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Abstract. Conservation agriculture (CA), combining reduced or no-tillageCE1 , permanent soil cover, and im-
proved rotations, is often promoted as a climate-smart practice. However, our understanding of the impact of
CA and its respective three principles on top- and subsoil soil organic-carbon (SOC)CE2 stocks in the low-input
cropping systems of sub-Saharan Africa is rather limited. This study was conducted at two long-term experi-
mental sites established in Zimbabwe in 2013. The soil types were abruptic Lixisols at Domboshava Training
Centre (DTC) and xanthic Ferralsol at the University of Zimbabwe farm (UZF). The following six treatments,
which were replicated four times, were investigated: conventional tillage (CT), conventional tillage with rotation
(CTR), no tillage (NT), no tillage with mulch (NTM), no tillage with rotation (NTR), and no tillage with mulch
and rotation (NTMR). Maize (Zea mays L.) was the main crop, and treatments with rotation included cowpea
(Vigna unguiculata L. Walp.). The SOC concentration and soil bulk density were determined for samples taken
from depths of 0–5, 5–10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–75 and 75–100 cm. Cumulative organic in-
puts to the soil were also estimated for all treatments. SOC stocks at equivalent soil mass were significantly
(p < 0.05) higher in the NTM, NTR and NTMR treatments compared with the NT and CT treatments in the
top 5 cm and top 10 cm layers at UZF, while SOC stocks were only significantly higher in the NTM and NTMR
treatments compared with the NT and CT treatments in the top 5 cm at DTC. NT alone had a slightly negative
impact on the top SOC stocks. Cumulative SOC stocks were not significantly different between treatments when
considering the whole 100 cm soil profile. Our results show the overarching role of crop residue mulching in CA
cropping systems with respect to enhancing SOC stocks but also that this effect is limited to the topsoil. The
highest cumulative organic carbon inputs to the soil were observed in NTM treatments at the two sites, and this
could probably explain the positive effect on SOC stocks. Moreover, our results show that the combination of at
least two CA principles including mulch is required to increase SOC stocks in these low-nitrogen-input cropping
systems.
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1 Introduction

Soil organic carbon (SOC) is an important determinant of soil
fertility, productivity and sustainability, and it is also a use-
ful indicator of soil quality in tropical agricultural systems,
where nutrient-poor and highly weathered soils are managed5

with few external inputs (Lal, 1997; Feller and Beare, 1997;
Chivenge et al., 2007). Therefore, rebuilding depleted SOC
stocks in such soils holds the potential to contribute to cli-
mate change mitigation (Bossio et al., 2020; Minasny et al.,
2017; Swanepoel et al., 2016) via the sustainable manage-10

ment of agricultural soils (Paustian et al., 2016; Dignac et
al., 2017).

Conservation agriculture (CA), based on minimum soil
disturbance, crop residue retention and crop rotation, has
been known to improve surface SOC, with beneficial ef-15

fects on soil functioning such as improved water infiltration
(Thierfelder and Wall, 2012, 2009) and better aggregate sta-
bility (Six et al., 1999; Thierfelder and Wall, 2012). However,
the potential of CA to increase SOC stocks and, thus, miti-
gate climate change has been much debated (Corbeels et al.,20

2020a), although the general understanding is that this poten-
tial is relatively low (Du et al., 2017; Powlson et al., 2014,
2016; Cheesman et al., 2016; Corbeels et al., 2020a). In fact,
soil carbon (C) storage has often been overestimated for CA
due to shallow soil sampling. Compared with conventional25

tillage systems, no-tillage management redistributes SOC in
the soil profile, with higher concentrations in the topsoil but
potentially lower concentrations below, which can result in
no differences in the whole-profile SOC stocks between no-
tillage and conventional tillage systems (Angers and Eriksen-30

Hamel, 2008). However, this lack of a significant difference
in many studies assessing whole-profile SOC stocks stems
from insufficient statistical power to accurately assess the po-
tentially significant SOC changes (Kravchenko and Robert-
son, 2011).35

CA can potentially build SOC in deeper soil layers via,
for example, the use of cover crops with deeper root sys-
tems (Kell, 2011; Thorup-Kristensen et al., 2020; Yang et al.,
2023). However, proper soil sampling strategies that account
for both topsoil and subsoil (> 30 cm depth) SOC stocks40

must be prioritized. Over the past 2 decadesCE3 , soil sam-
pling has often been limited to the topsoil plough layer (0–
30 cm) (Dube et al., 2012; Powlson et al., 2016; Patra et al.,
2019; Yost and Hartemink, 2020), in which SOC concen-
trations, root density (Chikowo et al., 2003) and microbial45

activity (Mtambanengwe et al., 2004) are generally largest
(Rumpel et al., 2012); this layer is also the minimum default
soil sampling depth recommended by the Intergovernmental
Panel for Climate Change (IPCC, 2019). In a meta-analysis
of SOC stocks in the top 1 m of soils, Balesdent et al. (2018)50

found that soils below 0.3 m contain on average 47 % of
the total SOC stock and account for 19 % of the SOC that

has been recently incorporated. Therefore, focusing on top-
soil only could underestimate the SOC storage potential of
agricultural management practices (Cardinael et al., 2015). 55

In turn, this could result in incorrect conclusions on the cli-
mate change mitigation potential of agricultural management
practices.

There have been many studies on the effects of CA on
crop productivity and its benefits with respect to soil health 60

(Corbeels et al., 2020b; Kimaro et al., 2016; Mhlanga et
al., 2022b; Swanepoel et al., 2018; Thierfelder et al., 2015,
2017; Thierfelder and Mhlanga, 2022). Other studies, how-
ever, have fuelled the debate on CA practicality and adop-
tion in sub-Saharan Africa (SSA) (Giller et al., 2009, 2015; 65

Kassam et al., 2019). Despite these studies, the effects of
CA on SOC dynamics have not been widely investigated in
SSA. Thierfelder et al. (2017) alluded to the fact that data
on the climate change mitigation potential of CA in southern
Africa are scanty and advocated for more research to better 70

quantify the mitigation effects of CA as a climate-smart tech-
nology. It has also been observed that, depending on socio-
economic and biophysical conditions, farmers may find it
easier to adopt certain CA principles and/or their different
combinations (Mbanyele et al., 2021; Baudron et al., 2012), 75

although this assertion has also fuelled new debates (Thier-
felder et al., 2018). Therefore, the focus of this work was the
individual vs. combined effects of CA principles (no tillage,
crop residue retention and crop rotation) on SOC stocks.

