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Abstract. Atmospheric transport inversions are a powerful tool for independently estimating surface CO: fluxes from
atmospheric COz concentration measurements. However, additional tracers are needed to separate the fossil fuel CO: (ffCOz)
emissions from non-fossil CO2 fluxes. In this study we focus on radiocarbon (}*C), the most direct tracer for ffCO2, and the
continuously measured surrogate tracer carbon monoxide (CO), which is co-emitted with ffCO2 during incomplete combustion.
In the companion paper by Maier et al. (2023a) we determined for the urban Heidelberg observation site in Southwestern
Germany discrete *C-based and continuous ACO-based estimates of the ffCO: excess concentration (AffCO2) compared to a

clean-air reference. The ACO-based AffCO: concentration was calculated by dividing the continuously measured ACO excess

concentration by an average “C-based ACO/AffCO; ratio. Here, we use the CarboScope inversion framework adapted for the

urban domain around Heidelberg to assess the potential of both types of AffCO: observations to investigate ffCO> emissions

and their seasonal cycle. We find that although more precise *C-based AffCO2 observations from almost 100 afternoon flask

samples collected in the two years 2019 and 2020 are not well suited for estimating robust ffCOz emissions in the main footprint
of this urban area with a very heterogeneous distribution of sources including several point sources. The benefit of the
continuous ACO-based AffCO; estimates is that they can be averaged to reduce the impact of individual hours with an
inadequate model performance. We show that the weekly averaged ACO-based AffCO: observations allow for a robust
reconstruction of the seasonal cycle of the area source ffCO2 emissions from temporally flat a-priori emissions. In particular,
the distinct COVID-19 signal with a steep drop in emissions in spring 2020 is clearly present in these data-driven a-posteriori
results. Moreover, our top-down results show a shift in the seasonality of the area source ffCO2 emissions around Heidelberg
in 2019 compared to the bottom-up estimates from the Netherlands Organization for Applied Scientific Research (TNO). This
highlights the huge potential of ACO-based AffCO: to validate bottom-up ffCO2 emissions at urban stations if the ACO/AffCO2

ratios can be determined without biases.
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1 Introduction

The combustion of fossil fuels (ff) like coal, oil and gas is the major reason for the ongoing increase in the atmospheric CO2
concentration, which causes current global warming. About 70% of the global ffCO: emissions are released from urban hotspot
regions (Duren and Miller, 2012). Fortunately, the atmospheric CO2 increase is weakened, since about half of the human-
induced COz emissions are currently taken up by the terrestrial biosphere and the oceans in roughly equal shares (Friedlingstein
et al., 2022). Indeed, there are large seasonal and inter-annual variations in the non-fossil COz sinks and sources that need to
be better understood in order to make predictions about future changes in the carbon cycle owing to increased atmospheric

COz levels.

The “atmospheric transport inversion” (Newsam and Enting, 1988) is a powerful tool for deducing surface COz fluxes from
atmospheric COz observations. Hence, many studies have applied this top-down approach to constrain CO: fluxes from

terrestrial ecosystems and the oceans (e.g., Rodenbeck et al., 2003; Peylin et al., 2013; Jiang et al., 2016; Rodenbeck et al.,

2018; Monteil et al., 2020; Liu et al., 2021). In these calculations, ffCO: emissions are typically prescribed using bottom-up
information from emission inventories. These bottom-up ffCO. emission estimates are sometimes based on national annual
activity data that describe the fuel consumption and sector-specific emission factors (Janssens-Maenhout et al., 2019). While
annual national total ffCO> emissions are associated with low uncertainties of typically a few percent for developed countries
(Andres et al., 2012), their proxy-based distribution on individual spatial grid cells and individual months, days or hours can

dramatically increase the uncertainties (Peylin et al., 2013 Super et al., 2020). On the path to net zero emissions, independent

verification of the reported national CO, emissions is essential. This includes the evaluation of the bottom-up statistics,

especially on the relevant urban scales where uncertainties are larger and the most important emission reduction measures are

implemented. Furthermore, the seasonal cycle of bottom-up ffCO2 emissions needs to be validated, if they are used in CO2

inversions to deduce biogenic CO: fluxes that are dominated by a large seasonal cycle.

Atmospheric transport inversions can be used to validate these bottom-up ffCO: emissions (e.g., Graven et al., 2018; Basu et

al., 2020). However, their success relies on the ability of the used observational tracers to separate fossil fuel from non-fossil

CO:z contributions (Shiga et al., 2014: Ciais et al., 2015; Basu et al., 2016; Bergamaschi et al., 2018). The most direct tracer

for ffCOz is radiocarbon (**C) in CO2. Radiocarbon has a half-life of 5700 years and is therefore no longer present in fossil
fuels (Suess, 1955). Thus, the '“C depletion in ambient air CO2 compared to a clean-air reference site can directly be used to
estimate the recently added ffCOz excess (AffCOz) at the observation site (Levin et al., 2003; Turnbull et al., 2006). These
AffCOz estimates can then be implemented in regional inversions to evaluate bottom-up ffCO2 emissions in the footprints of
the observation sites (Graven et al., 2018; Wang et al., 2018). However, a drawback of “C-based AffCO> estimates is that they
have poor temporal and spatial coverage due to the labor-intensive and expensive “C sampling and analysis. Therefore,

continuously measured atmospheric excess concentrations of trace gases like CO, which is co-emitted with ffCO», have been
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used as alternative proxies for AffCO: (e.g., Gamnitzer et al., 2006; Turnbull et al., 2006; Levin and Karstens, 2007; van der
Laan et al., 2010; Vogel et al., 2010). However, to construct a high-resolution ACO-based AffCOx record requires to correctly
determine the ACO/AffCO: ratio in the footprint of the observation site. This can indeed be a big challenge: As the CO/ffCO:
emission ratio depends on the combustion efficiency and applied end-of-pipe measures, it is very variable for different emission

processes and changes with time due to technological progress (Dellaert et al., 2019).

In the companion paper by Maier et al. (2023a) we calculated a ACO-based AffCOz record for the urban Heidelberg observation
site by dividing the continuous ACO record from Heidelberg by an average ACO/AffCOs ratio derived from almost 350 *CO»
flask samples collected between 2019 and 2020._ We refer to this continuous AffCO» record as “ACO-based AffCO»” in the

following but emphasize that also here we used "“CO» flask observations to estimate the ACO-based AffCO,. By comparing

the hourly ACO-based AffCO2 with the direct '*C-based AffCO: from the flasks we estimated an uncertainty for these data of

about 4 ppm, which is almost 4 times larger than typical “C-based AffCO2 uncertainties. About half of this uncertainty could
be attributed to the spatiotemporal variability of the ACO/AffCO; ratios (Maier et al., 2023a).

The goal of this study is to investigate which type of AffCO: observations provides the greater benefit in an atmospheric
transport inversion to validate bottom-up ffCO2 emission estimates in an urban region: (1) sparse '“C-based AffCO:
observations from flasks with a small uncertainty or (2) ACO-based AffCO2 estimates at high temporal resolution but with an
increased uncertainty? For this, we adapt the CarboScope inversion framework (Rédenbeck, 2005) for the highly populated
and industrialized Rhine Valley in Southwestern Germany around the Heidelberg observation site. We perform separate
inversion runs with the '*C- and ACO-based AffCO: observations from Heidelberg. Thereby, we mainly focus on the seasonal

cycle in the ffCOz emissions and investigate which AffCOz information leads to robust inversion results and is_thus best suited

to validate the seasonal cycle of the bottom-up emissions in the main footprint of Heidelberg.

2 Methods
2.1 Heidelberg observation site

Heidelberg is a medium-sized city with about 160’000 inhabitants, which is part of the Rhine-Neckar metropolitan area with

over 2 million people. The Heidelberg observation site is located on the university campus in the north-western part of the

city. The sampling inlet line is 30 m above ground on the roof of the institute’s building. Local ffCO2 emissions originate
mainly from traffic and residential heating but there is also a nearby combined heat and power station as well as a large coal-
fired power plant and the giant industrial complex from BASF 15-20 km to the North-West. Due to its location in the Upper
Rhine Valley, Heidelberg is frequently influenced by south-westerly air masses, which carry the signals from heterogeneous
sources in the Rhine Valley. A more detailed description of the Heidelberg observation site can be found in Levin et al. (2011).

The *C-based and ACO-based AffCO: observations from Heidelberg are presented in Sect. 2.2.3.

