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Abstract. We present the Fire Inventory from NCAR version 2.5 (FINNv2.5), a fire emissions inventory 

that provides publicly available emissions of trace gases and aerosols for various applications, including 20 

use in global and regional atmospheric chemistry modeling. FINNv2.5 includes numerous updates to the 

FINN version 1 framework to better represent burned area, vegetation burned, and chemicals emitted. 

Major changes include the use of active fire detections from the Visible Infrared Imaging Radiometer 

Suite (VIIRS) at 375 m spatial resolution, which allows smaller fires to be included in the emissions 

processing. The calculation of burned area has been updated such that a more rigorous approach is used 25 

to aggregate fire detections, which better accounts for larger fires and enables using multiple satellite 

products simultaneously for emission estimates. Fuel characterization and emission factors have also been 

updated in FINNv2.5. Daily fire emissions for many trace gases and aerosols are determined for 2002-

2019 (the Moderate Resolution Imaging Spectroradiometer (MODIS)-only fire detections) and 2012-

2019 (MODIS+VIIRS fire detections). The non-methane organic gas emissions are allocated to the 30 

species of several commonly used chemical mechanisms. We compare FINNv2.5 emissions against other 

widely used fire emission inventories. The performance of FINNv2.5 emissions as inputs to a chemical 
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transport model is assessed with satellite observations. Uncertainties in the emission estimates remain, 

particularly Africa and South America during August – October, and in southeast and equatorial Asia in 

March and April. Recommendations for future evaluation and use are given. 35 

1 Introduction 

Open fires, such as wildfires, prescribed burns, agricultural fires, and land-clearing fires, are sources of 

atmospheric pollutants. Fire activity contributes to local, regional, and global emissions of greenhouse 

gases including carbon dioxide (CO2) and methane (CH4); reactive gases such as non-methane organic 

gases (NMOG), and nitrogen oxides (NOx) that form ozone; dioxins and other air toxics, and particulate 40 

matter (PM). Fire emissions and their transport change atmospheric composition to cause impacts at many 

scales with implications for air quality (e.g., Burke et al., 2021; Jaffe et al., 2020; Liu et al., 2017; Tang 

et al., 2022; Bourgeois et al., 2021; Xu et al., 2020, Xu et al. 2021), regional and global climate (e.g., 

Dintwe et al., 2017; Jin et al., 2012; Liu et al., 2019), visibility (e.g., Ford et al., 2018; Jaffe et al., 2020; 

Val Martin et al., 2015), and human health outcomes (e.g., Liu et al., 2017; Reid et al., 2016; Xu et al., 45 

2020). Many factors contribute to the spatial and temporal patterns and severity of fires and their 

emissions including agricultural, forest, and waste management practices; land use change; climatic 

factors such as temperature, rainfall, and drought conditions; and ecosystem diversity and health (e.g., 

Armenteras et al., 2021; Kelly et al., 2020; Pausas and Keeley, 2021). Future climate, policy, and human 

development patterns, including in the wildland-urban interface (WUI), will have complex interactions 50 

on the effects of fires that may require adaptive strategies for communities (Schoennagel et al., 2017). 

Accurate estimates of fire emissions are required to understand chemistry and climate, to assess ambient 

pollutant concentrations and population exposure, and to evaluate the effectiveness of emissions control 

programs for air quality planning and management. The Fire INventory from NCAR (FINN) 

(Wiedinmyer et al., 2011, https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar) was 55 

developed more than 10 years ago to provide daily global estimates of pollutant emissions from open fires 

with a high spatial and temporal resolution for use in air quality, atmospheric composition, and climate 

modeling applications. The National Center for Atmospheric Research (NCAR) has served as the central 

repository for FINN global emissions files spanning 2002-2020: http://bai.acom.ucar.edu/Data/fire/. 

FINN estimates have been downloaded more than 13450 times since 2013-08-29, as of 26 October 2022, 60 

http://bai.acom.ucar.edu/Data/fire/
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and the original model has been cited 908 times (Clarivate Web of Science). FINN emissions estimates 

have been applied in regions of the world that experience high fire activity to evaluate the influences on 

air quality and public health (e.g., Crippa et al., 2016; Kulkarni et al., 2020; Nawaz and Henze, 2020; 

Nuryanto, 2015; Pimonsree and Vongruang, 2018; Takami et al., 2020); to assess emissions trends (e.g., 

Ma et al., 2018; Shen et al., 2019); to examine the effects of changing climate and development patterns 65 

on wildfire emissions (e.g., Hurteau et al., 2014); and in comparisons with surface, aircraft and satellite-

based observations (e.g., Reddington et al., 2019; Stavrakou et al., 2016), as well as with inventories 

developed using other fire emissions modeling systems (e.g., Bray et al., 2018; Faulstich et al., 2022; 

Kiely et al., 2019; Koplitz et al., 2018; Larkin et al., 2014; T. Liu et al., 2020; Pereira et al., 2016; Urbanski 

et al., 2018). Real-time emissions estimates from FINN version 1 (FINNv1) are currently used in the 70 

NCAR Whole Atmosphere Community Climate Model (WACCM) chemistry and aerosol forecasts 

(http://www.acom.ucar.edu/waccm/forecast/). 

The FINNv1 model is based on a bottom-up approach to estimate emissions described by Wiedinmyer et 

al., (2011). In FINNv1, global observations from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors onboard the National Aeronautics and Space Administration’s (NASA’s) Terra and 75 

Aqua satellites are used to detect fire activity, beginning with the MODIS Rapid Response (MRR) system 

or the MODIS Data Processing System (MODAPS) Collection 5 (NASA/University of Maryland, 2002; 

Davies et al., 2009). Fuel characterization in FINNv1 is based on the Collection 5 MODIS Land Cover 

Type (LCT) product for 2005 (Friedl et al., 2010) with land cover classifications defined by the 

International Geosphere-Biosphere Programme (IGBP) and Collection 3 MODIS Vegetation Continuous 80 

Fields (VCF) product for 2001 (Carroll et al., 2011; Hansen et al., 2003; Hansen et al., 2005). Fuel 

loadings are assigned from Hoelzemann (2004) or Akagi et al. (2011). Estimates of fuel burned use the 

approach of Ito and Penner (2004). Emission factors by land cover classification for trace gases and 

particulate air pollutants in FINNv1 are based on published literature at the time (Akagi et al., 2011; 

Andreae and Merlet, 2001; Andreae and Rosenfeld, 2008; McMeeking, 2008). 85 

FINN version 2.5 (FINNv2.5) has extensive updates to the input data and processing used for the detection 

of fire activity, characterization of annual land use/land cover and vegetation density, determination of 

area burned, and the application of fuel loadings by global region compared to the FINNv1 configuration. 

