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Abstract. Atmospheric transport inversions are a powerful tool for independently estimating surface CO2 fluxes from 15 

atmospheric CO2 concentration measurements. However, additional tracers are needed to separate the fossil fuel CO2 (ffCO2) 

emissions from non-fossil CO2 fluxes. In this study we focus on radiocarbon (14C), the most direct tracer for ffCO2, and the 

continuously measured surrogate tracer carbon monoxide (CO), which is co-emitted with ffCO2 during incomplete combustion. 

In the companion paper by Maier et al. (2023a) we determined for the urban Heidelberg observation site in Southwestern 

Germany discrete 14C-based and continuous ∆CO-based estimates of the ffCO2 excess concentration (∆ffCO2) compared to a 20 

clean-air reference. The ∆CO-based ∆ffCO2 concentration was calculated by dividing the continuously measured ∆CO excess 

concentration by an average 14C-based ∆CO/∆ffCO2 ratio. Here, we use the CarboScope inversion framework adapted for the 

urban domain around Heidelberg to assess the potential of both types of ∆ffCO2 observations to investigate ffCO2 emissions 

and their seasonal cycle. We find that although more precise 14C-based ∆ffCO2 observations from almost 100 afternoon flask 

samples collected in the two years 2019 and 2020 are not well suited for estimating robust ffCO2 emissions in the main footprint 25 

of this urban area with a very heterogeneous distribution of sources including several point sources. The benefit of the 

continuous ∆CO-based ∆ffCO2 estimates is that they can be averaged to reduce the impact of individual hours with an 

inadequate model performance. We show that the weekly averaged ∆CO-based ∆ffCO2 observations allow for a robust 

reconstruction of the seasonal cycle of the area source ffCO2 emissions from temporally flat a-priori emissions. In particular, 

the distinct COVID-19 signal with a steep drop in emissions in spring 2020 is clearly present in these data-driven a-posteriori 30 

results. Moreover, our top-down results show a shift in the seasonality of the area source ffCO2 emissions around Heidelberg 

in 2019 compared to the bottom-up estimates from the Netherlands Organization for Applied Scientific Research (TNO). This 

highlights the huge potential of ∆CO-based ∆ffCO2 to validate bottom-up ffCO2 emissions at urban stations if the ∆CO/∆ffCO2 

ratios can be determined without biases. 
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1 Introduction 

The combustion of fossil fuels (ff) like coal, oil and gas is the major reason for the ongoing increase in the atmospheric CO2 

concentration, which causes current global warming. About 70% of the global ffCO2 emissions are released from urban hotspot 

regions (Duren and Miller, 2012). Fortunately, the atmospheric CO2 increase is weakened, since about half of the human-

induced CO2 emissions are currently taken up by the terrestrial biosphere and the oceans in roughly equal shares (Friedlingstein 40 

et al., 2022). Indeed, there are large seasonal and inter-annual variations in the non-fossil CO2 sinks and sources that need to 

be better understood in order to make predictions about future changes in the carbon cycle owing to increased atmospheric 

CO2 levels.  

 

The “atmospheric transport inversion” (Newsam and Enting, 1988) is a powerful tool for deducing surface CO2 fluxes from 45 

atmospheric CO2 observations. Hence, many studies have applied this top-down approach to constrain CO2 fluxes from 

terrestrial ecosystems and the oceans (e.g., Rödenbeck et al., 2003; Peylin et al., 2013; Jiang et al., 2016; Rödenbeck et al., 

2018; Monteil et al., 2020; Liu et al., 2021). In these calculations, ffCO2 emissions are typically prescribed using bottom-up 

information from emission inventories. These bottom-up ffCO2 emission estimates are sometimes based on national annual 

activity data that describe the fuel consumption and sector-specific emission factors (Janssens-Maenhout et al., 2019). While 50 

annual national total ffCO2 emissions are associated with low uncertainties of typically a few percent for developed countries 

(Andres et al., 2012), their proxy-based distribution on individual spatial grid cells and individual months, days or hours can 

dramatically increase the uncertainties (Peylin et al., 2013; Super et al., 2020). On the path to net zero emissions, independent 

verification of the reported national CO2 emissions is essential. This includes the evaluation of the bottom-up statistics, 

especially on the relevant urban scales where uncertainties are larger and the most important emission reduction measures are 55 

implemented. Furthermore, the seasonal cycle of bottom-up ffCO2 emissions needs to be validated, if they are used in CO2 

inversions to deduce biogenic CO2 fluxes that are dominated by a large seasonal cycle.     

 

Atmospheric transport inversions can be used to validate these bottom-up ffCO2 emissions (e.g., Graven et al., 2018; Basu et 

al., 2020). However, their success relies on the ability of the used observational tracers to separate fossil fuel from non-fossil 60 

CO2 contributions (Shiga et al., 2014; Ciais et al., 2015; Basu et al., 2016; Bergamaschi et al., 2018). The most direct tracer 

for ffCO2 is radiocarbon (14C) in CO2. Radiocarbon has a half-life of 5700 years and is therefore no longer present in fossil 

fuels (Suess, 1955). Thus, the 14C depletion in ambient air CO2 compared to a clean-air reference site can directly be used to 

estimate the recently added ffCO2 excess (∆ffCO2) at the observation site (Levin et al., 2003; Turnbull et al., 2006). These 

∆ffCO2 estimates can then be implemented in regional inversions to evaluate bottom-up ffCO2 emissions in the footprints of 65 

the observation sites (Graven et al., 2018; Wang et al., 2018). However, a drawback of 14C-based ∆ffCO2 estimates is that they 

have poor temporal and spatial coverage due to the labor-intensive and expensive 14C sampling and analysis. Therefore, 

continuously measured atmospheric excess concentrations of trace gases like CO, which is co-emitted with ffCO2, have been 
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used as alternative proxies for ∆ffCO2 (e.g., Gamnitzer et al., 2006; Turnbull et al., 2006; Levin and Karstens, 2007; van der 

Laan et al., 2010; Vogel et al., 2010). However, to construct a high-resolution ∆CO-based ∆ffCO2 record requires to correctly 70 

determine the ∆CO/∆ffCO2 ratio in the footprint of the observation site. This can indeed be a big challenge: As the CO/ffCO2 

emission ratio depends on the combustion efficiency and applied end-of-pipe measures, it is very variable for different emission 

processes and changes with time due to technological progress (Dellaert et al., 2019).  

 

In the companion paper by Maier et al. (2023a) we calculated a ∆CO-based ∆ffCO2 record for the urban Heidelberg observation 75 

site by dividing the continuous ∆CO record from Heidelberg by an average ∆CO/∆ffCO2 ratio derived from almost 350 14CO2 

flask samples collected between 2019 and 2020. We refer to this continuous ∆ffCO2 record as “∆CO-based ∆ffCO2” in the 

following but emphasize that also here we used 14CO2 flask observations to estimate the ∆CO-based ∆ffCO2. By comparing 

the hourly ∆CO-based ∆ffCO2 with the direct 14C-based ∆ffCO2 from the flasks we estimated an uncertainty for these data of 

about 4 ppm, which is almost 4 times larger than typical 14C-based ∆ffCO2 uncertainties. About half of this uncertainty could 80 

be attributed to the spatiotemporal variability of the ∆CO/∆ffCO2 ratios (Maier et al., 2023a).   

 

The goal of this study is to investigate which type of ∆ffCO2 observations provides the greater benefit in an atmospheric 

transport inversion to validate bottom-up ffCO2 emission estimates in an urban region: (1) sparse 14C-based ∆ffCO2 

observations from flasks with a small uncertainty or (2) ∆CO-based ∆ffCO2 estimates at high temporal resolution but with an 85 

increased uncertainty? For this, we adapt the CarboScope inversion framework (Rödenbeck, 2005) for the highly populated 

and industrialized Rhine Valley in Southwestern Germany around the Heidelberg observation site. We perform separate 

inversion runs with the 14C- and ∆CO-based ∆ffCO2 observations from Heidelberg. Thereby, we mainly focus on the seasonal 

cycle in the ffCO2 emissions and investigate which ∆ffCO2 information leads to robust inversion results and is thus best suited 

to validate the seasonal cycle of the bottom-up emissions in the main footprint of Heidelberg.  90 

2 Methods 

2.1 Heidelberg observation site 

Heidelberg is a medium-sized city with about 160’000 inhabitants, which is part of the Rhine-Neckar metropolitan area with 

over 2 million people. The Heidelberg observation site is located on the university campus in the north-western part of the 

city. The sampling inlet line is 30 m above ground on the roof of the institute’s building. Local ffCO2 emissions originate 95 

mainly from traffic and residential heating but there is also a nearby combined heat and power station as well as a large coal-

fired power plant and the giant industrial complex from BASF 15-20 km to the North-West. Due to its location in the Upper 

Rhine Valley, Heidelberg is frequently influenced by south-westerly air masses, which carry the signals from heterogeneous 

sources in the Rhine Valley. A more detailed description of the Heidelberg observation site can be found in Levin et al. (2011). 

