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Abstract  26 

Conservation agriculture (CA), combining reduced or no tillage, permanent soil cover and 27 

improved rotations, is often promoted as a climate-smart practice. However, our understanding 28 

about the impact of CA and its respective three principles on top and sub-soil organic carbon 29 

(SOC) stocks in low input cropping systems of sub-Saharan Africa is rather limited. The study 30 

was conducted at two long-term experimental sites established in 2013 in Zimbabwe. The soil 31 

types were abruptic Lixisols at Domboshava Training Centre (DTC) and xanthic Ferralsol at 32 

the University of Zimbabwe farm (UZF). Six treatments, replicated four times were 33 

investigated: conventional tillage (CT), conventional tillage with rotation (CTR), NT, no-34 

tillage with mulch (NTM), no-tillage with rotation (NTR), no-tillage with mulch and rotation 35 

(NTMR). Maize (Zea mays L.) was the main crop and treatments with rotation included cowpea 36 

(Vigna unguiculata L. Walp.). SOC concentration and bulk density were determined for 37 

samples taken from the 0-5, 5-10, 10-15, 15-20, 20-30, 30-40, 40-50, 50-75 and 75-100 cm 38 

depths. Cumulative organic inputs to the soil were also estimated in all treatments. SOC stocks 39 

at equivalent soil mass were significantly (p < 0.05) higher under NTM, NTR and NTMR 40 

compared to NT and CT in top 5 and 10 cm layers at UZF, while SOC stocks were only 41 

significantly higher under NTM and NTMR compared to NT and CT in top 5 cm at DTC. NT 42 

alone had a slightly negative impact on top SOC stocks. Cumulative SOC stocks were not 43 

significantly different between treatments when considering the whole 100 cm soil profile.  Our 44 

results showed the overarching role of crop residue mulching in CA cropping systems in 45 

enhancing SOC stocks but that this effect was limited to the topsoil. The highest cumulative 46 

organic carbon inputs to the soil were observed in NTM treatments at the two sites, and this 47 

could probably explain the positive effect on SOC stocks. Our results also showed that the 48 

combination of at least two CA principles including mulch is required to increase SOC stocks 49 

in these low nitrogen input cropping systems.  50 
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 53 

1. Introduction  54 

Soil organic carbon (SOC) is an important determinant of soil fertility, productivity and 55 

sustainability, and is a useful indicator of soil quality in tropical agricultural systems where 56 

nutrient poor and highly weathered soils are managed with little external inputs (Lal, 1997; 57 

Feller and Beare, 1997; Chivenge et al., 2007). Therefore,  rebuilding depleted SOC stocks in 58 

such soils holds potential to contribute to climate change mitigation (Bossio et al., 2020; 59 

Minasny et al., 2017; Swanepoel et al., 2016) through sustainable management of agricultural 60 

soils (Paustian et al., 2016; Dignac et al., 2017). 61 

Conservation agriculture (CA), based on minimum soil disturbance, crop residue retention and 62 

crop rotation, has been known to improve surface SOC, with beneficial effects on soil 63 

functioning such as improved water infiltration (Thierfelder and Wall, 2012, 2009) and better 64 

aggregate stability (Six et al., 1999; Thierfelder and Wall, 2012). The potential of CA to 65 

increase SOC stocks and thereby mitigate climate change has, however, been much debated 66 

(Corbeels et al., 2020a) but the general understanding is that, this potential is relatively low 67 

(Du et al., 2017; Powlson et al., 2014, 2016; Cheesman et al., 2016; Corbeels et al., 2020a). In 68 

fact, soil C storage has often been over-estimated for CA due to shallow soil sampling. 69 

Compared to conventional tillage systems, no-tillage redistributes SOC in the soil profile, with 70 

higher concentrations in the topsoil but potentially lower concentrations below, which can 71 

result in no differences in whole profile SOC stocks between no-tillage and conventional tillage 72 

(Angers and Eriksen-Hamel, 2008). However, this lack of significant differences in many 73 
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studies assessing whole profile SOC stocks suffer from not enough statistical power to 74 

accurately assess the potential significant SOC changes (Kravchenko and Robertson, 2011).  75 

CA can potentially build SOC in deeper soil layers from e.g. the use of cover crops with more 76 

extended root systems (Kell, 2011; Thorup-Kristensen et al., 2020; Yang et al., 2023). 77 

However, proper soil sampling strategies, to account for both topsoil and subsoil (> 30 cm 78 

depth) SOC stocks must, therefore, be prioritized. Soil sampling has often been limited to the 79 

top soil plough layer (0-30 cm) in the past two decades (Dube et al., 2012; Powlson et al., 2016; 80 

Patra et al., 2019; Yost and Hartemink, 2020), where SOC concentrations, root densities 81 

(Chikowo et al., 2003) and microbial activities (Mtambanengwe et al., 2004) are generally 82 

largest  (Rumpel et al., 2012) and which is the minimum default soil depth recommended by 83 

the Intergovernmental Panel for Climate Change (IPCC, 2019). In a meta-analysis of SOC 84 

stocks in the top 1 m of soils, Balesdent et al. (2018) found that soils below 0.3 m contain on 85 

average 47 % of total SOC stock in the 1 m soil depth and accounts for 19 % of the SOC that 86 

has been recently incorporated. Therefore, focusing on topsoil only, could underestimate the 87 

potential of agricultural management practices to store SOC (Cardinael et al., 2015). In turn, 88 

this can give wrong conclusions on the climate change mitigation potential of agricultural 89 

management practices.  90 

There have been many studies on the effects of CA on crop productivity and soil health benefits 91 

(Corbeels, Naudin, et al., 2020; Kimaro et al., 2016; Mhlanga et al., 2022a; Swanepoel et al., 92 

2018; Thierfelder et al., 2015, 2017; Thierfelder & Mhlanga, 2022), and other studies have 93 

fuelled the debate on CA practicality and adoption in SSA (Giller et al., 2009, 2015; Kassam 94 

et al., 2019). However, the effects of CA on SOC dynamics has not been widely investigated 95 

in SSA. Thierfelder et al., (2017) have alluded to the fact that, data on climate change mitigation 96 

potential of CA in southern Africa is scanty hence the need for more research to better quantify 97 
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the mitigation effects of CA as a climate-smart technology. It has also been observed that 98 

depending on the socio-economic and biophysical conditions, farmers may find it easier to 99 

adopt certain CA principles and/or their different combinations (Mbanyele et al., 2021; 100 