3
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2.2 Inversion setup

The CarboScope inversion algorithm was initially introduced by Rddenbeck et al. (2003) to estimate inter-annual and spatial
variability in global CO2 surface-atmosphere fluxes. The algorithm can also be applied to regional inversions (Rodenbeck et
al., 2009). In the present study we adapt this inversion modelling framework to estimate ffCO» surface fluxes in the regional
Rhine Valley domain (see Fig. 1) with AffCO> observations from the Heidelberg observation site (see Fig. 2). This requires a

high-resolution atmospheric transport model and a careful estimation of the lateral AffCO2 boundary conditions.

The CarboScope inversion system uses Bayesian inference to minimize the deviations between observed and modelled AffCO>
concentrations by finding the (global) minimum of the cost function (for technical details see Appendix A and Rodenbeck,
2005). This cost function consists of a data constraint and an a-priori flux constraint, which is needed to regularize the
underdetermined problem and to prevent large and unrealistic spatiotemporal ffCO: flux variabilities (Rodenbeck et al., 2018).
The data constraint is weighted by the uncertainties of the transport model and the AffCO: observations. Furthermore, the
uncertainty applied for the a-priori ffCO> emissions determines the impact of the a-priori constraint. Overall, the ratio between
the model-data uncertainty and the a-priori flux uncertainty controls the strength of the a-priori constraint over the

observational constraint (Rodenbeck, 2005; Kountouris et al., 2018; Munassar et al., 2022). The cost function is minimized by

using a conjugate gradient algorithm with reorthogonalization after each iteration step (Rodenbeck, 2005). In this study we

optimize every day a single scalar on the a-priori ffCO; emissions field inside the Rhine Valley domain.

2.2.1 Atmospheric transport model

We use the Stochastic Time-Inverted Lagrangian Transport (STILT; Lin et al., 2003; Nehrkorn et al., 2010) model, driven by

meteorological fields from the high-resolution Weather Research and Forecasting model (WRF, version 3.9.1.1, Skamarock

et al., 2008), to simulate the atmospheric transport in the Rhine Valley domain (see red rectangular in Fig. 1). Hourly 0.25°-
resolved European ReAnalysis 5 (ERAS, Hersbach et al., 2020) data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) were used as boundary conditions for the WRF simulations. The WRF meteorological fields have a

horizontal resolution of 2 km and were generated by applying the MYNN (Mellor-Yamada Nakanishi Niino, Nakanishi and

Niino, 2009) planetary boundary layer (PBL) parameterization scheme. Finally, we calculated with STILT the sensitivity of

the Heidelberg observations to ffCO> emissions from individual grid cells in the catchment area of the site (i.e. the so-called

footprint in units of concentration per flux density) by computing for each hour the back-trajectories of 100 particles released

from the Heidelberg receptor site. The hourly-resolved footprints have a horizontal resolution of about 1 km x 1 km (1/60° x

1/120°, lon. x lat.). As there are many point source emissions within the Rhine Valley, we apply the STILT volume source

influence (VSI) approach introduced by Maier et al. (2022) to model them. This model approach takes into account the effective

heights (including plume rise) of the point source emissions, which are typically released from elevated chimney stacks. This

approach substantially improved the simulation of AffCO» concentrations at the Heidelberg site, especially during situations
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with low PBL heights (Maier et al., 2022). For the area source emissions, we apply the standard approach in STILT, which

assumes that all emissions are released from the surface.
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Figure 1: (a) Map with the Central European STILT domain (blue) and the high-resolution Rhine Valley STILT domain (red). The
observation site Heidelberg (HEI) and the marine site Mace Head (MHD), which we used as a background site to calculate the
AffCO;_concentrations at Heidelberg (see Sect. 2.2.3). are indicated. (b) Zoom into the Rhine Valley domain with the mean prior
ffCO; emissions from the TNO inventory for 2019-2020. The blue outline in the zoom shows the “50%-footprint” range, i.e., the area
accounting for 50% of the Heidelberg average footprint within the Rhine Valley.

2.2.2 A-priori information

We use the ffCO2 emissions from the Netherlands Organization for Applied Scientific Research (TNO, Dellaert et al., 2019;

Denier van der Gon et al., 2019) with a horizontal resolution of about 1 km (1/60° lon. x 1/120° lat.) as a-priori estimates for
our Rhine Valley inversion. The TNO emission inventory provides annual ffCO2 emissions for 15 different source sectors as
well as sector-specific temporal profiles. In this study, we treat the ffCO2 emissions from the point source dominated “energy
production” and “industry” TNO sectors separately due to the following reasons: (1) While the VSI approach (see above)

strongly improves the vertical representation of point source emissions in STILT (Maier et al., 2022), it still remains difficult

to correctly describe the mixing and transport of narrow point source plumes with meteorological fields that have a resolution
of 2 km. (2) Due to the elevated release of point source emissions from high stacks, the Heidelberg observation site with an

air intake height of only 30 m above ground is rarely influenced by distinct emission plumes from nearby point sources (see

Fig. 4 with the ACO/AffCO» ratio analysis in Maier et al., 2023a). This makes it difficult to evaluate those point source
emissions with AffCO: observations from the Heidelberg observation site alone. (3) As the energy and industry point source
emissions in TNO are directly based on the European Pollutant and Transfer Register (E-PRTR) database, which provides
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information on the location and emission of the major facilities in Europe (Kuenen et al., 2014), we expect them to be better

known than the more diffuse area source emissions in the Rhine Valley. We thus focus on how well our observations are able

to constrain area source emissions in the footprint of the Heidelberg site.

We, thus, prescribe the energy and industry emissions in our inversion setup and adjust only the area source emissions in the

Rhine Valley, which mainly originate from the heating and traffic sector. TNO provides monthly profiles for the ffCO»

emissions from each of the 15 source sectors. We use the monthly profiles for 2019, which are European averages and thus

identical for all countries within the Central European STILT domain (see blue box in Fig. 1a). For 2020 TNO provides

country-specific temporal profiles to account for the large variabilities in length and intensity of the COVID-19 restrictions

among the individual countries. As Germany and France are both part of the Rhine Valley domain, we decided to use the

average of the German and French temporal profiles for 2020 to construct suitable sector-specific monthly profiles for the

Rhine Valley domain in 2020. For all inversion runs performed in this study, we use these TNO monthly profiles to calculate

from the corresponding annual total emissions monthly ffCO> emissions for the energy and industry sectors.

In this study, we aim to evaluate the information of the AffCO> observations regarding the seasonal cycle of the area source

ffCO2 emissions. That is why we apply in our standard inversion runs temporally constant (“flat”) a-priori ffCO2 emissions

for the area sources. For this, we use the (spatially highly resolved) 2-year average TNO area source emissions of the years

2019 and 2020. Finally, we also perform a sensitivity inversion run, for which we replace the temporally flat a-priori area

source emissions by monthly varying a-priori area source emissions. For this, we use for both, the area and the point source

emissions, the monthly profiles from TNO described above (i.e., the European average monthly profiles in 2019 and the mean

of the German and French monthly profiles in 2020).

2.2.3 Observations

In separate inversion runs, we use either the discrete *C-based AffCO> estimates from flasks, collected as integrals over one
hour, or the hourly ACO-based AffCO: record from the Heidelberg observation site (see Fig. 2). The companion paper (Maier

et al., 2023a) describes in detail the calculation of the *C-based AffCO; estimates as well as the construction of the continuous

ACO-based AffCOz record. In short, the ACO-based AffCO:2 record has been constructed by dividing the continuously
measured hourly ACO offsets compared to the marine reference site Mace Head (MHD) by an average ACO/AffCO: ratio_of
8.44-+0.07 ppb/ppm, which was determined from ACO and '*C-based AffCO: observations of almost 350 day- and night-time

flask samples collected in 2019 and 2020. Correlation of these ACO and AffCO» values showed only small variability, because

heating and traffic CO/ffCO2 emission ratios in the footprint of Heidelberg are currently very similar around 8 ppb/ppm. In

the inversion, however, we only use the afternoon *C-based and ACO-based AffCO: observations between 11 and 16 UTC,
as night-time situations are associated with a poorer transport model performance. Times for the hourly-integrated AffCO>

observations are reported as the start of the hour, e.g. 11 UTC corresponds to the time period between 11 and 12 UTC. The

6
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average uncertainties of the '*C- and ACO-based AffCO; concentrations were estimated to 1.1 ppm and 3.9 ppm, respectively

(Maier et al. 2023a.b)