As changes in SOC stocks take time to be detected, long- 80

term experiments are crucial; however, these experiments
are rare, especially in Africa (Bationo et al., 2013; Cardi-
nael et al., 2022; Powlson et al., 2016; Thierfelder and Mh-
langa, 2022). This study was conducted on two long-term
experimental sites established in Zimbabwe in 2013. We 85

hypothesized that the full combination of CA components
would be associated with higher increases in SOC stocks
than the adoption of only one component. This increase in
SOC stocks could mainly be due to increased C inputs to
the soil, especially under minimum soil disturbance. How- 90

ever, C inputs due to crop rotation could be indirect via in-
creased crop productivity stemming from a reduction in bi-
otic pressure (pests and diseases); therefore, C inputs to the
soil might also be increased via the latter process. Cereals,
in cereal–legume rotations may benefit from added soil ni- 95

trogen via biological nitrogen fixation from the preceding
legume crop, thereby enhancing their productivity. Crop di-
versification, on the other hand, can enhance soil biological
processes by increasing the diversity and/or abundance of mi-
crofauna like mycorrhizae. This, in turn, improves aggregate 100

stability and offers physical protection for SOC. Lastly, high-
quality residues (from the legume crop) have been shown to
be preferentially stabilized in the soil due to a higher C use
efficiency of soil microbes (Cotrufo et al., 2013; Kopittke et
al., 2018). 105
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Figure 1. Soil texture to 1 m soil depth at the Domboshava Training
Centre (DTC) (a) and University of Zimbabwe Farm (UZF) (b) sites
in Zimbabwe. Error bars represent standard errors (N = 4).

2 Materials and methods

2.1 Study sites

This study was conducted at two long-term experimental
sites established in November 2013 by the International
Maize and Wheat Improvement Center (CIMMYT). The5

site at the University of Zimbabwe Farm (UZF) is located
about 12 km north of Harare (17◦42′24′′ S, 31◦00′48′′ E),
whereas the site at the Domboshava Training Centre (DTC)
is located about 30 km north-east of Harare (17◦35′17′′ S,
31◦07′33′′ E). UZF soils are dolerite-derived xanthic Ferral-10

sols (FAO classification) and are medium-textured sandy clay
loams (34 % clay) in the top 20 cm with a subsoil (20–40 cm)
of slightly higher clay content (38 %). DTC soils are granite-
derived abruptic Lixisols (FAO classification) and are light-
textured sandy loams (15 % clay) in the 0–20 cm layer; these15

topsoils overlay an abruptly heavier-textured subsoil (20–
40 cm) of 30 % clay (Fig. 1).

The two study sites have a sub-tropical climate with cool,
dry winters and hot, wet summers with mean annual mini-
mum and maximum temperatures of 12 and 25 ◦C, respec-20

tively (Mapanda et al., 2010). The rainy season starts in
November and tails off in March with a mean annual rain-
fall of 826 and 814 mm at UZF and DTC, respectively (Mh-
langa et al., 2022a). Cumulative seasonal rainfall in 2019–

2020 (474 mm) was almost half of the rainfall received in 25

the 2020–2021 season (932 mm) at DTC (Shumba et al.,
2023a). At UZF, the cumulative seasonal rainfall was 551
and 637 mm in the 2019–2020 and 2020–2021 cropping sea-
sons, respectively. On average, the respective cropping sea-
son minimum and maximum temperatures were 16.9 and 30

28.1 ◦C in 2019–2020 and 15.5 and 27.2 ◦C in 2020–2021
at DTC and 15.5 and 28.6 ◦C in 2019–2020 and 15.3 and
27.5 ◦C in the 2020–2021 at UZF.

2.2 Experimental treatments and crop management

Two identical experiments were set up at the study sites, and 35

treatments have been maintained every season since Novem-
ber 2013. The experiments were set up in a randomized com-
plete block design (RCBD) with eight treatments replicated
in four blocks. However, we only investigated six of these
treatments in this study. All crop residues were removed soon 40

after harvesting in all treatments, stored and then applied
prior to planting in treatments with mulch. The six treatments
in our study were as follows:

i. Conventional tillage (CT). At DTC, land preparation
was done by digging with a hand hoe, and maize (Zea 45

mays L.) was sown as a sole crop in rip lines that were
created afterwards using an animal-drawn Magoye rip-
per (a traditional plough with the mouldboard replaced
with a ripper tine). At UZF, maize was sown as a sole
crop in planting basins (approximately 10 cm diameter 50

and 10 cm depth) created using a hand hoe.

ii. Conventional tillage with rotation (CTR). Land prepa-
ration was done as in the CT treatment, and maize was
rotated with cowpea (Vigna unguiculata L.).

iii. No tillage (NT). At DTC, maize was sown as a sole 55

crop in rip lines created using an animal-drawn Magoye
ripper (no further soil disturbance occurred). At UZF,
maize was sown as a sole crop in planting basins (ap-
proximately 15 cm diameter and 15 cm depth) created
using a hand hoe. 60

iv. No tillage with mulch (NTM). Maize was sown as in the
NT treatment, and maize residues from the previous sea-
son were applied on the soil surface between maize rows
at planting at a rate of 2.5 tDMha−1.

v. No tillage with rotation (NTR). Maize was sown in rip 65

lines and rotated with cowpea.

vi. No tillage with mulch and rotation (NTMR). Maize was
sown in rip lines and rotated with cowpea, and maize
residues were applied on the soil surface between maize
rows at planting at a rate of 2.5 tDMha−1. 70