The 14C-based and ∆CO-based ∆ffCO2 observations from Heidelberg are presented in Sect. 2.2.3.  100 
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2.2 Inversion setup 

The CarboScope inversion algorithm was initially introduced by Rödenbeck et al. (2003) to estimate inter-annual and spatial 

variability in global CO2 surface-atmosphere fluxes. The algorithm can also be applied to regional inversions (Rödenbeck et 

al., 2009). In the present study we adapt this inversion modelling framework to estimate ffCO2 surface fluxes in the regional 

Rhine Valley domain (see Fig. 1) with ∆ffCO2 observations from the Heidelberg observation site (see Fig. 2). This requires a 105 

high-resolution atmospheric transport model and a careful estimation of the lateral ∆ffCO2 boundary conditions.  

 

The CarboScope inversion system uses Bayesian inference to minimize the deviations between observed and modelled ∆ffCO2 

concentrations by finding the (global) minimum of the cost function (for technical details see Appendix A and Rödenbeck, 

2005). This cost function consists of a data constraint and an a-priori flux constraint, which is needed to regularize the 110 

underdetermined problem and to prevent large and unrealistic spatiotemporal ffCO2 flux variabilities (Rödenbeck et al., 2018). 

The data constraint is weighted by the uncertainties of the transport model and the ∆ffCO2 observations. Furthermore, the 

uncertainty applied for the a-priori ffCO2 emissions determines the impact of the a-priori constraint. Overall, the ratio between 

the model-data uncertainty and the a-priori flux uncertainty controls the strength of the a-priori constraint over the 

observational constraint (Rödenbeck, 2005; Kountouris et al., 2018; Munassar et al., 2022). The cost function is minimized by 115 

using a conjugate gradient algorithm with reorthogonalization after each iteration step (Rödenbeck, 2005). In this study we 

optimize every day a single scalar on the a-priori ffCO2 emissions field inside the Rhine Valley domain.  

2.2.1 Atmospheric transport model 

We use the Stochastic Time-Inverted Lagrangian Transport (STILT; Lin et al., 2003; Nehrkorn et al., 2010) model, driven by 

meteorological fields from the high-resolution Weather Research and Forecasting model (WRF, version 3.9.1.1, Skamarock 120 

et al., 2008), to simulate the atmospheric transport in the Rhine Valley domain (see red rectangular in Fig. 1). Hourly 0.25°-

resolved European ReAnalysis 5 (ERA5, Hersbach et al., 2020) data from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) were used as boundary conditions for the WRF simulations. The WRF meteorological fields have a 

horizontal resolution of 2 km and were generated by applying the MYNN (Mellor-Yamada Nakanishi Niino, Nakanishi and 

Niino, 2009) planetary boundary layer (PBL) parameterization scheme. Finally, we calculated with STILT the sensitivity of 125 

the Heidelberg observations to ffCO2 emissions from individual grid cells in the catchment area of the site (i.e. the so-called 

footprint in units of concentration per flux density) by computing for each hour the back-trajectories of 100 particles released 

from the Heidelberg receptor site. The hourly-resolved footprints have a horizontal resolution of about 1 km x 1 km (1/60° x 

1/120°, lon. x lat.). As there are many point source emissions within the Rhine Valley, we apply the STILT volume source 

influence (VSI) approach introduced by Maier et al. (2022) to model them. This model approach takes into account the effective 130 

heights (including plume rise) of the point source emissions, which are typically released from elevated chimney stacks. This 

approach substantially improved the simulation of ∆ffCO2 concentrations at the Heidelberg site, especially during situations 
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with low PBL heights (Maier et al., 2022). For the area source emissions, we apply the standard approach in STILT, which 

assumes that all emissions are released from the surface.  

 135 

 
Figure 1: (a) Map with the Central European STILT domain (blue) and the high-resolution Rhine Valley STILT domain (red). The 
observation site Heidelberg (HEI) and the marine site Mace Head (MHD), which we used as a background site to calculate the 
∆ffCO2 concentrations at Heidelberg (see Sect. 2.2.3), are indicated. (b) Zoom into the Rhine Valley domain with the mean prior 
ffCO2 emissions from the TNO inventory for 2019-2020. The blue outline in the zoom shows the “50%-footprint” range, i.e., the area 140 
accounting for 50% of the Heidelberg average footprint within the Rhine Valley.    

2.2.2 A-priori information 

We use the ffCO2 emissions from the Netherlands Organization for Applied Scientific Research (TNO, Dellaert et al., 2019; 

Denier van der Gon et al., 2019) with a horizontal resolution of about 1 km (1/60° lon. x 1/120° lat.) as a-priori estimates for 

our Rhine Valley inversion. The TNO emission inventory provides annual ffCO2 emissions for 15 different source sectors as 145 

well as sector-specific temporal profiles. In this study, we treat the ffCO2 emissions from the point source dominated “energy 

production” and “industry” TNO sectors separately due to the following reasons: (1) While the VSI approach (see above) 

strongly improves the vertical representation of point source emissions in STILT (Maier et al., 2022), it still remains difficult 

to correctly describe the mixing and transport of narrow point source plumes with meteorological fields that have a resolution 

of 2 km. (2) Due to the elevated release of point source emissions from high stacks, the Heidelberg observation site with an 150 

air intake height of only 30 m above ground is rarely influenced by distinct emission plumes from nearby point sources (see 

Fig. 4 with the ∆CO/∆ffCO2 ratio analysis in Maier et al., 2023a). This makes it difficult to evaluate those point source 

emissions with ∆ffCO2 observations from the Heidelberg observation site alone. (3) As the energy and industry point source 

emissions in TNO are directly based on the European Pollutant and Transfer Register (E-PRTR) database, which provides 
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information on the location and emission of the major facilities in Europe (Kuenen et al., 2014), we expect them to be better 155 

known than the more diffuse area source emissions in the Rhine Valley. We thus focus on how well our observations are able 

to constrain area source emissions in the footprint of the Heidelberg site.   

 

We, thus, prescribe the energy and industry emissions in our inversion setup and adjust only the area source emissions in the 

Rhine Valley, which mainly originate from the heating and traffic sector. TNO provides monthly profiles for the ffCO2 160 

emissions from each of the 15 source sectors. We use the monthly profiles for 2019, which are European averages and thus 

identical for all countries within the Central European STILT domain (see blue box in Fig. 1a). For 2020 TNO provides 

country-specific temporal profiles to account for the large variabilities in length and intensity of the COVID-19 restrictions 

among the individual countries. As Germany and France are both part of the Rhine Valley domain, we decided to use the 

average of the German and French temporal profiles for 2020 to construct suitable sector-specific monthly profiles for the 165 

Rhine Valley domain in 2020. For all inversion runs performed in this study, we use these TNO monthly profiles to calculate 

from the corresponding annual total emissions monthly ffCO2 emissions for the energy and industry sectors.  

 

In this study, we aim to evaluate the information of the ∆ffCO2 observations regarding the seasonal cycle of the area source 

ffCO2 emissions. That is why we apply in our standard inversion runs temporally constant (“flat”) a-priori ffCO2 emissions 170 

for the area sources. For this, we use the (spatially highly resolved) 2-year average TNO area source emissions of the years 

2019 and 2020. Finally, we also perform a sensitivity inversion run, for which we replace the temporally flat a-priori area 

source emissions by monthly varying a-priori area source emissions. For this, we use for both, the area and the point source 

emissions, the monthly profiles from TNO described above (i.e., the European average monthly profiles in 2019 and the mean 

of the German and French monthly profiles in 2020).  175 

2.2.3 Observations 

In separate inversion runs, we use either the discrete 14C-based ∆ffCO2 estimates from flasks, collected as integrals over one 

hour, or the hourly ∆CO-based ∆ffCO2 record from the Heidelberg observation site (see Fig. 2). The companion paper (Maier 

et al., 2023a) describes in detail the calculation of the 14C-based ∆ffCO2 estimates as well as the construction of the continuous 

∆CO-based ∆ffCO2 record. In short, the ∆CO-based ∆ffCO2 record has been constructed by dividing the continuously 180 

measured hourly ∆CO offsets compared to the marine reference site Mace Head (MHD) by an average ∆CO/∆ffCO2 ratio of 

8.44±0.07 ppb/ppm, which was determined from ∆CO and 14C-based ∆ffCO2 observations of almost 350 day- and night-time 

flask samples collected in 2019 and 2020. Correlation of these DCO and DffCO2 values showed only small variability, because 

heating and traffic CO/ffCO2 emission ratios in the footprint of Heidelberg are currently very similar around 8 ppb/ppm. In 

the inversion, however, we only use the afternoon 14C-based and ∆CO-based ∆ffCO2 observations between 11 and 16 UTC, 185 

as night-time situations are associated with a poorer transport model performance. Times for the hourly-integrated ∆ffCO2 

observations are reported as the start of the hour, e.g. 11 UTC corresponds to the time period between 11 and 12 UTC. The 
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average uncertainties of the 14C- and ∆CO-based ∆ffCO2 concentrations were estimated to 1.1 ppm and 3.9 ppm, respectively 

(Maier et al. 2023a,b)   

 190 

Furthermore, we apply a 2σ-selection criterion to the ∆ffCO2 observations as introduced by Rödenbeck et al. (2018). For this, 

we take the high-resolution annual total ffCO2 emissions from TNO and apply the hourly sector-specific temporal profiles. 