Baudron et al., 2012), although this also opened up new debates (Thierfelder et al., 2018). 101 

Therefore, in this study, the focus was on the individual versus combined effects of CA 102 

principles (no-tillage, crop residue retention, crop rotation) on SOC stocks.  103 

As changes in SOC stocks take time to be detected, long-term experiments are crucial, but are 104 

rare, especially in Africa (Bationo et al., 2013; Cardinael et al., 2022; Powlson et al., 2016; 105 

Thierfelder and Mhlanga, 2022). This study was conducted on two long-term experiments 106 

established in 2013 in Zimbabwe. We hypothesized that the full combination of CA 107 

components would be associated with higher increases in SOC stocks than adoption of only 108 

one component. This increase in SOC stocks could mainly be due to increased C inputs to the 109 

soil, especially under minimum soil disturbance. However, C inputs due to crop rotation could 110 

be indirect through increased crop productivity due to reduction on biotic pressure (pests and 111 

diseases), and therefore C inputs to the soil might be increased too. Cereals, in cereal-legume 112 

rotations may benefit from added soil nitrogen through biological nitrogen fixation from the 113 

preceding legume crop enhancing their productivity. Crop diversification, on the other hand, 114 

can enhance soil biological processes by increasing the diversity and/or abundance of 115 

microfauna like mycorrhizae. This, in turn, improves aggregate stability and offers physical 116 

protection for SOC. Lastly, high quality residues (from the legume crop) have been shown to 117 

be preferentially stabilized in the soil due to a higher carbon use efficiency of soil microbes 118 

(Cotrufo et al., 2013; Kopittke et al., 2018). 119 

 120 

2. Materials and methods  121 
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2.1 Study sites 122 

The study was conducted at two long-term experimental sites established in November 2013 123 

by CIMMYT. The site at the University of Zimbabwe Farm (UZF) is located about 12 km north 124 

of Harare city centre (31° 00′ 48″ E; 17° 42′ 24″ S), while the site at the Domboshava Training 125 

Centre (DTC) is located about 30 km north-east of Harare (31° 07′ 33″ E; 17° 35′ 17″ S). UZF 126 

soils are dolerite-derived xanthic Ferralsols (FAO classification) and are medium-textured 127 

sandy clay loams (34 % clay) in the top 20 cm with a subsoil (20-40 cm) of slightly higher clay 128 

content (38 %). DTC soils are granite-derived abruptic Lixisols (FAO classification) and are 129 

light-textured sandy loams (15 % clay) in the 0-20 cm layer, overlying abruptly a heavier-130 

textured subsoil (20-40 cm) of 30 % clay (Figure 1).  131 

The two study sites have a sub-tropical climate with cool, dry winters and hot, wet summers 132 

with mean annual minimum and maximum temperatures of 12°C and 25°C, respectively 133 

(Mapanda et al., 2010). The rainy season starts in November and tails off in March with a mean 134 

annual rainfall of 826 and 814 mm at UZF and DTC, respectively (Mhlanga, et al., 2022b). 135 

Cumulative seasonal rainfall in 2019/20 (474 mm) was almost half of rainfall received in the 136 

2020/21 season (932 mm) at DTC (Shumba et al., 2023b). At UZF, cumulative seasonal rainfall 137 

was 551 mm and 637 mm in the 2019/20 and 2020/21 cropping seasons. On average, minimum 138 

and maximum temperatures were 16.9 and 28.1 °C in 2019/20 and 15.5 and 27.2 °C in 2020/21 139 

at DTC and 15.5 and 28.6 °C in 2019/20 and 15.3 and 27.5 °C in 2020/21 cropping season at 140 

UZF.  141 

 142 
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 143 
Figure 1. Soil texture to 1 m soil depth at the DTC (top) and UZF (bottom) sites in Zimbabwe. 144 

Error bars represent standard errors (N = 4). 145 

 146 

2.2 Experimental treatments and crop management 147 

Two identical experiments were set up at the study sites and treatments were maintained every 148 

season since November 2013. The experiments were set up in a randomised complete block 149 
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design (RCBD) with eight treatments replicated in four blocks. However, in this study we 150 

investigated only six of these treatments. All crop residues were removed soon after harvesting 151 

in all treatments, stored and then applied prior to planting in treatments with mulch. The six 152 

treatments in our study were: 153 

i. Conventional tillage (CT) – land preparation was done through digging with a hand hoe 154 

and maize (Zea mays L.) was sown as a sole crop in rip lines that were created 155 

afterwards using an animal-drawn Magoye ripper (a traditional plough with the 156 

mouldboard replaced with a ripper tine) at DTC, and in planting basins (approximately 157 

10 cm diameter and 10 cm depth) created using a hand hoe at UZF. 158 

ii. Conventional tillage with rotation (CTR) – land preparation was done as in the CT 159 

treatment and maize was rotated with cowpea (Vigna unguiculata L.).  160 

iii. No-tillage (NT) – sole maize was sown in rip lines created using an animal-drawn 161 

Magoye ripper (no further soil disturbance was done) at DTC, and in planting basins 162 