Crop residues were removed every year after harvest and
weighed again to maintain the exact 2.5 tDMha−1 residue
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weight year after year. There were 24 respective plots at each
site that were 6 m wide and 12 m long (72 m2). Treatments
with rotation (CTR, NTR and NTMR) were split into 6 m
wide and 6 m long (36 m2) subplots where maize and cowpea
were grown interchangeably every season (maize was sown5

on one side of the plot and cowpea was sown on the other).
The inter-row spacing was 90 and 45 cm for maize and

cowpea, respectively, and the in-row spacing was 25 cm for
both crops; this translated to 44 444 and 88 888 plantsha−1,
respectively. Three seeds were planted per planting station10

and thinned to one after emergence. Basal dressing of ni-
trogen (N), phosphorus (P) and potassium (K) was applied
within 5 cm of the seeds in the form of compound fertilizer
for both maize and cowpea at 11.6 kgNha−1, 10.6 kgPha−1

and 9.6 kgKha−1, respectively. Nitrogen top dressing was15

applied (as ammonium nitrate when soil moisture was ad-
equate) to maize only at 4 and 8 weeks after emergence
(WAE) in two equal splits of 23.1 kgNha−1 each. However,
in the 2019–2020 cropping season at both sites and in the
2020–2021 cropping season at UZF, the first N top dress-20

ing was delayed by an average of 4.5 and 2.0 weeks, re-
spectively, due to mid-season dry spells. Ammonium nitrate
was side dressed within 5 cm of the maize stems. Glyphosate
[N -(phosphonomethyl) glycine], a pre-emergent nonselec-
tive herbicide, was applied at a rate of 1.025 L of active in-25

gredient per hectare soon after sowing to control weeds. This
was followed by manual weeding with a hoe whenever weeds
reached a maximum of 10 cm height or 10 cm in diameter
for stoloniferous weeds to achieve a weed clean field. More
details about the experiment can be found in Shumba et al.30

(2023a) and Mhlanga et al. (2022b).

2.3 Soil sampling for bulk density determination and soil
organic carbon analysis

Soil sampling was done in May 2021 at both sites. For each
treatment and replicate, two sampling points in the maize35

rows and two sampling points in the middle of the inter-rows
were randomly selected. The two samples from the rows
were pooled into one sample per depth, similarly to the two
samples taken in the inter-rows. The following nine depth
increments were considered for both SOC and bulk density40

(BD) measurements: 0–5, 5–10, 10–15, 15–20, 20–30, 30–
40, 40–50, 50–75 and 75–100 cm. Undisturbed soil samples
for both SOC and BD measurements were taken from the
following depth ranges using a metal cylinder (5 cm diame-
ter and 5 cm height): 0–5, 5–10, 10–15, 15–20 and 20–30 cm.45

A motorized, hand-held soil corer with an inside diameter of
10 cm was used to take samples for the 30–40, 40–50, 50–
75 and 75–100 cm depths for SOC analysis from the same
positions where undisturbed samples were taken. As no sig-
nificant differences in BD were found below 20 cm between50

the different treatments at the two sites (see Sect. 3) and to
avoid too much destruction of the experimental plots, two
soil pits were opened at the edges of the experimental plots

(also cropped with maize since 2013) at each site to take BD
samples for the 30–40, 40–50, 50–75 and 75–100 cm depths. 55

As a result, BD below 30 cm depth was assumed to be the
same across the treatments.

Soil samples were crumbled, and the fresh weight was de-
termined using a field scale. Soil moisture was determined
on a subsample by drying it in an oven at 105 ◦C for 48 h. All 60

samples were then air-dried and sieved through a 2 mm sieve
to determine the mass proportion of coarse soil (> 2 mm) as a
fraction of the whole sample. BD was determined by dividing
the dry mass of soil by the volume of the cylinder. Subsam-
ples from the ≤ 2 mm soil fraction were ground to < 200 µm 65

for SOC analysis. SOC was analysed in the ISO9001:2015-
certified IRD LAMACE4 laboratory in Dakar via the dry
combustion of 100 mg aliquots of soil (ground to < 200 µm)
using a CHN elemental analyser (Thermo Finnigan FlashEA
1112, Milan, Italy). 70

2.4 Soil organic carbon stock calculation

The mass proportion of the coarse fraction (> 2 mm) was re-
moved to calculate SOC stocks. The equivalent soil mass
(ESM) approach was used to determine SOC stocks to
avoid systematic bias in the SOC calculation when using 75

the fixed-depth method (Ellert and Bettany, 1995; Wendt
and Hauser, 2013; von Haden et al., 2020). We defined ref-
erence soil mass profiles for each site based on the low-
est cumulative soil mass obtained for each replicate. For
these references, the cumulative soil mass layers were 0– 80

650, 650–1340, 1340–2060, 2060–4160, 4160–5590, 5590–
7040, 7040–10 550, 10 550–13 770 Mgsoil ha−1 at DTC and
0–460, 460–870, 870–1330, 1330–1840, 1840–2760, 2760–
4030, 4030–5300, 5300–8190, 8190–11 050 Mgsoil ha−1 at
UZF, roughly corresponding to soil depth layers of 0–5, 5– 85

10, 10–15, 15–20, 20–30, 30–40, 40–50, 50–75, 75–100 cm,
respectively. SOC stocks were calculated on the basis of the
same soil mass as the reference profile but different soil depth
layers that varied by < 1.5 and < 0.6 cm at DTC and UZF,
respectively. As mulch was only applied between maize rows 90

and fertilizer was only applied on maize rows, it was esti-
mated that the row and inter-row space represented 22 % and
78 %, respectively; hence, SOC calculations were weighted
accordingly (Shumba et al., 2023a). Change in cumulative
SOC stock between treatments for a given soil depth was de- 95

termined using the CT treatment as the reference treatment:

1SOC stock= SOC stocktreatment(i)−SOC stockCT(i), (1)

where SOC stocktreatment is the cumulative SOC stock per
treatment (CTR, NT, NTM, NTR and NTMR) at a given soil
layer and (i) represents 0–5, 0–10, 0–15, 0–20, 0–30, 0–40, 100

0–50, 50–75 or 75–100 cm.
SOC accumulation or loss rates (kgCha−1 yr−1) were cal-

culated by dividing the change in stocks by the number of
years between the establishment of the experiment and the
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time of soil sampling (8 years):

SOC accumulation/loss rate=
1SOC stocks

8
× 1000. (2)

2.5 Estimation of organic carbon inputs to the soil

Maize and cowpea yield and aboveground biomass have
been measured since the inception of the experiment, ex-5

cept for cowpea during the 2013–2014 season. This data gap
was filled using the average cowpea yield and aboveground
biomass values across seasons (from 2013–2014 to 2020–
2021). We assumed that 5 % of the maize aboveground veg-
etative biomass remained in the field, as maize stalk slashing10

at harvesting did not remove the whole stem. A root : shoot
ratio of 0.16 and 0.06 for maize and cowpea, respectively
(Amos and Walters, 2006; Kahn and Schroeder, 1999; Kim-
iti, 2011), was used to estimate the contribution of roots to
organic-CCE5 inputs to the soils. The organic-C input contri-15

bution from weeds was assumed to be insignificant, as there
was effective control of weeds via the use of pre-emergence
herbicide (glyphosate) and timely manual weeding through-
out the cropping season. We also assumed that the relative
amount of organic C transferred through rhizodeposition was20

the same for maize and cowpea, i.e. 0.45 × root C biomass
(Balesdent et al., 2011), and that the organic-C content of
all plant parts was 430 gkg−1 (Ma et al., 2018). Cumula-
tive organic-C inputs to the soil were then estimated for each
treatment (Cardinael et al., 2022).25

