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Abstract. Aerosols and films are found in indoor and outdoor environments. How they interact with pollutants, such as ozone, 

has a direct impact on our environment via cloud droplet formation and the chemical persistence of toxic aerosol constituents. 15 

The chemical reactivity of aerosol emissions is typically measured spectroscopically or by techniques such as mass 

spectrometry, directly monitoring the amount of material during a chemical reaction. We present a study which indirectly 

measures oxidation kinetics in a common cooking aerosol proxy using a low-cost Quartz Crystal Microbalance with 

Dissipation monitoring (QCM-D). We validated this approach by comparison with kinetics measured both spectroscopically 

and with high-intensity synchrotron radiation. Using microscopy, we found that the film morphology changed and film rigidity 20 

increased during oxidation. There was evidence of surface crust formation on oxidised particles, though this was not consistent 

for all experiments. Crucially, our kinetic modelling of these experimental data confirmed that the oleic acid decay rate is in 

line with previous literature determinations, which demonstrates that performing such experiments on a QCM-D does not alter 

the underlying mechanism. There is clear potential to take this robust and low cost, but sensitive method to the field for in-situ 

monitoring of reactions outdoors and indoors. 25 

1 Introduction 

Air quality is impacted by both natural and anthropogenic factors such as meteorology and cooking emissions(Chan and Yao, 

2008; Huang et al., 2021), with cooking emissions estimated to contribute up to 10% of PM2.5 in the UK (Ots et al., 2016). In 
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the West, people spend ~90% of their time indoors(Klepeis et al., 2001), and indoor air quality research has become important 

in recent years. Recent field studies have demonstrated the marked effect of processes such as cooking, cleaning and occupancy 30 

on indoor air quality in terms of particulate matter and volatile organic compound (VOC) emissions (Liu et al., 2021; Patel et 

al., 2020).  

Surface films are present in the indoor environment and are formed by the deposition of particles and condensation 

of semi-volatile species with typical thicknesses in the order of a few hundred nanometres (Ault et al., 2020; Or et al., 2018). 

Indoor surface film chemistry is particularly important for air quality due to the high surface-to-volume ratio compared with 35 

outdoors. The composition of indoor films can vary between rooms and is influenced by the emission sources in each room 

(Or et al., 2018). For example, film samples collected in a kitchen after a stir-fry episode are likely to contain a larger amount 

of organic material including fatty acids (Or et al., 2020), which are major constituents of common cooking oils (Wang et al., 

2020; Zahardis et al., 2006b).  

Oleic acid is a major fatty acid component of cooking (Wang et al., 2020) and marine (Kirpes et al., 2019; Osterroht, 40 

1993) organic emissions. As a surfactant, it can influence the cloud formation potential of aerosol particles, affecting the 

climate indirectly (Ovadnevaite et al., 2017). Oleic acid is also used as a marker for urban cooking emissions and the ratio of 

oleic acid to its saturated analogue (stearic acid) is a measure of how aged a sample of urban aerosols is (Wang et al., 2020). 

For these reasons, oleic acid is a common model system used to study heterogeneous reactions with oxidants such as ozone 

and NO3 in the laboratory and with kinetic models (Berkemeier et al., 2021; Gallimore et al., 2017; King et al., 2004, 2009, 45 

2020; Sebastiani et al., 2022; Shiraiwa et al., 2010, 2012; Woden et al., 2020; Zahardis and Petrucci, 2007). The atmospheric 

lifetime of oleic acid is longer than has been predicted in laboratory experiments (Robinson et al., 2006; Rudich, 2003), with 

recent evidence suggesting that the steric conformation of the fatty acid can impact on its chemical lifetime (Wang and Yu, 

2021).  

The viscosity of organic films and aerosols is an important factor in determining the rate at which heterogeneous 50 

processing occurs (i.e. the rates of water and reactive gas uptake) (Davies and Wilson, 2016; Koop et al., 2011; Shiraiwa et 

al., 2011). The ozonolysis of oleic acid is known to increase the viscosity (Hosny et al., 2016) and density(Katrib et al., 2005a) 

of the organic phase. An increase in viscosity decreases the rate of oxidative processing. Previous work has demonstrated that 

a viscous self-organised form of oleic acid (Milsom et al., 2021a, 2022a; Pfrang et al., 2017) reacts approximately an order of 

magnitude slower than the liquid form (Milsom et al., 2021b) and kinetic modelling of these results has shown that this could 55 

lengthen the chemical lifetime of oleic acid by several days under typical atmospheric conditions (Milsom et al., 2022c). There 

is a need for a technique that can measure both reaction kinetics and changes related to physical characteristics (i.e. viscosity) 

simultaneously with a high time resolution. 