Furthermore, we apply a 2c-selection criterion to the AffCO. observations as introduced by Rodenbeck et al. (2018). For this,
we take the high-resolution annual total ffCO> emissions from TNO and apply the hourly sector-specific temporal profiles.
These hourly resolved ffCO: emissions are then transported with the WRF-STILT model to simulate hourly AffCO>
concentrations. The mean difference between the simulated and the ACO-based AffCOz observations is only -0.04 ppm during

afternoon hours with a standard deviation of 6.76 ppm_(i.c., almost 100% of the mean value), which indicates that the model

is able to reproduce, on average, the afternoon ACO-based AffCOz observations without a significant mean bias. This directly
allows the application of the 26-selection criterion, which means that we only use those AffCOz observations, whose deviation
to the modelled AffCO: is smaller than 2 times the standard deviation between observed and modelled AffCO», i.e. which is
within the 20-range. Therewith, we exclude the data outside the 2c-range, which obviously cannot be represented with our
transport model. Examples of such data are observations during very strong air stagnation events in winter, which are often
underestimated in the model, or vice versa, situations when the model overestimates the point source influence at the
observation site. Since the inversion system assumes a Gaussian distribution for the model-data mismatch, these extreme
outlier events would have a strong impact on the inversion results (Rédenbeck et al., 2018). Thus, this 26-selection can be seen
as an additional regularization for the inversion to avoid using situations with unrealistic model simulations. We apply the 2c-
selection criterion to both the *C-based AffCO: observations from the afternoon flask samples and the afternoon hours of the

ACO-based AffCO- record.
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Figure 2: Afternoon AffCO; observations from the Heidelberg observation site. The grey curve indicates the ACO-based AffCO,
record and the black circles the '“C-based AffCO, estimates from flasks. Both, the “C-based and ACO-based AffCO; observations
are 2o-selected. (a) shows the AffCO, excess compared to the marine background site Mace Head (i.e. AffCO; mup_in Eq. 1). (b)
shows the AffCO, excess compared to the Rhine Valley (RV) boundary (i.e. AffCO,rv in Eq. 1) minus the modelled AffCO, rv

contributions from point sources within the Rhine Valley (AffCO'ZmIIL{:,t .T
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2.2.4 Lateral boundary conditions

We set up the inversion system for the Rhine Valley domain (6.00°E — 10.25°E, 47.75°N — 50.25°N, red rectangular in Fig.
l1a) around the Heidelberg observation site and run the inversion for the full two years 2019 and 2020 within this domain.

However, as we calculated the '*C- and ACO-based AffCO: excess compared to MHD (see Maier et al., 2023a), we need to

define a suitable AffCO:2 background representative for the boundary of the Rhine Valley domain. In the following, we call
this the “Rhine Valley AffCO2 background”. By definition, we assume that the A*CO; observations from MHD correspond to
AffCOz = 0 ppm, which is reasonable since the MHD *CO, samples were only collected during situations with clean westerly
air masses from the Atlantic. Therefore, it seems to be suitable to apply the MHD (AffCO2 = 0 ppm) background to the entire
western boundary of the Central European STILT domain (blue rectangular in Fig. l1a). But how representative is this
background for the other boundaries of the Central European domain? Maier et al. (2023b) estimated the representativeness

bias of the MHD background for the eastern boundary of the Central European domain, which is likely the most polluted

border. They showed that the representativeness bias is on average smaller than 0.1 ppm for an observation site in Central
Europe. Therefore, we neglect this bias and assume AffCO2 = 0 ppm also at the non-western boundaries of the Central European
domain. To estimate the Rhine Valley AffCOz background we_then use a nested STILT model approach with 2 km horizontal
resolution WRF meteorology in the Rhine Valley domain and coarser (10 km) WREF resolution in the Central European STILT
domain outside the Rhine Valley. For both domains_we use hourly ffCO2 emissions from TNO (Dellaert et al., 2019; Denier

van der Gon et al., 2019). This nested approach allows us to separate the ffCO- contributions from each STILT domain. With
this setup we model for the Heidelberg site for each hour during 2019 and 2020 the AffCO: contributions from the Central
European domain outside the Rhine Valley (AffCOz,cerv), which we use as the Rhine Valley background. We then subtract
this modelled Rhine Valley AffCO2 background (AffCO:zcerv) from the estimated AffCO: excess compared to MHD
(AffCO2,muD), to obtain the AffCOz excess compared to the Rhine Valley boundary (AffCO2.rv):

AffCO2rv = AffCO2MmuD - AffCO2,cERV €))

The AffCO2rv excess concentrations compared to the Rhine Valley boundary are then introduced into the inversion system to

constrain the ffCO2 emissions within the Rhine Valley. Note, however, that the actual data constraint is the AffCO2rv excess

point

minus the modelled AffCO> contribution from the point sources within the Rhine Valley (AffCO; ry. see Fig. 2b), since we

prescribe the point source emissions and only optimize for the area source emissions.

We also want to emphasize that the AffCO2rv excess concentrations rely on the STILT transport and the TNO emissions to

be correct. A potential bias in the modelled transport or the ffCO> emissions outside the Rhine Valley would directly translate

into a bias in the AffCOzrv excess concentrations. This in turn might affect the deduced ffCO: fluxes within the Rhine Valley

domain. To assess the impact of the Rhine Valley AffCO> background (AffCOz ce-rv) on the a-posteriori ffCO; fluxes in the

main footprint of Heidelberg, we also perform an inversion run with an alternative Rhine Valley AffCO: background. We

again model this alternative background with STILT but apply the 0.25°-resolved forecasting meteorological data from the
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Integrated Forecasting System (IFS) instead of the WRF meteorology (see Sect. 2.2.1). Moreover, we replace the TNO

emissions by the Emissions Database for Global Atmospheric Research (EDGAR, version 4.3.2, Janssens-Maenhout et al.,

2019) emissions to prescribe the ffCO; fluxes in Europe. This EDGAR inventory was updated to the years 2019 and 2020 by

taking into account the British Petroleum (BP) statistics on fossil fuel consumptions and was remapped on a grid with a

horizontal resolution of 0.25°. Note, that we only use this coarser STILT resolution for simulating the alternative Rhine Valley

AffCO2 background. The inversion itself is again performed with the high resolution WRF meteorology (see Sect. 3.3).

2.2.5 Model-data mismatch

The model-data mismatch (MDM) is calculated by subtracting the modelled from the observed AffCO2rv concentrations. The
uncertainties of the ACO-based and *C-based AffCO2 observations are estimated to be 3.9 ppm and 1.1 ppm, respectively (see
Maier et al., 2023a). The transport model uncertainty of urban, continental sites like Heidelberg with complex local circulations
was assumed to be 5 ppm. The quadratically added observational and transport model uncertainties yield the total uncertainty

of the model-data mismatch, which we call the MDM error in the following. To account for the temporal correlations of

observations that are close together in time, we apply a data density weighting as described in Rédenbeck (2005). It artificially
increases the MDM error, so that all observations within one week lead to the same constraint as a single observation per week.
The weighting interval was set to one week because this is a typical duration of synoptic weather patterns. Depending on the
number of observations per week, the final MDM error of individual hourly observations ranges between 5.1 and 7.8 ppm in

the case of “C-based AffCO; from flasks and between 23.7 and 37.5 ppm in the case of the ACO-based AffCO; record.

Based on our analysis results presented in Sect. 3.1, we decided to apply a weekly averaging in the case of the ACO-based

AffCOz inversion (see Sect. 3.2), which we briefly describe here. The MDM vector for the ACO-based AffCO» inversion has

a length of 3237, which represents the number of the (2o-selected) afternoon hours with available ACO-based AffCO»

observations. Weekly averaging means that each hourly entry of the MDM vector within a week is replaced by the respective

weighted average MDM of that week. The weight of the individual hours within a week is defined by the MDM error of the

respective hours. This means that the weekly averaged MDM vector has the same length as the original MDM vector. We do

not modify the hourly MDM errors when applying the weekly averaging. This means that the weekly averaging would not

change anything if all hourly MDM entries within a week were initially (by chance) the same.