(approximately 15 cm diameter and 15 cm depth) created using a hand hoe at UZF.  163 

iv. No-tillage with mulch (NTM) – maize was sown as in the NT treatment and maize 164 

residues from the previous season were applied on the soil surface between maize 165 

rows at planting at a rate of 2.5 t DM ha−1. 166 

v. No-tillage with rotation (NTR) – maize was sown in rip lines and rotated with cowpea.  167 

vi. No-tillage with mulch and rotation (NTMR) – maize was sown in rip lines and rotated 168 

with cowpea and maize residues were applied on the soil surface between maize rows 169 

at planting at a rate of 2.5 t DM ha−1. 170 

Crop residues were removed every year after harvest and weighed in again to maintain the 171 

exact 2.5 t ha-1 residue weight year after year. There was a total of 24 plots at each site which 172 

were 6 m wide and 12 m long (72 m2). Treatments with rotation (CTR, NTR, NTMR) were 173 
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split into 6 m wide and 6 m long (36 m2) subplots where maize and cowpea were grown 174 

interchangeably every season (maize was sown on one side of the plot while cowpea on the 175 

other side).  176 

The inter-row spacing was 90 cm and 45 cm for maize and cowpea, respectively, and the in-177 

row spacing was 25 cm for both crops which translated to 44,444 and 88,888 plants ha−1, 178 

respectively. Three seeds were planted per planting station and thinned to one after emergence. 179 

Basal dressing of nitrogen (N), phosphorus (P) and potassium (K) was applied within 5 cm of 180 

the seeds in the form of compound fertilizer for both maize and cowpea at 11.6 kg N ha-1, 10.6 181 

kg P ha-1 and 9.6 kg K ha-1, respectively. Nitrogen top dressing to maize only, was applied at 182 

4 and 8 weeks after emergence (WAE) in two equal splits of 23.1 kg N ha-1 each, as ammonium 183 

nitrate when soil moisture was adequate. However, in the 2019/20 cropping season at both sites 184 

and in the 2020/21 cropping season at UZF, the first N top dressing was delayed by an average 185 

of 4.5 and 2.0 weeks, respectively, due to mid-season dry spells. Ammonium nitrate was side 186 

dressed within 5 cm of the maize stems. Glyphosate [N-(phosphono-methyl) glycine], a pre-187 

emergent non-selective herbicide was applied at 1.025 L active ingredient ha−1 soon after 188 

sowing to control weeds. This was followed by manual hoe weeding whenever weeds reached 189 

a maximum of 10 cm height or 10 cm in diameter for stoloniferous weeds to achieve a weed 190 

clean field. More details about the experiment can be found in Shumba et al., (2023b) and 191 

Mhlanga et al., (2022a). 192 

 193 

2.3 Soil sampling for bulk density determination and soil organic carbon analysis  194 

Soil sampling was done in May 2021 at both sites. For each treatment and replicate, two 195 

sampling points in the maize rows and two sampling points in the middle of the inter-rows 196 
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were randomly selected. The two samples from the rows were pooled into one sample per 197 

depth, similarly to the two samples taken in the inter-rows. The following nine depth 198 

increments were considered for both SOC and bulk density (BD) measurements: 0-5, 5-10, 10-199 

15, 15-20, 20-30, 30-40, 40-50, 50-75 and 75-100 cm. Undisturbed soil samples using a metal 200 

cylinder (5 cm diameter and 5 cm height) were taken from the following depth ranges 0-5, 5-201 

10, 10-15, 15-20 and 20-30 cm for both SOC and BD measurements.  A motorized, hand-held 202 

soil corer, with an inside diameter of 10 cm, was used to take samples for the 30-40, 40-50, 50-203 

75 and 75-100 cm depths for SOC analysis from the same positions where undisturbed samples 204 

were taken. As no significant differences in BD were found below 20 cm between the different 205 

treatments at the two sites (see results section) and to avoid too much destruction of the 206 

experimental plots, two soil pits were opened at the edges of the experimental plots (also 207 

cropped with maize since 2013) at each site to take BD samples for the 30-40, 40-50, 50-75 208 

and 75-100 cm depths. As a result, BD below 30 cm depth was assumed the same across the 209 

treatments.  210 

Soil samples were crumbled and fresh weight was determined using a field scale. Soil moisture 211 

was determined on a sub-sample by drying it in an oven at 105°C for 48 hours. All samples 212 

were then air-dried and sieved through a 2 mm sieve to determine the mass proportion of coarse 213 

soil (> 2 mm) as a fraction of the whole sample. Bulk density (BD) was determined by dividing 214 

the dry mass of soil by the volume of the cylinder. Subsamples from the ≤ 2 mm soil fraction 215 

were grinded to < 200 µm for SOC analysis. SOC was analysed in the ISO9001:2015-certified 216 

IRD LAMA’s laboratory in Dakar by dry combustion on 100-mg aliquots of soil (ground to < 217 

200 µm) using a CHN elemental analyser (Thermo Finnigan Flash EA1112, Milan, Italy). 218 

 219 

2.4 Soil organic carbon stocks calculation 220 
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The mass proportion of the coarse fraction (> 2 mm) was removed to calculate SOC stocks. 221 

The equivalent soil mass (ESM) approach was used to determine SOC stocks to avoid 222 

systematic bias in SOC calculation when using the fixed depth method (Ellert and Bettany, 223 

1995; Wendt and Hauser, 2013; von Haden et al., 2020). We defined reference soil mass 224 

profiles for each site, based on the lowest cumulative soil mass obtained for each replicate. For 225 

these references, cumulative soil mass layers were 0-650, 650-1340, 1340-2060, 2060-4160, 226 

4160-5590, 5590-7040, 7040-10550, 10550-13770 Mg soil ha−1 at DTC and 0-460, 460-870, 227 

870-1330, 1330-1840, 1840-2760, 2760-4030, 4030-5300, 5300-8190, 8190-11050 Mg soil 228 

ha−1 at UZF, which roughly corresponded to soil depth layers of 0-5, 5-10, 10-15, 15-20, 20-229 

30, 30-40, 40-50, 50-75, 75-100 cm, respectively. SOC stocks were calculated on the basis of 230 

the same soil mass as the reference profile but different soil depth layers which varied by < 1.5 231 

and < 0.6 cm at DTC and UZF, respectively. As mulch was only applied between maize rows, 232 

and fertilizer was only applied on maize rows, it was estimated that the row and interrow space 233 

represented 22 and 78 % respectively, hence SOC calculations were weighted accordingly 234 

(Shumba et al., 2023b). Change in cumulative SOC stock between treatments for a given soil 235 

depth was determined using the CT treatment as the reference treatment: 236 

∆𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘 = 𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡(𝑖) − 𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘𝐶𝑇(𝑖), (Equation 1) 237 

where SOC stocktreatment is the cumulative SOC stock per treatment (CTR, NT, NTM, NRT, 238 

