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Abstract. The geography of changes in the fluxes of heat, carbon, fresh water and other tracers at the sea surface are highly

uncertain and are critical to our understanding of climate change and its impacts. We present a state estimation framework

wherein prior estimates of boundary fluxes can be adjusted to make them consistent with the evolving ocean state. In this

framework, we define a discrete set of ocean water masses distinguished by their geographical and thermodynamic/chemical

properties for specific time periods. Ocean circulation then moves these water masses in geographic space. In phase space,5

geographically adjacent water masses are able to mix together, representing a convergence, and air-sea property fluxes move

the water masses over time. We define an optimisation problem whose solution is constrained by the physically permissible

bounds of changes in ocean circulation, air-sea fluxes and mixing. As a proof of concept implementation, we use data from

a historical numerical climate model simulation with a closed heat and salinity budget. An inverse model solution is found

for the evolution of temperature and salinity consistent with ‘true’ air-sea heat and fresh water fluxes which are introduced as10

model priors. When biases are introduced to the prior fluxes, the inverse model finds a solution closer to the true fluxes. This

framework, which we call the Optimal Transformation Method, represents a modular, relatively computationally cost effective,

open source and transparent state estimation tool that complements existing approaches.

1 Introduction

As the climate warms, the ocean acts as a giant reservoir, absorbing excess heat (Cheng et al., 2022) and exchanging vast15

amounts of biologically critical gasses (Friedlingstein et al., 2022). Accurately projecting future climate change hinges on a

deeper understanding of this exchange of properties at the sea surface, and the subsequent ocean response via mixing and

circulation. Estimates of past changes in air-sea exchange have large uncertainties, hampering efforts to accurately model

them. There is broad disagreement between individual atmospheric reanalysis products on the trends in air-sea heat fluxes

since the 1970s, particularly outside the equatorial Pacific (Cheng et al., 2022; Friedlingstein et al., 2022; Chaudhuri et al.,20

2013; Bentamy et al., 2017), and these trends in air-sea heat fluxes do not correspond with in-situ observations of the change in

ocean temperatures over the same period (e.g., Valdivieso et al. (2017)). The same is true for air-sea freshwater flux products,

which can deviate from one another and from observations of ocean salinity change significantly (Grist et al., 2016). Therefore,
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new techniques are needed to translate observations of the changes in distribution of ocean properties into estimates of the rates

of air-sea exchange, mixing and circulation.25

Changes in the concentration of key oceanic properties such as temperature, salinity, oxygen and carbon can be directly

measured. From these observations, air-sea fluxes can be inferred by fitting a physical model of the ocean. This is called

‘inverse modelling’ or ‘state estimation’ (Wunsch, 2006). A number of common approaches have been employed in the past to

produce oceanic state estimates, including hindcasts, Four Dimensional Variational Assimilation (4DVAR), Green’s Functions

and water mass based methods.30

Hindcasts are derived by taking a forward marching numerical model of the ocean, which is initialised with our best guess

of the initial distribution of ocean properties, and forced at the sea surface by observational estimates of the atmospheric

state, including wind, speeds, air, temperature, and humidity. This yields a physically consistent estimate of the state of the

ocean over a given time. With careful consideration of model drift, hindcasts have been used to produce accurate descriptions

(or ‘state estimates’) of recent ocean temperature changes, and therefore heat fluxes from hindcasts have been interpreted as35

providing plausible descriptions of recent changes (Drijfhout et al., 2014; Huguenin et al., 2022). However, such hindcasts do

not typically describe other tracers such as salinity accurately without surface salinity restoring (Griffies et al., 2009).

Four Dimensional Variational Assimilation (Wunsch and Heimbach, 2007, 4DVar, also described as the "adjoint method") is

a more sophisticated extension to hindcasts where, during a model run, the state of the model is differentiated with respect to

initial and boundary conditions. Through iteration, boundary and initial conditions are adjusted (in effect systematically tuned)40

to minimise the least squares difference between the model and observations, leading to as physically consistent a model state

as is feasible from which plausible air-sea fluxes result. 4DVar is, however, computationally expensive, meaning simulations

typically focus on the very recent past. For instance, the latest data product from the Estimating the Circulation and Climate of

the Ocean (ECCO) project covers the period 1992-2017 (Forget et al., 2015). In addition, the state estimate is closely tied to

the specific numerical schemes of the model used. For example, if the model’s resolution and advection scheme cannot capture45

a boundary current accurately, then no change to model boundary and initial conditions can change that.

The state estimation approach we propose here is not intended to be a competitor to 4DVar but rather an alternative approach

with distinct use cases. The method we propose is rooted in both ocean transport and water mass theory, both of which we will

review briefly in the context of state estimation.

A common approach to ocean state estimation, particularly in terms of of ocean tracers, is to consider every point in the50

ocean at time t, as being a mixture of contributions transported from other regions of the ocean at previous times given by a

‘Green’s Function’ (GF; Haine and Hall, 2002). In its pure form the GF provides a complete description of all aspects of ocean

circulation and mixing, a complete GF is too high dimensional to be solved for using an inverse model (a GF linking each point

in space and time to each other point in space and time and would be eight-dimensional). That said, GF-based methods have

been put to practical use by assuming ocean circulation is steady, and by considering only the connection between a limited55

number of surface patches and interior ocean points (Khatiwala et al., 2009; Zanna et al., 2019).

In practice, a GF is inversely fit to a set of observational estimates of both surface and interior concentrations or by directly

calculating the GF-based on a steady numerical model. An adjacent approach is to directly fit a so called ‘transport matrix’
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(Khatiwala, 2007). GF and transport matrix methods have been used to infer transient changes in the air-sea fluxes of properties

(such as anthropogenic carbon; Mikaloff Fletcher et al., 2006; Khatiwala et al., 2009), as well as to infer long-term changes in60

ocean properties (such as ocean heat content; Zanna et al., 2019; Newsom et al., 2020). In addition to steady state assumptions,

implicit in these approaches is the assumption that the air-sea exchange of properties is proportional to the anomaly of that

property at the sea surface. These assumptions can lead to substantial errors and restrict the range of variables that can be

described (Wu and Gregory, 2022). We aim to develop a method that does not rely on these assumptions.