FINNv2.5 also includes revisions to emission factors based on current literature. Here we describe the 

development of FINNv2.5, released in 2022 (Wiedinmyer and Emmons, 2022). Global emissions for 90 

http://www.acom.ucar.edu/waccm/forecast/
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2002 through 2021 have been created and are online for public use, for inclusion in emissions inventories 

and chemical and climate modeling applications, and for comparisons with previous versions of FINN 

and results from other fire emissions models. 

2 Methods 

FINNv2.5 uses the same FINNv1 bottom-up methodology (Seiler and Crutzen, 1980; Wiedinmyer et al., 95 

2011) as defined by the overall equation:  

Ei = A(x,t)  B(x)  FB  EFi   (1) 

where the emissions (E, mass of pollutant i) is the product of the area burned at location x and time t 

[A(x,t)], the biomass at location x [B(x)], the fraction of biomass that is burned (FB), and an emission 

factor (EFi, mass of pollutant i per biomass burned). 100 

The FINNv2.5 model framework has three components: (1) burned area and land cover determination 

(Sections 2.1-2.3), (2) fuel consumption and emission calculation (Section 2.4), and (3) speciation of the 

non-methane organic gases (NMOG) (Section 2.5). 

 2.1 Fire location and timing 

FINNv2.5 first determines burned area from daily satellite detections of active fires. FINNv2.5 uses 105 

MODIS detections (nominal 1 km2 resolution) (Giglio et al., 2006), as in FINNv1, and adds the option to 

use active fire detections at 375 m resolution from the Visible Infrared Imaging Radiometer Suite (VIIRS; 

Csiszar et al., 2014), onboard the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite, alone 

or in combination with MODIS active fire data. The use of VIIRS 375m detections is a major 

advancement from the use of MODIS-only fire detections, as this product better captures small fires. 110 

VIIRS detections are available from 2012 to the current year. 

The MODIS Collection 6 (MCD14DL) and VIIRS active fire products are obtained from NASA's Fire 

Information for Resource Management System (FIRMS) data portal: 

https://firms.modaps.eosdis.nasa.gov/download/. The MODIS product provides the location, overpass 
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time (Coordinated Universal Time, UTC), and confidence of daily fire detections. Data confidence in the 115 

MODIS product is specified by a numeric scale of 0 to 100%. Detections with a confidence specification 

of less than 20% are eliminated from our calculation in FINNv2.5, as was done in earlier FINN versions. 

Daily global coverage is not accomplished at latitudes between approximately 23.5° N and 23.5°S due to 

the observational swath width. To account for the lack of daily observations, fire detections only in these 

equatorial regions are counted for a two-day period: each fire is assumed to continue into the next day. 120 

Regardless of whether the detection is from MODIS or VIIRS, the intent is to repeat the fire at the same 

location since there is not a clear alternative at this time in these global regions, as described by 

Wiedinmyer et al. 2011. 

With its improved spatial resolution of 375m, the VIIRS product provides more sensitive detection of 

fires of relatively small areas, fully global coverage, improved mapping of large fire perimeters, and 125 

improved nighttime performance relative to MODIS fire detections (Schroeder et al., 2014). The higher 

detection rates of small fires can be particularly important for areas of the world such as southeast Asia, 

where agriculture burning is common, and in the southeast U.S., where there is a large amount of managed 

burning. Detection confidence is provided by the VIIRS product and is specified by three categories, 

low/nominal/high. In the FINNv2.5 preprocessor, detections with a confidence specification identified as 130 

“low” are eliminated from the analysis. We only include data attributed to thermal anomalies from 

vegetation fires (Type=0), i.e., other thermal anomaly types associated with active volcanos or other static 

land sources are filtered from the product. 

The processing of the two simultaneous fire products in FINNv2.5 does not lead to double counting fires: 

the FINNv2.5 method determines the spatial union of all adjacent detections for a given day as the daily 135 

burned area of a fire, as described below in Section 2.2. The identity of the sensor is not relevant for the 

determination of burned area, as long as the pixel size for each detection is correctly represented (i.e., 

0.14 km2 for VIIRS and 1 km2 for MODIS). FINN v2.5 and earlier versions do not account for the effects 

of burning from earlier days for fire detections at the same location, i.e., the fraction burned is consistent 
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with unperturbed vegetation on the first day regardless of the persistence of fire activity, and emissions 140 

scale directly with the detection of a thermal anomaly in the same location over multiple days. 

The active fire products report the time of acquisition in Coordinated Universal Time (UTC). In contrast 

to previous versions of the model, the FINNv2.5 preprocessor uses local time in the specification of the 

date of a fire detection in order to facilitate comparisons of emissions estimates with observational data: 

Local Time = UTC + Nearest_Integer (Longitude/15)  (2)  145 

2.2 Burned area  

FINNv1 estimates burned area for each fire pixel identified individually, and the nominal pixel size for 

the MODIS fire detections, 1 km2, is assumed per detection. Spatially overlapping detections are 

eliminated from further analysis. It was recognized that for large fires in forested regions, an array of 

multiple discrete detections is typically reported, and an estimate of a contiguous area that represents the 150 

total area burned by a fire is needed. We improved the burned area estimate in FINNv2 to better represent 

the area associated with each fire.  

A fire event in the western United States is shown in Figure 1a to illustrate the new approach for 

estimating area burned. For FINNv2.5, each reported active fire detection (Figure 1b) is assigned a square 

area of 0.14 km2 from VIIRS or 1 km2 from MODIS (Figure 1c) based on the nominal horizontal 155 

resolution of the data (“instrument resolution square”). Detections determined to be in proximity with one 

another are aggregated by two different approaches, depending on the land cover type and forest cover. 