NTMR) at a given soil layer and (i) representing 0-5, 0-10, 0-15, 0-20, 0-30, 0-40, 0-50, 50-239 

75, 75-100 cm. 240 

SOC accumulation or loss rates (kg C ha−1 yr−1) were calculated by dividing the change in 241 

stocks by the number of years between the establishment of the experiment and the time of soil 242 

sampling (8 years): 243 
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𝑆𝑂𝐶 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛/𝑙𝑜𝑠𝑠 𝑟𝑎𝑡𝑒 =
∆𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘𝑠

8
× 1000, (Equation 2) 244 

 245 

2.5 Estimation of organic carbon inputs to the soil 246 

Maize and cowpea yield and aboveground biomass were measured since the inception of the 247 

experiment, except for cowpea during the 2013/14 season. This data gap was filled by using 248 

the average cowpea yield and aboveground biomass values across seasons (from 2013/14 to 249 

2020/21). We assumed that 5 % of the maize aboveground vegetative biomass remained in the 250 

field because maize stalk slashing at harvesting did not remove the whole stem. A root:shoot 251 

ratio of 0.16 and 0.06 for maize and cowpea, respectively (Amos and Walters, 2006; Kahn and 252 

Schroeder, 1999; Kimiti, 2011) was used to estimate the contribution of roots to organic C 253 

inputs to the soils. Organic C input contribution from weeds was assumed insignificant since 254 

there was effective control of weeds through the use of pre-emergence herbicide (glyphosate) 255 

and timely manual weeding throughout the cropping season. We also assumed that the relative 256 

amounts of organic C transferred through rhizodeposition was the same for maize and cowpea 257 

(i.e. 0.45 x root C biomass (Balesdent et al., 2011) and that the organic C content of all plant 258 

parts was 430 g kg-1 (Ma et al., 2018). Cumulative organic C inputs to the soil were then 259 

estimated for each treatment (Cardinael et al., 2022). 260 

 261 

2.6 Data analysis 262 

The full dataset is available in the CIRAD repository (Shumba et al., 2023a). Statistical analyses 263 

were performed using R software, version 4.0.0 (R Core Team 2020). Normality was tested by 264 

the Kolmogorov-Smirnov test. After confirming that data were normally distributed, analyses of 265 
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variance (ANOVA) was carried out to establish any significant treatment effects on BD, SOC 266 

concentration, and SOC stock. Separation of means was done using the post hoc Tukey test at 5 267 

% significance level using the emmeans function from the emmeans package (Bolker et al., 268 

2009). 269 

 270 

3. Results  271 

3.1 Soil bulk density 272 

 The different cropping systems (CT, CTR, NT, NTM, NTR, NTMR) had no significant (p > 273 

0.05) effect on BD across all soil depths except in the 5-10 cm depth in the inter-row at DTC 274 

(Figure 2) where BD was on average 5 % lower in the conventional tillage treatments (CT, CTR) 275 

than in the no-tillage treatments (NT, NTR). However, soil depth and location (row or inter-row), 276 

and the soil depth x location interaction had significant (p < 0.001) effects on BD. In the tillage 277 

layer (0-15 cm), BD was at least 2 % higher in the inter-rows than in the rows at both sites. In 278 

the deeper soil layer (15 – 30 cm), there were no significant (p > 0.05) differences. BD for depths 279 

below 30 cm were the same across treatments since it was determined from pits outside the 280 

experiment. It ranged between 1.47 – 1.51 and 1.47 – 1.49 g cm-3 (Table S1) in the subsoil (30 – 281 

100 cm layers) at DTC and UZF, respectively. 282 
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283 

Figure 2. Top soil bulk density (0-30 cm) at the Domboshava Training Centre (DTC) and 284 
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University of Zimbabwe Farm (UZF) experimental sites in Zimbabwe. CT: conventional tillage, 285 

CTR: conventional tillage with rotation, NT: no-tillage, NTM: no-tillage with mulch, NTR: no-286 

tillage with rotation, NTMR: no-tillage with mulch and rotation.  Error bars represent standard 287 

errors (N = 4). 288 

3.2 SOC concentration 289 

SOC concentration decreased significantly (p < 0.001) with soil depth (Figure 3, Table S2) and 290 

was highest in the surface soil (0-5 cm) for all treatments (Table S2). There were significant 291 

treatment effects in the 0-5 cm (p = 0.001) and 5-10 cm (p = 0.005) soil layers at DTC and in 292 

the 0-5 cm layer (p < 0.001) only, at UZF. NTM had significantly (p < 0.05) higher SOC 293 

concentration compared to conventional tillage treatments (CT, CTR) and NT in the 0-5 cm 294 

soil layer at both sites (Figure 3); the increase in SOC concentration ranged between 31 to 46 295 

% and 14 to 22 % at DTC and UZF, respectively. However, SOC concentration in NTM was 296 

equal (p > 0.05) to NTR and NTMR treatments at both sites.  297 

In the 5-10 cm soil layer of DTC, SOC concentrations in NTM and NTR were at least 19 % 298 

higher (p = 0.005) than in NT and CT (Table S2). There were no significant (p > 0.05) treatment 299 

effects on SOC concentration below 10 cm soil depth at DTC and below 5 cm depth at UZF.  300 
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301 

Figure 3. Soil depth distribution of organic carbon concentration for the different experimental 302 

treatments at the Domboshava Training Centre (DTC) and University of Zimbabwe Farm 303 

(UZF) experimental sites in Zimbabwe.  Error bars represent standard errors (N = 4). CT: 304 

conventional tillage, CTR: conventional tillage with rotation, NT: no-tillage, NTM: no-tillage 305 

with mulch, NTR: no-tillage with rotation, NTMR: no-tillage with mulch and rotation. 306 

 307 

3.3 SOC stock 308 



17 
 

There were significant (p < 0.05) treatment effects on SOC stocks per soil layer in the top 5 at 309 

UZF and 10 cm at DTC (Table S3). Compared to CT, CTR and NT, NTM had at least 1.1 and 310 

