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Abstract 25 
 26 

The Santa Barbara Basin naturally experiences transient deoxygenation due to its unique 27 

geological setting in the Southern California Borderland and seasonal changes in ocean currents. 28 

Long-term measurements of the basin showed that anoxic events and subsequent nitrate 29 

exhaustion in the bottom waters have been occurring more frequently and lasting longer over the 30 

past decade. One characteristic of the Santa Barbara Basin is the seasonal development of 31 

extensive mats of benthic nitrate-reducing sulfur-oxidizing bacteria, which are found at the 32 

sediment-water interface when the basin’s bottom waters reach anoxia but still provide some 33 

nitrate. To assess the mat’s impact on the benthic and pelagic redox environment, we collected 34 

biogeochemical sediment and benthic flux data in November 2019, after anoxia developed in the 35 

deepest waters of the basin and dissolved nitrate was depleted (down to 9.9 µM). We found that 36 

the development of mats was associated with a shift from denitrification to dissimilatory nitrate 37 

reduction to ammonium. The zone of sulfate reduction appeared near the sediment-water 38 

interface in sediment hosting these ephemeral white mats. We found that an exhaustion of iron 39 

oxides in the surface sediment was an additional prerequisite for mat proliferation. Our research 40 

further suggests that cycles of deoxygenation and reoxygenation of the benthic environment 41 

result in extremely high benthic fluxes of dissolved iron from the basin’s sediment. This work 42 

expands our understanding of nitrate-reducing sulfur-oxidizing mats and their role in sustaining 43 

and potentially expanding marine anoxia.  44 
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Introduction 46 

 47 

Naturally occurring low-oxygen waters in the ocean are commonly observed below the ocean’s 48 

mixed layer where respiration consumes oxygen faster than it is produced or ventilated. When 49 

low oxygen conditions occur along the western continental shelf in regions susceptible to 50 

upwelling events and/or undergoing eutrophication, organic matter remineralization can 51 

frequently drive oxygen concentrations to hypoxic (O2 < 63 μM) (Middelburg and Levin, 2009) 52 

and/or anoxic levels (O2 < 3 μM)  (Fossing et al., 1995b; Canfield et al., 2010). These areas are 53 

usually referred to as Oxygen Minimum Zones (OMZs). In the water column of OMZs, nitrogen 54 

reduction becomes an important mechanism for  organic matter remineralization  (Ward et al., 55 

2009). OMZs within coastal basins that experience seasonal changes in upwelling can experience 56 

anoxic and nitrate reducing  conditions that extend to the benthic environment, especially when 57 

high productivity and associated organic matter export coincide with seasonal patterns of 58 

physical mixing. This fundamental change in the redox conditions at the sediment-water 59 

interface encourages elevated rates of anaerobic microbial processes and can promote organic 60 

matter preservation in the sediments (Middelburg and Levin, 2009; Treude, 2011), though a 61 

recent study suggests a thin reactive surface layer can provide high rates of organic matter 62 

degradation in anoxic environments (Van De Velde et al., 2023). Persistent anoxia in these 63 

coastal OMZ can lead to huge releases of sulfide (up to 13.7 mmol m-2 d-1) and ammonium (up 64 

to 21.2 mmol m-2 d-1) into the water column (Sommer et al., 2016). 65 

 66 

The Santa Barbara Basin (SBB) is an example of one of these coastal OMZs that experiences 67 

seasonal deoxygenation. Drastic changes in water column oxygenation and seafloor redox 68 
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conditions drive complex changes in benthic biogeochemistry and microbiology, evidenced most 115 

clearly by the development of thick, expansive mats of giant sulfur-oxidizing bacteria (GSOB) 116 

on the SBB seafloor (Bernhard et al., 2003; Prokopenko et al., 2006; Valentine et al., 2016; 117 

Kuwabara et al., 1999). A 2016 survey of the basin identified a vast GSOB mat spread over 1.6 118 

contiguous km, confined between 487 and 523 km in the SBB depocenter where conditions were 119 

anoxic but not depleted of NO3- (Valentine et al., 2016). These GSOB mats have been noted 120 

previously in the SBB benthos, appearing at times of anoxia and disappearing when oxygen is 121 

present in the bottom water (Reimers et al., 1996b; Kuwabara et al., 1999). Similar GSOB mats 122 

have been identified in other transiently deoxygenated OMZs such as the Peruvian/Chilean coast 123 

(Sommer et al., 2016; Schulz et al., 1996; Zopfi et al., 2001; Høgslund et al., 2009). The 124 

chemoautotrophic bacteria that constitute the bulk of GSOB mats (typically Thioploca and/or 125 

Beggiatoa) utilize sulfide as an electron donor and O2 or NO3- as a terminal electron acceptor 126 