Initially, it is assumed that multiple detections by adjacent pixels in a satellite sensor array are part of a 

larger fire, and these detections are merged. The scan and track sizes of the satellite pixel are provided by 

the fire detection product and define the actual resolution of the fire detection. The scan and track sizes 160 

for each fire detection are used for identifying groups of records that represent contiguous or overlapping 

detections. A rectangle with easterly and northerly sizes equal to 110% of the scan and track sizes is 

established for each detection (“detection rectangle”) (Figure 1d), with the objective of identifying 

adjacent neighboring detections, but not for direct application to the burned area estimation. Fire 

detections are identified as being from one larger fire when any of the satellite detection rectangles 165 
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overlap. To minimize an overestimation of burned area, a convex hull is generated between corresponding 

pairs of detection rectangles that directly intersect. The union of pairwise convex hulls from a cluster 

forms an “extended fire polygon” that represents the tentative estimated burned area for a single fire event 

or group of nearby fires for the day (Figure 1d). This approach effectively fills any gap between instrument 

resolution squares.  170 

For each of the extended polygons, the MOD44B v006 MODIS/Terra VCF annual product 

(https://lpdaac.usgs.gov/products/mod44bv006/) is overlaid (Section 2.3), and average tree cover fraction 

is determined (Figure 1e).  For forested areas with tree cover > 50% as determined by the VCF product, 

the merged polygons are accepted as the final burned area estimate. Otherwise, the merging is not used, 

and instead an alternative, more conservative approach is applied to determine the burned area for the 175 

region. This alternative approach is used to prevent overestimation of emissions in regions with many 

small fires, as in the savanna fires in sub-Saharan Africa. The alternative polygon aggregation is achieved 

by aggregating nearby detections only when the instrument pixels themselves are intersecting (Figure 1c) 

and therefore not with the extended detection footprints (Figure 1d). The result is an aggregation 

algorithm that is repeated with a smaller set of detections to determine the alternative conservative set of 180 

polygons (“conservative fire polygon”). The “final burned area polygons” in Figure 1f show examples of 

a composite of polygons based on these two different aggregation approaches. Note at the bottom of 

Figure 1f, a region with less than 50% tree cover has a smaller final burned area polygon estimate than 

the extended polygon (blue). In contrast, the polygon in the center of Figure 1f, which is a forested area 

https://lpdaac.usgs.gov/products/mod44bv006/
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with more than 50% tree cover uses the extended polygon determined in Figure 1d. (Further information 185 

about this aggregation is in Section S1 of the Supporting Information).  

 

(a)   

(b)  
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(c)  190 

(d)  
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(e)  

(f)   

Figure 1. Illustration of the burned area determination used in the FINNv2.5 preprocessor for 11 August 2018 when both MODIS 

and VIIRS fire detections are applied: (a) example fire location; (b) active fire detections; (c) burned area per detection based on 195 
instrument resolution; (d) detection clusters joined for determination of extended burned area; (e) determination of average percent 

tree cover (labelled as VCF) for merged polygons; (f) final burned area polygons reflecting either extended or conservative polygons 

based on percent tree cover. 

Subsequently, the final burned area polygons are subdivided using a Voronoi tessellation algorithm in 

order to develop emissions estimates by land cover classification as described in Sections 2.3 and 2.4.  200 
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Each of the undivided, final burned area polygons are assigned a unique fire id to facilitate users to group 

emission estimates from a presumed single fire event. 

2.3 Fuel loading and vegetation inputs 

The NASA MODIS VCF product provides estimates of the percentage of bare surface, herbaceous, and 

forested cover at a horizontal resolution of 250m (Figure S1). For each fire area, the subdivided polygons 205 

described in Section 2.2 (Figure 1g) are overlaid on the vegetation cover data from MOD44B v006 

MODIS/Terra VCF annual product (https://lpdaac.usgs.gov/products/mod44bv006/) (Figure 1e). The 

VCF data for the prior year are chosen, so that the VCF before any land cover changes due to fire are 

used in the emission estimation process. The VCF raster is clipped to the geometry of the fire polygon, 

and the averages of the VCF tree, herbaceous and bare cover are calculated for each fire polygon. 210 

  

https://lpdaac.usgs.gov/products/mod44bv006/
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FINNv2.5 uses the Terra and Aqua combined MODIS LCT MCD12Q1 Version 6 data product with the 

International Geosphere-Biosphere Programme (IGBP) classification scheme 

(https://lpdaac.usgs.gov/products/mcd12q1v006/) as its default land cover information. Figure 2 shows 

the global distribution of land cover applied as the default in FINNv2.5. Each subdivided polygon (for 215 

example, in Figure 3) is assigned factional coverage of one of 16 land cover classifications (Table 1). 

Similar to the application of the VCF information, land use data from the previous year are used.  

Use of the LCT and VCF products in FINNv2.5 is an improvement from FINNv1. FINNv1 used one 

static map of LCT and VCF (from 2002) for any year processed. FINNv2.5 employs year-specific MODIS 

LCT and VCF maps that change annually. Further, the specific vegetation assignments for each 220 

subdivided polygon enables different vegetation types and coverage to be represented across larger fires. 

These input data and processes enable better representation of the vegetation that is burned. 

All fire polygons are assigned to one of 13 global regions (Wiedinmyer et al. 2011) used to assign fuel 

loadings (Section 2.4). This completes the first component of the FINNv2.5 modeling framework and 

results in a file of daily burned areas and associated land cover information. 225 

 

 

Figure 2: MCD12Q1 Version 6 data product with the International Geosphere-Biosphere Programme (IGBP) classification scheme. 

https://lpdaac.usgs.gov/products/mcd12q1v006/
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Figure 3: Illustration of the burned area determination used in the FINNv2.5 preprocessor for 11 August 2018 continued from 230 
Figure 1:  subdivision of burned area polygons to develop emissions estimates by the MODIS IGBP land cover classification. 

2.4 Emissions Calculations 

The next step of the model framework is the emissions calculation. In this step, the daily burned area and 

associated vegetation information (described above) are assigned associated fuel loadings. Using the same 

process described by Wiedinmyer et al. (2011), where the biomass burned is assigned based on land cover 235 

type and global region (B), the fraction of the biomass that is burned (FB) is assigned as a function of tree 

and herbaceous cover, emission factors (EF) are determined based on land cover, and daily pollutant 

emissions estimates are calculated following equation 1. Overall, the emission calculation process follows 

this framework as described by Wiedinmyer et al. (2011), with the following exceptions. 