1.3 times more SOC stocks in the top 5 and 10 cm layers at UZF and DTC, respectively. In 311 

terms of cumulative SOC stocks, significant (p < 0.05) treatment effects were limited to the top 312 

30 cm at DTC and the 20 cm at UZF, where no tillage with mulching (NTM) increased SOC 313 

stocks (Table 1). There were no significant (p > 0.05) tillage effects on SOC stocks (CT vs NT) 314 

for both sites. The rotation component had no significant (p > 0.05) effects on SOC stocks 315 

when comparing CTR and NTR at DTC. However, the maize-cowpea rotation under NT (NTR) 316 

had at least 16 % higher SOC stocks in the top 30 cm compared to NT. In contrast, NTR had 317 

at least 7 % more SOC stocks than CTR in the top 10 cm at UZF. Compared to NT and CT, 318 

the mulching component significantly (p < 0.05) increased SOC stocks by at least 8 % at UZF 319 

and 13 % at DTC in the top 20 and 30 cm soil layers, respectively. SOC stocks in the full CA 320 

treatment (NTMR) were not significantly (p > 0.05) different with the other combinations of 321 

CA principles (NTM, NTR) and CTR at DTC. At UZF, the full CA treatment had similar SOC 322 

stocks as all the other NT treatments (NT, NTM, NTR).  323 

SOC stocks for the whole soil profile for this study (0-100 cm) were at least 8.1, 3.5 and 2.1 324 

times higher at DTC and 11.6, 4.4 and 2.4 times higher at UZF than the SOC stocks in the 0-5 325 

cm (surface soil), 0-15 cm (tillage depth) and 0-30 cm (IPCC standard depth) layers. SOC 326 

stocks for the subsoil (30-100 cm) ranged from 18.4 to 51.4 Mg C ha-1 at DTC and 41.9 to 327 

124.9 Mg C ha-1 at UZF. Therefore, subsoil represented more than half (at least 53 % at DTC 328 

and 58 % at UZF) of SOC stocks for the whole 100 cm soil profile.  329 

 330 
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Table 1. Cumulative SOC stocks at the Domboshava Training Centre (DTC) and University 331 

of Zimbabwe Farm (UZF) after 8 years of different tillage, residue and crop management 332 

systems. Means in the same row followed by different superscript letters are significantly 333 

different and associated errors are standard errors (N = 4). CT: conventional tillage, CTR: 334 
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conventional tillage with rotation, NT: no-tillage, NTM: no-tillage with mulch, NTR: no-tillage 335 

with rotation, NTMR: no-tillage with mulch and rotation. 336 

 337 

3.4 SOC accumulation and loss rates  338 

SOC accumulation rates at UZF differed significantly (p < 0.05) with soil depth where top soil 339 

layers (0-5, 0-10, 0-15, 0-20 and 0-30 cm) had SOC accumulation rates that were at least 6.9 340 

times less than when considering the 0-100 cm soil profile (Table 2). In contrast, there were no 341 

significant (p > 0.05) differences, at DTC in SOC accumulation rates with depth. On average, 342 

SOC accumulation rates ranged between 0.13 and 0.08 Mg C ha-1 yr-1 in the top soil (0-5 cm) 343 

to 0.33 and 1.16 Mg C ha-1 yr-1 for the whole 1 m soil profile at DTC and UZF, respectively. 344 

The depth and treatment interaction had no significant (p > 0.05) effects at both sites.  345 

On the other hand, the different treatments in this study had significant (p < 0.05) effects in 346 

SOC accumulation / loss rates in the top 20 cm soil layer at both sites (Table 2). At DTC, NT 347 

had significant (p < 0.05) net loss of SOC in the 0-20 cm layer, ranging between -0.09 and -348 

0.02 Mg C ha-1 yr-1, whereas NT treatments (NTM, NTR, NTMR) had SOC accumulation rates 349 

ranging from 0.17 to 0.38 Mg C ha-1 yr-1. However, maize stover mulching (NTM) had 350 

significantly (p < 0.05) higher SOC accumulation rates than CTR (2.9 – 4.2 times) and NT (5.2 351 

– 13.5 times) in the top 15 cm and 20 cm layers, respectively. The different combinations of 352 

mulching and rotation under NT (NTM, NTR and NTMR) had no significant (p > 0.05) 353 

differences in SOC accumulation rates. Similarly, rotation treatments (CTR, NTR, NTMR) 354 

showed no significant (p > 0.05) differences in SOC accumulation rates. Thus, the full CA 355 

treatment had similar SOC accumulations rates to treatments with at least 2 combinations of 356 

CA principles (NTM and NTR) and to CTR. 357 
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In contrast, at UZF, CTR had significant (p < 0.05) net loss of SOC in the top 20 cm (Table 2). 358 

The no-tillage treatments (NT, NTM, NTR, NTMR) showed significantly (p < 0.05) higher 359 

SOC accumulation rates (0.05 – 0.25 Mg C ha-1 yr-1) than CTR which ranged between -0.07 to 360 

-0.03 Mg C ha-1 yr-1 in top 10 cm soil layer. NTM had the highest SOC accumulations rates 361 

(0.28 to 0.32 Mg C ha-1 yr-1) when considering the 0-15 and 0-20 cm soil layers. SOC 362 

accumulation rates in NTM were at least 3.8, 3.5 and 2.4 times higher than CTR, NT and NTR 363 

in the top 20 cm. The full CA treatment (NTMR) had significantly (p < 0.05) higher SOC 364 

accumulation rates compared to CTR (2.5 – 5.3 times) in the top 10 cm and lower SOC 365 

accumulation rate to NTM in the 0-10 cm (2.3 times) and 0-20 cm (10.6 times) soil layer. 366 

However, there were no significant (p > 0.05) differences in SOC accumulation rates between 367 

treatments beyond 20 cm soil layer at both sites. 368 

Site 

Approximate 

soil depth 

(cm) 