2.6 Data analysis

The full dataset is available in the CIRAD repository
(Shumba et al., 2023b). Statistical analyses were performed
using R software, version 4.0.0 (R Core Team, 2020). Nor-
mality was tested by the Kolmogorov–Smirnov test. After30

confirming that data were normally distributed, analysis of
variance (ANOVA) was carried out to establish any signif-
icant treatment effects on BD, SOC concentration and SOC
stock. Separation of means was done with the post hoc Tukey
test at a 5 % significance level using the emmeans function35

from the emmeans package (Bolker et al., 2009).

3 Results

3.1 Soil bulk density

The different cropping systems (CT, CTR, NT, NTM, NTR
and NTMR) had no significant (p > 0.05) effect on BD40

across all soil depths except in the 5–10 cm depth in the
inter-row at DTC (Fig. 2), where BD was on average 5 %
lower in the conventional tillage treatments (CT and CTR)
than in the no-tillage treatments (NT and NTR). However,
soil depth and location (row or inter-row) as well as the soil45

depth× location interaction had significant (p < 0.001) ef-
fects on BD. In the tillage layer (0–15 cm), BD was at least

Figure 2. Topsoil bulk density (0–30 cm) at the Domboshava Train-
ing Centre (DTC) and University of Zimbabwe Farm (UZF) exper-
imental sites in Zimbabwe. The abbreviations used in the figure are
as follows: CT – conventional tillage; CTR – conventional tillage
with rotation; NT – no tillage; NTM – no tillage with mulch; NTR
– no tillage with rotation; NTMR – no tillage with mulch and rota-
tion. Error bars represent standard errors (N = 4).

2 % higher in the inter-rows than in the rows at both sites.
In the deeper soil layer (15–30 cm), there were no significant
(p > 0.05) differences. BD values for depths below 30 cm 50

were the same across treatments, as BD was determined from
pits outside the experiment. It ranged between 1.47 and 1.51
and between 1.47 and 1.49 gcm−3 (Table S1 in the Supple-
ment) in the subsoil (30–100 cm layers) at DTC and UZF,
respectively. 55

3.2 SOC concentration

The SOC concentration decreased significantly (p < 0.001)
with soil depth (Fig. 3, Table S2) and was highest in the
surface soil (0–5 cm) for all treatments (Table S2). There
were significant treatment effects in the 0–5 cm (p = 0.001) 60

and 5–10 cm (p = 0.005) soil layers at DTC and in the 0–
5 cm layer (p < 0.001) at UZF. NTM had a significantly
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(p < 0.05) higher SOC concentration compared with con-
ventional tillage treatments (CT and CTR) and NT in the
0–5 cm soil layer at both sites (Fig. 3); the increase in the
SOC concentration ranged between 31 % and 46 % and be-
tween 14 % and 22 % at DTC and UZF, respectively. How-5

ever, the SOC concentration in the NTM treatment was equal
(p > 0.05) to the NTR and NTMR treatments at both sites.

In the 5–10 cm soil layer at DTC, SOC concentrations in
the NTM and NTR treatments were at least 19 % higher (p =
0.005) than in the NT and CT treatments (Table S2). There10

were no significant (p > 0.05) treatment effects on the SOC
concentration below 10 cm soil depth at DTC and below 5 cm
depth at UZF.

3.3 SOC stock

There were significant (p < 0.05) treatment effects on SOC15

stocks per soil layer in the top 5 cm at UZF and in the top
10 cm at DTC (Table S3). Compared with CT, CTR and NT,
NTM had at least 1.1 and 1.3 times more SOC in the top
5 cm and top 10 cm layers at UZF and DTC, respectively. In
terms of cumulative SOC stocks, significant (p < 0.05) treat-20

ment effects were limited to the top 30 cm at DTC and the
top 20 cm at UZF, where no tillage with mulching (NTM) in-
creased SOC stocks (Table 1). On the other hand, there were
no significant (p > 0.05) tillage effects on SOC stocks (CT
vs. NT) for either site. The rotation component had no sig-25

nificant (p > 0.05) effects on SOC stocks when comparing
CTR and NTR at DTC. However, the maize–cowpea rotation
in the NT (NTR) treatments had at least 16 % higher SOC
stocks in the top 30 cm compared with NT. In contrast, NTR
had at least 7 % higher SOC stocks than CTR in the top 10 cm30

at UZF. Compared with NT and CT, the mulching component
significantly (p < 0.05) increased SOC stocks by at least 8 %
at UZF and by at least 13 % at DTC in the top 20 cm and top
30 cm soil layers, respectively. SOC stocks in the full CA
treatment (NTMR) were not significantly (p > 0.05) differ-35

ent from the other combinations of CA principles (NTM and
NTR) and CTR at DTC. At UZF, the full CA treatment had
similar SOC stocks to all of the other NT treatments (NT,
NTM and NTR).

SOC stocks for the whole soil profile for this study (0–40

100 cm) were at least 8.1, 3.5 and 2.1 times higher at
DTC and 11.6, 4.4 and 2.4 times higher at UZF than the
SOC stocks in the respective 0–5 cm (surface soil), 0–15 cm
(tillage depth) and 0–30 cm (IPCC standard depth) layers.
SOC stocks for the subsoil (30–100 cm) ranged from 18.4 to45

51.4 MgCha−1 at DTC and from 41.9 to 124.9 MgCha−1 at
UZF. Therefore, subsoil represented more than half (at least
53 % at DTC and 58 % at UZF) of SOC stocks for the whole
100 cm soil profile.