These hourly resolved ffCO2 emissions are then transported with the WRF-STILT model to simulate hourly ∆ffCO2 

concentrations. The mean difference between the simulated and the ∆CO-based ∆ffCO2 observations is only -0.04 ppm during 

afternoon hours with a standard deviation of 6.76 ppm (i.e., almost 100% of the mean value), which indicates that the model 195 

is able to reproduce, on average, the afternoon ∆CO-based ∆ffCO2 observations without a significant mean bias. This directly 

allows the application of the 2σ-selection criterion, which means that we only use those ∆ffCO2 observations, whose deviation 

to the modelled ∆ffCO2 is smaller than 2 times the standard deviation between observed and modelled ∆ffCO2, i.e. which is 

within the 2σ-range. Therewith, we exclude the data outside the 2σ-range, which obviously cannot be represented with our 

transport model. Examples of such data are observations during very strong air stagnation events in winter, which are often 200 

underestimated in the model, or vice versa, situations when the model overestimates the point source influence at the 

observation site. Since the inversion system assumes a Gaussian distribution for the model-data mismatch, these extreme 

outlier events would have a strong impact on the inversion results (Rödenbeck et al., 2018). Thus, this 2σ-selection can be seen 

as an additional regularization for the inversion to avoid using situations with unrealistic model simulations. We apply the 2σ-

selection criterion to both the 14C-based ∆ffCO2 observations from the afternoon flask samples and the afternoon hours of the 205 

∆CO-based ∆ffCO2 record.  

 

 
Figure 2: Afternoon ∆ffCO2 observations from the Heidelberg observation site. The grey curve indicates the ∆CO-based ∆ffCO2 
record and the black circles the 14C-based ∆ffCO2 estimates from flasks. Both, the 14C-based and ∆CO-based ∆ffCO2 observations 210 
are 2σ-selected. (a) shows the ∆ffCO2 excess compared to the marine background site Mace Head (i.e. ∆ffCO2,MHD in Eq. 1). (b) 
shows the ∆ffCO2 excess compared to the Rhine Valley (RV) boundary (i.e. ∆ffCO2,RV in Eq. 1) minus the modelled ∆ffCO2,RV 
contributions from point sources within the Rhine Valley (∆ffCO2,	RV

point). The data in (b) are effectively used to optimize the area source 
emissions in the Rhine Valley.  
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2.2.4 Lateral boundary conditions 215 

We set up the inversion system for the Rhine Valley domain (6.00°E – 10.25°E, 47.75°N – 50.25°N, red rectangular in Fig. 

1a) around the Heidelberg observation site and run the inversion for the full two years 2019 and 2020 within this domain. 

However, as we calculated the 14C- and ∆CO-based ∆ffCO2 excess compared to MHD (see Maier et al., 2023a), we need to 

define a suitable ∆ffCO2 background representative for the boundary of the Rhine Valley domain. In the following, we call 

this the “Rhine Valley ∆ffCO2 background”. By definition, we assume that the D14CO2 observations from MHD correspond to 220 

∆ffCO2 = 0 ppm, which is reasonable since the MHD 14CO2 samples were only collected during situations with clean westerly 

air masses from the Atlantic. Therefore, it seems to be suitable to apply the MHD (∆ffCO2 = 0 ppm) background to the entire 

western boundary of the Central European STILT domain (blue rectangular in Fig. 1a). But how representative is this 

background for the other boundaries of the Central European domain? Maier et al. (2023b) estimated the representativeness 

bias of the MHD background for the eastern boundary of the Central European domain, which is likely the most polluted  225 

border. They showed that the representativeness bias is on average smaller than 0.1 ppm for an observation site in Central 

Europe. Therefore, we neglect this bias and assume ∆ffCO2 = 0 ppm also at the non-western boundaries of the Central European 

domain. To estimate the Rhine Valley ∆ffCO2 background we then use a nested STILT model approach with 2 km horizontal 

resolution WRF meteorology in the Rhine Valley domain and coarser (10 km) WRF resolution in the Central European STILT 

domain outside the Rhine Valley. For both domains we use hourly ffCO2 emissions from TNO (Dellaert et al., 2019; Denier 230 

van der Gon et al., 2019). This nested approach allows us to separate the ffCO2 contributions from each STILT domain. With 

this setup we model for the Heidelberg site for each hour during 2019 and 2020 the ∆ffCO2 contributions from the Central 

European domain outside the Rhine Valley (∆ffCO2,CE-RV), which we use as the Rhine Valley background. We then subtract 

this modelled Rhine Valley ∆ffCO2 background (∆ffCO2,CE-RV) from the estimated ∆ffCO2 excess compared to MHD 

(∆ffCO2,MHD), to obtain the ∆ffCO2 excess compared to the Rhine Valley boundary (∆ffCO2,RV): 235 

∆ffCO2,RV = ∆ffCO2,MHD - ∆ffCO2,CE-RV         (1) 

The ∆ffCO2,RV excess concentrations compared to the Rhine Valley boundary are then introduced into the inversion system to 

constrain the ffCO2 emissions within the Rhine Valley. Note, however, that the actual data constraint is the ∆ffCO2,RV excess 

minus the modelled ∆ffCO2 contribution from the point sources within the Rhine Valley (∆ffCO2,	RV
point, see Fig. 2b), since we 

prescribe the point source emissions and only optimize for the area source emissions.  240 

 

We also want to emphasize that the ∆ffCO2,RV excess concentrations rely on the STILT transport and the TNO emissions to 

be correct. A potential bias in the modelled transport or the ffCO2 emissions outside the Rhine Valley would directly translate 

into a bias in the ∆ffCO2,RV excess concentrations. This in turn might affect the deduced ffCO2 fluxes within the Rhine Valley 

domain. To assess the impact of the Rhine Valley ∆ffCO2 background (∆ffCO2,CE-RV) on the a-posteriori ffCO2 fluxes in the 245 

main footprint of Heidelberg, we also perform an inversion run with an alternative Rhine Valley ∆ffCO2 background. We 

again model this alternative background with STILT but apply the 0.25°-resolved forecasting meteorological data from the 
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Integrated Forecasting System (IFS) instead of the WRF meteorology (see Sect. 2.2.1). Moreover, we replace the TNO 

emissions by the Emissions Database for Global Atmospheric Research (EDGAR, version 4.3.2, Janssens-Maenhout et al., 

2019) emissions to prescribe the ffCO2 fluxes in Europe. This EDGAR inventory was updated to the years 2019 and 2020 by 250 

taking into account the British Petroleum (BP) statistics on fossil fuel consumptions and was remapped on a grid with a 

horizontal resolution of 0.25°. Note, that we only use this coarser STILT resolution for simulating the alternative Rhine Valley 

∆ffCO2 background. The inversion itself is again performed with the high resolution WRF meteorology (see Sect. 3.3).  

2.2.5 Model-data mismatch 

The model-data mismatch (MDM) is calculated by subtracting the modelled from the observed ∆ffCO2,RV concentrations. The 255 

uncertainties of the ∆CO-based and 14C-based ∆ffCO2 observations are estimated to be 3.9 ppm and 1.1 ppm, respectively (see 

Maier et al., 2023a). The transport model uncertainty of urban, continental sites like Heidelberg with complex local circulations 

was assumed to be 5 ppm. The quadratically added observational and transport model uncertainties yield the total uncertainty 

of the model-data mismatch, which we call the MDM error in the following. To account for the temporal correlations of 

observations that are close together in time, we apply a data density weighting as described in Rödenbeck (2005). It artificially 260 

increases the MDM error, so that all observations within one week lead to the same constraint as a single observation per week. 

The weighting interval was set to one week because this is a typical duration of synoptic weather patterns. Depending on the 

number of observations per week, the final MDM error of individual hourly observations ranges between 5.1 and 7.8 ppm in 

the case of 14C-based ∆ffCO2 from flasks and between 23.7 and 37.5 ppm in the case of the ∆CO-based ∆ffCO2 record.  

 265 

Based on our analysis results presented in Sect. 3.1, we decided to apply a weekly averaging in the case of the ∆CO-based 

∆ffCO2 inversion (see Sect. 3.2), which we briefly describe here. The MDM vector for the ∆CO-based ∆ffCO2 inversion has 

a length of 3237, which represents the number of the (2s-selected) afternoon hours with available ∆CO-based ∆ffCO2 

observations. Weekly averaging means that each hourly entry of the MDM vector within a week is replaced by the respective 

weighted average MDM of that week. The weight of the individual hours within a week is defined by the MDM error of the 270 

respective hours. This means that the weekly averaged MDM vector has the same length as the original MDM vector. We do 

not modify the hourly MDM errors when applying the weekly averaging. This means that the weekly averaging would not 

change anything if all hourly MDM entries within a week were initially (by chance) the same.  