(Jørgensen and Nelson, 2004). Some GSOB can hyperaccumulate NO3- in cell vacuoles up to 127 

500 mM (Fossing et al., 1995a) and use this NO3- reserve to oxidize sulfide that diffuses from the 128 

underlying sediment to perform their metabolism. (Huettel et al., 1996; Mußmann et al., 2003; 129 

Sayama, 2001).  130 

 131 
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 137 
Figure 1.  Maps of sampling locations in the Santa Barbara Basin and photographs of 138 
deployed equipment: (A) bathymetric map of the Santa Barbara Basin with locations of all 139 
sampled stations; (B) cross-section of the Santa Barbara Basin with locations of all sampled 140 
station; (C) sediment push coring with ROV arm; (D) sediment microprofiler; (E) benthic flux 141 
chamber; (F) closeup of a syringe system from a benthic flux chamber. The map in (A) was 142 
generated using the Bathymetric Data Viewer provided by the National Centers for 143 
Environmental Information. 144 
 145 

The activity of GSOB mats contribute significantly to element cycling in benthic marine 146 

environments with large effects on biogeochemical conditions in the bottom water. Isotopic 147 

measurements of 15N/14N and 18O/16O  from NO3- in the SBB water column suggest that benthic 148 

organisms are responsible for approximately 75% of the total NO3- reduction in the SBB 149 

(Sigman et al., 2003). Other studies found that GSOB mats inhibit the diffusion of NO3- into 150 

sediments via hyper-accumulation in vacuoles thereby creating conditions ideal for bacterial 151 

heterotrophic sulfate reduction beneath them (Fossing et al., 1995b; Zopfi et al., 2001). These 152 

studies suggest that GSOB mats in the SBB may be responsible for the majority of NO3- 153 

consumption in the basin rather than water-column microbes. Additionally, GSOB mats have 154 

been reported to deplete NO3- via dissimilatory nitrate reduction to ammonia (DNRA) in the 155 

anoxic bottom water of the Peruvian OMZ (Dale et al., 2016) and in the hypoxic transition zone 156 

in the Eastern Gotland Basin of the Baltic Sea (Noffke et al., 2016). By contrast, benthic 157 

microbial communities in the hypoxic (42 µM) Mauritanian OMZ perform canonical 158 

denitrification instead (Dale et al., 2014). The contrast between the Peruvian and Mauritanian 159 

OMZ suggests that bottom- water anoxia triggers the appearance of GSOB mats, and that DNRA 160 

is more prevalent where GSOB mats are present.  161 

 162 

Deleted: These GSOB mats are ephemeral in the SBB, 163 
appearing to proliferate and potentially migrate depending on 164 
bottom water oxidant concentrations (Kuwabara et al., 1999). 165 
Deleted: in turn 166 
Deleted: the SBB167 
Deleted: sedimentary 168 
Deleted: uptake169 

Deleted: organoclastic 170 

Deleted: D171 
Deleted: N172 
Deleted: R173 
Deleted: Ammonium 174 
Deleted: .175 

Deleted:  (two coastal upwelling zones similar to the SBB)176 
Deleted:  177 



 6 

The rapid accumulation and consumption of NO3- by GSOB mats has ramifications for the redox 178 

conditions in the sediment underneath. The depletion of NO3- and shallowing of the nitracline 179 

could promote high rates of sulfate reduction in the sediment underneath the GSOB mat. In 180 

return, the sulfate reduction zone exists close to the sediment-water interface, providing the 181 

GSOB mat with readily accessible sulfide. If a metabolic feedback loop is then established 182 

between sulfur-oxidizing bacteria at the sediment-water interface and sulfate-reducing bacteria in 183 

the sediment, increased NO3- loss from the water column and spreading of sulfidic conditions in 184 

SBB sediment is expected. With these mats being potentially crucial to nitrogen and sulfur 185 

cycling in sediments underlying OMZs, their biogeochemical transformations and ergo effect 186 

upon basin redox conditions are critically important to understanding element cycling in the 187 

SBB. Such gained knowledge would have additional benefits for predicting biogeochemical 188 

feedbacks to the projected expansion of oceanic oxygen deficiency, in the SBB and in OMZs 189 

more general, as a result of global change (Stramma et al., 2008).  190 

 191 

Utilizing in-situ technologies, sediment porewater extraction, solid phase analyses, and 192 

radiotracer techniques, this study aims to answer the following overarching questions: (1) Which 193 

environmental conditions initiate and sustain the proliferation of GSOB mats? (2) Which 194 

biogeochemical transformations occur in the sediment underneath these mats? (3) What role do 195 

the mats play in the increasingly prevalent anoxic and nitrate-depleted condition found in the 196 

SBB? These investigations represent the first basin-wide geochemical characterization of the 197 

Santa Barbara Basin which hosts the largest as-of-yet mapped GSOB mat in the world’s oceans. 198 