A water mass is typically defined as a body of water with distinct thermodynamic and/or chemical properties. Water mass65

based methods are rooted in the fact that only sources and sinks of properties at the sea surface and mixing can change the

underlying volumetric distribution of water masses in terms of their properties (Groeskamp et al., 2019). For instance, adiabatic

ocean circulation cannot directly change the volume of water that is warmer than a given value. Because sources and sinks of

properties and mixing are typically far larger near the sea surface than the deep ocean, the properties of water masses are often

thought to indicate a common formation history.70

Traditional box inverse methods (Wunsch, 1978) and their extensions (such as the tracer contour method Zika et al., 2009)

effectively use a water mass approach since properties are conserved within isopycnal layers or along temperature/salinity

iso-contours on isopycnals. More recently, the unique properties of water mass transformation have been exploited with the

thermohaline inverse method (THIM). In THIM, Groeskamp et al. (2014b) frames the inverse problem in terms of the global

conservation of volume in multiple tracer (temperature and salinity) coordinates. This approach has been extended to a regional75

context with the Regional Thermohaline Inverse Method (Mackay et al., 2018). However, these methods have not been focused

on inferring air-sea exchanges (in those examples, air-sea fluxes are taken as known boundary conditions) nor investigating

long term changes.

Water mass based methods have been used in a number of studies focused on understanding variability, for example the

seasonal cycle of water masses (Groeskamp et al., 2014a; Evans et al., 2014), interannual variability in the North Atlantic80

(Evans et al., 2017; Josey et al., 2009), long term changes in salinity (Zika et al., 2015a; Skliris et al., 2016) and temperature

(Sohail et al., 2021) and the ocean’s properties (Sohail et al., 2022; Zika et al., 2021). Here, we will build on these studies and

incorporate aspects of Green’s Functions-based methods to develop a general, yet relatively simple and intuitive water mass

based state estimation tool for the changing ocean, termed the Optimal Transformation Method (OTM) .

In Section 2 we build up the OTM state estimation framework in the most general terms. In Section 3 we discuss a specific85

implementation of OTM and test this implementation using numerical model data. In Section 4 we present the state estimates

and sensitivity tests. In Section 5 we discuss the utility of the framework and conclude.

2 Optimal Transformation Method

2.1 Prelude

Consider a fluid with a set of conservative tracers C= [A,B, ...]T , where A(x, t) is a scalar describing the concentration of the90

first tracer in space (x) and time (t), B(x, t) the concentration of the second and so on. By “conservative", we mean that, in the
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absence of explicit sources and sinks of tracer substance, a parcel of fluid following fluid motion will retain its concentration

unless it is irreversibly mixed with other fluid parcels. Furthermore, when a fluid parcel of mass m1 with concentration C1

mixes with a fluid parcel of mass m2 with concentration C2, the resulting fluid parcel has mass m=m1 +m2 and tracer

concentration95

Cmix =
m1C1 +m2C2

m1 +m2
. (1)

For the case of only one tracer variable, any fluid parcel with concentration Cmix can be formed from a linear combination

of 2 other fluid parcels with concentrations C1 and C2 so long as C1 ≤ Cmix ≤ C2.

We now consider a description of many water masses and many tracers. We define an early set of water masses describing

an early period of time being converted into a late set of water masses some period of time ∆t later. Let there be a set of N100

early water masses with tracer concentrations {C0,1,C0,2, ...,C0,N} and N late water masses with {C1,1,C1,2, ...,C1,N}. In

both cases the first subscript denotes the point in time (early = 0; late = 1) and the second denotes the index of the water mass

corresponding to that state. To make the mathematics as simple as possible in this Section, each water mass has the same mass,

m, in the early and late states. We will relax this constraint in the practical implementation of the method (Section 3.3).

If the system is closed, the late water masses are constituted from the early water masses. That is, there is some ‘transport’105

matrix, whose entries gij represent the mass fraction from the ith early water mass used to create the jth late water mass.

Applying mass conservation we have

1 =

N∑
i=1

gij and 1 =

N∑
j=1

gij . (2)

In Zika et al. (2021), we solved for gij . by minimizing the amount of warming and cooling water masses had to undergo,

in a root mean square sense, to achieve the observed change in water mass distribution in temperature and salinity coordinates110

(see also Evans et al. (2014)). Using that approach we are not able to make use of observational estimates of air sea heat and

fresh water fluxes nor were we able to impose physics based constraints on mixing driven transformations.

Here we present a method where the influence of sources and sinks of tracer, circulation and mixing are considered sepa-

rately, which we call the Optimal Transformation Method (OTM). We now discuss how mixing and tracer sources and sinks

can drive transformation and modify the water mass distribution in tracer space.115

2.2 Mixing driven transformation

Equation (1) describes a situation where two water masses are mixed to form another water mass. More generally, late water

masses can be made from a range of fractional contributions from the early water masses. If changes in tracer properties were

solely due to fluid mixing, the tracer concentrations of the late water masses would be the mass weighted mean of the early.

That is,120
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C1,j =

N∑
i=1

gijC0,i. (3)

The idea that the properties of the interior ocean water masses are linear combinations of the properties of surface or

boundary water masses was exploited by Tomczak (1981) and subsequent authors such as Gebbie and Huybers (2010) to

describe the origins of oceanographic water masses. Unlike traditional water mass analysis, which considers the formation of

interior water masses from boundary water masses in steady state, we consider the formation of new water masses from old125

water masses over time and the influence that sources and sinks of tracer at the sea surface have on that transformation.

2.3 Sources and sinks of tracer

The ocean is not a closed system. Heat and tracer substances are exchanged at the sea surface and interior sources and sinks of

tracer exist due to a range of biological, chemical and physical processes. We will now incorporate such sources and sinks.

The fraction of our ith early water mass which is transported to the jth late water mass can be subjected to a source or sink130

of tracer on its route from one to the other. We represent this source as an implied change in tracer concentrations Qij along

the Lagrangian path taken by the fraction of water gij . That is, the fraction of water (gij) that leaves the early water mass i

with tracer concentration C0,j can be thought of as having been changed to concentration C0,j +Qij by the time it arrives at

late water mass j.

The late water mass j is formed from the mixture of all the fractions of gij modified along their respective paths such that135

its tracer concentration is

C1,j =

N∑
i=1

gij (C0,i +Qij) . (4)

This provides a complete description of water mass change: the late water masses (C1,j) are formed as the linear combination

of fractions (gij) of the early water masses (C0,i), each modified on route by sources and sinks (Qij).

If we knew the transport and sources/sinks we could use (4) to predict the late state given the early state as a forward problem.140

In our case, however, we will frame an inverse problem where we have imperfect knowledge of some of the terms in (4).