2.2.6 Degrees of freedom

Since we only use AffCO: observations from one single station in the Rhine Valley, we restrict the number of degrees of
freedom in our inversion system so that the inverse problem is not too strongly underdetermined. Therefore, we only investigate

the area source emissions in the Rhine Valley and prescribe the energy and industry emissions, as described above. Moreover,

the inversion system adjusts only one spatial scaling factor per day, which increases or decreases the area source emissions in

9
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the whole Rhine Valley domain equally. Hence, we expect that the high-resolution TNO inventory is much better at describing
the large spatial heterogeneity in the ffCO2 emissions within the Rhine Valley than our top-down approach. As we want to
investigate the seasonal cycle of the ffCO2 emissions, additional temporal degrees of freedom are needed. For this, we choose
a temporal correlation length of about 4 months (“Filt3T” in CarboScope notation), which should be appropriate to explore
seasonal cycles. Finally, since the Heidelberg observations cannot be used to constrain the emissions in the whole Rhine-
Valley domain, we only analyze the a-posteriori area source emissions in the (most constrained) nearfield of the observation
site. We define the nearfield of Heidelberg as the area which accounts for 50% of the temporally accumulated footprint in the

Rhine Valley domain for the two years 2019 and 2020 (blue surrounded region in Fig. 1b).
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3 Results

3.1 Potential of flask-based AffCO; estimates to investigate the seasonal cycle in ffCO: emissions

o

Area source ffCO, emissions [Gmol/day]
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Figure 3: Area source ffCO, emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. Shown are the flat prior
emissions (black dashed line), the a-posteriori emissions for different prior uncertainties between 20% and 200% of the flat a-priori
emissions (colored solid lines) as well as the bottom-up estimates from TNO (grey line). In panel (a) “C-based AffCO, estimates from
94 20-selected afternoon flasks from Heidelberg were used as observational input (cf. Fig. 2). Panel (b) shows the inversion results
if the ACO-based AffCO; observations subsampled during the 94 flask sampling hours were used. In the panels (c) and (d) the
inversion was constrained with one hourly afternoon (at 13 UTC) ACO-based AffCO; observation every week collected on_the two
random working days Tuesday (c) or Friday (d). Panel (e) shows the results if each day at 13 UTC one hypothetical flask is collected.

In panel (f), the 7 afternoon flask observations within one week are averaged.
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First, we investigate the potential of flask-based AffCO: estimates to resolve the seasonal cycle of the area source ffCO2

emissions around the urban Heidelberg observation site. For this we use the average of the TNO area source ffCO2 emissions
of the two years 2019 and 2020 as a temporally constant prior estimate (see Sect. 2.2.2). To analyze the impact of the
observational constraint on the a-posteriori results, we apply different prior uncertainties, which effectively lead to different
ratios between a-priori and data constraint (Fig. 3). In a first inversion run (Fig. 3a), we use the *C-based AffCO; observations
from the 94 afternoon flasks collected in the two years 2019 and 2020 in Heidelberg. The distribution of the flask samplings
over the two years can be seen in Fig. 2. Due to various reasons (e.g. testing of the flask sampler associated with frequent
changes of the flask sampling strategy) the flasks were not evenly collected and especially the winter 2019/2020 has only
limited flask coverage. The '“C-based a-posteriori ffCO» emissions show a clear seasonal cycle for the larger prior
uncertainties, which is mainly data-driven. However, large and unrealistic a-posteriori flux variabilities emerge for prior
uncertainties larger than 50% of the flat a-priori emissions. For example, the low flask coverage during the winter period
2019/2020 leads to a huge maximum in the area source ffCOz emissions in November 2019 when the inversion algorithm tries

to fit individual flask observations that have large model-data mismatches (see Fig. B1). Similarly, the flask samples in summer

2020 with near-zero or even negative AffCO; estimates, which lead to negative model-data mismatches (cf. Fig. 2b and Fig.

B1) cause a strong reduction of the a-posteriori emissions.

Fig. B1 shows the agreement between the flat prior and the different a-posteriori-based model results and the flask

observations. The flat prior emissions lead to a mean bias (observed minus modelled AffCOz concentration) of 0.68 ppm with

a standard deviation of 5.61 ppm. The a-posteriori emissions based on a 50% prior uncertainty reduces the mean bias and the

standard deviation to 0.35 + 5.23 ppm. However, for higher prior uncertainties, the mean bias increases again and only the

standard deviation is further reduced; e.g. a prior uncertainty of 150% leads to a mean bias of 0.54 + 4.78 ppm between

observed and modelled AffCO2 concentration. This might be an indication for overfitting. To further investigate the

performance of the inversion, we conducted a reduced chi-squared (y2) analysis. The y? values decrease from 1.10 (for a 50%

prior uncertainty) to 0.97 (150% prior uncertainty). Typically, y2Z values smaller than 1 are an indication for overfitting if the

model-data mismatch error is chosen properly. However, as the y?2 values (for prior uncertainties between 50 and 200%) are

all close to 1 (within £10%), the y? values might not be suitable to demonstrate overfitting in our case. Overall, this urban

inversion setup obviously needs a very strong regularization through low prior uncertainties to prevent fitting of individual

flask observations and thus unrealistic variability in the a-posteriori ffCO2 emissions. This indicates that the applied 2o-filtering

approach (see Sect. 2.2.3) is not sufficient in this urban setting.

We further investigate whether these overfitting patterns can be attributed to the uneven distribution of the flask samples. For
this, we subsample the continuous ACO-based AffCOz record. In a first step, we use the ACO-based AffCO2 observations from
those 94 afternoon hours with flask samplings as observational constraint (Fig. 3b). For the most part, the subsampled ACO-

based AffCO: observations reproduce the a-posteriori results of the '“C-based AffCO; estimates. However, there are differences
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like the shifted summer minimum in 2019. These differences can be explained by the deviations between the “C-based and

ACO-based AffCO» estimates in Fig. 2. and thus the variability of the ACO/AffCOz ratios that we fully neglected by using a

constant mean ratio for constructing the ACO-based AffCO2 record. Thus, when comparing the results with the TNO
seasonality of emissions (grey histogram) it seems obvious that the '*C-based AffCO: estimates provide the more accurate data
than the subsampled ACO-based AffCO: record. However, the general similarity between both results means that we can use
the continuous ACO-based AffCO:z record to investigate an even data coverage with hypothetical Heidelberg flask samples.
The middle panels in Fig. 3 show the inversion results if the ACO-based AffCO:z record is subsampled for one flask every week

on Tuesday (c) or on Friday afternoon (d), respectively. We chose Tuesday and Friday as random examples for two working

days. The evenly distributed weekly flasks strongly dampen the variability of the a-posteriori results. However, they show
large differences depending on which day of the week the hypothetical afternoon flask was collected. Whereas the Tuesday
flasks lead to a quite unrealistic gradual increase in the ffCO2 emissions between January and November 2019, the Friday
flasks show a more realistic seasonal cycle in this year. In contrast, both Tuesday and Friday flasks lead to an unexpected

maximum in summer 2020. The comparison between the (hypothetical) flask concentrations and the a-posteriori results

illustrates again that the inversion mainly tries to fit those individual hours with the largest MDM (not shown). This implies

that the a-posteriori results are still dependent on the selection of the individual hypothetical flasks. Therefore, it seems that
even a uniform data coverage with a realistic flask sampling frequency of one flask per week is not sufficient to determine a
plausible seasonal cycle of the area source ffCO: emissions around Heidelberg (as c.g. suggested by the TNO inventory).
However, the situation should be improved in the case of real, hourly-integrated “C flasks that are collected e.g. once per
week, as the average ACO/AffCO:z ratio used to construct the ACO-based AffCO:z record might be inappropriate for individual

hours.

Finally, we investigated the benefit of an extremely high flask sampling frequency with one flask per afternoon (see Fig. 3e).

Note, that such a high-frequent flask sampling increases the MDM error because of the applied data density weighting (see

Sect. 2.2.5). Here, the a-posteriori results seem to approach towards the TNO bottom-up emissions in 2019. However, there
are still unexpectedly strong deviations between the top-down and bottom-up estimates in the summer half-year 2020 for
increased prior uncertainties. These differences might be caused by individual afternoon hours with a negative MDM in
summer 2020. To reduce the impact of such hours, we perform a separate inversion run where we average the modelled and

observational data of all 7 hypothetical afternoon flasks within each week (Fig. 3f, see Sect. 2.2.5 for a description of the

weekly averaging of the MDM vector). This further reduces the spread of a-posteriori results, particularly in summer 2020,

further approaching towards the seasonal amplitude of the bottom-up TNO emissions. Thus, several afternoon flasks per week
would be needed so that the influence of individual flasks on the inversion results can be averaged out and a plausible seasonal

cycle amplitude in the area source ffCO> emissions around Heidelberg can be obtained.
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Overall, these results show that the a-posteriori estimates are very sensitive to individual flask observations in the Heidelberg
target region with very heterogeneously distributed ffCO2 sources. Obviously, the transport model fails to appropriately
simulate the AffCO:2 concentrations for individual afternoon hours. This can be explained by remaining shortcomings in the
transport model but also by the enormous heterogeneity of the ffCO> emissions in the footprint of the Heidelberg observation
site. As already mentioned in Sect. 2, modelling individual plumes from point source emissions is a particular challenge in this
urban region, and e.g. the forward model estimates of point source signals, even with the improved VSI approach seem often

incorrect, at least at a temporal resolution of one hour. Moreover, there might also be inaccuracies in the TNO point source

emissions themselves. Finally, part of the MDM can also be explained by uncertainties in the proxies used to spatially

disaggregate the area source emissions in the TNO inventory (Super et al., 2020).