It is the first suite of in-situ flux measurements carried out in the SBB, which is unique to other 199 

heavily studied marine settings (e.g., Eastern Gotland Basin, Peruvian upwelling zone) in that it 200 
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is an oceanic basin within an upwelling zone. The results presented here also provide 201 

geochemical context for a number of other related investigations in the SBB (Robinson et al., 202 

2022; Peng et al., 2023) as well as the first measurements in a multi-year study of 203 

biogeochemical changes in response to warming waters and increased stratification on the 204 

California coast.  205 
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2. Materials and Methods 206 

2.1 Study Site 207 

The Santa Barbara Basin (SBB) is a coastal basin in the California Borderland with an 208 

approximate maximum depth of 600 m characterized by a seasonally anoxic water column 209 

(Sverdrup and Allen, 1939; Sholkovitz and Gieskes, 1971). The transform boundary along the 210 

California Borderland heavily affects the geomorphology of basins in this region; these basins 211 

become twisted as the plates rub against each other and form a series of “bathtubs” blocked by 212 

sills and seamounts off the coast of California. The SBB is bordered by the California coast in 213 

the north, the Channel Islands in the south, the Santa Monica basin to the east, and the Arguello 214 

Canyon to the west. A sill to the west of the basin at around 475 m depth (Fig. 1) prohibits most 215 

water transfer between the Santa Lucia Slope and the deeper waters of the SBB (Sholkovitz and 216 

Gieskes, 1971). The highly productive surface waters in the basin provide ample organic matter 217 

to the basin’s water column, encouraging strong remineralization processes below the euphotic 218 

zone, which can induce anoxia below the sill depth, with typically less than 1 µmol O2 L-1 219 

(Sholkovitz, 1973; Emery et al., 1962; Thunell, 1998; Emmer and Thunell, 2000). Benthic faunal 220 

distribution within the basin is tightly correlated with this sill depth and related oxygen 221 

conditions; below the sill, the sea snail Alia permodesta is the most commonly found benthic 222 

fauna, while sea stars, sea urchins, and other echinoderms increase in density above the sill 223 

(Myhre et al., 2018). During upwelling events (usually in Spring), oxygenated waters from the 224 

California Current spill over the western sill and ventilate the SBB, reportedly increase bottom 225 

water oxygen concentrations to approximately 20 µmol O2 L-1  (Goericke et al., 2015). SBB 226 

water-column oxygen and nitrogen concentrations have been evaluated through a longitudinal 227 

survey by the California Cooperative Oceanic Fisheries Investigations (Calcofi) with data 228 
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starting in the 1950’s . The data collected by this survey shows increasing durations of anoxia 231 

and fixed nitrogen loss in the basin with the SBB becoming completely nitrate-depleted below 232 

the sill at least three times between 2012 and 2017 (https://calcof.iorg/data/). 233 

 234 

2.2 Benthic sediment sampling and instrument deployment 235 

Sediment samples were taken between 30 October and 11 November 2019 during an expedition 236 

aboard the research vessel (R/V) Atlantis equipped with the remote operated vehicle (ROV) 237 

Jason. Samples were taken at stations along a bimodal, north-south transect through the 238 

depocenter of the SBB, as well as one station on a separate transect. Details of sampling stations 239 

can be seen in Fig. 1A and 1B. Briefly, depocenter stations are labeled as NDRO and SDRO 240 

(northern and southern depocenter radial origin, respectively). The remaining stations are named 241 

for the cardinal direction (north vs. south) and the transect number (e.g., SDT1-A is on transect 1 242 

while SDT3-A is on transect 3). As station depth decreases, the alpha suffix increases (e.g., 243 

NDT3-A is deeper than NDT3-B, etc.).  244 

 245 

ROV Jason conducted sediment push coring and deployed automated benthic flux chambers 246 

(BFC) and microprofilers at each station. Bottom water oxygen concentration was determined 247 

using an Aanderaa 4831 oxygen optode (Aanderaa Instruments, Bergen, Norway) installed on 248 

the ROV. Optical modems (Luma 250LP, Hydromea, Renens, Switzerland) installed on the ROV 249 

and the BFC and microprofilers were used to transmit deployment settings and start/terminate 250 

measurements of the instruments. Multiple push cores (polycarbonate, 30.5 cm length, 6.35 cm 251 

inner diameter) per sampling station were retrieved during ROV Jason deployments (Fig. 1C). 252 