2.4 Solving for the transport matrix and source/sink adjustments

In practise, we do not know any of the 4 terms in (4) with certainty for any tracers in the ocean. We can, however, frame (4) as

an inverse problem, and adjust the terms within it to find solutions under certain constraints. Many different strategies could be

employed depending on the confidence of the user in the different terms and constraints. We will develop and implement one145

approach we consider relevant to understanding recent multi-decadal changes in ocean temperature and salinity.

For heat and salt, we consider there to be relatively good confidence in observational estimates of C1,j and C0,i, poorer

confidence in estimates of Qij and poor to no confidence in estimates of gij . The concentrations C1,j and C0,i can be derived
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from ocean temperature and salinity analyses (e.g. (Good et al., 2013)). These come with substantial uncertainties (Cheng

et al., 2022; Stammer et al., 2021), but have the benefit of essentially being mappings of directly observed quantities. The150

source/sink term Qij can be inferred from air-sea flux products but these come with larger uncertainties. For example, heat

content changes derived from temperature analyses vary by order 0.1W/m2 (e.g. 0.05W/m2 for 1958-2019, Cheng et al., 2022)

while those derived from accumulated air-sea heat fluxes typically have biases of order 1W/m2 (e.g. 4W/m2 for 1993-2009,

Valdivieso et al., 2017). Finally, we know of no direct way of deriving gij from observations. Indeed, gij could be derived

from a data constrained numerical model, but that would imply it is indirectly derived from the same data used for C1,j , C0,i155

and Qij . We thus consider it reasonable to frame an inverse problem where C1,j and C0,i are considered ‘known’, priors for

Qij are provided and gij is merely constrained to obey laws of physics.

We separate the sources and sinks of tracers into a ‘prior’ estimate and an ‘adjustment’ such that Qij =Qprior
ij +Qadjust

ij

and (4) becomes

C1,j =

N∑
i=1

gij

(
C0,i +Qprior

ij

)
+

N∑
i=1

gijQ
adjust
ij . (5)160

We aim to derive a solution for gij such that Qij is as ‘close’ as possible to Qprior
ij (i.e., the air-sea flux adjustment, Qadjust

ij

is as small as possible). We therefore use the following cost function:

[Cost] =
N∑
j=1

∣∣∣∣∣
∣∣∣∣∣wj

(
N∑
i=1

gij

(
C0,i +Qprior

ij

)
−C1,j

)∣∣∣∣∣
∣∣∣∣∣
2

, (6)

where wj is a relevant weighting (see Section 2.5). The minimisation of the cost (6) combined with constraints (2) and (4) is

an inverse problem (hereafter ‘the inverse problem’), or more specifically, a linear program for which gij can be solved for165

using constrained linear optimisation tools.

Physically, solving for gij using (6) implies we modify the early water masses with the prior source/sink estimates, then find

the geographical rearrangement and mixing of those modified water masses that gets us as close as possible to the later water

masses.

Solving for gij then leads to an estimate of the total source/sink of tracer experienced in transit to the late water mass j via170

N∑
i=1

gijQ
adjust
ij =C1,j −

N∑
i=1

gij

(
C0,i +Qadjust

ij

)
. (7)

The accumulated tracer source following the fluid motion from early water mass i to late water mass j is then Qprior
ij +Qadjust

ij .

To recapitulate, we have described a method where we find the optimal transport matrix gij using (6), and then, from this,

we find the adjustment required to tracer sources and sinks using (7). We call this an Optimal Transformation Method (OTM)

since we are looking for the optimal way in which the waters can be transformed to describe the evolving ocean state given our175

physical constraints.
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OTM is similar to a range of previous water mass based inverse analyses such as (Evans et al., 2014; Groeskamp et al.,

2014b; Mackay et al., 2018) in that they attempt to solve for a transformation rate, given existing data for the late and early

water masses and tracer sources and sinks.

In Section (3) we discuss the specific practical considerations of our data inputs, the definition of weights (wj) and the180

numerical solution. First though, we discuss some general considerations of the choice of weights and additional constraints.

2.5 Consideration of weights

Solving (6) without the weight function (wj = 1) would yield a cost function whereby sources and sinks within all water mass

are penalised equally, regardless of their geographical location.

The purpose of wj is to favour solutions where the source and sink adjustments are more likely. One case where this is185

apparent is for tracers with little or no interior source or sink such as conservative temperature (essentially a tracer of heat),

salinity (a tracer of fresh water) and anthropogenic tracers such as chlorofluorocarbons. For such tracers, it makes sense to

not allow (or at least heavily penalise) fluxes into tracer sources in water masses that do not outcrop. More-over, if the flux of

tracer per unit area at the sea surface had a known uncertainty, this could be used to derive the weights as the product of the

uncertainty per unit area and the area. This way, adjustments to the tracer sources would incur a higher costs in (6) for water190

masses that have a small outcrop and/or have low uncertainties in the fluxes over that outcrop. In our toy examples and our

application to data from a climate model, we will consider only the case where the uncertainty in the fluxes are the same in a

per unit area sense so that the weights are proportional to the inverse of the area.

Furthermore, the weight wj can be different for different properties. It is sensible for wj to take into account the relative

effect of Qadjust
ij on different properties in the cost function. For instance, the user may want to penalise a source of salt, which195

leads to a 1g/kg change in salinity more than a source of heat leading to a 1K change in temperature.

2.6 Additional constraints

We have so far discussed the general case where N early water masses are transformed into N late water masses. Since gij

can be nonzero for all i and j, water can be transported from any water mass on the globe to any other. Since some of these

transports will be implausible, it is appropriate to place constraints and/or costs on certain parts of the transport matrix, gij .200

Here, a range of options are possible, for example a ‘speed limit’ could be defined permitting water to only travel a certain

maximum distance over the time period ∆t. More sophisticated connectivity constraints could be imposed based on vertical

and horizontal and/or isopycnal and diapycnal excursions and integrated constraints could be imposed based on energetic

considerations. The inverse method described is flexible and allows for such additional constraints to be readily added.

2.7 Toy examples205

To help explain and develop an intuition for how the Optimal Transformation Method works and is solved, here we discuss

a number of toy examples. To make the examples as simple as possible, while still allowing for a range of behaviour, only 3
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water masses with two conservative tracers: salinity, S (in grams per kilogram) and temperature, T (in degrees Celsius) are

considered.

The toy examples below are illustrated in figures 1 (for examples 1 and 2) and 2 (for examples 3,4 and 5).210

2.7.1 Example 1: Pure mixing

When there is no prior information given regarding the sources and sinks of tracer (Qprior
ij = 0), optimisation of the inverse

problem is achieved first by mixing water masses together, then an adjustment is applied to complete the picture.