3.4 SOC accumulation and loss rates 50

SOC accumulation rates at UZF differed significantly (p <

0.05) with soil depth: topsoil layers (0–5, 0–10, 0–15, 0–20
and 0–30 cm) had SOC accumulation rates that were at least
6.9 times less than those in the 0–100 cm soil profile (Ta-
ble 2). In contrast, there were no significant (p > 0.05) dif- 55

ferences in the SOC accumulation rates with depth at DTC.
On average, SOC accumulation rates ranged between 0.13
and 0.08 MgCha−1 yr−1 in the topsoil (0–5 cm) to 0.33 and
1.16 MgCha−1 yr−1 for the whole 1 m soil profile at DTC
and UZF, respectively. The depth and treatment interaction 60

had no significant (p > 0.05) effect at either site.
On the other hand, the different treatments in this study

had significant (p < 0.05) effects on SOC accumulation/loss
rates in the top 20 cm soil layer at both sites (Table 2).
At DTC, NT resulted in a significant (p < 0.05) net loss 65

of SOC in the 0–20 cm layer, ranging between −0.09 and
−0.02 MgCha−1 yr−1, whereas NT treatments (NTM, NTR
and NTMR) had SOC accumulation rates ranging from 0.17
to 0.38 MgCha−1 yr−1. However, maize stover mulching
(NTM) resulted in significantly (p < 0.05) higher SOC ac- 70

cumulation rates than the CTR (2.9–4.2 times) and NT (5.2–
13.5 times) treatments in the top 15 cm and top 20 cm layers,
respectively. The different combinations of mulching and ro-
tation in the NT treatments (NTM, NTR and NTMR) resulted
in no significant (p > 0.05) differences in the SOC accumu- 75

lation rates. Similarly, rotation treatments (CTR, NTR and
NTMR) resulted in no significant (p > 0.05) differences in
SOC accumulation rates. Thus, the full CA treatment had
similar SOC accumulations rates to treatments with at least
two combinations of CA principles (NTM and NTR) and to 80

CTR.
In contrast, CTR resulted in a significant (p < 0.05) net

loss of SOC in the top 20 cm at UZF (Table 2). The no-
tillage treatments (NT, NTM, NTR and NTMR) resulted
in significantly (p < 0.05) higher SOC accumulation rates 85

(0.05–0.25 MgCha−1 yr−1) than CTR, which ranged be-
tween −0.07 and −0.03 MgCha−1 yr−1 in top 10 cm soil
layer. NTM resulted in the highest SOC accumulation rates
(0.28–0.32 MgCha−1 yr−1) when considering the 0–15 and
0–20 cm soil layers. The SOC accumulation rates in the NTM 90

treatment were at least 3.8, 3.5 and 2.4 times higher than
CTR, NT and NTR, respectively, in the top 20 cm. The full
CA treatment (NTMR) resulted in significantly (p < 0.05)
higher SOC accumulation rates compared with CTR (2.5–
5.3 times) in the top 10 cm as well as in lower SOC accu- 95

mulation rates in the 0–10 cm (2.3 times) and 0–20 cm (10.6
times) soil layers compared with NTMCE6 . However, there
were no significant (p > 0.05) differences in the SOC ac-
cumulation rates between treatments beyond the 20 cm soil
layer at either site. 100
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Figure 3. Soil depth distribution of the organic-carbon concentration for the different experimental treatments at the Domboshava Training
Centre (DTC) and University of Zimbabwe Farm (UZF) experimental sites in Zimbabwe. Error bars represent standard errors (N = 4). The
abbreviations used in the figure are as follows: CT – conventional tillage; CTR – conventional tillage with rotation; NT – no tillage; NTM –
no tillage with mulch; NTR – no tillage with rotation; NTMR – no tillage with mulch and rotation.

3.5 Organic-carbon inputs via crops residues, root
mortality and rhizodeposition to the soil

There were significant (p < 0.001) differences in cumula-
tive organic-carbon (OC) inputs between treatments (Fig. 4).
Cumulative OC inputs were at least 1.5 times higher in5

mulch treatments (NTM and NTMR) than in treatments
without mulch. However, the mulch and rotation treat-
ment (NTMR) had significantly (p < 0.001) lower cumu-
lative OC inputs than continuous mulching (NTM). Cumu-
lative OC input after eight seasons was as high as 16.010

and 10.5 MgCha−1 at DTC and 16.2 and 12.4 MgCha−1 at
UZF in the respective NTM and NTMR treatments (Fig. 4),
resulting in mean annual OC input rates of about 1.3 to
1.6 MgCha−1 yr−1 for NTMR and 2.0 MgCha−1 yr−1 for
NTM. The other treatments had mean annual OC input rates15

of ≤ 1.0 MgCha−1 yr−1.

4 Discussion

4.1 SOC distribution across soil depth

Cumulative SOC stocks for the whole soil profile (0–100 cm)
in this study were at least 8.0, 4.0 and 2.0 times higher than 20

the respective SOC stocks in the 0–5 cm (surface soil), 0–
15 cm (tillage depth for the study) and 0–30 cm (IPCC stan-
dard depth for SOC studies) layers at the two sites. This
means that over half of the SOC stocks in this study were in
the subsoil (30–100 cm), reflecting the importance of subsoil 25

SOC stocks. Significant SOC stocks in the subsoil have also
been reported by other authors (Yost and Hartemink, 2020;
Balesdent et al., 2018; Cardinael et al., 2015; Harrison et al.,
2011; Lal, 2018). Significant effects of mulch and/or rota-
tion in the NT treatment were restricted to the top 30 cm in 30

our study as well as in other studies in SSA (Dube et al.,
2012; Powlson et al., 2016) and the world at large (Bales-
dent et al., 2018; Yost and Hartemink, 2020), which is most
likely why the default soil depth for SOC studies according
to the IPCC is 0–30 cm (IPCC, 2019). However, this under- 35
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Table 1. Cumulative SOC stocks at the Domboshava Training Centre (DTC) and University of Zimbabwe Farm (UZF) after 8 years of
different tillage, residue and crop management systems. Means in the same row followed by different superscript letters denote that values
are significantly different, ns represents not significant, LSD represents least significant difference, and the associated errors are standard
errors (N = 4). The abbreviations used in the table are as follows: CT – conventional tillage; CTR – conventional tillage with rotation; NT –
no tillage; NTM – no tillage with mulch; NTR – no tillage with rotation; NTMR – no tillage with mulch and rotation.