 

2.2.6 Degrees of freedom 275 

Since we only use ∆ffCO2 observations from one single station in the Rhine Valley, we restrict the number of degrees of 

freedom in our inversion system so that the inverse problem is not too strongly underdetermined. Therefore, we only investigate 

the area source emissions in the Rhine Valley and prescribe the energy and industry emissions, as described above. Moreover, 

the inversion system adjusts only one spatial scaling factor per day, which increases or decreases the area source emissions in 
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the whole Rhine Valley domain equally. Hence, we expect that the high-resolution TNO inventory is much better at describing 280 

the large spatial heterogeneity in the ffCO2 emissions within the Rhine Valley than our top-down approach. As we want to 

investigate the seasonal cycle of the ffCO2 emissions, additional temporal degrees of freedom are needed. For this, we choose 

a temporal correlation length of about 4 months (“Filt3T” in CarboScope notation), which should be appropriate to explore 

seasonal cycles. Finally, since the Heidelberg observations cannot be used to constrain the emissions in the whole Rhine-

Valley domain, we only analyze the a-posteriori area source emissions in the (most constrained) nearfield of the observation 285 

site. We define the nearfield of Heidelberg as the area which accounts for 50% of the temporally accumulated footprint in the 

Rhine Valley domain for the two years 2019 and 2020 (blue surrounded region in Fig. 1b).  
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3 Results 

3.1 Potential of flask-based ∆ffCO2 estimates to investigate the seasonal cycle in ffCO2 emissions 

 290 
Figure 3: Area source ffCO2 emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. Shown are the flat prior 
emissions (black dashed line), the a-posteriori emissions for different prior uncertainties between 20% and 200% of the flat a-priori 
emissions (colored solid lines) as well as the bottom-up estimates from TNO (grey line). In panel (a) 14C-based ∆ffCO2 estimates from 
94 2σ-selected afternoon flasks from Heidelberg were used as observational input (cf. Fig. 2). Panel (b) shows the inversion results 
if the ∆CO-based ∆ffCO2 observations subsampled during the 94 flask sampling hours were used. In the panels (c) and (d) the 295 
inversion was constrained with one hourly afternoon (at 13 UTC) ∆CO-based ∆ffCO2 observation every week collected on the two 
random working days Tuesday (c) or Friday (d). Panel (e) shows the results if each day at 13 UTC one hypothetical flask is collected. 
In panel (f), the 7 afternoon flask observations within one week are averaged. 
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First, we investigate the potential of flask-based ∆ffCO2 estimates to resolve the seasonal cycle of the area source ffCO2 

emissions around the urban Heidelberg observation site. For this we use the average of the TNO area source ffCO2 emissions 300 

of the two years 2019 and 2020 as a temporally constant prior estimate (see Sect. 2.2.2). To analyze the impact of the 

observational constraint on the a-posteriori results, we apply different prior uncertainties, which effectively lead to different 

ratios between a-priori and data constraint (Fig. 3). In a first inversion run (Fig. 3a), we use the 14C-based ∆ffCO2 observations 

from the 94 afternoon flasks collected in the two years 2019 and 2020 in Heidelberg. The distribution of the flask samplings 

over the two years can be seen in Fig. 2. Due to various reasons (e.g. testing of the flask sampler associated with frequent 305 

changes of the flask sampling strategy) the flasks were not evenly collected and especially the winter 2019/2020 has only 

limited flask coverage. The 14C-based a-posteriori ffCO2 emissions show a clear seasonal cycle for the larger prior 

uncertainties, which is mainly data-driven. However, large and unrealistic a-posteriori flux variabilities emerge for prior 

uncertainties larger than 50% of the flat a-priori emissions. For example, the low flask coverage during the winter period 

2019/2020 leads to a huge maximum in the area source ffCO2 emissions in November 2019 when the inversion algorithm tries 310 

to fit individual flask observations that have large model-data mismatches (see Fig. B1). Similarly, the flask samples in summer 

2020 with near-zero or even negative ∆ffCO2 estimates, which lead to negative model-data mismatches (cf. Fig. 2b and Fig. 

B1) cause a strong reduction of the a-posteriori emissions.  

 

Fig. B1 shows the agreement between the flat prior and the different a-posteriori-based model results and the flask 315 

observations. The flat prior emissions lead to a mean bias (observed minus modelled ∆ffCO2 concentration) of 0.68 ppm with 

a standard deviation of 5.61 ppm. The a-posteriori emissions based on a 50% prior uncertainty reduces the mean bias and the 

standard deviation to 0.35 ± 5.23 ppm. However, for higher prior uncertainties, the mean bias increases again and only the 

standard deviation is further reduced; e.g. a prior uncertainty of 150% leads to a mean bias of 0.54 ± 4.78 ppm between 

observed and modelled ∆ffCO2 concentration. This might be an indication for overfitting. To further investigate the 320 

performance of the inversion, we conducted a reduced chi-squared (𝜒+,) analysis. The 𝜒+, values decrease from 1.10 (for a 50% 

prior uncertainty) to 0.97 (150% prior uncertainty). Typically, 𝜒+, values smaller than 1 are an indication for overfitting if the 

model-data mismatch error is chosen properly. However, as the 𝜒+, values (for prior uncertainties between 50 and 200%) are 

all close to 1 (within ±10%), the 𝜒+, values might not be suitable to demonstrate overfitting in our case. Overall, this urban 

inversion setup obviously needs a very strong regularization through low prior uncertainties to prevent fitting of individual 325 

flask observations and thus unrealistic variability in the a-posteriori ffCO2 emissions. This indicates that the applied 2σ-filtering 

approach (see Sect. 2.2.3) is not sufficient in this urban setting.   

 

We further investigate whether these overfitting patterns can be attributed to the uneven distribution of the flask samples. For 

this, we subsample the continuous ∆CO-based ∆ffCO2 record. In a first step, we use the ∆CO-based ∆ffCO2 observations from 330 

those 94 afternoon hours with flask samplings as observational constraint (Fig. 3b). For the most part, the subsampled ∆CO-

based ∆ffCO2 observations reproduce the a-posteriori results of the 14C-based ∆ffCO2 estimates. However, there are differences 
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like the shifted summer minimum in 2019. These differences can be explained by the deviations between the 14C-based and 

∆CO-based ∆ffCO2 estimates in Fig. 2, and thus the variability of the ∆CO/∆ffCO2 ratios that we fully neglected by using a 

constant mean ratio for constructing the ∆CO-based ∆ffCO2 record. Thus, when comparing the results with the TNO 335 

seasonality of emissions (grey histogram) it seems obvious that the 14C-based ∆ffCO2 estimates provide the more accurate data 

than the subsampled ∆CO-based ∆ffCO2 record. However, the general similarity between both results means that we can use 

the continuous ∆CO-based ∆ffCO2 record to investigate an even data coverage with hypothetical Heidelberg flask samples. 

The middle panels in Fig. 3 show the inversion results if the ∆CO-based ∆ffCO2 record is subsampled for one flask every week 

on Tuesday (c) or on Friday afternoon (d), respectively. We chose Tuesday and Friday as random examples for two working 340 

days. The evenly distributed weekly flasks strongly dampen the variability of the a-posteriori results. However, they show 

large differences depending on which day of the week the hypothetical afternoon flask was collected. Whereas the Tuesday 

flasks lead to a quite unrealistic gradual increase in the ffCO2 emissions between January and November 2019, the Friday 

flasks show a more realistic seasonal cycle in this year. In contrast, both Tuesday and Friday flasks lead to an unexpected 

maximum in summer 2020. The comparison between the (hypothetical) flask concentrations and the a-posteriori results 345 

illustrates again that the inversion mainly tries to fit those individual hours with the largest MDM (not shown). This implies 

that the a-posteriori results are still dependent on the selection of the individual hypothetical flasks. Therefore, it seems that 

even a uniform data coverage with a realistic flask sampling frequency of one flask per week is not sufficient to determine a 

plausible seasonal cycle of the area source ffCO2 emissions around Heidelberg (as e.g. suggested by the TNO inventory). 

However, the situation should be improved in the case of real, hourly-integrated 14C flasks that are collected e.g. once per 350 

week, as the average ∆CO/∆ffCO2 ratio used to construct the ∆CO-based ∆ffCO2 record might be inappropriate for individual 

hours.  

 

Finally, we investigated the benefit of an extremely high flask sampling frequency with one flask per afternoon (see Fig. 3e). 

Note, that such a high-frequent flask sampling increases the MDM error because of the applied data density weighting (see 355 

Sect. 2.2.5). Here, the a-posteriori results seem to approach towards the TNO bottom-up emissions in 2019. However, there 

are still unexpectedly strong deviations between the top-down and bottom-up estimates in the summer half-year 2020 for 

increased prior uncertainties. These differences might be caused by individual afternoon hours with a negative MDM in 

summer 2020. To reduce the impact of such hours, we perform a separate inversion run where we average the modelled and 

observational data of all 7 hypothetical afternoon flasks within each week (Fig. 3f, see Sect. 2.2.5 for a description of the 360 

weekly averaging of the MDM vector). This further reduces the spread of a-posteriori results, particularly in summer 2020, 

further approaching towards the seasonal amplitude of the bottom-up TNO emissions. Thus, several afternoon flasks per week 

would be needed so that the influence of individual flasks on the inversion results can be averaged out and a plausible seasonal 

cycle amplitude in the area source ffCO2 emissions around Heidelberg can be obtained.  

 365 
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Overall, these results show that the a-posteriori estimates are very sensitive to individual flask observations in the Heidelberg 

target region with very heterogeneously distributed ffCO2 sources. Obviously, the transport model fails to appropriately 

simulate the ∆ffCO2 concentrations for individual afternoon hours. This can be explained by remaining shortcomings in the 

transport model but also by the enormous heterogeneity of the ffCO2 emissions in the footprint of the Heidelberg observation 

site. As already mentioned in Sect. 2, modelling individual plumes from point source emissions is a particular challenge in this 370 

urban region, and e.g. the forward model estimates of point source signals, even with the improved VSI approach seem often 

incorrect, at least at a temporal resolution of one hour. Moreover, there might also be inaccuracies in the TNO point source 

emissions themselves. Finally, part of the MDM can also be explained by uncertainties in the proxies used to spatially 

disaggregate the area source emissions in the TNO inventory (Super et al., 2020).  