Three water masses form a triangle in T −S space , initially with C0,1 = [0,34.6], C0,2 = [4,35], C0,3 = [0,35.4] and at a

later time with C1,1 = [1,34.9], C1,2=[2,35], C1,3 = [1,35.1]. In this case the triangle contracts over time to form a smaller215

triangle. Equations (4) and (2) are satisfied for Qij = 0 with gij = 0.5 when i= j and gij = 0.25 otherwise. Here the triangle

is contracted by mixing the water masses together.

2.7.2 Example 2: Pure sources and sinks

Now consider the case where C0,1 = [1,34.9],C0,2 = [2,35], C0,3 = [1,35.1] and C1,1 = [0,34.6], C1,2 = [4,35], C1,3 = [0,35.4].

Here, the triangle expands. Intuitively this cannot be achieved by mixing, which is a convergent process in T −S space. Indeed220

(4) could be satisfied with Qij = 0 but only by violating (2) (effectively the water masses would need to be ‘unmixed’). With

Qprior
ij = 0, a minimum cost (6) is found with gij = 1 when i= j and gij = 0 otherwise. So, the change in water masses is

achieved not by mixing the water masses, but instead by translating the corners of the triangle outward via adjustment to the

sources and sinks (
∑N

i=1 gijQ
adjust
ij ).

2.7.3 Example 3: Sources and mixing225

Consider now an example where the three initial water masses do not change between the early and late periods with C0,1 =

[1,34.9] =C1,1, C0,2 = [2,35] =C1,2, C0,3 = [1,35.1] =C1,3. In this case the triangle appears not to move. Now consider

prior sources/sinks such that C0,1+Qprior
1j =[0,34.6], C0,2+Qprior

2j =[4,35], C0,3+Qprior
3j =[0,35.4] for all j. A solution then

exists with no cost, according to (6). That is, a valid solution can be found with mixing alone. This occurs when gij = 0.5 for

i= j and gij = 0.25 otherwise (as in the pure mixing case). In this solution, the sources and sinks expand the triangle, and230

according to the transport matrix, the water masses are then mixed together, contracting the triangle to achieve an unchanged

water mass distribution.

2.7.4 Example 4: Sources, mixing and thermohaline circulation

Consider once again a situation where the three initial water masses are the same for the early and late periods with C0,1 =

[1,34.9], C0,2 = [2,35], C0,3 = [1,35.1] and C1,1 = [1,34.9], C1,2 = [2,35], C1,3 = [1,35.1]. Now consider a prior source/sink235

such that C0,1 +Qprior
1j = [0,35.4], C0,2 +Qprior

2j = [0,34.6], C0,3 +Qprior
3j = [4,35] for all j. Again a solution exists with

no cost (6). However, rather than a symmetric matrix we have g12 = 0.5, g23 = 0.5, g31 = 0.5 and gij = 0.25 otherwise. Here
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Toy Examples

Geographical Space Phase Space

Example 1: Pure Mixing

Example 2: Pure Sources and Sinks

Figure 1. Illustration of the method using toy examples with 3 early (C0,i) and 3 late (C1,j) water masses in T −S coordinates. The water

masses occupy geographical regions given by Ω0,i. The fraction of the ith early water mass that arrives in the jth late water masses (gij)

is represented by the coloured circles, each representing 1/4 of the water mass it came from and 1/12 of the total mass in the system. For

example, in the pure mixing example, 2 blue circles from early water mass 1 (i.e. half of water mass 1) arrive in late water mass 1 so that

g11 = 0.5, while 1 blue circle from early water mass 1 arrives at late water mass 2 so that g12 = 0.25. Movements in T −S space induced

by sources and sinks are shown as arrows (black: priors, Qprior
ij ; grey: adjustments, Qadjust

ij ).
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Example 5: All Effects

Example 3: Sources and Mixing

Example 4: Sources, Mixing and Thermohaline Circulation

Figure 2. As in Figure 1 but for the remaining toy examples.
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the transport matrix describes both a mixing and a clockwise circulation of the water masses in T −S space. The latter

circulation aspect is represented by the anti-symmetric part of the transport matrix. If the water masses are associated with

fixed geographical regions, the anti-symmetric part of the transport matrix represents the thermohaline component of the240

geographical circulation (Zika et al., 2012).

2.7.5 Example 5: All effects

Finally, consider the case where the water masses are changing in time with C0,1 = [1,34.9], C0,2 = [2,35], C0,3 = [1,35.1]

and C1,1 = [2,34.9], C1,2 = [3,35], C1,3 = [2,35.1]. Let us assume prior sources/sinks, which describe a steady source vs

mixing cycle as in the previous example, but do not capture the overall warming, i.e., C0,1+Qprior
1j = [0,35.4], C0,2+Qprior

2j245

= [0,34.6], C0,3 +Qprior
3j = [4,35] for all j. In this case no solution exists without a cost (6). With the weights constant,

the lowest cost is achieved by the same transport matrix as in the sources, mixing and circulation example, with g12 = 0.5,

g23 = 0.5, g31 = 0.5 and gij = 0.25 otherwise. The remaining adjustment to each water mass (Qadjust
ij ) is then simply [0,1]

for all i and j. That is, the sources and sinks will satisfy (4) if 1◦C of warming is added to each water mass. In this example,

different weights could lead to differing distributions of the warming across the water masses and consequent changes in the250

transport matrix.

2.8 Summary of the Optimal Transformation Method

In this section we have outlined a water mass based state estimation framework, the Optimal Transformation Method. OTM

relates knowledge of changing ocean tracer distributions to transient ocean transport and mixing. We propose an inverse method

based on this framework to infer minimal adjustments to prior estimates of tracer sources and sinks.255

In the following sections we will discuss one practical implementation of OTM and assess it using data from a historical

climate model simulation.

3 Data and implementation

3.1 Synthetic data from a historical climate simulation

In Section 2, a general implementation of OTM was presented for any set of tracers. In this work, we demonstrate an imple-260

mentation of this framework by analysing changes in temperature and salinity (and their associated surface fluxes of heat and

freshwater) in a climate model.