Similar to earlier FINN versions (Wiedinmyer et al., 2011), the 16 IGBP land cover classifications of the 240 

LCT product are mapped to consolidated vegetation types, depending on the land cover class and latitude 

that distinguish tropical, temperate and boreal forests (Table 1). The consolidated vegetation types used 

in FINNv2.5 are grassland and savanna, woody savanna or shrubs, tropical forest, temperate forest, boreal 

forest, temperate evergreen forest, and crops. 

 245 
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Table 1. LCT IGBP and generic vegetation type descriptions.  

IGBP LCT Description 
LCT 

Value 
Generic Vegetation Type  

Genveg 

Value 

Evergreen Needleleaf Forests 1 
if latitude > 50, then Boreal Forest; else 

Temperate Evergreen Forest 
5,6 

Evergreen Broadleaf Forests 2 if latitude > -23.5 and < 23.5, then 

Tropical Forest; else Temperate Forest 

3, 4 

Deciduous Needleleaf Forests 3 
if latitude > 50, then Boreal Forest; else 

Temperate Forest 
5,4 

Deciduous Broadleaf Forests 4 Temperate Forest 4 

Mixed Forests 5 

If latitude > 5, then Boreal Forest; if 

latitude > -23.5 and < 23.5 then Tropical 

Forest; else Temperate Forest  

5, 3, 4 

Closed Shrublands 6 Woody Savanna or Shrubs 2 

Open Shrublands 7 Woody Savanna or Shrubs 2 

Woody Savannas 8 Woody Savanna or Shrubs 2 

Savannas 9 Grassland and Savanna 1 

Grasslands 10 Grassland and Savanna 1 

Permanent Wetlands 11 Grassland and Savanna 1 

Croplands 12 Croplands  9 

Urban and Built-up Lands 13 

If Treecover < 40, then reassign to 10; If 

Treecover > 40 and < 60, then reassign 

to 8; If tree > 60 then assign based on 

latitude 

** 

Cropland/Natural Vegetation 

Mosaics 
14 

Grassland and Savanna 
1 

Permanent Snow and Ice 15 Remove   

Barren 16 Grassland and Savanna 1 

Water Bodies 17 Remove   

Unclassified 255 Remove   

** if latitude > 50, then Boreal Forest; if latitude > -30 and < 30, then Tropical Forest; Else, Temperate Forest 
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The fuel loading, or the potential maximum amount of biomass available to be burned [B(x) in equation 

1], is assigned by generic vegetation type and global region (Table 2). Selected values were updated for 250 

FINNv2.5 from earlier versions of FINN based on van Leeuwen et al. (2014). The fuel loading for crops 

was updated to 902 g m-2 based on an average from (Akagi et al., 2011; van Leeuwen et al., 2014; Pouliot 

et al., 2017). Specific crop types are not identified in the version described here. 

 

  255 
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Table 2. Fuel loadings (g m−2) assigned by generic land cover type and global region. These values are as described by Wiedinmyer 

et al. (2011) unless noted otherwise. Highlighted values indicate those updated for FINNv.2.5 based on van Leeuwen et al. (2014). 

Global 

Region 

Tropical 

Forest 

Temperate 

Forest 

Boreal 

Forest 

Woody 

Savanna/      

Shrublands 

Savanna and 

Grasslandsg 

North 

America 28,076 10,661e 17,875e 4,762 976 

Central 

America 26,500e 11,000   2,224 418 

South 

America 26,755e 7,400   3,077 624e 

Northern 

Africa 25,366 3,497   2,501 382e 

Southern 

Africa 25,295 6,100   2,483 411e 

Western 

Europe 28,076 7,120 6,228 4,523 1,321 

Eastern 

Europe 28,076 11,386 8,146 7,752 1,612 

North 

Central 

Asia 6,181 20,807 14,925e 11,009 2,170 

Near 

East 6,181 10,316   2,946 655 

East 

Asia 14,941e 7,865   4,292 722 

Southern 

Asia 26,546e 14,629   5,028 1,445 

Oceania 16,376 13,535e   2,483f 552e 

a Akagi et al. (2011) and references therein; b tropical forest class added for North America and Europe (in LCT); c all Asia 

assigned equal tropical forest values; d taken as the average of tropical and temperate forest fuel loadings for Oceania; e (van 

Leeuwen et al., 2014); f taken as the same for African woody savanna from van Leeuwen et al., 2014; g croplands assigned 260 

same fuel loading as grasslands. 
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For North America, FINNv2.5 utilizes the fuel loadings for coarse/woody and herbaceous vegetation by 

land cover type derived from the Fuel Characteristic Classification System (FCCS) of the U.S. 

Department of Agriculture Forest Service (https://www.fs.fed.us/pnw/fera/fccs/), as described by 

McDonald-Buller et al. (2015). These fuel loadings (Table 3) have priority over the regional default fuel 265 

loadings (Table 2).  

Table 3. North American fuel loadings (g m−2) by land cover type for coarse/woody and herbaceous vegetation. These values are 

based on the Fuel Characteristic Classification System (https://www.fs.fed.us/pnw/fera/fccs/) with the exception of croplandsa. 

Land Cover Type 
Fuel Loading 

(g m-2) 

  Coarse/Woody Herbaceous 

Water 0 0 

Evergreen Needleleaf Forest 28,930 437 

Evergreen Broadleaf Forest 19,917 650 

Deciduous Needleleaf Forest 15,653 541 

Deciduous Broadleaf Forest 19,982 964 

Mixed Forests 20,339 766 

Closed Shrublands 5,136 229 

Open Shrublands 2,889 169 

Woody Savannas 12,907 668 

Savannas 10,907 764 

Grasslands 2,822 407 

Permanent Wetlands 8,509 712 

Croplands 0 902a 

Urban and Built-Up 0 0 

Cropland/Natural Vegetation 9,080 822 

Snow and Ice 0 0 

Barren or Sparsely Vegetated 1,355 104 

https://www.fs.fed.us/pnw/fera/fccs/
https://www.fs.fed.us/pnw/fera/fccs/
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aTaken as an average from van Leeuwen et al. (2014), Akagi et al., (2011), and McCarty et al. (2012). 