 375 

3.2 Potential of continuous ∆CO-based ∆ffCO2 estimates to investigate the seasonal cycle in ffCO2 emissions 

 
Figure 4: Area source ffCO2 emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. In (a) a flat prior (black dashed 
line) was used for the area source emissions and in (b) a monthly prior, i.e. the monthly bottom-up estimates from TNO (grey dashed 
line) were used as a-priori estimate. Shown are the a-posteriori emissions for different prior uncertainties between 20 and 200% 380 
(colored solid lines). The inversion was constrained with weekly averages of hourly, 2σ-selected afternoon ∆CO-based ∆ffCO2 
observations from Heidelberg. For comparison, the posterior emissions with 200% prior uncertainty from (a) are shown as a yellow 
dashed line in (b).  

The big advantage of the continuous ∆CO-based ∆ffCO2 record is that it provides a full temporal coverage of the inversion 

period and can, thus, also be averaged such that the sensitivity of the a-posteriori results on individual (hourly) model-data 385 

mismatches with poor model performance is strongly reduced. In Appendix C, we investigate over which time interval the 

hourly ∆CO-based and modelled ∆ffCO2 concentrations should be averaged to sufficiently reduce the impact of the point 

source emissions on the a-posteriori area source emissions. For this, we perform in addition to the standard inversion runs with 

fixed point source emissions further sensitivity runs with adjustable point source emissions. Ideally (i.e. if the point source 

emissions are well described in TNO), the a-posteriori area source emissions are identical for both inversion runs, meaning 390 

that the modelling of the better known point source emissions has no impact on the area source emissions. It turns out that the 

averaging interval of one week strongly reduces the impact of the point sources on the a-posteriori area source emissions (see 

blue curves in Fig. C1). It limits the differences between the a-posteriori area source emissions of the inversion runs with fixed 
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and adjustable point source emissions to below 30% for individual seasons. Averaged over the two years 2019 and 2020, these 

differences are below 10%. For the ∆CO-based ∆ffCO2 inversion, we therefore apply a weekly averaging to the MDM vector 395 

(as described in Sect. 2.2.5).  

 

In the following, we use the weekly averaged afternoon ∆CO-based ∆ffCO2 observations to investigate the seasonal cycle of 

the area source ffCO2 emissions around Heidelberg (see Fig. 4a). If the prior uncertainty is chosen large enough, the seasonal 

cycle amplitude of the a-posteriori estimates agrees with that of the TNO inventory reasonably well. Moreover, the data-driven 400 

inversion results distinctly show the effect of the COVID-19 restrictions with lower emissions in 2020 compared to 2019. In 

Southwestern Germany, the first COVID-19 lockdown started in mid-March 2020. Indeed, the inversion results show at that 

time a strong decrease in the area source ffCO2 emissions. In particular, the decline in the a-posteriori ffCO2 emissions is much 

steeper in spring 2020 compared to spring 2019 and the minimum of the seasonal cycle is flatter in 2020 as it extends over 

several summer months. The sharp drop in emissions at the beginning of the COVID-19 restrictions in spring 2020 can also 405 

be seen in Fig. D1, where we plot the difference between the seasonal cycles of the two years.  

 

The agreement with the phasing of the seasonal cycle of the TNO inventory seems to be better in 2020 than in 2019. As 

described in Sect. 2.2.2., TNO provides for 2020 country-specific “COVID-19” time profiles, which take into account the 

timing and the strength of the respective national restrictions. For this year, Fig. 4 shows the average of the monthly time 410 

profiles from Germany and France applied to the annual Rhine Valley emissions (grey histogram). This seasonal cycle for 

2020 seems to be confirmed by our observations. However, the TNO seasonal cycle shown for 2019 is a general estimate 

constructed for the whole Central European domain (see Fig. 1) that is neither specific for individual countries nor for the year 

2019. It assumes minimum emissions in July, whereas our observations show minimum emissions in August and September. 

Indeed, this shifted minimum of the seasonal cycle coincides with the summer holidays in Southwestern Germany, which are 415 

from August to mid-September.  

 

We further investigate the consistency of the seasonal cycles from the bottom-up and the top-down estimates. For this, we 

explore the effect of using the monthly TNO bottom-up seasonal cycle for the a-priori emissions (see Fig. 4b). As expected, 

the phase of the a-posteriori seasonal cycle is in agreement with the TNO inventory in 2020. However, in 2019 the a-priori 420 

information pulls the summer emission minimum to July. With weakening regularization of the prior the inversion algorithm 

tries to shift the minimum of the a-posteriori seasonal cycle from July towards August and September. Due to the limited 

temporal degrees of freedom of the inversion this shifting results in artificially increasing the emissions in May 2019 and 

lowering them in October. Hence, these results might point to some inconsistencies in the seasonality of the TNO emissions 

in the main footprint of the Heidelberg observation site. In fact, correct phasing of the fossil emissions is essential when 425 

prescribed ffCO2 emissions are used in CO2 model inversions to separate the fossil from the biogenic contribution in 

atmospheric CO2 observations and constrain CO2 fluxes from the biosphere. Although these biospheric CO2 signals are 
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typically estimated with observations from sites that are more remote and rural than the urban Heidelberg site, the correct 

seasonality in prescribed ffCO2 emissions is still important when deducing the month-to-month variations in the biospheric 

CO2 fluxes.  430 

 

Overall, the (weekly averaged) ∆CO-based ∆ffCO2 record seems to be well suited to estimate (and validate) the seasonal cycle 

of bottom-up ffCO2 emissions in the nearfield of the Heidelberg observation site. This is a very promising result, especially 

considering how simply the ∆CO-based ∆ffCO2 record was constructed. It is based on the two-year average ∆CO/∆ffCO2 ratio 

estimated from 14C measurements on flask samples where a potential seasonal cycle in the ∆CO/∆ffCO2 ratios was fully 435 

neglected.  

3.3 Robustness of the ∆CO-based ∆ffCO2 inversion results 

 
Figure 5: (a): Area source ffCO2 emissions in the nearfield (blue surrounded area in Fig. 1b) of Heidelberg for different sensitivity 
runs. Shown are the a-posteriori results for 20% reduced flat a-priori emissions (solid magenta line), for an alternative Rhine Valley 440 
∆ffCO2 background modelled with EDGAR emissions (blue) and for an assumed seasonal cycle in the ∆CO/∆ffCO2 ratios (cyan, see 
Fig. E1). As a reference, the a-posteriori result of the base inversion from Fig. 4a is shown in black. All a-posteriori results correspond 
to a 150% prior uncertainty. The dotted lines indicate the flat prior emissions (black) and the by 20% reduced prior emissions 
(magenta). (b): Relative deviations between the different a-posteriori area source emissions of the sensitivity runs and the base 
inversion in %. 445 

In the following we investigate the robustness of the (weekly averaged) ∆CO-based ∆ffCO2 inversion results. For this, we (1) 

reduce the flat prior emissions by 20%, (2) assume a seasonal cycle in the ∆CO/∆ffCO2 ratios, and (3) apply an alternative 

Rhine Valley ∆ffCO2 background. We show in Fig. 5 the respective a-posteriori results for a prior uncertainty of 150%, which 
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constitutes enough weighting on the (weekly averaged) ∆CO-based ∆ffCO2 observations to reconstruct the seasonal cycle from 

the flat a-priori area source ffCO2 emissions (see Fig. 4a). Moreover, the 150% prior uncertainty reduces the mean bias between 450 

the weekly averaged ∆CO-based ∆ffCO2 observations and the a-posteriori fits to 0.10±1.89 ppm (compared to the mean bias 

of 0.65±2.23 ppm, which one gets when using the flat prior emissions). Further increasing the prior uncertainty to 200% leads 

to only neglectable changes in the mean bias (0.11±1.88 ppm).   

 

First, if the a-priori area source ffCO2 emissions in the Rhine Valley domain are equally reduced by 20% (see dotted magenta 455 

line in Fig. 5a), the ∆CO-based ∆ffCO2 inversion manages to compensate for almost all of this bias (compare the magenta 

curves with the black curves in Fig. 5). The deviations between the a-posteriori emissions of the inversion runs with perturbed 

and unperturbed flat prior emissions is typically below 5% for all seasons (Fig. 5b). Accordingly, the a-posteriori seasonal 

cycle of the ffCO2 emissions is hardly affected by a potential bias in the flat prior emissions. The deviations between the annual 

totals of the a-posteriori estimates of the perturbed and unperturbed prior inversion runs is only 2% for both years. This means 460 

that on an annual scale about 90% of this 20%-bias in the perturbed flat prior could be corrected for with the observational 

constraint.  

 

With the second sensitivity test, we want to investigate the effect of the ∆CO/∆ffCO2 ratios used to construct the ∆CO-based 

∆ffCO2 record. For our base inversion, the ∆CO-based ∆ffCO2 record was constructed by using the average ∆CO/∆ffCO2 ratio 465 

of 8.44±0.07 ppb/ppm, which was calculated from all flask samples collected in Heidelberg in 2019 and 2020. However, as 

discussed in Maier et al. (2023a), the ratio during summer with lower signals is hard to determine and thus less constrained. 