We analyse ocean conservative temperature (hereafter temperature or T ) and ocean practical salinity (hereafter salinity or

S) from a historical simulation of the ACCESS-CM2 climate model, which forms part of the Australian submission to the

6th generation Climate Model Intercomparison Project (CMIP6). The Modular Ocean Model (MOM, version 5.1) is used as265

the ocean component of the coupled ACCESS-CM2 model. We analyse the three-dimensional, monthly-averaged conservative

temperature and practical salinity field from January 1979 to December 2014 (inclusive) in ACCESS-CM2. Surface fluxes,
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Qi, are obtained from the surface heat and freshwater flux variables, (hfds and wfo respectively), except in section 4.3, where

a reanalysis product is used instead (see below). Surface flux tendencies are obtained by time-integrating the relevant flux

variables over the period of interest, then taking a time-derivative over this period, following Sohail et al. (2021, 2022). The270

early period covers the time period from January 1979 to December 1987, and the late period covers the time period from

January 2006 to December 2014, inclusive.

Temperature and salinity exhibit a long-term climate drift in ACCESS-CM2 (further explored by Irving et al. (2020)).

Despite this long-term drift, the heat and freshwater budgets close in the model (that is, the globally-integrated cumulative

surface flux is equal to the ocean heat and freshwater content change). Provided the heat and freshwater budgets close, the275

long-term drift in the ACCESS-CM2 model is immaterial for the purposes of validating the OTM state estimation framework

laid out in Section 2. Thus, we analyse the drifting historical simulation in this work. Further details on the model spin-up,

forcing and drift are provided by Bi et al. (2020); Mackallah et al. (2022); Irving et al. (2020).

To test the performance of the OTM algorithm to a spatially heterogeneous bias, we apply ‘known’ air-sea fluxes, Qprior
ij ,

from an air-sea reanalysis product, ERA5, in section 4.3 (Hersbach et al., 2020). Produced by the European Centre for Medium-280

Range Weather Forecasts (ECMWF), ERA5 combines a wide range of atmospheric and oceanic observational products with

an operational weather forecasting model (the Integrated Forecasting System (IFS), Cy41r2) using 4D-Var Data Assimilation.

The result is a well-constrained, long-term representation of our best estimate of ‘known’ air-sea fluxes. We assess the two-

dimensional, gridded monthly-averaged net surface heat and freshwater fluxes in ERA5 from January 1979 to December 2014.

The ERA5 surface flux fields are re-binned onto the ACCESS-CM2 native grid prior to assessment with OTM to ensure the285

ERA5 global net surface fluxes are accurately captured in the analysis.

3.2 Definition of discrete water masses using Binary Space Partitioning

The global ocean’s temperature-salinity (T −S) distribution is an integrated measure of its hydrographic properties, displaying

the volume or mass of the ocean with a characteristic temperature and salinity range (figure 3).

Our OTM state estimation framework considers the transformation from a set of ‘early’ water masses to a set of ‘late’290

water masses in tracer and geographical space. We split the ocean into 9 basins (following Zika et al., 2021) - the polar

North Atlantic, subtropical North Atlantic, equatorial Atlantic, South Atlantic, Indian, South Pacific, Equatorial Pacific, North

Pacific and Southern Ocean. Only transport between adjacent ocean basins is permitted in the optimization problem, such that

gij = 0 between water masses in non-adjacent basins. Ideally, the discrete representation should be as fine as possible so as to

best describe our T −S distribution (i.e., as many discrete water masses as possible), while also considering the distributions295

representative of different geographical regions. However computational constraints limit the resolution and number of regions

possible. Here, we define the discrete water masses using Binary Space Partitioning (BSP), following Sohail et al. (2023).

The BSP algorithm recursively sub-divides the mass-weighted T −S distributions along the T- and S-axes n times, resulting

in 2n bins which all contain exactly the same mass. BSP represents an improvement over the quadtree coarsening algorithm

(as used by Zika et al., 2021) as it results in a predetermined number of bins which hold exactly the same volume. Note that the300

BSP coarsening presented here is a two-dimensional equivalent to the 1-dimensional tracer-percentile framework introduced by
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Figure 3. (a) The global distribution of ocean volume in T −S space, averaged between January 1979 and December 2014, in the historical

simulation of the ACCESS-CM2 climate model. (b) Volume distribution change between the time-averaged ‘early’ and ‘late’ periods, defined

as January 1979 – December 1987 and January 2006 – December 2014 inclusive, respectively. Black boxes show the 16 bins defined using

binary space partitioning, each of which contains 1/16th of the volume of the upper 2000m of the ocean (since these data come from a

Boussinesq ocean model, mass and volume are proportional).

Sohail et al. (2021, 2022). Further information on Binary Space Partitioning and its applications in oceanography is provided

in Sohail et al. (2023).

3.3 Implementation of the inverse model

We recursively subdivide the T−S distribution of the top 2000m of the global ocean in ACCESS-CM2 4 times to yield 24 = 16305

classifications of equal volume/mass globally (since ACCESS-CM2’s ocean component is Boussinesq, volume and mass are

proportional to one another). We further partition these 16 T−S classifications into each of the 9 basins defined above over the

full ocean depth. This produces what we define as our 144 ‘early’ and 144 ‘late’ water masses. Each water mass has different

tracer concentrations: (C0,i = [T0,i,S0,i] and C1,j = [T1,j ,S1,j ]), and due to the splitting by region, a different mass (m1,i and

m0,i). Figure 4 shows the mean temperature and salinity of each of these water masses (white dots), as well as the volume310

(colour) and T -S ranges (rectangles) in each basin.

Each water mass has a corresponding ‘mask’, Ωi(x,y,z, t) defining its geographical location with time (Ωi = 1 within the

water mass and Ωi = 0 outside; x, y and z are latitude, longitude and depth respectively). The outcrop area of water mass i at

time t is then,
∫∫

Ωi(x,y,0, t)dA and Ai is the time average of that area (defined below).

13



Figure 4. Volume (colours) and mean T and S of each of the 16 bins in each of the 9 basins analysed in the ‘early’ period. Each rectangle

represents the range of T -S values covered by one of the water masses. The colour of the rectangle represents the volume of water in that

bin in that basin. Each white point contained within a rectangle is located at the average T -S value of the water in that bin in that basin.
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The following hard constraints are placed on the entries of the transport matrix gij (note variable early and late masses m0,i315

and m1,i have been incorporated into the constraints below):

0 ≤ gij ≤ 1; (8)

m1,j =

N∑
i=1

m0,igij ; (9)

m0,i =

N∑
j=1

m1,jgij ; (10)

C1,jm1,j =

N∑
i=1

C0,im0,igij where Aj = 0; (11)320

gij = 0 if Ωi and Ωj are not in the same or adjacent regions. (12)

The above enforce mass conservation (8-10), tracer conservation away from the surface boundary (11) and the inability of

water to move further than the adjacent basin (12).