Site Cumulative Approximate Cumulative SOC stocks LSD Significance
ESM soil depth (MgC ha−1)

(MgCha−1) (cm)

CT CTR NT NTM NTR NTMR

DTC 650 0–5 3.9± 0.8c 4.4± 0.4bc 3.8± 0.7c 5.9± 1.2a 5.3± 1.1ab 5.4± 0.7ab 0.9 p < 0.001
1340 0–10 7.4± 1.3c 8.2± 0.6bc 7.1± 1.1c 9.9± 1.8a 9.4± 1.5ab 9.4± 1.1ab 1.2 p < 0.001
2060 0–15 10.7± 1.6c 11.6± 0.8bc 10.1± 1.3c 13.5± 2.0a 13.1± 1.7ab 12.9± 1.2ab 1.7 p < 0.05
2760 0–20 13.6± 1.7b 14.6± 1.0ab 12.9± 1.4b 16.7± 2.1a 16.2± 1.9a 15.8± 1.4a 2.1 p < 0.05
4160 0–30 19.4± 1.9ab 20.5± 1.2ab 18.4± 1.6b 22.3± 2.2a 22.0± 1.9a 22.0± 1.5a 2.7 p < 0.05
5590 0–40 24.9± 2.0a 26.6± 1.3a 23.7± 1.7a 27.5± 2.3a 27.9± 2.0a 26.9± 1.6a 3.1 ns
7040 0–50 29.6± 1.9a 31.2± 1.3a 28.0± 1.8a 32.0± 2.4a 32.7± 2.1a 31.7± 1.7a 3.4 ns

10 550 0–75 38.5± 2.0a 42.6± 1.3a 37.3± 2.0a 39.5± 2.4a 42.7± 2.1a 42.6± 1.9a 5.2 ns
13 770 0–100 46.5± 2.0a 51.4± 1.3a 44.8± 2.0a 47.5± 2.4a 51.1± 2.2a 50.7± 2.0a 6.3 ns

UZF 460 0–5 8.2± 0.9cd 7.9± 0.5d 8.6± 0.6bc 9.6± 1.0a 8.8± 0.9bc 9.2± 0.9ab 0.7 p < 0.001
870 0–10 15.4± 1.5bc 14.8± 1.0c 15.9± 1.3b 17.3± 1.7a 15.9± 1.6b 16.3± 1.4ab 1.1 p < 0.05

1330 0–15 22.9± 1.9b 22.1± 1.6b 23.4± 1.8b 25.1± 2.1a 23.2± 1.9b 23.6± 1.7ab 1.7 p < 0.05
1840 0–20 30.8± 2.2b 29.9± 2.1b 31.3± 2.0ab 33.3± 2.4a 30.9± 2.2b 31.0± 2.1b 2.0 p < 0.05
2760 0–30 42.3± 2.4a 42.8± 2.2a 44.1± 2.1a 46.4± 2.8a 41.9± 2.7a 43.3± 2.7a 3.3 ns
4030 0–40 55.2± 2.6a 58.1± 2.6a 57.2± 2.2a 61.0± 3.3a 56.7± 3.0a 57.5± 3.2a 4.8 ns
5300 0–50 66.3± 2.7a 70.4± 3.0a 67.5± 2.3a 73.1± 3.9a 68.8± 3.1a 69.7± 3.3a 6.6 ns
8190 0–75 89.3± 3.1a 95.9± 3.3a 90.0± 2.7a 89.9± 4.6a 93.7± 3.9a 98.4± 4.3a 17.0 ns

11 050 0–100 107.8± 3.5a 119.1± 3.7a 109.8± 3.3a 110.9± 5.2a 116.1± 4.9a 124.9± 5.6a 19.0 ns

Table 2. SOC change rates (± standard error, N = 4) of the different treatments compared with CT (conventional tillage) at Domboshava
Training Centre (DTC) and University of Zimbabwe farm (UZF). Means in the same row followed by different superscripts denote that values
are significantly different, ns represents not significant, ∗∗ denotes p < 0.05, ∗∗∗ denotes p < 0.001 and LSD represents least significant
difference. The abbreviations used in the table are as follows: CTR – conventional tillage with rotation; NT – no tillage; NTM – no tillage
with mulch; NTR – no tillage with rotation; NTMR – no tillage with mulch and rotation.

Site Approximate SOC accumulation or loss rate LSD Significance
soil depth (cm) (MgCha−1 yr−1)

CTR NT NTM NTR NTMR

DTC 0–5 0.06± 0.05bc
−0.02± 0.02c 0.25± 0.05a 0.17± 0.02ab 0.19± 0.04ab 0.13 ∗∗∗

0–10 0.10± 0.09bc
−0.04± 0.04c 0.31± 0.09a 0.24± 0.01ab 0.25± 0.08ab 0.16 ∗∗∗

0–15 0.12± 0.13bc
−0.07± 0.05c 0.35± 0.13a 0.30± 0.01ab 0.27± 0.12ab 0.23 ∗∗

0–20 0.12± 0.17ab
−0.09± 0.05b 0.38± 0.17a 0.32± 0.01a 0.27± 0.16a 0.29 ∗∗

0–30 0.13± 0.25a
−0.13± 0.07a 0.36± 0.25a 0.32± 0.08a 0.33± 0.20a 0.35 ns

0–40 0.22± 0.25a
−0.15± 0.07a 0.33± 0.25a 0.38± 0.07a 0.25± 0.23a 0.41 ns

0–50 0.20± 0.27a
−0.20± 0.14a 0.30± 0.27a 0.40± 0.09a 0.26± 0.22a 0.46 ns

0–75 0.51± 0.28a
−0.15± 0.28a 0.13± 0.28a 0.53± 0.13a 0.51± 0.20a 0.73 ns

0–100 0.62± 0.32a
−0.20± 0.37a 0.13± 0.32a 0.58± 0.29a 0.53± 0.20a 0.86 ns

UZF 0–5 −0.03± 0.03c 0.05± 0.04b 0.17± 0.05a 0.07± 0.04b 0.13± 0.06ab 0.08 ∗∗∗

0–10 −0.07± 0.04c 0.07± 0.08b 0.25± 0.09a 0.07± 0.07b 0.11± 0.08b 0.13 ∗∗

0–15 −0.10± 0.03b 0.06± 0.11b 0.28± 0.13a 0.04± 0.07b 0.09± 0.11ab 0.22 ∗∗

0–20 −0.11± 0.07b 0.06± 0.14b 0.32± 0.17a 0.02± 0.11b 0.03± 0.12b 0.25 ∗∗

0–30 0.06± 0.15a 0.22± 0.25a 0.51± 0.25a
−0.05± 0.18a 0.12± 0.16a 0.44 ns

0–40 0.37± 0.11a 0.25± 0.27a 0.72± 0.25a 0.19± 0.28a 0.29± 0.14a 0.65 ns
0–50 0.51± 0.20a 0.15± 0.34a 0.85± 0.27a 0.31± 0.41a 0.43± 0.10a 0.88 ns
0–75 0.83± 0.56a 0.08± 0.55a 0.08± 0.28a 0.55± 0.76a 1.14± 0.44a 1.17 ns