Emission factors are assigned based on the generic vegetation type. Since the original release of FINNv1 270 

in 2011, there have been many studies to measure emission factors from wildland fires. We have updated 

the emission factors from FINNv1.5 with results from recent publications (Table 4).  
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Table 4: Emission factors (g kg-1) for FINNv2.5. 

Chemical Species 

Generic Vegetation Index and Type 

1 2 3 4 5 6 9 

Savanna 

Grasslands1 

Woody 

Savanna/ 

Shrubs 

Tropical 

Forest 

Temperate 

Forest2 
Boreal3 

Temperate 

Evergreen 

Forest2 

Crops4 

Carbon Dioxide (CO2) 1686 1681 1643 1510 1565 1623 1444 

Carbon Monoxide (CO) 63 67 93 122 111 112 91 

Methane (CH4) 2 3 5.1 5.61 6 3.4 5.82 

Non-methane Organic 

Gases (NMOG)5 
28.2 24.8 51.9 56 48.5 49.3 51.4 

Hydrogen (H2) 1.7 0.97 3.4 2.03 2.3 2 2.59 

Nitrogen Oxides 

(NOXasNO) 
3.9 3.65 2.6 1.04 0.95 1.96 2.43 

Sulfur Dioxide (SO2) 0.9 0.68 0.4 1.1 1 1.1 0.4 

Particulate Matter with 

Diameters less than 2.5 

m (PM25) 

7.17 7.1 9.9 15 18.4 17.9 6.43 

Total Particulate Matter 

(TPM) 
8.3 15.4 18.5 18 18.4 18 13 

Total Particulate Carbon 

(TPC) 
3 7.1 5.2 9.7 8.3 9.7 4 

Particulate Organic 

Carbon (OC) 
2.6 3.7 4.7 7.6 7.8 7.6 2.66 

Particulate Black Carbon 

(BC) 
0.37 1.31 0.52 0.56 0.2 0.56 0.51 

Ammonia (NH3) 0.56 1.2 1.3 2.47 1.8 1.17 2.12 

Nitrogen Oxide (NO) 2.16 0.77 0.9 0.95 0.83 0.95 1.18 

Nitrogen Dioxide (NO2) 3.22 2.58 3.6 2.34 0.63 2.34 2.99 

Non-methae 

Hydrocarbons (NMHC) 
3.4 3.4 1.7 5.7 5.7 5.7 7 

Particulate Matter with 

Diameters less than 10 

m (PM10) 

7.2 11.4 18.5 16.97 18.4 18.4 7.02 
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1Emission factors for Tropical Forests, Savannah/Grasslands, Woody Savannah/Shrubs updated to average values from Akagi 275 

et al. (2011) (updated Feb. 2015). 2Emission factors for Temperate Forest and Temperate Evergreen Forests are average values 

from Akagi et al. (2011) (updated Feb 2015) and results from X. Liu et al. (2017), Paton-Walsh et al. (2014), and Urbanski 

(2014). For Temperate Evergreen Forest, only results from evergreen forests included. 3Boreal Forest emission factors are 

average of Akagi et al. (2011) with emission factors from boreal forest emission factors from Urbanski et al. (2014).4Crop 

emission factors updated with average values from Akagi et al (2011) and results from Fang et al. (2017), X. Liu et al. (2016), 280 

Santiago-De La Rosa et al. (2018), and Stockwell et al. (2015) Table S3). 5NMOG emission factors now include identified and 

unidentified compounds.  
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2.5 Allocation of Non-Methane Organic Gases to Chemical Mechanisms 

Wiedinmyer et al (2011) provided mappings from the total mass NMOG emission values calculated by 

the FINN model to the surrogate species of three chemical mechanisms commonly used in chemical 285 

transport models: MOZART, SAPRC99, and GEOS-Chem. The mapping of NMOG emissions to the 

MOZART T1 chemical mechanism was created for FINNv2.5 based on recent published emissions data 

and updates in the chemical mechanisms (Table 5). To apply, the total NMOG mass estimated by FINN 

should be multiplied by the mapping value (mole species kg NMOG-1, e.g., Table 5) to assign the molar 

emission of the surrogate species. The mappings to the SAPRC99 and GEOS-chem have not been updated 290 

and are the same as described by (Wiedinmyer et al., 2011).  

Table 5: Factors to map the total NMOG mass emissions to the MOZART-T1 chemical species (mole-species kgNMOG-1).  

MOZART T1 

Chemical Species 

Generic Vegetation Index and Type 

1 2 3 4 5 6 9 

Savanna 

Grasslands 

Woody 

Savanna/ 

Shrubland 

Tropical 

Forest 

Temperate 

Forest 

Boreal 

Forest 

Temperate 

Evergreen 

Forest 

Crop 

APIN 0.009 0.053 0.0 0.261 0.259 0.261 0.010 

BENZENE 0.144 0.442 0.0 0.253 0.290 0.253 0.091 

BIGALK 0.156 0.644 0.219 0.415 1.821 0.415 0.246 

BIGENE 1.467 1.274 0.662 1.393 0.627 1.393 0.674 

BPIN 0.0 0.004 0.0 0.008 0.209 0.008 0.0 

BZALD 0.791 0.272 0.120 0.298 0.166 0.298 0.325 

C2H2 2.103 1.975 0.672 2.513 1.167 2.513 1.701 

C2H4 1.218 2.886 1.505 1.930 1.407 1.930 1.412 

C2H6 0.859 0.641 0.939 0.611 1.168 0.611 0.673 

C3H6 0.647 0.557 0.603 0.487 0.499 0.487 0.457 

C3H8 0.090 0.561 0.114 0.149 0.194 0.149 0.142 

CH2O 1.532 2.285 2.299 2.181 1.361 2.181 1.716 

CH3CH2OH 0.0 0.055 0.0 0.066 0.023 0.066 0.0 

CH3CHO 1.037 0.792 1.404 0.758 0.416 0.758 0.929 

CH3CN 0.117 0.130 0.399 0.088 0.176 0.088 0.142 

CH3COCH3 0.201 0.242 0.433 0.297 0.242 0.297 0.162 

CH3COOH 2.371 1.353 2.029 1.292 1.360 1.292 2.349 

CH3OH 1.451 1.650 3.031 1.744 1.608 1.744 2.328 
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CRESOL 0.059 0.058 0.0 0.059 0.040 0.059 0.074 