A transport matrix gij is then sought which minimises the following cost function:

[Cost] =
N∑
j=1

∣∣∣∣∣
∣∣∣∣∣wj

(
N∑
i=1

m0,igij

(
C0,i +Qprior

ij

)
−m1,jC1,j

)∣∣∣∣∣
∣∣∣∣∣
2

(13)325

with

wj =
1

Aj

[
1

std(T )
,

1

std(S)

]
. (14)

Effectively, wj leads (13) to search for the smallest residual source/sink per unit outcrop area and normalises the impact of

temperature and salinity on the residuals relative to their global standard deviations. The additional constraint on gij (11)

ensures that changes to water masses that do not outcrop are achieved purely by redistribution and mixing. In one of the cases330

we will discuss below (where Qprior
i = 0 ), our optimiser does not find a feasible solution with this constraint when Ai = 0 for

some i values. In that case, we set a floor on those areas as the minimum non-zero Aj found for all j. This was, in that specific

case, the most permissive area constraint we could justify for the problem.

We set the ‘prior’ change in tracer concentration driven by tracer sources and sinks to the same value for all early water

masses i regardless of their path to the late water masses j (so Qprior
ij becomes Qprior

i ). We calculate this by integrating the335

‘known’ model air-sea fluxes over the outcrop region of the early water mass and over the time interval between the early and

late periods such that:

Qprior
i =

1

m0,i(t1 − t0)

t1∫
t0

∫∫
Ωi(x,y,0, t)q(x,y, t)dxdydt (15)
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where t0 and t1 are mid points of the early and late periods. Above q(x,y, t) = [hfds(x,y, t),−S0wfo(x,y, t)] + bias, where

bias is a bias we will introduce in some cases to see what effect incorrect air-sea flux data has on the inverse solution. The340

above time integral is from the midpoint of the early period to the midpoint of the late period since it is related to the change

in average water mass properties between the two periods. (Integrating from the start of the early to the end of the later period

would overestimate the sources and sinks.)

In our implementation of the optimisation (13) we aim to minimise the average adjustment to the tracer sources and sinks

in a per unit area sense. For this reason we calculate the average outcrop area using the same integral limits as the sources and345

sinks such that

Ai =
1

t1 − t0

t1∫
t0

∫∫
Ωi(x,y,0, t)dxdydt. (16)

Equations (8) to (13) define a conic linear optimisation problem. We solve this numerically with the Python based cvxpy

package, specifying the ‘MOSEK’ optimisation solver with default settings to obtain a transport matrix gij which satisfies the

constraints described over the time period of interest.350

4 Results

When a solution for gij is found by minimising (13), an adjustment to the tracer sources and sinks is implied in order to close

the tracer budgets. We diagnose this adjustment via:

Qadjust
j =C1,j −

1

m1,j

N∑
i=1

m0,igij

(
C0,i +Qprior

i

)
. (17)

Once the early water masses have been redistributed and mixed by gij , Qadjust
j is the remaining change in tracer concentra-355

tions required for these mixtures to match the late water mass concentrations, C1,j . We do not attribute different adjustments

to the different fractions of the early water masses that make up the late water masses, so that Qadjust
j is the same for all i.

The ‘inverse solution’ describing the evolution of ocean water masses is then the transport matrix gij and the implied total

sources and sinks of tracer given by Qprior +Qadjust. Since, in the case of heat and salt, we attribute the sources and sinks to

fluxes at the sea-surface, the adjustment term is converted into a flux per unit area and mapped onto geographical coordinates360

via:

qadjust(x,y, t) =

N∑
j=1

mj

Aj(t1 − t0)
Qadjust

j Ωj(x,y,0, t). (18)

Above, the tracer source required to change water mass j by Qadjust
j is applied as a flux of tracer per unit area. Because of

we only infer one adjustment flux per water mass, we are not able to infer more detailed variations in the flux over the spatial

extent of the water mass outcrop.365
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Figure 5. Time-averaged surface fluxes between the ‘early’ and ‘late’ periods in ACCESS-CM2, in the original model grid (q(x,y, t); (a)

and (c)) and remapped onto the 2n × 9 water masses as defined by BSP in T-S space (Qprior
i ; (b) and (d)). Note that the surface outcrop

location of these watermasses, averaged over the entire ‘early’ period, is used for the remapping.

The known surface fluxes, Qprior
i , are mapped onto the finite water masses obtained from the BSP coarsening (see figure 5).

As the outcrop area of the water masses is much larger than the original model grid, the resulting remapped surface fluxes are

smoother than the raw fields, as shown in figure 5.

In the remainder of this section we will discuss three applications of the inverse method with the same tracer data but

different priors for the tracer sources and sinks – Case 1: the true tracer sources and sinks from the numerical model; Case 2:370

the true numerical model sources and sinks with a bias added globally; and Case 3: prior sources and sinks set to zero globally.

4.1 Case 1: ‘True’ source and sink priors

When the true model fluxes are used for Qprior (bias= 0), the inverse method is able to find a solution for gij which matches

these priors with little Qadjust necessary (Fig 6). Quantitatively, the standard deviation of the true fluxes (STD(qprior); the

signal) is [17.6 W m−2,1.57 mm/day] while the standard deviations of the adjustment (STD(qadjust) the error) is [9.6 ×10−3375

W m−2, 7.4× 10−5 mm/day], yielding a signal to error ratio of, at minimum, order 2000.

From the inferred transport matrix gij , the region-to-region heat and freshwater transport is determined using
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Figure 6. Case 1: Time-averaged surface fluxes between the ‘early’ and ‘late’ periods in ACCESS-CM2, remapped onto the 16× 9 water

masses as defined by BSP in T-S space (Qprior
i ; (a) and (c)), and the inferred surface flux adjustment based on changes to the underlying

ocean T −S distribution (Qadjust
j ; (b) and (d)). Note that the surface outcrop location of the water masses, averaged over the entire ‘early’

period, is used for the remapping. Note the difference in colourbar ranges between left and right panels

[Heat transport] = Cpρ0

N∑
i=1

m0,i(T0,i +Qprior
i )gijδij ; (19)

[Fresh water transport] =−ρ0/S0

N∑
i=1

m0,i(S0,i +Qprior
i )gijδij . (20)

where Cp is the heat capacity of sea water (3992.1 Jkg−1K−1), ρ0 is a reference density (1035 kgm−3) and S0 is a reference380

salinity (35 g/kg). Above, δij = 1 if flow from i to j implied ‘positive’ transport across a region-to-region boundary (e.g.

Northward across a zonal section) and δij =−1 if flow from i to j implies ‘negative’ transport (e.g. southward) and δij = 0 if

water masses i and j are not in adjacent regions. We only consider region-to-region boundaries where the total mass transport

is zero.