Indeed, the winter flasks show a slightly higher mean ∆CO/∆ffCO2 ratio (8.52±0.08 ppb/ppm, R2=0.89) compared to the 

summer flasks (8.08±0.17, R2=0.36). The question is thus: How would our inversion results change if the ∆CO/∆ffCO2 ratios 

would have a (small) seasonal cycle? For this, we assume a seasonal cycle in the ratios for the two years with 5% lower ratios 470 

in the summer half-year and correspondingly 5% larger ratios in the winter half-year, so that the two-year mean is still 8.44 

ppb/ppm (see Fig. E1). Notice, that we use the ratios to calculate the ∆ffCO2,MHD excess compared to the MHD background 

site and then subtract the modelled Rhine Valley ∆ffCO2,CE-RV background to get the ∆ffCO2,RV observations for our Rhine 

Valley inversion (see Eq. 1). This effectively results in summer and winter ∆ffCO2 concentrations being more than 5% larger 

and lower, respectively, than the ∆ffCO2 concentrations based on the average ratio. Obviously, this leads to larger a-posteriori 475 

emissions (cyan curve in Fig. 5) during summer and lower emissions in winter compared to the base inversion results. The 

largest seasonal deviations to the base inversion a-posteriori emissions are 10%. Since by construction the mean of the 

seasonally varying ratios corresponds to the average ratio used for the base inversion, the effect on the annual totals of the a-

posteriori ffCO2 emissions is neglectable.    

 480 

Finally, we investigate the impact of the lateral ∆ffCO2 boundaries on the area source ffCO2 emissions estimates. For our base 

inversion, we used the high-resolution TNO emission inventory and WRF-STILT to model for the Heidelberg observation site 
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the ∆ffCO2 contributions from the European STILT domain outside the Rhine Valley (see Sect. 2.2.4). For the following 

sensitivity run (blue curve in Fig. 5), we model the Rhine Valley ∆ffCO2 background with ffCO2 emissions based on the 

EDGAR emissions and with a coarser meteorology in STILT (see Sect. 2.2.4). The application of this alternative Rhine Valley 485 

∆ffCO2 background leads to more than 10% lower emissions in the autumn of both years, which can be explained by strong 

deviations between the weekly averages of the two modelled background concentrations during these periods (see Fig. F1). 

Thus, the Rhine Valley background affects the seasonal cycle of the area source ffCO2 emissions. During summer, the 

deviations to the base inversion results are below 5%. The annual totals of the area source ffCO2 emissions around Heidelberg 

are 3% and 7% lower in the years 2019 and 2020, respectively, if the alternative Rhine Valley ∆ffCO2 background is used.  490 

4 Discussion and Conclusions 

In the present study we investigate the potential of 14C-based and ∆CO-based ∆ffCO2 observations to evaluate the ffCO2 

emissions and their seasonal cycle in an urban region around the Heidelberg observation site. This urban area is characterized 

by complex topography and large spatial heterogeneity in ffCO2 sources, including several nearby point sources. Thus, deficits 

in the transport model as well as inaccuracies in the driving meteorology and the prescribed point source emissions strongly 495 

impact the model-data mismatch at the observation site, which will be minimized by the inversion algorithm. We focus on the 

estimation of the ffCO2 emissions from area sources, since the observations from the Heidelberg site with an air intake height 

of 30 m above the ground are not suitable to constrain the emissions of nearby point sources with elevated stack heights. 

Indeed, the analysis of the ∆CO/∆ffCO2 ratios in Maier et al. (2023a) showed that the Heidelberg observation site is hardly 

influenced by pure point source emission plumes. Moreover, we expect that point source emissions can be better quantified a-500 

priori from bottom up compared to area source emissions. Therefore, we prescribe the better known point source ffCO2 

emissions in the inversion setup and only adjust the area source emissions in the Rhine Valley domain.  

4.1 Can flask-based ∆ffCO2 observations be used to predict the seasonal cycle of ffCO2 emissions at an urban site? 

To investigate the potential of ∆ffCO2 observations to predict the seasonal cycle of the area source ffCO2 emissions around 

Heidelberg, we applied temporally constant (flat) a-priori ffCO2 emissions in our inversion system, such that all seasonal 505 

information comes from the atmospheric data. We have shown that 14C-based ∆ffCO2 observations from almost 100 hourly 

flask samples collected in the two years 2019 and 2020 are not sufficient to reconstruct a robust seasonal cycle from the flat 

a-priori estimate. As the Bayesian inversion setup assumes a Gaussian distribution for the model-data mismatch, the inversion 

algorithm tries to primarily reduce the largest model-data differences. Therefore, we applied a 2σ selection to exclude the flask 

events with the largest model-data mismatches and thus worse model performances. However, the a-posteriori ffCO2 emissions 510 

are still very sensitive to individual flask observations. This may suggest that the 2σ filter is not sufficient in a densely populated 

high fossil fuel environment like Heidelberg with a complex topography. Therefore, strong regularization through small a-
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priori uncertainties (i.e. < 50% prior uncertainty, Fig. 3a) is needed in the case of flask observations to avoid large overfitting 

patterns in the inversion results.  

 515 

Due to the fortunate circumstance of currently having similar heating and traffic emission ratios in the main footprint of 

Heidelberg, we decided to use the two-year average 14C-based ∆CO/∆ffCO2 ratio from the flasks to construct a continuous 

∆CO-based ∆ffCO2 record (see Maier et al., 2023a). By subsampling this ∆CO-based ∆ffCO2 record, we further investigate 

the potential of a uniform data coverage with one hypothetical afternoon flask per week to reliably estimate the seasonal cycle 

in the area source emissions. Indeed, several afternoon flask samples per week are needed, as well as an averaging of the flask 520 

observations within one week so that the overfitting of individual flask data is reduced. However, the situation should be better 

for real, e.g. sub-weekly, 14C flasks compared to the subsampled ∆CO-based ∆ffCO2 record. As the applied two-year average 

∆CO/∆ffCO2 ratio may be inappropriate for individual hours, this could amplify the sensitivity to the individual hypothetical 

flasks.  

4.2 What is an appropriate averaging interval for urban observations? 525 

The main advantage of the ∆CO-based ∆ffCO2 record is its continuous data coverage that allows an averaging so that the 

influence of individual hours with poor model performance on the inversion results is strongly reduced. The comparison of 

Fig. 3e with Fig. 3f and Fig. 4a clearly illustrates that the averaging of multiple hourly observations leads to a reduction of the 

a-posteriori flux variability. In this urban region, such an averaging is especially necessary because of the shortcomings in the 

STILT model and its driving meteorology to describe the transport and mixing of nearby point source emissions. Imagine that 530 

the plume of a point source arrives a few hours earlier or later at the observation site than simulated by STILT. In such cases, 

averaging is inevitable to prevent a wrong adjustment of the ffCO2 emissions. Moreover, the STILT-VSI approach itself has 

its deficits as it assumes mean effective emission height profiles for all meteorological situations and ignores the stack heights 

of individual power plants. Furthermore, the VSI approach still relies on a correct vertical mixing in STILT and an accurate 

point source emission inventory. Whereas in Maier et al. (2022) we could show that the VSI approach strongly improves the 535 

agreement between modelled and observed ∆ffCO2 concentrations from two-week integrated samples, it thus still may 

overestimate the point source contributions for individual hours. Therefore, an averaging of the observations is very helpful 

when a transport model like STILT is used to describe the transport and mixing of nearby point source emissions.  

 

We investigate how to appropriately average the observational and modelled data. Ideally, the a-posteriori area source ffCO2 540 

emissions are independent of an incorrect modelling of the point source emissions. Thus, they should not be affected by 

whether the a-priori point source emissions are fixed or adjustable in the inversion framework, provided that the point source 

emissions are well represented in the emission inventory. We found that an averaging interval of one week limits the 

differences between the a-posteriori area source ffCO2 emissions of the inversion runs with fixed and adjustable point source 

emissions to below 30% for all seasons. This deviation can be used as a measure for the uncertainty of the a-posteriori area 545 
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source ffCO2 emissions that is induced by an inadequate modelling of the point source emissions. A longer, e.g. monthly, 

averaging interval further reduces this difference (see Appendix C), but comes along with an averaging over very different 

meteorological situations and thus reduces the spatiotemporal information comprised in the observations. This might be 

especially important if there are several observation sites, and the inversion system optimizes the ∆ffCO2 gradients between 

these different stations. The averaging interval of a week corresponds to the typical length scale of synoptic weather patterns. 550 

Therefore, the model-data-mismatch error has anyhow been increased to account for the potential correlations between the 

hourly observations within one week. The weekly averaging should, thus, not destroy too much information. An averaging 

interval of one week should thus be seen as a compromise between reducing the impact of hours with an inadequate model 

performance and using as much observational information as possible.  