3.2 Potential of continuous ACO-based AffCO: estimates to investigate the seasonal cycle in ffCO: emissions
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Figure 4: Area source ffCQO; emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. In (a) a flat prior (black dashed
line) was used for the area source emissions and in (b) 2 monthly prior., i.e. the monthly bottom-up estimates from TNO (grey dashed
line) were used as a-priori estimate. Shown are the a-posteriori emissions for different prior uncertainties between 20 and 200%
(colored solid lines). The inversion was constrained with weekly averages of hourly, 2o-selected afternoon ACO-based AffCO,
observations from Heidelberg. For comparison, the posterior emissions with 200% prior uncertainty from (a) are shown as a vellow

dashed line in (b).

The big advantage of the continuous ACO-based AffCO: record is that it provides a full temporal coverage of the inversion
period and can, thus, also be averaged such that the sensitivity of the a-posteriori results on individual (hourly) model-data

mismatches with poor model performance is strongly reduced. In Appendix C, we investigate over which time interval the

hourly ACO-based and modelled AffCO, concentrations should be averaged to sufficiently reduce the impact of the point

source emissions on the a-posteriori area source emissions. For this, we perform in addition to the standard inversion runs with

fixed point source emissions further sensitivity runs with adjustable point source emissions. Ideally (i.e. if the point source

emissions are well described in TNO), the a-posteriori area source emissions are identical for both inversion runs, meaning

that the modelling of the better known point source emissions has no impact on the area source emissions. It turns out that the

averaging interval of one week strongly reduces the impact of the point sources on the a-posteriori area source emissions (see

blue curves in Fig. C1). It limits the differences between the a-posteriori area source emissions of the inversion runs with fixed
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and adjustable point source emissions to below 30% for individual seasons. Averaged over the two years 2019 and 2020, these

differences are below 10%. For the ACO-based AffCO; inversion, we therefore apply a weekly averaging to the MDM vector
(as described in Sect. 2.2.5).

In the following, we use the weekly averaged afternoon ACO-based AffCO2 observations to investigate the seasonal cycle of
the area source ffCO:2 emissions around Heidelberg (see Fig. 4a). If the prior uncertainty is chosen large enough, the seasonal
cycle amplitude of the a-posteriori estimates agrees with that of the TNO inventory reasonably well. Moreover, the data-driven
inversion results distinctly show the effect of the COVID-19 restrictions with lower emissions in 2020 compared to 2019. In
Southwestern Germany, the first COVID-19 lockdown started in mid-March 2020. Indeed, the inversion results show at that
time a strong decrease in the area source ffCO2 emissions. In particular, the decline in the a-posteriori ffCO2 emissions is much
steeper in spring 2020 compared to spring 2019 and the minimum of the seasonal cycle is flatter in 2020 as it extends over

several summer months. The sharp drop in emissions at the beginning of the COVID-19 restrictions in spring 2020 can also

be seen in Fig. D1, where we plot the difference between the seasonal cycles of the two years.

The agreement with the phasing of the seasonal cycle of the TNO inventory seems to be better in 2020 than in 2019. As
described in Sect. 2.2.2., TNO provides_for 2020 country-specific “COVID-19” time profiles, which take into account the

timing and the strength of the respective national restrictions. For this year, Fig. 4 shows the average of the monthly time

profiles from Germany and France applied to the annual Rhine Valley emissions (grey histogram). This seasonal cycle for

2020 seems to be confirmed by our observations. However, the TNO seasonal cycle shown for 2019 is a general estimate

constructed for the whole Central European domain (see Fig. 1) that is neither specific for individual countries nor for the year

2019. It assumes minimum emissions in July, whereas our observations show minimum emissions in August and September.
Indeed, this shifted minimum of the seasonal cycle coincides with the summer holidays in Southwestern Germany, which are

from August to mid-September.

We further investigate the consistency of the seasonal cycles from the bottom-up and the top-down estimates. For this, we
explore the effect of using the monthly TNO bottom-up seasonal cycle for the a-priori emissions (see Fig. 4b). As expected,
the phase of the a-posteriori seasonal cycle is in agreement with the TNO inventory in 2020. However, in 2019 the a-priori
information pulls the summer emission minimum to July. With weakening regularization of the prior the inversion algorithm
tries to shift the minimum of the a-posteriori seasonal cycle from July towards August and September. Due to the limited
temporal degrees of freedom of the inversion this shifting results in artificially increasing the emissions in May 2019 and
lowering them in October. Hence, these results might point to some inconsistencies in the seasonality of the TNO emissions
in the main footprint of the Heidelberg observation site. In fact, correct phasing of the fossil emissions is essential when
prescribed ffCO2 emissions are used in CO2 model inversions to separate the fossil from the biogenic contribution in

atmospheric CO:2 observations and constrain CO: fluxes from the biosphere. Although these biospheric CO» signals are

15



430

435

440

445

typically estimated with observations from sites that are more remote and rural than the urban Heidelberg site, the correct
seasonality in prescribed ffCO:2 emissions is still important when deducing the month-to-month variations in the biospheric

CO2 fluxes.

Overall, the (weekly averaged) ACO-based AffCO: record seems to be well suited to estimate (and validate) the seasonal cycle
of bottom-up ffCO2 emissions in the nearfield of the Heidelberg observation site. This is a very promising result, especially
considering how simply the ACO-based AffCO> record was constructed. It is based on the two-year average ACO/AffCOz ratio
estimated from *C measurements on flask samples where a potential seasonal cycle in the ACO/AffCO; ratios was fully

neglected.

3.3 Robustness of the ACO-based AffCO: inversion results
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Figure 5: (a): Area source ffCO; emissions in the nearfield (blue surrounded area in Fig. 1b) of Heidelberg for different sensitivity
runs. Shown are the a-posteriori results for 20% reduced flat a-priori emissions (solid magenta line), for an alternative Rhine Valley
AffCO; background modelled with EDGAR emissions (blue) and for an assumed seasonal cycle in the ACO/AffCO; ratios (cyan, see
Fig. E1). As a reference, the a-posteriori result of the base inversion from Fig. 4a is shown in black. All a-posteriori results correspond
to a 150% prior uncertainty. The dotted lines indicate the flat prior emissions (black) and the by 20% reduced prior emissions
(magenta). (b): Relative deviations between the different a-posteriori area source emissions of the sensitivity runs and the base
inversion in %.

In the following we investigate the robustness of the (weekly averaged) ACO-based AffCOz inversion results. For this, we (1)
reduce the flat prior emissions by 20%, (2) assume a seasonal cycle in the ACO/AffCOz ratios, and (3) apply an alternative
Rhine Valley AffCOz background. We show in Fig. 5 the respective a-posteriori results for a prior uncertainty of 150%, which
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constitutes enough weighting on the (weekly averaged) ACO-based AffCO: observations to reconstruct the seasonal cycle from

the flat a-priori area source ffCOz emissions (see Fig. 4a). Moreover, the 150% prior uncertainty reduces the mean bias between

the weekly averaged ACO-based AffCO, observations and the a-posteriori fits to 0.10+1.89 ppm (compared to the mean bias

of 0.65+2.23 ppm, which one gets when using the flat prior emissions). Further increasing the prior uncertainty to 200% leads

to only neglectable changes in the mean bias (0.11+1.88 ppm).

First, if the a-priori area source ffCO2 emissions in the Rhine Valley domain are equally reduced by 20% (see dotted magenta
line in Fig. 5a), the ACO-based AffCO: inversion manages to compensate for almost all of this bias (compare the magenta
curves with the black curves in Fig. 5). The deviations between the a-posteriori emissions of the inversion runs with perturbed
and unperturbed flat prior emissions is typically below 5% for all seasons (Fig. 5b). Accordingly, the a-posteriori seasonal
cycle of the ffCO» emissions is hardly affected by a potential bias in the flat prior emissions. The deviations between the annual
totals of the a-posteriori estimates of the perturbed and unperturbed prior inversion runs is only 2% for both years. This means

that on an annual scale about 90% of this 20%-bias in the perturbed flat prior could be corrected for with the observational

constraint.

With the second sensitivity test, we want to investigate the effect of the ACO/AffCOz ratios used to construct the ACO-based
AffCOz record. For our base inversion, the ACO-based AffCO: record was constructed by using the average ACO/AffCOz ratio
of 8.44+0.07 ppb/ppm, which was calculated from all flask samples collected in Heidelberg in 2019 and 2020. However, as
discussed in Maier et al. (2023a), the ratio during summer with lower signals is hard to determine and thus less constrained.