We compare the heat transport in ACCESS-CM2, inferred directly from model output, to our inverse estimate (based on 19)385

and the two match to within a standard deviation across the region-to-region boundaries of 17 TW in the Indo-Pacific and 16

TW in the Atlantic. Comparing the explicitly calculated fresh water transport in ACCESS-CM2 to our inverse estimate, we

find that the two match to within a standard deviation of 0.14 Sv in the Indo-Pacific, and 0.014 Sv in the Atlantic (Figure 7).

It is reassuring that, when applied to consistent tracer source and tracer change data, an accurate solution is confirmed. We

now consider what happens when the prior source estimates contain biases.390
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Figure 7. Case 1: Meridional a) heat transport and b) freshwater transport inferred from the transport matrix, gij (dots, located at the boundary

between adjacent regions), and from the surface fluxes and ocean heat/freshwater content change in the ACCESS-CM2 model (lines). We

have omitted the same figure for Case 2 since the solution is indistinguishable.

4.2 Case 2: Spatially uniform biased source and sink priors

We add a constant offset to the air-sea fluxes of 5 W/m2 for heat and 5 mm/day for fresh water over the entire data set (Fig.8). We

then use the biased air-sea fluxes to determine Qprior and feed this into our inverse model. The inverse model finds a solution

for gij and a Qadjust, via (17), opposing the bias to within a standard deviation of 2.9× 10−3 mm/day and 5.1× 10−2 W/m2.

The implied region-to-region heat transports of the inverse model with biased sources and sinks are virtually indistinguishable395

from the case without a bias, with a standard deviation that is within 1× 10−2 of the values reported for Case 1 (Fig.7).

This suggests the inverse model could be a useful tool to find a consistent, and potentially more realistic solution, in the

presence of biased estimates of air-sea fluxes.
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Figure 8. Case 2: Constant offset added uniformly to ocean surface fluxes (bias; (a) and (d)), the inferred adjustment based on changes to

the underlying ocean T −S distribution (Qadjust
j ; (b) and (e)), and the sum of the two ((c) and (f)). Note that the surface outcrop location of

the water masses, averaged over the entire ‘early’ period, is used for the remapping.

We now consider how the inverse method adjusts the prior fluxes when a reanalysis flux field (ERA5) is imposed as a prior,

instead of the native model fluxes.400

4.3 Case 3: Air-sea reanalysis-based source and sink priors

Case 3 offers a more practical test than cases 1 and 2 in that an incorrect, yet plausible, air sea flux field is used as the prior.

We use observational estimates of heat and fresh water fluxes (from the ERA5 reanalysis; see Section 3) to determine Qprior.

We expect differences between these fluxes and the known model fluxes since the model is not a perfect representation of the

real climate. This mimics a scenario where we have good knowledge of T and S changes but air see fluxes have large biases405

which are heterogeneous. In this case, given we know the ‘true’ fluxes, we can see how well the inverse model does.

Figure 9 shows that ERA5 suggests warming across all ocean basins except the arctic relative to ACCESS, and a heteroge-

neous pattern of fresh water flux change, particularly at mid to low latitudes where rainfall is more intense on average.

The adjustment OTM finds in Case 3 is far more spatially homogeneous than the actual bias (Fig. 9, (b) and (e)). This is

likely due to our cost function weights, which penalise adjustments in a per unit area sense. That being said, some basin scale410

pattern is captured well with less (more) heat (fresh water) adjustment in the arctic for example leading to accurate estimates

of meridional transport between basins (Fig. 10).

Finally, we consider what the inverse method yields when we ask it to estimate the sources and sinks with priors set to zero.
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Figure 9. Case 3: The bias ((a) and (d)) is the difference between air sea heat (a - c) and fresh water (d - f) fluxes between ERA5 and

ACCESS, (b) and (e) shows the inferred adjustment using OTM, and (c) and (f) shows the sum of the two. With the cost function in OTM

minimising adjustments in a per unit area sense, it does not accurately correct the heterogeneous pattern of bias and favours a more spatially

uniform adjustment.

4.4 Case 4: Zero source and sink priors

Cases 1 and 2 mirror toy examples 3 and 4 from Section 2, respectively. There, Qprior effectively moved the water masses from415

their initial state to some intermediate state in tracer coordinates and then gij moved them as close as possible to their final

state, with Qadjust providing the final adjustment. In our final case, we see how the inverse model responds to zero source/sink

information, as in toy examples 1 and 2.

We run the inverse model, as in cases 1 and 2, but for Qprior = 0. The Qadjust patterns represent the smallest necessary heat

and fresh water fluxes that can explain the model’s water mass changes in conjunction with redistribution and mixing achieved420

by gij . Since the model is describing historical climate change, increases in ocean heat content and any increase in the variance

of ocean salinity can not be described by gij and are captured in Qadjust.

The resulting pattern of adjustments to the heat flux are approximately uniform across all oceans, except for polar regions

(Fig. 11). In the inverse model solution, basin-scale anomalous warming/cooling patterns can be explained by redistribution via

gij . Only a small, near-uniform warming is required to complete the picture. The patterns of adjustment fresh water flux show425

net precipitation into relatively fresh regions of the globe such as the tropical pacific and sub-polar oceans and net evaporation

over relatively saline regions such as the sub-tropical oceans and the majority of the Atlantic Basin. This is likely because

greenhouse forcing in ACCESS is consistent with the ‘wet gets wetter, dry gets drier’ paradigm (Durack et al., 2012; Skliris

et al., 2016) and the consequent changes in salinity can not be affected by mixing, which can only make fresh water salty and

salty water fresh (Zika et al., 2015b).430
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Figure 10. As in 8 but for Case 3.

The true air-sea fluxes warm the low latitudes and cool the high latitudes far more and this is balanced largely by heat

transport and mixing represented by gij . Practically, a solution can always be added in which sources and sinks are balanced

by the transport matrix while still satisfying our hard constraints (a ‘homogeneous solution’ in the language of differential

equations) but in the case where Qprior = 0, such additions are penalised since the inverse method searches for the solution

with the smallest root mean squared Qadjust. These results suggest that, without adequate priors, the inverse method cannot by435

itself accurately determine the correct total tracer sources and sinks.

Figure 12 summarises the results of the four cases at the basin scale. It shows the net Qprior (if any), Qadjust, divergence of

tracer transport described by gij , and the change in amount of tracer with time in each region.

