ⁻³)	0.45±0.19	1.69±0.56	0.78±0.32	1.61±0.54
OC(µg m ⁻³)	1.69±0.81	6.36±2.16	3.20±1.52	7.48±5.03
EC(µg m ⁻³)	0.27±0.17	1.23±0.50	0.59±1.51	1.29±0.51
SO4 ²⁻ (µg m ⁻³)	1.96±1.26	7.07±2.91	3.87±2.24	5.87±1.70
NO ₃ ⁻ (µg m ⁻³)	2.02±1.81	14.95±8.34	4.83±2.83	9.69±4.89
$NH_4^+(\mu g m^{-3})$	0.96±0.90	6.77±3.43	2.16±1.63	4.46±1.88
NOR	0.16±0.07	0.32±0.08	0.18±0.06	0.24±0.05
SOR	0.19±0.07	0.38±0.18	0.19±0.06	0.26±0.08
T(°C)	12.38±3.89	20.56±3.90	18.65±4.17	23.93±4.30
RH(%)	69.41±12.45	63.17±10.32	54.30±15.52	62.17±11.05
P(kPa)	101.14±0.36	100.71±0.30	100.68±0.15	100.17±0.21
WS(m/s)	1.64±0.70	1.02±0.51	1.37±0.59	0.93±0.54
$UV(W/m^2)$	5.88±9.58	9.31±13.94	11.08±16.09	11.10±15.05
JNO ₂ (×10 ⁻³ s ⁻¹)	1.50±2.45	2.49±3.57	2.91±3.94	2.95±3.79
HONO(µg m ⁻³)	0.75±0.36	3.10±2.25	1.19±0.58	4.19±2.68
HCHO(ppb)	0.68±0.71	2.94±1.01	1.59±0.71	3.59±1.36
TVOCs(ppb)	14.47±7.14	29.39±11.65	14.28±6.18	29.91±12.05

 Table S1 Mean concentrations of air pollutants, chemical compositions and meteorological parameters under different pollution stages

Aromatics(ppb)	1.29±1.36	3.21±1.92	1.54±1.29	3.06±1.87
Alkynes(ppb)	0.78±0.41	$1.04{\pm}1.00$	0.12±0.06	0.77±0.72
Alkanes(ppb)	6.48±2.06	10.27±5.07	4.46±1.92	9.73±4.46
Alkenes(ppb)	0.75±0.52	1.28±0.84	0.49±0.42	1.37±1.09
OVOCs(ppb)	0.87±0.35	1.21±0.23	1.01±0.41	1.22±0.25
Halohydrocarbon(ppb)	4.30±3.69	12.40±4.77	6.65±3.03	13.76±5.76