0–100 1.41± 0.86a 0.25± 0.75a 0.98± 0.32a 1.03± 1.26a 2.14± 0.99a 2.31 ns
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Figure 4. Estimated cumulative organic-carbon (OC) inputs to the
soil from the 2013–2014 to the 2020–2021 cropping season for the
different treatments at the Domboshava Training Centre (DTC) and
the University of Zimbabwe Farm (UZF) experimental sites. Er-
ror bars represent standard errors (n= 4) for the cumulative OC.
The abbreviations used in the figure are as follows: CT – conven-
tional tillage; CTR – conventional tillage with rotation; NT – no
tillage; NTM – no tillage with mulch; NTR – no tillage with rota-
tion; NTMR – no tillage with mulch and rotation; ABG – above-
ground biomass (corresponding to an estimated 5 % of the maize
aboveground vegetative biomass remaining in the field, as maize
stalk slashing at harvesting did not remove the whole stem).

estimates whole-soil-profile C storage (Harrison et al., 2011;
Singh et al., 2018; Lorenz and Lal, 2005). Therefore, it is
crucial to consider whole-soil-profile sampling when moni-
toring SOC storage in agricultural ecosystems to determine
their SOC sequestration potential in the pursuit of climate5

change mitigation (Malepfane et al., 2022). SOC mineraliza-
tion is relatively low in the subsoil due to the lack of oxy-
gen and physical protection of SOC (aggregate-protected C)
(Rumpel et al., 2012; Sanaullah et al., 2016; Shumba et al.,
2020; Button et al., 2022). Therefore, in order to improve10

subsoil (> 30 cm) SOC stocks, derived from root mortality
and exudates, crop varieties with higher root length densities
(Chikowo et al., 2003) in the subsoil are recommended.

4.2 Cumulative SOC stocks and accumulation rates

Overall, the insignificant differences in the cumulative SOC15

stocks and SOC accumulation/loss rates between the dif-
ferent cropping systems in this and other studies (van der
Pol et al., 2022; Leal et al., 2020) when considering whole

soil profile (0–100 cm) allude to a dilution effect due to
low OC inputs beyond 30 cm. Organic-C inputs in the sub- 20

soil (> 30 cm) through crop root mortality and root exudates
are highly limited due to low root biomass (Button et al.,
2022; Chikowo et al., 2003). Several authors have also re-
ported similar cumulative SOC stocks for a soil profile depth
> 30 cm between different tillage and residue management 25

practices (Angers et al., 1997; Doran et al., 1998; Lal, 2015;
Powlson et al., 2014). This can be associated with an accu-
mulation of uncertainty when cumulating SOC stocks in sev-
eral soil layers with their respective error of measurement.
This weakens the ability to detect statistically significant 30

differences, even where such differences exist (Kravchenko
and Robertson, 2011). Kravchenko and Robertson (2011)
bemoaned the lack of sufficient replication when sampling
deep soil horizons due to its effect on the adequate repre-
sentation of variability, and they also emphasized the impor- 35

tance of post hoc power analysis to reduce Type-II error. This
study was limited to four replicates, which might not have
enough statistical power to detect significant differences be-
tween treatments when considering the whole soil profile.

4.2.1 Mulching 40

The overarching role of mulching in cumulative SOC stocks
and accumulation/loss rates at both sites (Tables 1, 2), albeit
in the topsoil (< 30 cm), has been shown in this study. Cu-
mulative SOC stocks (Table 1) and SOC accumulation/loss
rates (Table 2) did not differ with residue management un- 45

der NT systems (NTM and NTMR) in the topsoil at DTC,
regardless of high external OC inputs due to maize residue
application in mulch treatments (Fig. 4, Table S4). This was
attributed to the low clay content (< 15 % clay) in the top
20 cm and, hence, low physical SOC protection (Chivenge 50

et al., 2007; Mtambanengwe et al., 2004; Sun et al., 2020);
thus, the differences in OC inputs had little effect. Alterna-
tively, SOC can be protected from mineralization through ad-
sorption to clay particles (Han et al., 2016; Churchman et al.,
2020). However, there was low surface area for SOC adsorp- 55

tion due to the low clay content in the topsoil at DTC. Con-
versely, maize residue mulching effects were significant at
UZF, although NTMR was not significantly different when
compared with the other NT treatments. Cumulative OC in-
puts in the NTMR treatment (12.4 MgCha−1) were about 60

77 % of the cumulative OC inputs in the NTM treatment
(16.2 MgCha−1) but at least 57 % higher than in the NT and
NTR treatments after eight seasons (Fig. 4). This was asso-
ciated with SOC adsorption and physical protection due to
the relatively high clay content at UZF. Nonetheless, several 65

studies have shown that aboveground biomass is less effec-
tive with respect to sustaining SOC stocks compared with
belowground biomass (Hirte et al., 2018, 2021; Jones et al.,
2009; Villarino et al., 2021), and we attribute that to the in-
significant cumulative SOC stocks and accumulation rates 70

between the NT treatments other than NTM, regardless of
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higher aboveground biomass in the NTR and NTMR treat-
ments compared with NT (Fig. 4).

4.2.2 Tillage

Significant changes in SOC stocks and accumulation rates
were restricted to the top 20 cm at both sites, below which5

there were no differences between treatments (Table 2). The
consistently low SOC stocks in the NT, CT and CTR treat-
ments and the low SOC accumulation rates (CTR and NT) at
both sites were attributed to low OC inputs (Table S4, Fig. 4).
The NT and CT treatments have hadCE7 generally low yields10

in terms of grain and vegetative aboveground biomass (Mh-
langa et al., 2021; Shumba et al., 2023a) since the establish-
ment of the experiment in the 2013–2014 season and, in turn,
low OC inputs from stubble, root mortality and root exudates.
Our results dovetail with studies done elsewhere (Du et al.,15

2017; Koga and Tsuji, 2009) and with meta-analyses and
reviews (Corbeels et al., 2020a; Lal, 2018, 2015) in which
the authors have found that NT alone does not significantly
improve SOC. However, higher SOC stocks were observed
when NT was combined with at least two CA principles20