Case 1 describes the true budget for the time period considered with the change with time and a small residual of the larger

source/sink and divergence terms. Case 2 shows how a small adjustment to the sources and sinks compensates for an imposed440

error.
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Figure 11. Case 4: Surface flux adjustment given no prior source/sink information (Qprior
i = 0; (a) and (c)), and the inferred surface flux

adjustment based on changes to the underlying ocean T −S distribution (Qadjust
j ; (b) and (d)). Note that the surface outcrop location of the

water masses, averaged over the entire ‘early’ period, is used for the remapping.

In Case 3 a spatially heterogeneous bias pattern is imposed. Despite the fact that the adjustment does not capture many of

the finer geographical details, OTM does offer skill in balancing biases at the basin scale. Fig. 13 shows a comparison of the

magnitudes of the added bias and adjustment in response for Case 3.

In Case 4, the implied net Q and tracer transport divergence are an order of magnitude smaller than in Cases 1 at the445

basin scale, since they are only required to describe the change rather than the large mean balances of sources/sinks and

transport/mixing.

5 Discussion

Our assessment of the Optimal Transformation Method state estimation framework has not been exhaustive. Our aim has been

to describe the framework generally. In any future implementation, a number of choices can be made by the user, including:450

1. The way water masses are defined both in space and time;

2. The way constraints are placed on the transport matrix gij and priors are introduced; and

3. How adjustments of tracer sources/sinks and other variables impact the cost function.

For choice 1, we used binary space partitioning to objectively divide tracer space into discrete water masses. However, we

used conventional definitions of ocean basins to distinguish the water masses. OTM is not tied to either choice and alternative455
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Figure 12. Terms in the heat and freshwater budgets for the four cases explored in this study. In this framework, Heat/Freshwater Content

Change = Qadj +Qprior+ Heat/Freshwater Transport. For Case 1, the terms are indistinguishable from their ‘true’ values in the ACCESS

model. For Case 3, unfilled bars show what the adjustment fluxes would be if they were globally spatially uniform
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Figure 13. Comparison of bias and adjustment heat (a) and fresh water (b) fluxes for Case 3. In Case 3, ERA5 fluxes are used instead of the

models true fluxes. Unfilled bars show what the adjustment fluxes would be if they were globally spatially uniform.

objective (e.g. machine learning based classification) and/or user-driven approaches (e.g. traditional water mass definitions)

can be used. All that is required is that a set of water masses with tracer concentrations for two time periods (or a sequence of

time periods) be defined and constraints be placed on their connectivity (gij).

For choice 2, we elected to give no prior information about the transport matrix (gij). Priors for this matrix or stricter

constraints on it could be given based on numerical models or observations at key regional boundaries (such as the RAPID-460

MOCHA transect in the North Atlantic) and in key ocean gateways. Note, however, that gij does not necessarily represent the

conventional transport measured at a section. To illustrate this, consider a water mass in the subtropical North Atlantic with

temperature T0,i=20◦C that is heated due to some air-sea flux with an implied warming over a 40 year period of Qi = 80◦C. Let

us assume the state estimate tells us that 1% of this water mass travels northward into the sub-polar North Atlantic and mixes

with 99% of the water contained in water mass j (i.e. gij = 0.01 and gjj = 0.99). Mathematically, the water can be viewed as465
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crossing the regional boundary at a temperature of T0,i +Qi = 100◦C, as used in the calculation for the heat transport (19).

A more plausible physical interpretation is that water from water mass j is continually mixing with with water mass i. The

state estimate does not describe where or when this mixing occurs, only that it occurred at some point between the early and

late period. Hence, further work is required to determine how information about ocean overturning circulation can be used to

constrain state estimates and likewise how the state estimate can inform us of the circulation.470

For choice 3, in applications to observation based data, choices should be guided by the uncertainty in the underlying data.

For example, we minimised the sources and sinks in a per unit area sense. OTM broadly did a better job than assuming a

completely homogeneous pattern of change (see, for example, the comparison between unfilled and purple bars in Fig. 13) but

did not accurately correct the biased pattern below the basin scale (Fig. 9). It could be that particular regions and/or components

of the sources and sinks (e.g. precipitation) are more uncertain than others. These distinct uncertainties can be accounted for475

through the weight vector, wj .

An additional consideration that we have not explored here, is the choice of spatial and temporal resolution. We chose to

compare between a mid-20th century and an early-21st century time period and force these with fluxes integrated between

their mid point times. As the time period becomes longer, the fluxes can take the early water masses further and further apart

in phase space (e.g. extending the vectors in Toy Example 2). These more extreme water masses are easier for OTM to mix480

together (via gij) to form late water masses. In the most extreme case, air sea fluxes would only be needed to translate global

centre of mass of the distribution in tracer space, and gij could account for all spatial variation in transformations. In that case,

and in the absence of additional constraints on gij , OTM would have no skill in correcting spatial variations in tracer sources

and sinks and would only correct the global mean.

6 Conclusions485

We have presented a state estimation framework based on water mass theory, termed the Optimal Transformation Method.

The framework enables the framing of inverse problems where ocean transport and tracer sources and sinks are optimally

adjusted to define a self-consistent description of ocean change. We have used temperature and salinity data from a numerical

climate model responding to historical natural and anthropogenic forcing over the past half century to test one application of

the framework.490

The Optimal Transformation Method draws on concepts in water mass transformation, water mass analysis and ocean tracer

transport theory. What results is a set of equations describing how the ocean’s multi-variate water mass distribution varies in

time. These equations, combined with a transparent set of physically based constraints, allows for the definition of an inverse

problem where a solution can be optimised based on deviations from priors.

We implemented an inverse method where the change in ocean state was known, ocean transport is unknown and deviations495

from prior estimates of tracer sources and sinks were minimised. When given ‘true’ heat and fresh water fluxes, the inverse

solution found a state with near zero deviation from those priors. Likewise, when given fluxes with a constant bias added, the

method reduced the error from 27.7% to 1.0% for heat flux and from 29.0% to 1.1% for fresh water flux. When given fluxes
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with spatially heterogeneous errors, the method did a better job of correcting for that error at the basin scale than a constant

compensating offset.500

The methods presented may be a useful complement to existing state estimation approaches, having the advantage of be-

ing relatively simple (for example, when compared to numerical ocean models and ocean data assimilation platforms) and

computationally cost efficient. In particular, the Optimal Transformation Method has shown promise for finding corrections to

air-sea fluxes of heat and fresh water so that they plausibly describe the changing ocean state. This implies that the method,

leveraged with observations, can help to refine observationally-based estimates of the net heat and fresh water flux imbalance505

in the climate system.
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