SOC accumulation or loss rate (Mg C ha-1 yr-1) LSD Sig 

CTR NT NTM NTR NTMR   

DTC 

0-5 0.06 ± 0.05bc -0.02 ± 0.02c 0.25 ± 0.05a 0.17 ± 0.02ab 0.19 ± 0.04ab 0.13 *** 

0-10 0.10 ± 0.09bc -0.04 ± 0.04c 0.31 ± 0.09a 0.24 ± 0.01ab 0.25 ± 0.08ab 0.16 *** 

0-15 0.12 ± 0.13bc -0.07 ± 0.05c 0.35 ± 0.13a 0.30 ± 0.01ab 0.27 ± 0.12ab 0.23 ** 

0-20 0.12 ± 0.17ab -0.09 ± 0.05b 0.38 ± 0.17a 0.32 ± 0.01a 0.27 ± 0.16a 0.29 ** 

0-30 0.13 ± 0.25a -0.13 ± 0.07a 0.36 ± 0.25a 0.32 ± 0.08a 0.33 ± 0.20a 0.35 ns 

0-40 0.22 ± 0.25a -0.15 ± 0.07a 0.33 ± 0.25a 0.38 ± 0.07a 0.25 ± 0.23a 0.41 ns 

0-50 0.20 ± 0.27a -0.20 ± 0.14a 0.30 ± 0.27a 0.40 ± 0.09a 0.26 ± 0.22a 0.46 ns 

0-75 0.51 ± 0.28a -0.15 ± 0.28a 0.13 ± 0.28a 0.53 ± 0.13a 0.51 ± 0.20a 0.73 ns 

0-100 0.62 ± 0.32a -0.20 ± 0.37a 0.13 ± 0.32a 0.58 ± 0.29a 0.53 ± 0.20a 0.86 ns 

UZF 

0-5 -0.03 ± 0.03c 0.05 ± 0.04b 0.17 ± 0.05a 0.07 ± 0.04b 0.13 ± 0.06ab 0.08 *** 

0-10 -0.07 ± 0.04c 0.07 ± 0.08b 0.25 ± 0.09a 0.07 ± 0.07b 0.11 ± 0.08b 0.13 ** 

0-15 -0.10 ± 0.03b 0.06 ± 0.11b 0.28 ± 0.13a 0.04 ± 0.07b 0.09 ± 0.11ab 0.22 ** 

0-20 -0.11 ± 0.07b 0.06 ± 0.14b 0.32 ± 0.17a 0.02 ± 0.11b 0.03 ± 0.12b 0.25 ** 

0-30 0.06 ± 0.15a 0.22 ± 0.25a 0.51 ± 0.25a -0.05 ± 0.18a 0.12 ± 0.16a 0.44 ns 

0-40 0.37 ± 0.11a 0.25 ± 0.27a 0.72 ± 0.25a 0.19 ± 0.28a 0.29 ± 0.14a 0.65 ns 

0-50 0.51 ± 0.20a 0.15 ± 0.34a 0.85 ± 0.27a 0.31 ± 0.41a 0.43 ± 0.10a 0.88 ns 

0-75 0.83 ± 0.56a 0.08 ± 0.55a 0.08 ± 0.28a 0.55 ± 0.76a 1.14 ± 0.44a 1.17 ns 

0-100 1.41 ± 0.86a 0.25 ± 0.75a 0.98 ± 0.32a 1.03 ± 1.26a 2.14 ± 0.99a 2.31 ns 

Table 2. SOC change rates (± standard error, N = 4) of the different treatments compared to 369 

CT (conventional tillage) at Domboshava Training Centre (DTC) and University of Zimbabwe 370 
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farm (UZF). Means in the same row followed by different superscripts are significantly 371 

different. CTR: conventional tillage with rotation, NT: no-tillage, NTM: no-tillage with mulch, 372 

NTR: no-tillage with rotation, NTMR: no-tillage with mulch and rotation, LSD = least 373 

significance difference, ns = not significant, Sig = significance, ** = p < 0.05, *** = p < 0.001. 374 

 375 

3.5 Organic carbon inputs via crops residues, root mortality and rhizodeposition to the 376 

soil 377 

There were significant (p < 0.001) differences in cumulative OC inputs between treatments 378 

(Figure 4). Cumulative OC inputs were at least 1.5 times higher in mulch treatments (NTM, 379 

NTMR) than in treatments without mulch.  However, the mulch plus rotation treatment 380 

(NTMR) had significantly (p < 0.001) lower cumulative OC inputs than continuous mulching 381 

(NTM). Cumulative OC input after 8 seasons was as high as 16.0 and 10.5 Mg C ha-1 at DTC 382 

and 16.2 and 12.4 Mg C ha-1 at UZF in NTM and NTMR, respectively (Figure 4), resulting in 383 

mean annual OC input rates of about 1.3 to 1.6 Mg C ha-1 yr-1 for NTMR and 2.0 Mg C ha-1 yr-384 

1 for NTM. The other treatments had mean annual OC input rates ≤ 1.0 Mg C ha-1 yr-1. 385 
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386 

Figure 4. Estimated cumulative organic carbon (OC) inputs to the soil from the 2013/14 to the 387 

2020/21 cropping season for the different treatments at the Domboshava Training Centre 388 

(DTC) and the University of Zimbabwe Farm (UZF) experimental sites. Error bars represent 389 

standard errors (n = 4) for the cumulative OC. CT: conventional tillage, CTR: conventional 390 

tillage with rotation, NT: no-tillage, NTM: no-tillage with mulch, NTR: no-tillage with 391 
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rotation, NTMR: no-tillage with mulch and rotation, ABG: aboveground biomass 392 

(corresponding to an estimated 5 % of the maize aboveground vegetative biomass remained in 393 

the field because maize stalk slashing at harvesting did not remove the whole stem). 394 

 395 

4. Discussion  396 

4.1 SOC distribution across soil depth  397 

Cumulative SOC stocks for the whole soil profile (0-100 cm) for this study were at least 8.0, 398 

4.0 and 2.0 times higher than the 0-5 (surface soil), 0-15 (tillage depth for the study) and 0-30 399 