GLYALD 0.390 0.128 1.886 0.210 0.233 0.210 0.800 

HCN 0.559 0.927 0.625 0.684 0.846 0.684 0.416 

HCOOH 0.206 0.134 0.683 0.259 0.254 0.259 0.426 

HONO 0.298 0.643 1.001 0.326 0.228 0.326 0.187 

HYAC 0.309 0.118 0.609 0.223 0.149 0.223 1.548 

ISOP 0.069 0.138 0.029 0.129 0.085 0.129 0.062 

LIMON 0.0 0.013 0.0 0.158 0.0 0.158 0.0 

MACR 0.0 0.147 0.222 0.113 0.024 0.113 0.0 

MEK 0.370 0.286 0.666 0.274 0.104 0.274 0.387 

MGLY 0.347 0.094 0.0 0.135 0.090 0.135 0.171 

MVK 0.317 0.301 0.222 0.247 0.087 0.247 0.193 

MYRC 0.0 0.003 0.0 0.002 0.0 0.002 0.0 

PHENOL 0.472 0.457 0.191 0.345 0.517 0.345 0.408 

TOLUENE 0.457 0.531 0.769 0.605 1.327 0.605 0.375 

XYLENE 0.385 0.355 0.040 0.422 0.238 0.422 0.295 

XYLOL 0.108 0.046 0.0 0.088 0.056 0.088 0.130 

3 Results 

3.1 Emission estimates 

The FINNv2.5 model was run in two ways to produce emissions for evaluation and assessment: (1) for 295 

comparison with the previous version of FINN (FINNv1.5) using MODIS-only fire detections and 

calculated starting in 2002 (FINNv2.5(MODIS)) and (2) using both MODIS and VIIRS fire detections 

and calculated starting in 2012 (FINNv2.5(MODIS+VIIRS). The FINNv2.5 emissions files are freely 

available for use by the community (Wiedinmyer and Emmons, 2022).  Results through 2019 are 

presented in this manuscript.  300 

Estimates from several versions of FINN are compared to other emission inventories: Global Fire 

Emissions Database (GFED) (van der Werf et al., 2017), Fire Energetics and Emissions Research (FEER) 

(Ichoku & Ellison, 2014), the Global Fire Assimilation System (GFAS)(Kaiser et al., 2012), and the Quick 
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Fire Emissions Dataset (QFED) version 2.5 (Darmenov and da Silva, 2015)  (Figure 4). The comparisons 

are done by global region that follows (Giglio et al., 2010) (Figure 4).  305 

 

 

 

Figure 4. Annually-averaged (2012-2019) emissions of CO2, CO, formaldehyde (CH2O), particulate black carbon (BC) + organic 



24 

 

carbon (OC), ammonia (NH3), ethane (C2H6), sulfur dioxide (SO2), and nitrogen oxides (NOx) from the Fire Inventory from NCAR 310 
version 2.5 (FINNv2.5(MODIS+VIIRS) , FINNv2.5MODIS-only version (FINNv2.5 (MODIS)),  FINNv1.5, Global Fire Emissions 

Database (GFED), Fire Energetics and Emissions Research (FEER), Global Fire Assimilation System (GFAS), and Quick Fire 

Emissions Dataset (QFED). Bars show global totals broken up into regional totals by color (Giglio et al., 2010), and shown in the 

global map here, namely Boreal North America (BONA), Temperate North America (TENA), Central America (CEAM), Northern 

Hemisphere South America (NHSA), Southern Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), 315 
Northern Hemisphere Africa (NHAF), Southern Hemisphere Africa (SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast 

Asia (SEAS), Equatorial Asia (EQAS), and Australia and New Zealand (AUST). For comparisons with earlier versions of FINN, see 

Figure S2.  

 

Figure 4 compares annual averaged (2012-2019) emissions of key pollutants from several versions of 320 

FINN and the other inventories by region. For all emitted species, FINNv2.5(MODIS+VIIRS) global 

emissions are higher than, and approximately double, those predicted by FINNv1.5. This is the case, even 

when only MODIS fire detections are considered. The increase in emissions from previous versions is 

primarily due to the new processing of area burned. In previous versions, the fire area was determined 

from a satellite detection pixel only; the updated version here also includes the composite of many 325 

detections into larger areas of fire activity (Section 2.1). The inclusion of VIIRS into the 

FINNv2.5(MODIS+VIIRS) inventory globally adds approximately 25% above the FINNv2.5(MODIS) 

processing for all emitted species. Further, emissions of NMOG and the individual species that make up 

NMOG (eg., CH2O and C2H6 in Figure 4) are increased significantly due to the use of updated emissions 

factors from recent field campaigns. Previous studies have shown low biases in FINN regional and 330 

species-specific estimates: for example, CO in the western US (Pfister et al., 2011) and Australia 

(Desservettaz et al., 2022), and particulate carbon in North America (Carter et al., 2020). The updated 

version is expected to correct some of these prior biases.  

FINNv2.5(MODIS+VIIRS) emission estimates are overall at the higher end of the range of annual global 

total emissions provided by our sample of other commonly used emission inventories, likely due to a 335 

combination of the aggregated burned areas and the fact that FINNv2.5(MODIS+VIIRS) includes fire 

information from VIIRS, which captures more small fires. However, depending on the pollutant emitted, 

a comparison across different emission inventories shows varied results. For example, both CO2 and CO 

global annual emissions from FINNv2.5 (MODIS and MODIS+VIIRS) are higher than QFED; but Black 

Carbon (BC) and ammonia (NH3) are lower in FINNv2.5 than QFED. The primary drivers of these 340 
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differences are the assumed fuel type burned and associated emission factors. This difference in emission 

amounts between inventories is more variable when looking regionally and year to year (e.g. Figure 5 and 

S4). 

In general, the year-to-year variabilities of annual fire emissions is consistent between different 

inventories, and mainly the magnitudes of emissions differ (Figures 5, S5, S6). 345 

FINNv2.5(MODIS+VIIRS) is often among the inventories that produce the highest CO emissions in all 

14 global regions. Some notable exceptions are Boreal North America and Boreal Asia, where GFAS and 

sometimes GFED estimate higher emissions. This is likely due to the representation of smoldering peat 

fires in the high latitudes that are represented as a specific vegetation type in the GFED and GFAS 

inventories, but not in FINNv2.5. [Note: Kiely et al. (2019) developed a parameterization used in a version 350 

FINNv2 to represent regional peat emissions in Indonesia, but this was not included in FINNv2.5]. 

