Supplementary Material

Marine anoxia initiates giant sulfur-bacteria mat proliferation and associated changes in benthic nitrogen, sulfur, and iron cycling in the Santa Barbara Basin, California Borderland

David J. Yousavich^{1*}, De'Marcus Robinson², Xuefeng Peng³, Sebastian J. E. Krause^{1,4}, Frank

Wenzhoefer^{5,6,7}, Felix Janβen^{4,5}, Na Liu⁸, Jonathan Tarn⁸, Frank Kinnaman⁸, Dave Valentine⁸, Tina Treude^{1,2*}

¹Department of Earth, Planetary, and Space Sciences, University of California Los Angeles, 595 Charles E. Young Drive East, Los Angeles, CA 90095, USA

²Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Math Science Building, 520 Portola Plaza, Los Angeles, CA 90095, USA

³School of Earth, Ocean, and Environment, University of South Carolina, 701 Sumter Street, EWS 617, Columbia, SC 29208, USA

⁴Earth Research Institute, 6832 Ellison Hall, University of California Santa Barbara, Ca 93106-3060

⁵HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred-Wegener-Institute,

Helmholtz-Center for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

⁶Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany

⁷Department of Biology, DIAS, Nordcee and HADAL Centres, University of Southern Denmark, 5230 Odense

M, Denmark

⁸Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA

Correspondence: David Yousavich (yousavdj@ucla.edu), Tina Treude (ttreude@g.ucla.edu)

Sediment Depth	SDRO [NO2 ⁻]	SDT3A [NO2 ⁻]
[cm]	[µmol L ⁻¹]	[µmol L ⁻¹]
-1	1.1	0.0
0.5	36.6	5.2
1.5	1.4	1.7
2.5	1.1	0.7
3.5	1.1	0.0
4.5	1.2	0.0
5.5	0.0	0.0
6.5	6.1	0.0
7.5	4.3	0.0
8.5	0.0	0.0
9.5	0.0	0.0
11	0.0	n.d.
13	0.0	n.d.
15	0.0	0.0
17	0.0	0.0
19	n.d.	0.0

Supplemental Table 1: Porewater nitrite concentrations taken from sediment cores at SDRO and SDT3-A. Nitrite was below detection in sediment cores for all other stations; n.d. = not determined.

Supplemental Figure 1: A/white) Ammonium concentration changes over time from benthic flux chamber (BFC1, BFC2, BFC3) incubations. B/green) Ammonium concentration changes over time from ¹⁵N-Nitrate benthic flux chamber incubations. Note these chambers were not used to calculate benthic fluxes. C/red) Ammonium concentration changes over time from benthic flux chamber incubations where there was no calculatable flux. No data are shown from chambers if there was a mechanical failure with the deployment or ammonium concentrations were all below detection. For station abbreviation definitions please refer to the main manuscript.

Supplemental Figure 2: A/white) Nitrate concentration changes over time from benthic flux chamber (BFC1, BFC2, BFC3) incubations. B/green) Nitrate concentration changes over time from ¹⁵N-Nitrate benthic flux chamber incubations. Note these chambers were not used to calculate benthic fluxes. C/red) Nitrate concentration changes over time from benthic flux chamber incubations where there was no calculatable flux. No data are shown from chambers if there was a mechanical failure with the deployment. For station abbreviation definitions please refer to the main manuscript.

Supplemental Figure 3: A/white) Iron (II) concentration changes over time from benthic flux chamber (BFC1, BFC2, BFC3) incubations. B/green) Iron (II) concentration changes over time from ¹⁵N-Nitrate benthic flux chamber incubations. Note these chambers were not used to calculate benthic fluxes. No data are shown from chambers if there was a mechanical failure with the deployment or concentrations were all below detection. For station abbreviation definitions please refer to the main manuscript.

Supplemental Figure 4: A/white) Phosphate concentration changes over time from benthic flux chamber (BFC1, BFC2, BFC3) incubations. B/green) Phosphate concentration changes over time from ¹⁵N-Nitrate benthic flux chamber incubations. Note these chambers were not used to calculate benthic fluxes. No data are shown from chambers if there was a mechanical failure with the deployment or concentrations were all below detection. For station abbreviation definitions please refer to the main manuscript.

Supplementary Figure 5. A) Photograph of spherical sulfur bacteria mats (nicknamed 'ghost balls') within a mat of filamentous sulfur bacteria as seen through a dissection microscope. Black arrows point to a few of the ghost balls. B) Light Microscopy image of representative ghost ball with a scale bar. Ghost Balls were sampled from the 0-1 cm section of a core collected from station NDRO. The size of the ghost ball radius ranges between approx. $24.0 - 49.8 \mu m (n = 8)$.