(IPCC standard depth for SOC studies), for the two sites, respectively. This means that, over 400 

half of SOC stocks for this study were in the sub-soil (30-100 cm) which reflects on the 401 

importance of sub-soil SOC stocks. Significant SOC stocks in the sub-soil have also been 402 

reported by other authors (Yost and Hartemink, 2020; Balesdent et al., 2018; Cardinael et al., 403 

2015; Harrison et al., 2011; Lal, 2018). Significant effects of mulch and/or rotation under NT 404 

were restricted to the top 30 cm in our study as well as other studies in SSA (Dube et al., 2012; 405 

Powlson et al., 2016) and the world at large (Balesdent et al., 2018; Yost and Hartemink, 2020), 406 

which is most likely why the default soil depth for IPCC for SOC studies is 0-30 cm (IPCC, 407 

2019). However, this underestimates whole soil profile C storage (Harrison et al., 2011; Singh 408 

et al., 2018; Lorenz and Lal, 2005). Therefore, it is crucial to consider whole soil profile 409 

sampling when monitoring SOC storage in agricultural ecosystems to determine their C 410 

sequestration potential in the pursuit of climate change mitigation (Malepfane et al., 2022). 411 

SOC mineralization is relatively low in the sub-soil due to lack of oxygen and physical 412 

protection of SOC (aggregate protected C) (Rumpel et al., 2012; Sanaullah et al., 2016; Shumba 413 

et al., 2020; Button et al., 2022). Therefore, in the pursuit to improve subsoil (> 30 cm) SOC 414 
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stocks through root mortality and exudates, crop varieties with higher root-length densities 415 

(Chikowo et al., 2003) in the subsoil are recommended.  416 

 417 

4.2 Cumulative SOC stocks and accumulation rates 418 

Overall, the insignificant differences in cumulative SOC stocks and SOC accumulation / loss 419 

rates between the different cropping systems in this and other studies (Laura et al., 2022; Leal 420 

et al., 2020) when considering whole soil profile (0-100 cm) is alluded to the dilution effect 421 

due to low OC inputs beyond 30 cm. Organic C inputs in the subsoil (> 30 cm) through crop 422 

root mortality and root exudates are highly reduced due to low root biomass (Button et al., 423 

2022; Chikowo et al., 2003). Several authors have also reported similar cumulative SOC stocks 424 

for soil profile depth > 30 cm between different tillage and residue management practices 425 

(Angers et al., 1997; Doran et al., 1998; Lal, 2015; Powlson et al., 2014). This can be alluded 426 

to an accumulation of uncertainty when cumulating SOC stocks in several soil layers with their 427 

respective error of measurement. This weakens the power of detecting statistically significant 428 

differences even where such differences exist (Kravchenko and Robertson, 2011). Kravchenko 429 

and Robertson, (2011) bemoaned the lack of enough replication when sampling deep soil 430 

horizons to reduce variability and the importance of post hoc power analysis to reduce Type II 431 

error. This study was limited to four replicates which might not have enough statistical power 432 

to detect significant differences between treatments when considering the whole soil profile. 433 

4.2.1 Mulching 434 

The overarching role of mulching in cumulative SOC stocks and accumulation / loss rates at 435 

both sites (Tables 1 and 2), albeit, in the top soil (< 30 cm) has been shown in this study. 436 

Cumulative SOC stocks (Table 1) and SOC accumulation / loss rates (Table 2) did not differ 437 
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with residue management under NT systems (NTM, NTMR) in the top soil at DTC regardless 438 

of high external OC inputs through maize residue application in mulch treatments (Figure 4, 439 

Table S4). This was attributed to low clay content (< 15 % clay) in the top 20 cm hence low 440 

physical SOC protection (Chivenge et al., 2007; Mtambanengwe et al., 2004; Sun et al., 2020), 441 

such that the differences in OC inputs had little effect. Alternatively, SOC can be protected 442 

from mineralization through adsorption to clay particles (Han et al., 2016; Churchman et al., 443 

2020). However, there was low surface area for SOC adsorption due to low clay content in the 444 

top soil at DTC. Conversely, maize residue mulching effects were significant at UZF though 445 

NTMR was indifferent when compared to the rest of the NT treatments. Cumulative OC inputs 446 

in NTMR (12.4 Mg C ha-1) were about 77 % of cumulative OC inputs in NTM (16.2 Mg C ha-447 

1) but at least 57 % higher OC inputs than NT and NTR after 8 seasons (Figure 4). This was 448 

alluded to SOC adsorption and physical protection due to higher clay content at UZF. 449 

Nonetheless, several studies have shown that aboveground biomass is less effective in 450 

sustaining SOC stocks compared to belowground biomass (Hirte et al., 2018, 2021; Jones et 451 

al., 2009; Villarino et al., 2021) and we attribute that to the insignificant cumulative SOC stocks 452 

and accumulation rates between the NT treatments other than NTM regardless of higher 453 

aboveground biomass in NTR and NMTR than NT (Figure 4).  454 

4.2.2 Tillage 455 

Significant changes in SOC stocks and accumulation rates were restricted to the top 20 cm at 456 

both sites below which there were no differences between treatments (Table 2). The 457 

consistently low SOC stocks under NT, CT and CTR and SOC accumulation rates (CTR and 458 

NT) at both sites was attributed to low OC inputs (Table S4, Figure 4). NT and CT had 459 

generally low yields in terms of grain and vegetative aboveground biomass (Mhlanga et al., 460 

2021; Shumba et al., 2023b) since the establishment of the experiment in the 2013/14 season 461 
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and hence low OC inputs through stubble, root mortality and root exudates. Our results 462 

dovetails with studies done elsewhere (Du et al., 2017; Koga and Tsuji, 2009) and meta-463 

analyses and reviews (Corbeels et al., 2020a; Lal, 2018, 2015) where the authors found that 464 

NT alone does not significantly improve SOC. However, higher SOC stocks were observed 465 

when NT was combined with at least two CA principles (mulching and rotation) at DTC in the 466 

top 20 cm (Table 1). It has been reported that NT cropping systems enhance SOC accumulation 467 

through increasing C inputs in the top layers and reducing erosion through minimum soil 468 

disturbance (Six et al., 2000; Lal, 2015, 2018; Bai et al., 2019; Cai et al., 2022). Minimum soil 469 

disturbance through NT also physically protects SOC in microaggregates from exposure to 470 

oxidative losses (Shumba et al., 2020; Six et al., 2002; Dolan et al., 2006; Liang et al., 2020). 471 