Similarly, in Equatorial Asia, GFED and GFAS estimate the highest CO emissions for the years when 

much of the tropical peatland burned. The magnitude of FINNv2.5(MODIS+VIIRS) CO emissions in 

Australia and New Zealand have increased relative to FINNv1.5, which compares better to downwind 

surface measurements of instantaneous mixing ratios (Desservettaz et al., 2022). However, regional 355 

FINNv2.5(MODIS+VIIRS and MODIS) emissions remain lower than three other emission inventories 

(GFAS, QFED, and FEER) in Australia and New Zealand. A similar result is seen over the Middle East, 

which suggests a potential role of extremely dry landscapes in causing inter-inventory differences. For 

most other regions, FEER is the only inventory that produces emissions that are either as high in 

magnitude, or sometimes higher, than FINNv2.5(MODIS+VIIRS). 360 
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Figure 5: Annual total emissions of CO by region between 2012 and 2019 from the Fire Inventory from NCAR version 2.5 with 365 
MODIS and VIIRS (FINNv2.5 modvrs, black symbols), FINNv2.5 MODIS-only version (FINNv2.5 mod, gray symbols), FINNv1.5, 

Global Fire Emissions Database (GFED), Fire Energetics and Emissions Research (FEER), Global Fire Assimilation System (GFAS), 

and QuickFire Emissions Dataset (QFED). Regions are defined in Giglio et al. (2010); refer to Figure 4. For comparisons with earlier 

versions of FINN, see Figure S3. For comparisons of CH2O and PM2.5 emissions, see Figures S4 and S5, respectively.  

370 
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The seasonal change of regional fire emissions for CO in FINNv2.5(MODIS+VIIRS) is shown in Figure 

6, with other inventories in Figure S4. Globally, fire emissions peak in August/September, with the largest 

emissions in Southern Hemisphere Africa and Southern Hemisphere South America. As mentioned 

above, GFED and GFAS show an increase in Boreal North America in July and August that is not as 

prevalent in FINNv2.5(MODIS+VIIRS).  375 

FINNv2.5(MODIS+VIIRS) also has an emission peak in March, which is driven primarily by emissions 

in Southeast Asia. March/April is a peak fire season in the Northern Hemisphere tropics, and in mainland 

Southeast Asia, the season is driven primarily by small, agricultural fires. FINNv2.5(MODIS+VIIRS) 

uses VIIRS fire detections, which detect these small fires more so than MODIS. Most inventories show 

this second peak in emissions during March and April; however, it is not seen in GFED, nor is it as 380 

pronounced in the other inventories (Figure S6). Consequently, determining the cause of different fire 

emissions in Southeast Asia is a target for future research. Although the magnitude of the regional 

emissions in FINNv2.5(MODIS+VIIRS) is 2-3 times higher than FINNv1.5, the seasonality is similar. 

 

 385 
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Figure 6. Seasonal cycle of fire emissions of CO from FINNv2.5(MODIS+VIIRS) (averaged for 2012-2019) by global region. Region 

definitions follow Giglio et al. (2010) and are described in Figure 4. 

3.2 Model simulation using FINNv2.5 compared to satellite products 

As shown above, the emission estimates from the different fire emissions models can vary substantially 390 

in time and space. It is difficult to know which emission estimates most closely represent reality. One 

way to assess the emissions is to use them as input to an atmospheric chemistry model and calculate 

pollutant concentrations that can then be compared to in-situ measurements and satellite observations. To 

further evaluate FINNv2.5(MODIS+VIIRS) and understand its uncertainties and limitations, we 

performed a simulation with the Community Atmosphere Model with Chemistry (CAM-chem), a 395 

component of the Community Earth System Model (CESM2.2.0) (Emmons et al., 2020).  For this 

simulation, the temperature and winds of CAM-chem are nudged to the Modern-Era Retrospective 

analysis for Research and Applications, Version 2 (MERRA-2) reanalysis fields.  Anthropogenic 

emissions are from the Copernicus Atmosphere Monitoring Service (CAMS) v5.1 inventory (Soulie et 

al., 2023) and biogenic emissions are calculated online with the Model of Emissions of Gases and 400 
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Aerosols from Nature (MEGAN) version 2.1 (described in Emmons et al., 2020). Results for the year 

2018, after several years of spin-up, are shown here. 

The model results with FINNv2.5 emissions are compared to CO column density from the Measurements 

Of Pollution In The Troposphere (MOPITT) instrument retrievals (Version 8 Level 3 gridded monthly 

Joint product; MOP03J.008; Deeter et al., 2019), and Aerosol Optical Depth (AOD) from MODIS (Level 405 

3 gridded monthly global product; MOD08_M3 and MYD08_M3; MODIS Atmosphere Science Team, 

2017) (Figures 7 and 8).  For the comparisons to the MOPITT retrievals, the model CO profiles are 

transformed with the MOPITT averaging kernels and an a priori profile.  The Joint retrieval product 

combines the thermal-infrared (TIR) and near-infrared (NIR) radiances to provide greater sensitivity to 

the boundary layer than the TIR retrievals alone.  410 

Overall, CAM-chem driven with FINNv2.5(MODIS+VIIRS) overestimates satellite-observed AOD and 

CO over the Amazon Basin and central Africa during the 2018 fire season (Figures 7-9). This result 

suggests that FINNv2.5(MODIS+VIIRS) overestimates fire emissions over Amazon Basin and central 

Africa in the 2018 fire season. This overestimation could be due to a number of reasons, including 

inaccurate ecosystem identification (tropical forest, rather than shrublands or less wooded landscapes) 415 

and/or fuel loading assignments. The model also overestimates AOD, but not CO, over Australia and 

Northern Africa. These discrepancies are likely due to overestimated dust emissions in the model 

simulation rather than overestimated fire emissions from FINNv2.5(MODIS+VIIRS).  