In this study, we used a quartz crystal microbalance with dissipation monitoring (QCM-D) to follow the reaction of 

oleic acid with ozone, which was complemented by white light interferometry (WLI) and Raman spectroscopy. Dissipation 60 

monitoring allowed us to infer changes in film rigidity and microscopic techniques revealed morphological changes during 

oxidation, including evidence for surface crust formation previously postulated and evidenced for this system (Milsom et al., 



3 
 

2021b, 2022c). We derived kinetic decay constants from the QCM-D data and fitted a kinetic model to the Raman data to 

demonstrate the useful information that could be extracted from these experiments and to highlight the challenges associated 

with this technique. We then drew atmospheric implications from our findings and suggest future directions for this 65 

experiment.   

2 Methodology 

Oleic acid (Part ref. 364525, technical grade 90%, Sigma Aldrich), methanol (ACS reagent, 99.8%) and oxygen gas (BOC, 

99.5%) were used without further purification. Silicon dioxide coated QCM sensors (5 MHz, 14 mm diameter, Cr/Au/SiO2 

surface, Quartz Pro, Sweden) were rinsed with ethanol followed by a cleaning process in an oxygen plasma chamber (HPT-70 

100, Henniker Plasma) at an oxygen flow rate of 10 sccm for 5 min prior to the deposition of oleic acid. 

An oleic acid solution (10wt.% in methanol) was freshly prepared. The cleaned QCM sensor was placed on a spin coater 

(SPIN150i, APT GmbH) and spun at 6000 rpm as 60 μL oleic acid solution was added onto the sensor surface dropwise using 

a micro pipettor. Oleic acid coated sensors were tested the same day to avoid degradation due to the trace amount of ozone in 

the ambient atmosphere. 75 

QCM-D works on the principle that the resonant frequency (f) of a piezoelectric quartz crystal can be monitored 

electronically. This f decreases when small amounts of material are added to the quartz crystal. The dissipation factor (D) is a 

measure of the energy dissipated by the deposited material (Voinova et al., 1999). Both f and D are functions of the deposited 

film viscoelasticity. Generally, a lower D implies a more rigid film.  

The ozonolysis of oleic acid was studied using the coated sensors and a QCM-D (NEXT, openQCM, Italy), with which the 80 

frequency and energy dissipation history during the ozonolysis process was simultaneously recorded. We checked that f was 

stable before starting ozone exposure experiments (Fig. S1) and how well f and D traces overlapped during the experiments 

(Fig. S2), with implications for the rigidity of the films discussed in sect. 3.1.  

 

Figure 1. A schematic illustration of the experiment presented in this study. 85 

An experimental chamber made of polystyrene and with the inner walls lined with aluminium foil was used for 

ozonolysis experiments (Fig. 1). Ozone was produced by flowing oxygen at 1.2 L min-1 through a commercial pen-ray ozoniser 
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(Ultraviolet Products Ltd, Cambridge, UK) which exposed the oxygen flow to UV radiation. The concentration of ozone was 

calibrated by UV-Visible spectroscopy and was determined to be 3.8 ± 0.5 ppm.  

A white light interferometer (WLI, resolution 20×; MicroXAM2, KLA Tencor, California, U.S.A) was employed to 90 

establish the morphology of the oleic acid coated sensor. Scans were taken on each tested sensor at representative positions, 

i.e. within the test window (dia. 7 mm) that was previously subject to ozonolysis, at boundary of the test window, and sites far 

away from the test window. WLI data was analysed using an image processing program Gwyddion with which surface 

parameters, including surface roughness, 2-D/3-D height profiles could also be extracted. Raman features of the as-prepared 

and the ozone-exposed oleic acid coatings were captured with a confocal Raman spectrometer (inVia™ by Renishaw, 20x 95 

optical magnification, laser wavelength 532 nm, laser power 10%). At least 30 accumulations were made to maximise the 

signal-to-noise ratio.  