However, NT without mulch is a nonentity compared to other combinations of CA principles 472 

for long-term sustainability in cropping systems (Nyamangara et al., 2013; Kodzwa et al., 2020; 473 

Mhlanga et al., 2021; Li et al., 2020; Bohoussou et al., 2022) and NT is only effective in 474 

increasing SOC stocks when it is associated with other CA principles, especially mulch. On 475 

the other hand, our study suggest that NT can achieve the same results of SOC storage as NTR 476 

and NTMR since they had similar SOC stocks at UZF. This can be explained by the low 477 

aboveground OC inputs in rotation treatments during the season when cowpeas were grown.  478 

4.2.3 Maize-cowpea rotation 479 

Legume rotations have been found to improve SOC accumulation rates and subsequent soil 480 

structural improvement (aggregation) induced by the addition of organic residues with 481 

favourable C/N ratio (Virk et al., 2022; Laub et al., 2023; Jephita et al., 2023). However, in our 482 

study, cowpea rotation benefits on SOC accumulation rates were not significant at DTC. 483 

Maize-cowpea rotation had no significant effects on maize yield (Shumba et al., 2023b; 484 

Mhlanga et al., 2021) which corresponded to low belowground biomass as well. Instead, maize 485 



27 
 

stover mulching improved maize yields at DTC. Nevertheless, benefits from cowpea rotation 486 

under NT cropping systems (NTR, NTMR) compared to CT cropping systems (CTR) were 487 

significant, albeit only in the top 10 cm, at UZF; CTR had a net loss of SOC (-0.07 ± 0.04 to 488 

0.03 ± 0.03 Mg C ha-1 yr-1). Significantly higher maize yields in rotation treatments were 489 

observed at UZF (Shumba et al., 2023b; Mhlanga et al., 2021) and were attributed to more soil 490 

mineral N due to biological nitrogen fixation from the preceding cowpeas. Higher aboveground 491 

biomass is positively related to below ground biomass resulting in significant belowground OC 492 

inputs, of higher quality in the rotation treatments in the season when maize is grown. However, 493 

the net SOC loss in CTR at UZF was due to seasonal exposure to oxidative losses (SOC 494 

mineralization) through disruption of soil macroaggregates by tillage as alluded by Bai et al., 495 

(2019); Cambardella and Elliott, (1993) and Lal, (2018). We underscore that maize-cowpea 496 

rotation under NT improved SOC accumulation in the top soil due to reduced soil disturbance 497 

and alternate OC inputs of high (cowpeas) and low quality (maize). High quality OC inputs 498 

have a positive priming effect (Chen et al., 2014) which have been shown to be preferentially 499 

stabilized in the soil due to a higher carbon use efficiency of soil microbes (Cotrufo et al., 2013; 500 

Kopittke et al., 2018). This explains significant improvement in SOC stocks under the 501 

combination of NT and alternate high- and low-quality OC inputs (maize-cowpea rotation) to 502 

the soil in medium to heavy textured soils at UZF and vice versa at DTC. 503 

 504 

4.3. Role of soil texture in SOC accumulation 505 

Soil texture is widely recognized to influence SOC stocks (Sun et al., 2020) through physical 506 

and chemical protection of SOC against microbially mediated decomposition (Chivenge et al., 507 

2007; Mtambanengwe et al., 2004). In our study, the main difference between the two study 508 

sites is soil texture in the top soil (0-30 cm), where DTC had light textured (sandy loams) soils 509 
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and UZF had medium to heavy textured (sandy-clay-loams) soils (Figure 1).  These soil textural 510 

differences explain why there were no differences in SOC stocks, changes and accumulation 511 

rates between NTM, NTR and NTMR at DTC regardless of higher cumulative OC inputs in 512 

NTM and NTMR (Figure 4). The direct SOC inputs in the top soil at DTC, where SOC was 513 

more concentrated (Table S2, Figure 3) was subject to mineralization because of low clay 514 

content and thus low protection by soil micro-aggregates (Chivenge et al., 2007; 515 

Mtambanengwe et al., 2004; Sun et al., 2020), such that the differences in OC inputs had little 516 

effect. Light textured soils have large pores which cannot protect SOC against microbial 517 

decomposition (Mtambanengwe et al., 2004; Christensen, 1987; Sun et al., 2020; Kravchenko 518 

and Guber, 2017). Additionally, the low clay content meant less surface area for SOC 519 

adsorption (Han et al., 2016; Churchman et al., 2020) which is another mechanism for SOC 520 

protection from mineralization. In contrast, there were differences between NTM and NTR at 521 

UZF in the top soil layers and intermediate between NTM and NTMR. Cumulative OC inputs 522 

in NTMR (12.4 Mg C ha-1) were about 75 % of cumulative OC inputs in NTM (16.2 Mg C ha-523 

1) (Figure 4) after 8 seasons. The added C, especially from maize stover mulch, most likely 524 

was protected by clay particles as well as formation of organo-mineral complexes (Malepfane 525 

et al., 2022; Chivenge et al., 2007; Jephita et al., 2023) which protects SOC from mineralization 526 

(Dunjana et al., 2012; Shumba et al., 2020; Button et al., 2022; Rumpel et al., 2012; Sanaullah 527 

et al., 2016).  528 

 529 

5. Conclusions 530 

Our study has shown the overarching importance of mulching and of combining at least two 531 

CA principles to improve top SOC stocks. No tillage (NT) alone could not increase SOC stocks, 532 

and even led to a slight decrease compared to CT, due to lower crop productivity in NT and 533 

therefore reduced OC inputs to the soil. Nevertheless, whole profile (0-100 cm) SOC stocks 534 
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were the same between all the treatment. Our study also showed that sampling the entire soil 535 

profile is necessary for a more accurate view of SOC accumulation potential among different 536 

cropping systems. 537 

 538 
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