There are important fire regions where the model predictions and observations agree. For example, the 

CAM-chem results using FINNv2.5(MODIS+VIIRS) simulate column-measured CO in August 2018 420 

(Figure 9) for the Pacific Northwest well. This is consistent with a previous study, which evaluated CAM-

chem with regional refinement over the Pacific Northwest with aircraft observations during the Western 

wildfire Experiment for Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN) (Tang et al., 

2022), and found that simulated CO concentrations agreed reasonably with aircraft measurements. 

 425 
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Figure 7. Global distribution of CO column density from the Measurement of Pollution in the Troposphere (MOPITT) averaged for 

2018, and the corresponding Community Atmosphere Model with Chemistry (CAM-chem) model simulation bias (model minus 

observations) for CO column density. The CAM-chem simulation used FINNv2.5(MODIS+VIIRS) for fire emissions. 

 430 
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Figure 8. Global distribution of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) 435 
averaged for 2018, and the corresponding Community Atmosphere Model with Chemistry (CAM-chem) model simulation bias 

(model minus observation) for AOD. The CAM-chem simulation used FINNv2.5(MODIS+VIIRS) for fire emissions. 

 

 

 440 
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Figure 9. Community Atmosphere Model with Chemistry (CAM-chem) model simulation bias from MOPITT CO column density 

(left column) and MODIS AOD (right column) for 3 regions. Top row: the U.S. Pacific Northwest in August 2018; Middle row: 

Amazon Basin in September 2018; Bottom row: Central Africa in August 2018.  The months are selected to represent the fire season 

in each region. Absolute values modelled with CAM-chem are shown in Figure S7.  

3.3 Uncertainties 445 

Despite updates to the input data, parameters, and processing, FINNv2.5 emission estimates remain 

uncertain. Uncertainties are caused by natural variability associated with the various inputs to the model, 

and the model assumptions and processes used to create the estimates. Uncertainties may arise due to 

missed fire detections caused by cloud or smoke cover, timing, and incomplete global coverage from the 

polar orbiting satellite paths. Further, the assumed vegetation type in active fires are highly variable, and 450 

the use of different vegetation maps can introduce large changes in the predicted emissions. The assumed 

fuel loading, fraction burned, and resulting fuel consumption can be highly variable in space and time, 

whereas the model assumes best-guess average values for generic ecosystems by global region. The 

emission factors used also add some uncertainty to the estimates, which is particularly highlighted in the 

emission estimates of particles and reactive gases. Other issues arise when VIIRS and MODIS are used 455 

in combination to drive the emission estimates, compared to the MODIS-only version. We recognize that 

the addition of a second dataset from VIIRS increases the emissions compared to those estimated using 

MODIS-only. 

Wiedinmyer et al (2011) estimated an uncertainty of a factor of two in the FINNv1 estimates. Other efforts 

have assigned uncertainty to fire emissions estimates (e.g., Kennedy et al., 2020; Soares et al., 2015; 460 

Urbanski et al., 2011); however, limitations in our ability to directly measure fire emissions (fluxes) 

prevent a comprehensive, global evaluation of existing inventories. Discrepancies between model 

predictions and evaluations with model output, in-situ measurements, and satellite observations can help 

identify the processes in the models that drive the uncertainties, and the regions across the globe that are 

the most important and uncertain. Results from the evaluation presented here suggest that high 465 

uncertainties in emissions occur in South America and Southern Africa, and in Southeast and Equatorial 

Asia. Emissions across boreal North America should also be assessed; wide variations in Organic Carbon 

(OC) and BC emissions in this region lead to significant uncertainty in the ability to estimate air quality 

and climate impacts from biomass burning (Carter et al., 2020). Further, while CO and AOD are often 
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used to assess aerosol and CO emissions estimates, the emissions of other important pollutants are more 470 

highly variable across inventories and should be further constrained. 

4 Conclusions 

FINN version 2.5 was created by updating multiple processes and parameters of the original FINN model 

framework. This version includes improved area burned calculation, using year-specific land cover and 

vegetation datasets, updating fuel loading and emission factors, and enabling the use of multiple fire 475 

detection satellite inputs (for example MODIS and VIIRS). The python code to process the burned area 

and overlaid land cover, as well as the IDL code to calculate the emissions and speciate the NMOGs, is 

freely available to the community for use as is or to be further developed (https://github.com/NCAR/finn-

preprocessor, with the current code archived at https://zenodo.org/record/7860860). The resulting 

emissions files for 2002-2021 are  also freely available in several VOC speciations and gridded formats 480 

(Wiedinmyer and Emmons, 2022). 

Specific, one-time modifications to FINN have included emissions from peat in Southeast Asia (Kiely et 

al., 2019) and the consideration of burn severity in the emissions calculations from California (Q. Xu et 

al., 2022). These may be incorporated into future versions of FINN.  Future efforts will also improve 

emission estimates for fires in the wildland urban interface. 485 

The FINNv2.5(MODIS+VIIRS) emissions estimates remain uncertain, and more evaluation and model 

comparisons are recommended, especially in southern hemisphere South America and Africa during 

August - October, as well as southeast and equatorial Asia in March/April. FINNv2.5(MODIS+VIIRS) 

does, however, appear to better simulate emissions in the western US, as compared to earlier versions 

(e.g., Pfister et al., 2011). The vegetation type and associated fuel loading and consumption are large 490 

sources of uncertainty; the use of a different global vegetation map other than the MODIS LCT can lend 

to large variations in the predicted emissions. Future efforts to improve fire emissions estimates should 

focus on these components of the model. 

https://github.com/NCAR/finn-preprocessor
https://github.com/NCAR/finn-preprocessor


35 

 

Code Availability 

The code to process the burned area and overlaid land cover, as well as to calculate the emissions and 495 

speciate the NMOGs, is available at https://github.com/NCAR/finn-preprocessor, for updated versions, 

and the current  version (v2.5.2) archived at https://zenodo.org/record/7860860. Software to grid the 

text files for use in 3D models is available on the NCAR/ACOM FINN website 

(https://www.acom.ucar.edu/Data/fire/). 

Data Availability 500 

Emissions calculated from the FINNv2.5 algorithms, for MODIS and MODIS+VIIRS fire detections 

with MOZART VOC speciation, are archived at https://zenodo.org/record/7863959 and 

https://zenodo.org/record/7868652. Additional emissions files, for SAPRC and GEOSCHEM VOC 

speciation and gridded, as well as tools for subsetting are available at: https://doi.org/10.5065/XNPA-

AF09.  505 
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