4.3 What is the potential of ∆CO-based ∆ffCO2 to estimate the seasonal cycle in urban ffCO2 emissions? 555 

The weekly averaged ∆CO-based ∆ffCO2 observations lead to robust seasonal cycles in ffCO2 emissions with a plausible 

amplitude and phasing, based on comparison with the TNO inventory. Figure G1 further compares the TNO ffCO2 emissions 

in the nearfield area of Heidelberg (blue outlined area in Fig. 1b) with emissions from the EDGAR inventory (as introduced 

in Sect. 2.2.4) and the GridFEDv2021.2 inventory (Jones et al., 2021). While the EDGAR emissions are on average about 25% 

lower than the TNO emissions over the two years 2019 and 2020, the GridFED inventory shows ca. 23% larger emissions than 560 

TNO. This illustrates the uncertainty of the emission inventories on the regional scales. In 2019, the amplitude and phasing of 

the seasonal cycle are very similar for the EDGAR and TNO inventory. However, in spring 2020 the normalized seasonal 

cycles of the two inventories show differences of up to roughly 20%, which can be explained by the fact that the shown 

seasonal cycle of the EDGAR inventory does not take into account the COVID-19 restrictions. In contrast, the seasonal cycles 

from GridFED include the effect of the COVID-19 restrictions in spring 2020 similar to TNO but show a smaller seasonal 565 

cycle amplitude compared to EDGAR and TNO in 2019. Overall, the seasonal cycles of our top-down estimate are in the range 

covered by all three bottom-up inventories, thus inferring that we could indeed reliably reconstruct the amplitude and the 

phasing of the seasonal cycle from flat a-priori area source ffCO2 emissions with the ∆CO-based ∆ffCO2 observations. 

 

We further could detect the COVID-19 signal in 2020, which is characterized by lower emissions compared to 2019 and a 570 

very steep decline in the emissions in spring 2020 (cf. Fig. D1). This is in accordance with what is reported by TNO for 2020. 

However, for 2019 our ∆CO-based ∆ffCO2 results suggest the summer minimum of the (restricted) Rhine Valley area source 

ffCO2 emissions to be in August and September (instead of July), when local summer holidays take place in that part of 

Germany. This result of the Heidelberg inversion might thus point to some inconsistencies in the seasonality of TNO emissions 

in the footprint of the station. The correct phasing of the fossil emissions is essential when prescribed ffCO2 emissions and 575 

associated forward modelling results are used in atmospheric transport inversions to constrain the CO2 fluxes from the 

biosphere.  
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In contrast to the inversion with flask-14C-based ∆ffCO2 observations, the ∆CO-based ∆ffCO2 inversion with weekly averaging 

allows a weakening of the regularization strength without generating unrealistic variabilities in the seasonal cycle of the ffCO2 580 

emissions. This implies that the a-posteriori results are less dependent on a potential bias in the a-priori emissions (cf. Fig. 

G1). Indeed, a sensitivity run with a 20% reduced flat prior estimate for the area source ffCO2 emissions leads to similar results 

as the base inversion run with unperturbed prior estimate, when sufficiently large prior uncertainties are used. Thus, the ∆CO-

based ∆ffCO2 inversion is able to simultaneously reconstruct the seasonal cycle from a flat prior and correct a potential bias 

in the total a-priori emissions.  585 

 

However, the ∆CO-based ∆ffCO2 inversion results strongly depend on a potential bias in the ∆CO/∆ffCO2 ratios that are 

applied to calculate the ∆ffCO2 estimates. Since there is no evidence for a strong seasonal cycle in the ∆CO/∆ffCO2 ratios at 

the Heidelberg observation site, we used a constant average ∆CO/∆ffCO2 ratio to calculate the ∆CO-based ∆ffCO2 record for 

the two years 2019 and 2020 (see Maier et al., 2023a). But due to the low signals and the weak correlation between ∆CO and 590 

∆ffCO2 during summer, it is hard to determine separate summer ratios. Nevertheless, our results indicate that there might be a 

small seasonal cycle on the order of 5% in the ratio. We have shown that a hypothetical seasonal cycle with 5% lower and 5% 

larger ratios in summer and winter, respectively, would lead to changes in the area source ffCO2 emissions of up to 10% for 

individual seasons. This emphasizes the importance of a thorough determination of the ∆CO/∆ffCO2 ratios to prevent biases 

in estimates of total fluxes and the seasonal cycle of the ffCO2 emissions.  595 

 

Indeed, we are currently in a fortunate situation in Heidelberg, since the emission ratios of the traffic and heating sectors seem 

to be quite similar in the main footprint of the station (see Maier et al., 2023a). Hence, despite the varying share of traffic and 

heating over the course of a year, this allowed the usage of a constant average flask-based ∆CO/∆ffCO2 ratio for constructing 

the ∆CO-based ∆ffCO2 record. Of course, it is much more challenging to determine continuous ∆CO-based ∆ffCO2 estimates 600 

for stations where the ∆CO/∆ffCO2 ratios show large seasonal or even diurnal variability. In principle, also bottom-up estimates 

of the seasonal contributions of each ffCO2 sector and its characteristic CO/ffCO2 emission ratio could be used to construct 

the seasonal cycle of the ∆CO/∆ffCO2 ratios. However, in the companion paper (Maier et al., 2023a) we show that there can 

be large discrepancies between 14C-based and inventory-based ∆CO/∆ffCO2 ratios. Therefore, we recommend to validate those 

bottom-up ratios by observations before using them to estimate a continuous ∆ffCO2 record.  605 

 

The ∆CO-based ∆ffCO2 inversion can be seen as a simplification of a multi-species inversion, which is based on collocated 

CO2 and CO observations. Such a multi-species inversion exploits the fact that the collocated CO2 and CO observations are 

affected by the same atmospheric transport and that these two species have partially overlapping emission patterns (Boschetti 

et al., 2018). Boschetti et al. (2018) show that the consideration of these inter-species correlations leads to a reduction in the 610 

respective a-posteriori uncertainties of the ffCO2 (and CO) emissions. While our ∆CO-based ∆ffCO2 inversion assumes a 

constant but observation-based ∆CO/∆ffCO2 ratio, the multi-species inversion intrinsically considers the spatiotemporal 
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variability of the ratios. However, this requires reliable a-priori estimates of the CO/ffCO2 emission ratios and their 

uncertainties, as well as neglectable non-fossil CO sources and sinks.  

 615 

A common challenge in regional inversions is the determination of the lateral boundary conditions (Munassar et al., 2023). In 

this study, we used two different emission inventories and meteorological fields to estimate the ∆ffCO2 background for the 

Rhine Valley domain by modelling the contributions from the Central European ffCO2 emissions outside the Rhine Valley. 

For individual seasons the a-posteriori area source ffCO2 emissions around Heidelberg can differ by more than 10%. This 

highlights the strong need for appropriate boundary conditions. In Europe, the Integrated Carbon Observation System (ICOS, 620 

Heiskanen et al., 2022) provides high-quality atmospheric in-situ data from a network of tall-tower stations that cover a large 

part of the European continent. These observations may help to verify the ffCO2 emissions in Europe. Then, the optimized 

European ffCO2 emissions could be used to estimate more reliably the ∆ffCO2 background for the Rhine Valley domain.  

 

Overall, our results demonstrate that the weekly averaged ∆CO-based ∆ffCO2 observations are currently well suited to 625 

investigate the amplitude and the phasing of the seasonal cycle of the area source ffCO2 emissions in the main footprint of the 

Heidelberg observation site. The different sensitivity runs suggest that ∆CO-based ∆ffCO2 allows a reconstruction of this 

seasonal cycle from temporally constant a-priori estimates with an uncertainty of below ca. 30% for all seasons. Thus, we 

recommend applying this ∆CO-based ∆ffCO2 inversion at further urban sites with a strong heterogeneity in the local ffCO2 

sources if the ∆CO/∆ffCO2 ratios can be determined accurately. If ratios from bottom-up inventories are not trusted or the 630 

urban region is influenced by CO emissions from the biosphere, the ratios are most reliably calculated from 14C flasks. Then, 

at least some of the summer 14C flasks should be collected during situations with significant CO and ffCO2 signals, so that a 

possible seasonal cycle in the ∆CO/∆ffCO2 ratios could be identified. At remote sites, such as at several ICOS atmosphere 

stations with low ffCO2 signals and predominant biosphere influence, the calculation of ∆CO/∆ffCO2 ratios and the 

construction of a bias-free ∆CO-based ∆ffCO2 record might be more challenging than at an urban site. However, the model 635 

performance is expected to be better at remote sites with a typically higher air intake above the ground and a much lower 

heterogeneity in the surrounding ffCO2 sources with minor influences from nearby point sources. Consequently, the outcome 

of our urban study cannot directly be transferred to remote sites; further studies are needed to investigate the potential of 14C-

based versus ∆CO-based ∆ffCO2 to estimate ffCO2 emissions at such sites. 

 640 

Finally, the good performance of the continuous but less precise ∆CO-based ∆ffCO2 observations in our regional inversion 

suggests that there may be potential for continuously measured 14CO2 (e.g. via optical spectrometry) to estimate urban ffCO2 

emissions, even if those continuous 14CO2 measurements have larger uncertainties.   

 

 645 
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Appendix A: Description of the CarboScope inversion framework 

A detailed description of the CarboScope inversion system can be found in Rödenbeck (2005). In the following we summarize 

the main characteristics for reference.  