Kinetic multi-layer models based on the Pöschl-Rudich-Ammann framework (Pöschl et al., 2007) are commonly used 

to analyse oleic acid ozonolysis experiments (Berkemeier et al., 2021; Milsom et al., 2022c, 2022b; Shiraiwa et al., 2010, 

2012). The kinetic multilayer model of aerosol surface and bulk chemistry (KM-SUB) was employed to describe the reaction 100 

occurring between the deposited oleic acid and ozone (Shiraiwa et al., 2010). KM-SUB resolves processes such as gas 

adsorption and desorption, bulk diffusion, as well as surface and bulk chemistry. Although the deposited films were collections 

of smaller droplets, oleic acid was modelled as a flat film as the geometry was closer to that of a film for each individual 

droplet due to the high spreading ratio of oleic acid on the quartz surface. A KM-SUB model developed specifically for oleic 

acid decay data measured by Raman spectroscopy, and optimised to 12 literature datasets, was fitted to the Raman data 105 

collected here (Berkemeier et al., 2021).  A full description of the model is in Sect. S2 in the Supporting Information. 
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3 Results and Discussion 

3.1 Kinetics of oleic acid ozonolysis 120 

Figure 2. (a) Δf vs time since the start of ozone exposure for five coatings. (b) ΔD vs time since the start of ozone exposure for five 
coatings, measured simultaneously to (a). The line colours link the same experiments in (a) and (b).  

We observed reproducible trends in f and D during ozone exposure (Fig. 2). After an initial build-up of ozone in the chamber, 

the resonant frequency shift (Δf) becomes more negative followed by a levelling off by the end of the experiment. If the 

Sauerbrey equation, which states that the mass per unit area deposited on a QCM crystal is inversely proportional to the 125 

crystal’s measured resonant frequency (Demou et al., 2003), is valid then a decrease in Δf would mean in increase in mass per 

unit area on the crystal surface. However, inspection of the simultaneously monitored overtones suggests that the film is not 

rigid because they do not overlap entirely (Fig. S2). This is similar to the observation of Chao et al, who observed an increase 

in Δf during a solid-to-liquid phase transition even though the mass of their deposited samples increased whilst observing salt 

deliquescence (Chao et al., 2020). In our case, the decrease in Δf during oxidation does not necessarily mean the mass is 130 

increasing, as we expect some reaction products such as nonanal and nonanoic acid to be volatile (Müller et al., 2022; Zahardis 

and Petrucci, 2007). There is some evidence for a transition from a liquid to a solid-like state during ozonolysis: (i) we observe 

that ΔD is negative – more rigid films dissipate less energy; (ii) higher-molecular weight oligomeric compounds are known to 

form for this system during ozonolysis (Reynolds et al., 2006; Zahardis et al., 2006a); (iii) The condensed phase is known to 
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become denser during oxidation (Katrib et al., 2005a); (iv) we optically observed rigid structures formed on the surface of 135 

some particles after ozonolysis (see sect. 3.2).  

Note that the f measured for these reactions is ~1200–1400 Hz lower than the original frequency. This is much higher 

than the stated standard deviation of 0.5 Hz quoted for f measurements by the instrument manufacturer and suggests that much 

less reactive systems, or systems with a lower proportion of reactive material, could be studied. 

 140 
Figure 3. The pseudo-first order decay constant (k) measured at the fastest point of each Δf vs time plot presented in Fig. 2(a). The 
experiment numbers in brackets correspond with those presented in Fig. 2. The final bar is from the decay of a self-organised oleic 
acid-sodium oleate mixture analogous to previous work (Milsom et al., 2021b). All k values are measured at an ozone concentration 
of 3.8 ± 0.5 ppm. OA: oleic acid; OA-SO: oleic acid-sodium oleate mixture.  

The pseudo-first order decay constants (k) are generally consistent and variation is most likely due to slight variations 145 

in initial film thickness (Fig. 3). Taking the point at which the decay in Δf is fastest returns a measure of the reaction kinetics. 