Indeed, the winter flasks show a slightly higher mean ACO/AffCO; ratio (8.5240.08 ppb/ppm, R*=0.89) compared to the

summer flasks (8.08+0.17, R?=0.36). The question is thus: How would our inversion results change if the ACO/AffCO ratios

would have a (small) seasonal cycle? For this, we assume a seasonal cycle in the ratios for the two years with 5% lower ratios
in the summer half-year and correspondingly 5% larger ratios in the winter half-year, so that the two-year mean is still 8.44
ppb/ppm (see Fig. E1). Notice, that we use the ratios to calculate the AffCO2mup excess compared to the MHD background
site and then subtract the modelled Rhine Valley AffCOz cerv background to get the AffCO2rv observations for our Rhine
Valley inversion (see Eq. 1). This effectively results in summer and winter AffCO2 concentrations being more than 5% larger
and lower, respectively, than the AffCO2 concentrations based on the average ratio. Obviously, this leads to larger a-posteriori
emissions (cyan curve in Fig. 5) during summer and lower emissions in winter compared to the base inversion results. The
largest seasonal deviations to the base inversion a-posteriori emissions are 10%. Since by construction the mean of the
seasonally varying ratios corresponds to the average ratio used for the base inversion, the effect on the annual totals of the a-

posteriori ffCO2 emissions is neglectable.

Finally, we investigate the impact of the lateral AffCO2 boundaries on the area source ffCO2 emissions estimates. For our base

inversion, we used the high-resolution TNO emission inventory and WRF-STILT to model for the Heidelberg observation site
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the AffCO> contributions from the European STILT domain outside the Rhine Valley (see Sect. 2.2.4). For the following
sensitivity run (blue curve in Fig. 5), we model the Rhine Valley AffCO2 background with ffCO2 emissions based on the
EDGAR emissions and with a coarser meteorology in STILT (see Sect. 2.2.4). The application of this alternative Rhine Valley

AffCOz background leads to more than 10% lower emissions in the autumn of both years, which can be explained by strong
deviations between the weekly averages of the two modelled background concentrations during these periods (see Fig. F1).
Thus, the Rhine Valley background affects the seasonal cycle of the area source ffCO2 emissions. During summer, the
deviations to the base inversion results are below 5%. The annual totals of the area source ffCO2 emissions around Heidelberg

are 3% and 7% lower in the years 2019 and 2020, respectively, if the alternative Rhine Valley AffCOz background is used.

4 Discussion and Conclusions

In the present study we investigate the potential of *C-based and ACO-based AffCO: observations to evaluate the ffCO2
emissions and their seasonal cycle in an urban region around the Heidelberg observation site. This urban area is characterized
by complex topography and large spatial heterogeneity in ffCO2 sources, including several nearby point sources. Thus, deficits

in the transport model as well as inaccuracies in the driving meteorology and the prescribed point source emissions strongly

impact the model-data mismatch at the observation site, which will be minimized by the inversion algorithm. We focus on the
estimation of the ffCO2 emissions from area sources, since the observations from the Heidelberg site with an air intake height
of 30 m above the ground are not suitable to constrain the emissions of nearby point sources with elevated stack heights.
Indeed, the analysis of the ACO/AffCO:xz ratios in Maier et al. (2023a) showed that the Heidelberg observation site is hardly
influenced by pure point source emission plumes. Moreover, we expect that point source emissions can be better quantified a-
priori from bottom up compared to area source emissions. Therefore, we prescribe the better known point source ffCO:

emissions in the inversion setup and only adjust the area source emissions in the Rhine Valley domain.

4.1 Can flask-based AffCO: observations be used to predict the seasonal cycle of ffCO: emissions at an urban site?

To investigate the potential of AffCO2 observations to predict the seasonal cycle of the area source ffCO2 emissions around
Heidelberg, we applied temporally constant (flat) a-priori ffCO> emissions in our inversion system, such that all seasonal
information comes from the atmospheric data. We have shown that '*C-based AffCO: observations from almost 100 hourly
flask samples collected in the two years 2019 and 2020 are not sufficient to reconstruct a robust seasonal cycle from the flat
a-priori estimate. As the Bayesian inversion setup assumes a Gaussian distribution for the model-data mismatch, the inversion
algorithm tries to primarily reduce the largest model-data differences. Therefore, we applied a 26 selection to exclude the flask

events with the largest model-data mismatches and thus worse model performances. However, the a-posteriori ffCO2 emissions

are still very sensitive to individual flask observations. This may suggest that the 2c filter is not sufficient in a densely populated

high fossil fuel environment like Heidelberg with a complex topography. Therefore, strong regularization through small a-
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priori uncertainties (i.e. < 50% prior uncertainty, Fig. 3a) is needed in the case of flask observations to avoid large overfitting

patterns in the inversion results.

Due to the fortunate circumstance of currently having similar heating and traffic emission ratios in the main footprint of

Heidelberg, we decided to use the two-year average '“C-based ACO/AfFCO» ratio from the flasks to construct a continuous

ACO-based AffCOs record (see Maier et al., 2023a). By subsampling this ACO-based AffCOz record, we further investigate

the potential of a uniform data coverage with one hypothetical afternoon flask per week to reliably estimate the seasonal cycle
in the area source emissions. Indeed, several afternoon flask samples per week are needed, as well as an averaging of the flask
observations within one week so that the overfitting of individual flask data is reduced. However, the situation should be better
for real, e.g. sub-weekly, *C flasks compared to the subsampled ACO-based AffCO: record. As the applied two-year average
ACO/AffCOz ratio may be inappropriate for individual hours, this could amplify the sensitivity to the individual hypothetical
flasks.

4.2 What is an appropriate averaging interval for urban observations?

The main advantage of the ACO-based AffCO: record is its continuous data coverage that allows an averaging so that the

influence of individual hours with poor model performance on the inversion results is strongly reduced._The comparison of

Fig. 3e with Fig. 3f and Fig. 4a clearly illustrates that the averaging of multiple hourly observations leads to a reduction of the

a-posteriori flux variability. In this urban region, such an averaging is especially necessary because of the shortcomings in the

STILT model and its driving meteorology to describe the transport and mixing of nearby point source emissions. Imagine that
the plume of a point source arrives a few hours earlier or later at the observation site than simulated by STILT. In such cases,
averaging is inevitable to prevent a wrong adjustment of the ffCOz2 emissions. Moreover, the STILT-VSI approach itself has
its deficits as it assumes mean effective emission height profiles for all meteorological situations and ignores the stack heights
of individual power plants. Furthermore, the VSI approach still relies on a correct vertical mixing in STILT and an accurate

point source emission inventory. Whereas in Maier et al. (2022) we could show that the VSI approach strongly improves the

agreement between modelled and observed AffCO:2 concentrations from two-week integrated samples, it thus still may
overestimate the point source contributions for individual hours. Therefore, an averaging of the observations is very helpful

when a transport model like STILT is used to describe the transport and mixing of nearby point source emissions.

We investigate how to appropriately average the observational and modelled data. Ideally, the a-posteriori area source ffCO2

emissions are independent of an incorrect modelling of the point source emissions. Thus, they should not be affected by

whether the a-priori point source emissions are fixed or adjustable in the inversion framework, provided that the point source

emissions are well represented in the emission inventory. We found that an averaging interval of one week limits the

differences between the a-posteriori area source ffCO2 emissions of the inversion runs with fixed and adjustable point source

emissions to below 30% for all seasons. This deviation can be used as a measure for the uncertainty of the a-posteriori area
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source ffCO2 emissions that is induced by an inadequate modelling of the point source emissions. A longer, e.g. monthly,

averaging interval further reduces this difference_(see Appendix C), but comes along with an averaging over very different

meteorological situations and thus reduces the spatiotemporal information comprised in the observations. This might be
especially important if there are several observation sites, and the inversion system optimizes the AffCO. gradients between
these different stations. The averaging interval of a week corresponds to the typical length scale of synoptic weather patterns.

Therefore, the model-data-mismatch error has anyhow been increased to account for the potential correlations between the

hourly observations within one week. The weekly averaging should, thus, not destroy too much information. An averaging

interval of one week should thus be seen as a compromise between reducing the impact of hours with an inadequate model

performance and using as much observational information as possible.