(mulching and rotation) at DTC in the top 20 cm (Table 1).
It has been reported that NT cropping systems enhance SOC
accumulation by increasing C inputs in the top layers and
reducing erosion via minimum soil disturbance (Six et al.,
2000; Lal, 2015, 2018; Bai et al., 2019; Cai et al., 2022).25

Minimum soil disturbance through NT also physically pro-
tects SOC in micro-aggregates from exposure to oxidative
losses (Shumba et al., 2020; Six et al., 2002; Dolan et al.,
2006; Liang et al., 2020). However, NT without mulch is a
nonentity compared with other combinations of CA princi-30

ples for long-term sustainability in cropping systems (Nya-
mangara et al., 2013; Kodzwa et al., 2020; Mhlanga et al.,
2021; Li et al., 2020; Bohoussou et al., 2022), and NT is
only effective for increasing SOC stocks when it is associ-
ated with other CA principles, especially mulch. Neverthe-35

less, SOC stocks at UZF in the NT, NTR and NTMR treat-
ments were similar, suggesting that rotation had no additional
benefits when combined with NTCE8 . This can be explained
by the low aboveground OC inputs in rotation treatments dur-
ing the season when cowpeas were grown.40

4.2.3 Maize–cowpea rotation

Legume rotations have been found to improve SOC accu-
mulation rates and result in subsequent soil structural im-
provement (aggregation), induced by the addition of organic
residues with a favourable C/N ratio (Virk et al., 2022;45

Laub et al., 2023; Jephita et al., 2023). However, in our
study, the benefits of cowpea rotation on SOC accumula-
tion rates were not significant at UZF (Table 2).CE9 Maize–
cowpea rotation had no significant effects on maize yield
(Shumba et al., 2023a; Mhlanga et al., 2021) which cor-50

responded to low belowground biomass as well. Instead,

maize stover mulching improved maize yields at DTC. Nev-
ertheless, the benefits of cowpea rotation under NT crop-
ping systems (NTR and NTMR) compared with CT crop-
ping systems (CTR) were significant, albeit only in the top 55

10 cm, at UZF: CTR had a net loss of SOC (−0.07± 0.04
to 0.03± 0.03 MgCha−1 yr−1). Significantly higher maize
yields were observed in rotation treatments at UZF (Shumba
et al., 2023a; Mhlanga et al., 2021) and were attributed to
more soil mineral N due to biological nitrogen fixation from 60

the preceding cowpea crop. Higher aboveground biomass is
positively related to belowground biomass, resulting in sig-
nificant belowground OC inputs of higher quality in the rota-
tion treatments in the season when maize is grown. However,
the net SOC loss in CTR at UZF was due to seasonal expo- 65

sure to oxidative losses (SOC mineralization) via the disrup-
tion of soil macroaggregates by tillage, as alluded to by Bai
et al. (2019), Cambardella and Elliott (1993), and Lal (2018).
We underscore that maize–cowpea rotation in the NT treat-
ment improved SOC accumulation in the topsoil due to re- 70

duced soil disturbance and alternate high-quality (cowpeas)
and low-quality (maize) OC inputs. High-quality OC inputs
have a positive priming effect (Chen et al., 2014) and have
been shown to be preferentially stabilized in the soil due to
a higher carbon use efficiency of soil microbes (Cotrufo et 75

al., 2013; Kopittke et al., 2018). This explains the significant
improvement in the SOC stocks under the combination of
NT and alternate high- and low-quality OC inputs (maize–
cowpea rotation) to the soil in medium- to heavy-textured
soils at UZF, and vice versa at DTC.CE10 80

4.3 The role of soil texture in SOC accumulation

Soil texture has a widely recognized influence on SOC stocks
(Sun et al., 2020) via the physical and chemical protection of
SOC against microbially mediated decomposition (Chivenge
et al., 2007; Mtambanengwe et al., 2004). In our study, the 85

main difference between the two study sites is soil texture in
the topsoil (0–30 cm): DTC had light-textured (sandy loam)
soils and UZF had medium- to heavy-textured (sandy clay
loam) soils (Fig. 1). These soil textural differences explain
why there were no differences in SOC stock nor accumula- 90

tion ratesCE11 between NTM, NTR and NTMR at DTC, re-
gardless of the higher cumulative OC inputs in the NTM and
NTMR treatments (Fig. 4). The direct SOC inputs in the top-
soil at DTC, where SOC was more concentrated (Table S2,
Fig. 3), were subject to mineralization because of the low 95

clay content and, thus, low protection of SOC due to soil
micro-aggregates (Chivenge et al., 2007; Mtambanengwe et
al., 2004; Sun et al., 2020); therefore, the differences in OC
inputs had little effect. Light-textured soils have large pores
that cannot protect SOC against microbial decomposition 100

(Mtambanengwe et al., 2004; Christensen, 1987; Sun et al.,
2020; Kravchenko and Guber, 2017). Additionally, the low
clay content meant less surface area for SOC adsorption (Han
et al., 2016; Churchman et al., 2020), which is another mech-
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anism for SOC protection from mineralization. In contrast,
there were significant differences between NTM and NTR
at UZF in the topsoil layers, but there were no significant
differences between NTM and NTMR. Cumulative OC in-
puts in the NTMR treatment (12.4 MgCha−1) were about5

75 % of the cumulative OC inputs in the NTM treatment
(16.2 MgCha−1) after eight seasons (Fig. 4). The added C,
especially from maize stover mulch, was most likely pro-
tected by clay particles as well as by the formation of organo-
mineral complexes (Malepfane et al., 2022; Chivenge et al.,10

2007; Jephita et al., 2023) that protect SOC from mineraliza-
tion (Dunjana et al., 2012; Shumba et al., 2020; Button et al.,
2022; Rumpel et al., 2012; Sanaullah et al., 2016).

5 Conclusions

Our study has shown the overarching importance of15

mulching and of the combination of at least two CA prin-
ciples to improve top SOC stocks. No tillage (NT) alone did
not increase SOC stocks, and this treatment even led to a
slight decrease compared with CT, due to lower crop pro-
ductivity in the NT treatment and, therefore, reduced OC in-20

puts to the soil. Nevertheless, whole-profile (0–100 cm) SOC
stocks were the same among all the treatments. Our study
also showed that sampling of the entire soil profile is neces-
sary for a more accurate understanding of the SOC accumu-
lation potential among different cropping systems.25
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