Although Δf is not a measure of the amount of reactant remaining on the surface, applying pseudo-first order reaction kinetic 

analysis to the region of fastest Δf decay can be used for comparisons with the same system (e.g. oleic acid) under different 

conditions. To test this, we coated a film of an oleic acid-sodium oleate (1:1 wt.) mixture and exposed it to the same oxidative 

conditions as the pure oleic acid films. This mixture is known to self-organise into lamellar bilayers and is semi-solid (Milsom 150 

et al., 2021b). We found that k for this viscous mixture was ~1 order of magnitude smaller than for the liquid oleic acid films 

presented here. This is due to the decreased diffusivity of ozone through the film and is consistent with the difference in 

reaction rates we have previously measured using X-ray scattering and Raman spectroscopy (Milsom et al., 2021b), validating 

this approach. 

 155 
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Figure 4. The decay of oleic acid followed experimentally using the area of C=C Raman band at ~1650 cm-1 normalised to the CH2 
band at ~1452 cm-1. Ensemble outputs from a pre-optimised model of oleic acid ozonolysis (Berkemeier et al., 2021) are presented 
for a range of initial film thicknesses in the range measured by WLI. The mean uptake coefficient (γ) for each ensemble, derived 
from the model output, is also plotted.  

A kinetic model that has been pre-optimised to 12 unique datasets (Berkemeier et al., 2021) was applied to the 165 

experimental data measured by Raman spectroscopy (Fig. 4). Outputs from different model outputs with varying film 

thicknesses are presented as an ensemble of 167 optimised input parameter sets. The model also considers the formation of an 

oleic acid-Criegee intermediate adduct that would contribute to the carbon-carbon double bond signal observed in the Raman 

spectrum.  

We found that the pre-optimised model fitted reasonably well to the experimental data when initialised at a thickness 170 

range determined by the range observed using WLI on films before ozone exposure (Fig. 4).  The model does not describe 

changes in film morphology such as the coagulation of droplets into larger droplets, which was observed in the experiment 

(Fig. 5). Changes in the size of the deposited droplets will affect the uptake of ozone to oleic acid via changes to the surface 

area-to-volume ratio and the mixing time for ozone in the condensed phase (Pöschl et al., 2007). Therefore, a gradual increase 

of layer thickness will lead to a slowing of oleic acid consumption. We tested this hypothesis by splitting the model into 5 175 

distinct time periods, each new period resulting in film thickening (Fig. S3 in the Supporting information). However, time-

resolved morphological information would be required to constrain this particular feature. There could also be an effect from 

surface crust formation, slowing the reaction (Milsom et al., 2021a, 2022c; Pfrang et al., 2011). Though the exact kinetic effect 
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of crust formation and morphology change cannot be deconvoluted here, we believe that the significant change in morphology 

(i.e. increase in average film size) dominates. 180 

 It is possible to extract an uptake coefficient for ozone (γ) from the output of the KM-SUB model (Shiraiwa et al., 

2010). In this case, γ is the fraction of ozone molecules that collide with the oleic acid surface taken up by oleic acid. The 

values of γ varied from ~3 × 10-4 to ~1 × 10-4 as the reaction proceeded (Fig. 4).  This is within the range that has been calculated 

using resistor-based analytical models for oleic acid (in the order of ~3.4 × 10-4–7.5 × 10-4) (Hearn and Smith, 2004; Nash et 

al., 2006).The trend of a decreasing γ as a result of oxidation is consistent with previous work (Mendez et al., 2014). It is 185 

expected that these uptake values are an upper limit for what would be the case in the atmosphere. Particles of oleic acid mixed 

with other components such as stearic acid (the C18 saturated analogue of oleic acid) (Katrib et al., 2005b), C17 and C16 fatty 

acids (Ziemann, 2005) generally have a lower calculated uptake coefficient than pure oleic acid particles in those respective 

studies.  