4.3 What is the potential of ACO-based AffCO: to estimate the seasonal cycle in urban ffCO: emissions?

The weekly averaged ACO-based AffCO; observations lead to robust seasonal cycles in ffCO> emissions with a plausible

amplitude and phasing, based on comparison with the TNO inventory. Figure G1 further compares the TNO ffCO, emissions

in the nearfield area of Heidelberg (blue outlined area in Fig. 1b) with emissions from the EDGAR inventory (as introduced

in Sect. 2.2.4) and the GridFEDv2021.2 inventory (Jones et al., 2021). While the EDGAR emissions are on average about 25%

lower than the TNO emissions over the two years 2019 and 2020, the GridFED inventory shows ca. 23% larger emissions than

TNO. This illustrates the uncertainty of the emission inventories on the regional scales. In 2019, the amplitude and phasing of

the seasonal cycle are very similar for the EDGAR and TNO inventory. However, in spring 2020 the normalized seasonal

cycles of the two inventories show differences of up to roughly 20%, which can be explained by the fact that the shown

seasonal cycle of the EDGAR inventory does not take into account the COVID-19 restrictions. In contrast, the seasonal cycles

from GridFED include the effect of the COVID-19 restrictions in spring 2020 similar to TNO but show a smaller seasonal

cycle amplitude compared to EDGAR and TNO in 2019. Overall, the seasonal cycles of our top-down estimate are in the range

covered by all three bottom-up inventories, thus inferring that we could indeed reliably reconstruct the amplitude and the

phasing of the seasonal cycle from flat a-priori area source ffCO> emissions with the ACO-based AffCO» observations.

We further could detect the COVID-19 signal in 2020, which is characterized by lower emissions compared to 2019 and a
very steep decline in the emissions in spring 2020 (cf. Fig. D1). This is in accordance with what is reported by TNO for 2020.

However, for 2019 our ACO-based AffCO; results suggest the summer minimum of the (restricted) Rhine Valley area source

ffCO,_emissions to be in August and September (instead of July), when local summer holidays take place in that part of

Germany. This result of the Heidelberg inversion might thus point to some inconsistencies in the seasonality of TNO emissions
in the footprint of the station. The correct phasing of the fossil emissions is essential when prescribed ffCO2 emissions and
associated forward modelling results are used in atmospheric transport inversions to constrain the CO: fluxes from the

biosphere.
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In contrast to the inversion with flask-'*C-based AffCO observations, the ACO-based AffCO: inversion with weekly averaging

allows a weakening of the regularization strength without generating unrealistic variabilities in the seasonal cycle of the ffCO>
emissions. This implies that the a-posteriori results are less dependent on a potential bias in the a-priori emissions_(cf. Fig.
G1). Indeed, a sensitivity run with a 20% reduced flat prior estimate for the area source ffCO2 emissions leads to similar results

as the base inversion run with unperturbed prior estimate, when sufficiently large prior uncertainties are used. Thus, the ACO-

based AffCO: inversion is able to simultaneously reconstruct the seasonal cycle from a flat prior and correct a potential bias

in the total a-priori emissions.

However, the ACO-based AffCOz inversion results strongly depend on a potential bias in the ACO/AffCO: ratios that are
applied to calculate the AffCOz estimates. Since there is no evidence for a strong seasonal cycle in the ACO/AffCO: ratios at
the Heidelberg observation site, we used a constant average ACO/AffCOxz ratio to calculate the ACO-based AffCOz record for
the two years 2019 and 2020 (see Maier et al., 2023a). But due to the low signals and the weak correlation between ACO and
AffCOz during summer, it is hard to determine separate summer ratios. Nevertheless, our results indicate that there might be a
small seasonal cycle on the order of 5% in the ratio. We have shown that a hypothetical seasonal cycle with 5% lower and 5%
larger ratios in summer and winter, respectively, would lead to changes in the area source ffCO2 emissions of up to 10% for
individual seasons. This emphasizes the importance of a thorough determination of the ACO/AffCO:x ratios to prevent biases

in estimates of total fluxes and the seasonal cycle of the ffCO> emissions.

Indeed, we are currently in a fortunate situation in Heidelberg, since the emission ratios of the traffic and heating sectors seem
to be quite similar in the main footprint of the station (see Maier et al., 2023a). Hence, despite the varying share of traffic and
heating over the course of a year, this allowed the usage of a constant average flask-based ACO/AffCOs ratio for constructing
the ACO-based AffCO: record. Of course, it is much more challenging to determine continuous ACO-based AffCO- estimates

for stations where the ACO/AffCOxz ratios show large seasonal or even diurnal variability. In principle, also bottom-up estimates

of the seasonal contributions of each ffCOx sector and its characteristic CO/ffCO2 emission ratio could be used to construct

the seasonal cycle of the ACO/AffCO> ratios. However, in the companion paper (Maier et al., 2023a) we show that there can

be large discrepancies between “C-based and inventory-based ACO/AffCO> ratios. Therefore, we recommend to validate those

bottom-up ratios by observations before using them to estimate a continuous AffCO:z record.

The ACO-based AffCOz inversion can be seen as a simplification of a multi-species inversion, which is based on collocated
COz and CO observations. Such a multi-species inversion exploits the fact that the collocated CO2 and CO observations are
affected by the same atmospheric transport and that these two species have partially overlapping emission patterns (Boschetti
et al., 2018). Boschetti et al. (2018) show that the consideration of these inter-species correlations leads to a reduction in the
respective a-posteriori uncertainties of the ffCO: (and CO) emissions. While our ACO-based AffCO: inversion assumes a

constant but observation-based ACO/AffCOz ratio, the multi-species inversion intrinsically considers the spatiotemporal
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variability of the ratios. However, this requires reliable a-priori estimates of the CO/ffCO: emission ratios and their

uncertainties, as well as neglectable non-fossil CO sources and sinks.

A common challenge in regional inversions is the determination of the lateral boundary conditions (Munassar et al., 2023). In
this study, we used two different emission inventories and meteorological fields to estimate the AffCO2 background for the
Rhine Valley domain by modelling the contributions from the Central European ffCO2 emissions outside the Rhine Valley.
For individual seasons the a-posteriori area source ffCO2 emissions around Heidelberg can differ by more than 10%. This
highlights the strong need for appropriate boundary conditions. In Europe, the Integrated Carbon Observation System (ICOS,
Heiskanen et al., 2022) provides high-quality atmospheric in-situ data from a network of tall-tower stations that cover a large
part of the European continent. These observations may help to verify the ffCO2 emissions in Europe. Then, the optimized

European ffCO2 emissions could be used to estimate more reliably the AffCOz background for the Rhine Valley domain.

Overall, our results demonstrate that the weekly averaged ACO-based AffCO: observations are currently well suited to
investigate the amplitude and the phasing of the seasonal cycle of the area source ffCO. emissions in the main footprint of the
Heidelberg observation site. The different sensitivity runs suggest that ACO-based AffCO; allows a reconstruction of this
seasonal cycle from temporally constant a-priori estimates with an uncertainty of below ca. 30% for all seasons. Thus, we
recommend applying this ACO-based AffCO: inversion at further urban sites with a strong heterogeneity in the local ffCO2

sources if the ACO/AffCO:z ratios can be determined accurately. If ratios from bottom-up inventories are not trusted or the

urban region is influenced by CO emissions from the biosphere, the ratios are most reliably calculated from "“C flasks. Then,

at least some of the summer “C flasks should be collected during situations with significant CO and ffCO; signals, so that a

possible seasonal cycle in the ACO/AffCO: ratios could be identified. At remote sites, such as at several ICOS atmosphere

stations with low ffCO: signals and predominant biosphere influence, the calculation of ACO/AffCO, ratios and the

construction of a bias-free ACO-based AffCO: record might be more challenging than at an urban site. However, the model

performance is expected to be better at remote sites with a typically higher air intake above the ground and a much lower

heterogeneity in the surrounding ffCO> sources with minor influences from nearby point sources. Consequently, the outcome

of our urban study cannot directly be transferred to remote sites; further studies are needed to investigate the potential of “C-

based versus ACO-based AffCO> to estimate ffCO2 emissions at such sites.

Finally, the good performance of the continuous but less precise ACO-based AffCO; observations in our regional inversion

suggests that there may be potential for continuously measured “CO> (e.g. via optical spectrometry) to estimate urban ffCO>

emissions, even if those continuous '“CO> measurements have larger uncertainties.

22



650

655

660

665

670

675

Appendix A: Description of the CarboScope inversion framework

A detailed description of the CarboScope inversion system can be found in Rédenbeck (2005). In the following we summarize

the main characteristics for reference.