In this study, the CarboScope inversion framework is used to minimize the model-data mismatch m between observed and 650 

modelled ∆ffCO2 concentrations. For this, the ffCO2 flux field f is written in terms of a fixed a-priori estimate ffix and a vector 

p with dimensionless adjustable parameters 

𝒇 = 𝒇-./ + 𝑭𝒑             (A.4.1) 

where the matrix F describes the uncertainty of the a-priori fluxes and their spatiotemporal correlations. The a-priori realization 

of the parameters ppri is assumed to have a zero mean, i.e. 〈𝒑01.〉 = 0, and the variance 〈𝒑01.𝒑01.2 〉 = 3
4
𝟏, where 1 is the identity 655 

matrix and 𝜇 a scaling factor. This leads to the following cost function: 

𝐽 = 3
,
𝒎2𝑸𝒎63𝒎+ 4

,
𝒑2𝒑 + 𝐶          (A.4.2) 

The first term of this cost function describes the data constraint, which is weighted by the model-data mismatch covariance 

matrix Qm. The a-priori constraint is included in the second term of the cost function. It is scaled by the parameter 𝜇, which 

effectively represents the ratio between a-priori and data constraint (e.g., the a-priori term vanishes for 𝜇à0, in accordance 660 

with the a-priori covariance matrix 𝑸𝒇,01. =
3
4
𝑭𝑭2  going to infinity. Note that 𝑸𝒇,01.  does not explicitly appear in the 

CarboScope implementation). The last constant C contains all terms that are independent of p.  

The minimum of the cost function is calculated from  

	 89
8𝒑!
5
𝒑;〈𝒑"#$%〉

= 0            (A.4.3) 

where ppost describes the a-posteriori realizations of the parameter vector p. For this, a conjugate gradient algorithm is used, 665 

which is described in detail in Rödenbeck (2005).  

 

 

 

 670 
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Appendix B: Fits to the flask observations 

In Fig. B1 we show the agreement between the flat prior and the different a-posteriori-based model results and the flask 680 

observations. It illustrates that the inversion mainly reduces the largest model-data mismatches of individual winter flasks and 

the negative model-data mismatches in summer 2020.   

 

Figure B1: Comparison between the observed 14C-based DffCO2 concentrations from the flasks and the modelled DffCO2 
concentrations based on the flat prior (black) and the different a-posteriori emissions with prior uncertainties between 20% and 685 
200% (coloured).   
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Appendix C: Impact of the averaging interval and additional degrees of freedom for the point sources emissions   

 
Figure C1: (a): Area source ffCO2 emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. Shown are the results of 
the ∆CO-based ∆ffCO2 inversion with fixed point sources (solid lines, “fixed PS”) and adjustable point sources (dashed lines, “adj. 700 
PS”) for different averaging intervals ranging from no averaging at all (cyan) to daily averaging of the five hours (11 – 16 UTC) of 
each afternoon (magenta) and weekly (blue) and monthly (pink) averaging. All a-posteriori results correspond to a 150% prior 
uncertainty. The flat a-priori emissions and the bottom-up emissions are shown as a reference in black and grey, respectively. (b): 
Relative differences (fixed PS minus adj. PS) between the a-posteriori area source ffCO2 emissions of the inversion runs with 
adjustable and fixed point source emissions in %. 705 
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Figure C2: (a): Area plus point source (i.e. “total”) ffCO2 emissions in the nearfield (blue outlined area in Fig. 1b) of Heidelberg. 
Shown are the results of the ∆CO-based ∆ffCO2 inversion with fixed point sources (solid lines, “fixed PS”) and adjustable point 710 
sources (dashed lines, “adj. PS”) for different averaging intervals ranging from no averaging at all (cyan) to daily averaging of the 
five hours (11 – 16 UTC) of each afternoon (magenta) and weekly (blue) and monthly (pink) averaging. All a-posteriori results 
correspond to a 150% prior uncertainty. The a-priori emissions and the bottom-up emissions are shown as a reference in black and 
grey, respectively. (b): Relative differences (fixed PS minus adj. PS) between the a-posteriori area source ffCO2 emissions of the 
inversion runs with adjustable and fixed point source emissions in %. 715 

To investigate the influence of inadequate point source modelling on the a-posteriori area source ffCO2 emissions, we use two 

different ∆CO-based ∆ffCO2 inversion setups: (1) an inversion with fixed point source emissions (“INV_fix”) and (2) an 

inversion with adjustable point source emissions (“INV_adj”). The first inversion setup corresponds to the inversion described 

in Sect. 2. It optimizes the flat a-priori area source emissions by using fixed monthly point source emissions. The second 

inversion setup optimizes both, the flat a-priori area source emissions, and the monthly a-priori point source emissions. 720 

Thereby, the point source emissions from the energy production and the industry sector, respectively, get the same temporal 

(i.e. “Filt3T” in CarboScope notation, see Sect. 2.2.6) and spatial (i.e. one spatial scaling factor) degrees of freedom like the 

area source emissions. Ideally, both inversion setups should lead to the same a-posteriori area source emissions, meaning that 

the modelling of the better known point source emissions has no influence on the area source emission estimates. Obviously, 

this is not the case. If the observed and modelled hourly ∆ffCO2 concentrations (i.e. the model-data mismatches) are not 725 

averaged over a certain period of time, the INV_fix inversion leads to much lower area source emissions estimates than the 

INV_adj inversion (see cyan curves in Fig. C1). For individual seasons, e.g. in summer 2020, the differences are larger than 
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150%. Thus, the INV_fix inversion tends to decrease the area source emissions to compensate for an inadequate modelling of 

the (fixed) point source emissions. This indicates that the transport model (even with the VSI approach) and/or the TNO 

emission inventory seems to overestimate the contributions from point sources at the Heidelberg observation site for individual 730 

hours.  

 

The averaging over one afternoon (magenta curve in Fig. C1) leads only to minor improvements; there are still deviations 

larger than 100% in summer 2020. In contrast, the averaging interval of one week (blue curve) limits the largest deviations in 

summer 2020 to below 30%. Averaged over the two years 2019 and 2020, these deviations between the INV_fix and INV_adj 735 

a-posteriori area source emissions are less than 10%. A monthly averaging interval (pink curve) further reduces the deviations 

to below 20% in summer 2020.  

 

We also investigate if the sum of the a-posteriori area source and point source emissions is similar for the INV_fix and the 

INV_adj inversion runs (see Fig. C2). If no averaging or only a daily averaging is applied, the INV_adj run leads to up to 50% 740 

lower total (i.e. area plus point source) ffCO2 emissions than the INV_fix run. This again shows that the point source emissions 

are strongly reduced in the INV_adj inversion run. A weekly averaging (blue curve) restricts the relative differences between 

INV_fix and INV_adj to below ca. 20% if the first and the last two months of the two-year period are disregarded. The monthly 

averaging shows again the smallest differences (below 10%) between the INV_fix and the INV_adj run.  

 745 

Fig. C3 shows the comparison between the modelled ∆ffCO2 concentrations based on the INV_fix and INV_adj a-posteriori 

emissions and the ∆CO-based ∆ffCO2 observations if a weekly averaging is applied (i.e. all hourly entries within one week are 

averaged in the model-data mismatch vector). The mean bias and the standard deviation between weekly averaged observed 

and modelled ∆ffCO2 is very similar for both inversion runs (0.10±1.89 ppm in the case of INV_fix and 0.13±1.80 ppm in the 

case of INV_adj). For comparison, the flat prior emissions lead to a mean bias of 0.65±2.23 ppm. Hence, there are no significant 750 

changes in the fits to the observational data when additional degrees of freedom are introduced for the point source emissions. 
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Figure C3: Comparison between the weekly averaged observed ∆CO-based DffCO2 concentrations (grey) and the modelled DffCO2 
concentrations based on the flat prior (black) and the a-posteriori emissions with a prior uncertainty of 150% (blue). Shown are the 755 
results for the standard INV_fix inversion setup with fixed point source emissions (solid) and the INV_adj inversion setup with 
adjustable point source emissions (dashed). In both inversion setups the hourly entries of the model-data mismatch vector within 
one week were averaged.  

 

Appendix D: Anomaly in the seasonal cycle of the area source ffCO2 emissions in 2020 760 

 
Figure D1: Difference in the nearfield area source ffCO2 emissions (in the blue outlined area in Fig. 1) between 2020 and 2019. Shown 
are the results of the ∆CO-based ∆ffCO2 inversion with fixed point sources and temporally flat prior emissions (cf. Fig. 4a).  
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Appendix E: Hypothetical seasonal cycle in the ∆CO/∆ffCO2 ratios 

 765 
Figure E1: Average ∆CO/∆ffCO2 ratio (black) and hypothetical seasonal varying ratio (cyan) used to construct the ∆CO-based 
∆ffCO2 record for the base inversion (Fig. 4) and the sensitivity inversion run (cyan curve in Fig. 5), respectively. 

 

Appendix F: Comparison between two modelled Rhine Valley ∆ffCO2 backgrounds 

 770 
Figure F1: Difference between the Rhine Valley background modelled with TNO emissions (∆ffCO2,CE-RV,TNO) and the Rhine Valley 
background modelled with EDGAR emissions (∆ffCO2,CE-RV,EDGAR). Shown are weekly averages for afternoon situations. 
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Appendix G: Comparison between TNO and other emission inventories 

 
Figure G1: (a) Comparison between the TNO (red), EDGAR (blue) and GridFED (yellow) ffCO2 emissions within the nearfield area 775 
of Heidelberg (blue outlined area in Fig. 1b). (b) shows the respective normalized nearfield ffCO2 emissions.  
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