 190 
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3.2 Morphology changes 

 

Figure 5. White light interferometry images of oleic acid coated QCM crystal surfaces for five separate ozonolysis experiments. 195 
Images were taken at the reaction boundary i.e. the outer region where the surface was not exposed to the oxygen-ozone mixture 
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due to the design of the QCM crystal holder (the diameters of the crystal and the test window are 14 and 7 mm, respectively). The 
approximate location of the reaction boundary is illustrated. Images at the centre of the QCM crystal surface show particles fully 
exposed to the oxygen-ozone mixture. Observations of a surface “crust” forming are labelled in panels (b) and (d). The approximate 
height of each droplet is indicated by the heatmap.   200 

There is a difference in morphology between unoxidised and oxidised particles, with oxidation appearing to cause droplet 

coagulation (Fig. 5). The design of the QCM instrument, where the sample holder window had a smaller diameter than the 

QCM crystal, meant that only the central part of the QCM surface was exposed to ozone, with the outer regions of the surface 

not exposed to the chamber environment. This allowed us to image the boundary between these two regions and compare 

oxidised and unoxidised droplets. Initial droplet heights were mostly in the region of ~1 – 9 µm with a mean height calculated 205 

as ~2 µm. After oxidation, coagulation occurred resulting in fewer, larger droplets with maximum heights of ~10 – 15 µm (see 

sect. S4 for the representative height scans used for this analysis).  

In addition to droplet coagulation, we observed microscopic evidence of a crust forming, triggered by film oxidation 

(Fig. 5). This was not consistent for all droplets, however some oxidised particles have clear rough patches, which we have 

defined as a crust, on their surfaces as compared to the relatively smooth liquid surfaces of other particles (labelled in Fig. 5(b) 210 

& (d)). There has been previous experimental and modelling evidence that crusts could form on the surface of oxidising oleic 

acid films and particles (Milsom et al., 2021a, 2021b, 2022c). Similar morphological changes have been observed by optical 

microscopy and atomic force microscopy (Hung and Tang, 2010; Liu et al., 2020). Here, WLI has confirmed the reproducible 

nature of these morphology changes along with a more quantitative description of the particle size changes observed.   

3.3 Atmospheric implications 215 

We have demonstrated that the phase state of deposited oleic acid changes during ozonolysis. An increase in viscosity has 

been monitored before for the oleic acid-ozone system (Hosny et al., 2016). However, this involved adding a fluorescent probe 

molecule to the sample. Here, we confirm with the non-invasive QCM-D experiment that the deposited cooking aerosol proxy 

becomes more rigid during ozonolysis.  

A viscous layer coating aerosol material is thought to contribute to the persistence of pollutants in the atmosphere 220 

(Mu et al., 2018; Shrivastava et al., 2017). In this study, we have qualitatively observed a crust forming on the outside of 

oxidised oleic acid particles. We have previously observed a surface layer of aggregates forming during the ozonolysis of oleic 

acid-sodium oleate particles using X-ray scattering, which we assumed were high molecular weight products (Milsom et al., 

2021a). Modelling of the oleic acid-sodium oleate system also suggests a crust could form (Milsom et al., 2022c). Our 

microscopic evidence presented here was not consistent for all experiments. However, it does add to the growing body of 225 

evidence for crust formation, potentially increasing persistence of atmospheric pollutants co-emitted with oleic acid.  
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Conclusions 

The high temporal resolution of QCM method presented here has allowed us to establish a measure of the ozonolysis kinetics 

of a commonly studied cooking aerosol proxy. We have confirmed that the relative decay rate of oleic acid compared to a 

viscous form of oleic acid, measured using the QCM method, agrees with that derived using X-ray scattering and Raman 230 

spectroscopy (Milsom et al., 2021b). An analysis using a kinetic model, pre-optimised to 12 oleic acid ozonolysis datasets, 

demonstrates that the oleic acid decay rate measured with the QCM method are consistent with previous experiments on 

aerosol particles in the literature (Berkemeier et al., 2021).  

We can now qualitatively follow the rigidity, or phase state, of these oxidising films over time using the dissipation 

measured by the QCM-D instrument. For films of uniform thickness, there is the possibility of applying models of 235 

viscoelasticity to QCM-D data to derive the viscosity of coated films (Voinova et al., 1999). Future work should focus on this 

as a potential real-time measure of the viscosity of environmental films.  

The portable QCM-D experiment described here could be used in the field to follow the kinetics of the interaction of 

real environmental films with pollutants (e.g. ozone and NO2). Similar experiments have been carried out using a QCM 

regarding the water uptake of deposited films in the context of air quality and atmospheric chemistry (Asad et al., 2004; Demou 240 

et al., 2003; Schwartz-Narbonne and Donaldson, 2019).   
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