In this study, the CarboScope inversion framework is used to minimize the model-data mismatch m between observed and

modelled AffCO2 concentrations. For this, the ffCO» flux field fis written in terms of a fixed a-priori estimate fiix and a vector

p with dimensionless adjustable parameters

f=Ffux+Fp (A4.1)

where the matrix F describes the uncertainty of the a-priori fluxes and their spatiotemporal correlations. The a-priori realization

: N . 1 - - .
of the parameters pyri is assumed to have a zero mean, i.e. (py,) = 0, and the variance (ppripgri) = 1, where 1 is the identity

matrix and u a scaling factor. This leads to the following cost function:

J=sm"Qim+EpTp +C (A42)

The first term of this cost function describes the data constraint, which is weighted by the model-data mismatch covariance

matrix Owm. The a-priori constraint is included in the second term of the cost function. It is scaled by the parameter u, which

effectively represents the ratio between a-priori and data constraint (e.g., the a-priori term vanishes for =0, in accordance

with the a-priori covariance matrix Qf,pri = iFFT going to infinity. Note that Qf_pri does not explicitly appear in the

CarboScope implementation). The last constant C contains all terms that are independent of p.

The minimum of the cost function is calculated from

9]
2L =0 (A4.3)
BpT p=(1’post>

where ppost describes the a-posteriori realizations of the parameter vector p. For this, a conjugate gradient algorithm is used,

which is described in detail in Rddenbeck (2005).
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Appendix B: Fits to the flask observations

680 In Fig. B1 we show the agreement between the flat prior and the different a-posteriori-based model results and the flask

observations. It illustrates that the inversion mainly reduces the largest model-data mismatches of individual winter flasks and

the negative model-data mismatches in summer 2020.
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Figure Bl: Comparison between the observed “C-based AffCO, concentrations from the flasks and the modelled AffCO,
685 concentrations based on the flat prior (black) and the different a-posteriori emissions with prior uncertainties between 20% and

200% (coloured).
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Appendix C: Impact of the averaging interval and additional degrees of freedom for the point sources emissions

(a) 1.4 ACO-based AffCO, from afternoon hours (20-selected)
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Figure C1: (a): Area source ffCO, emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. Shown are the results of
700 the ACO-based AffCO, inversion with fixed point sources (solid lines, “fixed PS”) and adjustable point sources (dashed lines, “adj.

PS”) for different averaging intervals ranging from no averaging at all (cyvan) to daily averaging of the five hours (11 — 16 UTC) of

each afternoon (magenta) and weekly (blue) and monthly (pink) averaging. All a-posteriori results correspond to a 150% prior

uncertainty. The flat a-priori emissions and the bottom-up emissions are shown as a reference in black and grey, respectively. (b):

Relative differences (fixed PS minus adj. PS) between the a-posteriori area source ffCO, emissions of the inversion runs with
705 adjustable and fixed point source emissions in %.
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Figure C2: (a): Area plus point source_(i.e. “total”) ffCO, emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg.
Shown are the results of the ACO-based AffCO; inversion with fixed point sources (solid lines, “fixed PS”) and adjustable point
sources (dashed lines, “adj. PS”) for different averaging intervals ranging from no averaging at all (cyan) to daily averaging of the
five hours_(11 — 16 UTC) of each afternoon (magenta) and weekly (blue) and monthly (pink) averaging. All a-posteriori results
correspond to a 150% prior uncertainty. The a-priori emissions and the bottom-up emissions are shown as a reference in black and
grey, respectively. (b): Relative differences (fixed PS minus adj. PS) between the a-posteriori area source ffCO; emissions of the
inversion runs with adjustable and fixed point source emissions in %.

To investigate the influence of inadequate point source modelling on the a-posteriori area source ffCO2 emissions, we use two
different ACO-based AffCO: inversion setups: (1) an inversion with fixed point source emissions (“INV_fix”) and (2) an
inversion with adjustable point source emissions (“INV_adj”). The first inversion setup corresponds to the inversion described
in Sect. 2. It optimizes the flat a-priori area source emissions by using fixed monthly point source emissions. The second
inversion setup optimizes both, the flat a-priori area source emissions, and the monthly a-priori point source emissions.
Thereby, the point source emissions from the energy production and the industry sector, respectively, get the same temporal
(i.e. “Filt3T” in CarboScope notation, see Sect. 2.2.6) and spatial (i.e. one spatial scaling factor) degrees of freedom like the
area source emissions. Ideally, both inversion setups should lead to the same a-posteriori area source emissions, meaning that
the modelling of the better known point source emissions has no influence on the area source emission estimates. Obviously,

this is not the case. If the observed and modelled hourly AffCO» concentrations (i.e. the model-data mismatches) are not

averaged_over a certain period of time, the INV_fix inversion leads to much lower area source emissions estimates than the

INV_adj inversion (see cyan curves in Fig. C1). For individual seasons, e.g. in summer 2020, the differences are larger than
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150%. Thus, the INV_fix inversion tends to decrease the area source emissions to compensate for an inadequate modelling of

the (fixed) point source emissions. This indicates that the transport model (even with the VSI approach) and/or the TNO

emission inventory seems to overestimate the contributions from point sources at the Heidelberg observation site for individual

hours.

The averaging over one afternoon (magenta curve in Fig. C1) leads only to minor improvements; there are still deviations
larger than 100% in summer 2020. In contrast, the averaging interval of one week (blue curve) limits the largest deviations in
summer 2020 to below 30%. Averaged over the two years 2019 and 2020, these deviations between the INV_fix and INV_adj
a-posteriori area source emissions are less than 10%. A monthly averaging interval (pink curve) further reduces the deviations

to below 20% in summer 2020.

We also investigate if the sum of the a-posteriori area source and point source emissions is similar for the INV fix and the

INV adj inversion runs (see Fig. C2). If no averaging or only a daily averaging is applied, the INV adj run leads to up to 50%

lower total (i.e. area plus point source) ffCO2 emissions than the INV_fix run. This again shows that the point source emissions

are strongly reduced in the INV adj inversion run. A weekly averaging (blue curve) restricts the relative differences between

INV fix and INV adj to below ca. 20% if the first and the last two months of the two-year period are disregarded. The monthly

averaging shows again the smallest differences (below 10%) between the INV fix and the INV adj run.

Fig. C3 shows the comparison between the modelled AffCO> concentrations based on the INV fix and INV adj a-posteriori

emissions and the ACO-based AffCO:» observations if a weekly averaging is applied (i.e. all hourly entries within one week are

averaged in the model-data mismatch vector). The mean bias and the standard deviation between weekly averaged observed

and modelled AffCO> is very similar for both inversion runs (0.10+1.89 ppm in the case of INV fix and 0.13+1.80 ppm in the

case of INV adj). For comparison, the flat prior emissions lead to a mean bias of 0.65+2.23 ppm. Hence, there are no significant

changes in the fits to the observational data when additional degrees of freedom are introduced for the point source emissions.
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Figure C3: Comparison between the weekly averaged observed ACO-based AffCO, concentrations (grey) and the modelled AffCO,

755 concentrations based on the flat prior (black) and the a-posteriori emissions with a prior uncertainty of 150% (blue). Shown are the
results for the standard INV fix inversion setup with fixed point source emissions (solid) and the INV adj inversion setup with
adjustable point source emissions (dashed). In both inversion setups the hourly entries of the model-data mismatch vector within
one week were averaged.

760 Appendix D: Anomaly in the seasonal cycle of the area source ffCO: emissions in 2020
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Figure D1: Difference in the nearfield area source ffCO, emissions (in the blue outlined area in Fig. 1) between 2020 and 2019. Shown
are the results of the ACO-based AffCO, inversion with fixed point sources and temporally flat prior emissions (cf. Fig. 4a).
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Appendix E: Hypothetical seasonal cycle in the ACO/AffCO: ratios
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Figure E1: Average ACO/AffCO; ratio (black) and hypothetical seasonal varying ratio (cyan) used to construct the ACO-based
AffCO; record for the base inversion (Fig. 4) and the sensitivity inversion run (cyan curve in Fig. 5), respectively.

Appendix F: Comparison between two modelled Rhine Valley AffCO; backgrounds
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Figure F1: Difference between the Rhine Valley background modelled with TNO emissions (AffCO» ce-rv,rno) and the Rhine Valley
background modelled with EDGAR emissions (AffCO2,ce-rv,epcar). Shown are weekly averages for afternoon situations.
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Appendix G: Comparison between TNO and other emission inventories
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Figure G1: (a) Comparison between the TNO (red), EDGAR (blue) and GridFED (vellow) ffCO, emissions within the nearfield area
of Heidelberg (blue outlined area in Fig. 1b). (b) shows the respective normalized nearfield ffCO, emissions.
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