Replicate cores from each station were transferred to an onboard 6°C cold room upon recovery 253 
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aboard the ship and subsampled for either solid phase analyses, porewater geochemistry, or 269 

radiotracer experiments.  270 

 271 

2.3 Sediment Core Sub-Sampling 272 

Two replicate ROV push cores that were collected near each other at each station were processed 273 

under a constant argon flow to protect redox-sensitive species. Cores were sectioned in 1-cm 274 

increments up to 10 cm followed by 2-cm increments. Note, sediments from the NDT3-B station 275 

were sliced in 2-cm increments. Sediment subsections were transferred into argon-filled 50-mL 276 

conical centrifuge tubes. Sediment samples were centrifuged at 2300 x g for 20 minutes. The 277 

centrifugate was subsampled unfiltered as fast as possible (to avoid contaminations with oxygen) 278 

for porewater analyses. Solid phase cores were sectioned similar to porewater cores and sub-279 

sampled for sediment density, porosity, and organic matter content. A 10 mL cut-off plastic 280 

syringe was used to collect 6 mL of sediment into pre-weighed plastic vials (15 mL snap-cap 281 

vials) and stored in the dark at 4°C for sediment porosity and density analysis. Two-mL 282 

microcentrifuge tubes were filled with sediment from each depth interval and stored at -30°C for 283 

sediment organic matter analyses. One ROV push core per station was sub-sampled with a 284 

miniaturized push core (length 20 cm, inner diameter 2.6 cm) and taken immediately to the 285 

shipboard radioisotope van for radiotracer experiments (see section 2.5).  286 

 287 

2.4 Sediment Porewater Geochemistry 288 

Concentrations of porewater sulfide (Cline, 1969), NH4+, PO43-, and Fe2+  (Grasshoff et al., 1999) 289 

were determined shipboard with a Shimadzu UV-Spectrophotometer (UV-1800). Detection 290 

limits for sulfide, NH4+, PO43-, and Fe2+ were 1 µM. Subsamples (2 mL) for porewater NO3- and 291 
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NO2- concentrations were stored in 2-mL plastic vials with an O-ring, frozen shipboard at -30°C 311 

and analyzed back at the home laboratory on the same spectrophotometer using the method 312 

following (García-Robledo et al., 2014). The detection limit for NO3- and NO2- was 0.5 µM. 313 

Samples for porewater DIC were preserved shipboard with 5 µL saturated HgCl in headspace 314 

free glass vials and stored at 4°C for later analysis following (Hall and Aller, 1992). DIC 315 

detection limit was 0.1 mM. Total alkalinity was determined shipboard using direct titration of 316 

500 µL of pore water with 0.01M Titrisol® HCl (Pavlova et al., 2008). The analysis was 317 

calibrated using IAPSO seawater standard, with a precision and detection limit of 0.05 meq L-1. 318 

Subsamples (1 mL) for sulfate and chlorinity were stored in 2-mL plastic vials with an O-ring, 319 

frozen shipboard at -30°C and later measured in the lab using a Metrohm 761 ion chromatograph 320 

with a methodological detection limit of 30 µM (Dale et al., 2015).  321 

 322 

2.5 Solid Phase Analyses 323 

Porosity/Density samples were collected in pre-weighed plastic vials and dried at 50°C for up to 324 

96 hr until the dry weight was stable. Sediment porosity was calculated by taking the difference 325 

between wet and dry sediment weight and divided by the volume of the wet sediment. Sediment 326 

density was calculated by dividing the wet sediment weight by its volume. Treatment of 327 

sediment subsamples for total organic carbon (TOC), total organic nitrogen (TON), and organic 328 

carbon isotope composition (δ13C) were modified from (Harris et al., 2001) and sent to the 329 

University of California Davis Stable Isotope Facility for analysis using Elemental Analyzer – 330 

Isotope Ratio Mass Spectrometry. TOC and TON were calculated based on the sample peak area 331 

corrected against a reference material (alfalfa flour). Limit of quantification based on peak area 332 

was 100 μg C with an uncertainty of ± 0.2 ‰ for δ13C. 333 
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 356 

2.6 Sulfate Reduction 357 

To determine ex-situ microbial sulfate reduction rates, whole round sub-cores were injected with 358 

10 µL carrier-free 35S-Sulfate radiotracer (dissolved in water, 200 kBq, specific activity 37 TBq 359 

mmol-1) into pre-drilled, silicon-filled  holes at 1-cm increments according to (Jørgensen, 1978). 360 

These sub-cores were incubated at 6°C in the dark for 6-8 hours. Incubations were stopped by 361 

slicing sediment cores in 1-cm increments into 50-mL centrifuge tubes filled with 20-mL zinc 362 

acetate (20% w/w) and frozen at -20°C until analysis at the land-based laboratory. Microbial 363 

activity in controls was terminated with zinc acetate (20 mL of 20% w/w) before the addition of 364 

radiotracer and subsequent freezing. Lab-based analysis of sulfate reduction rates were 365 

determined following the cold-chromium distillation procedure (Kallmeyer et al., 2004).  366 

 367 

2.7 Benthic In-Situ Investigations 368 

Per station, one to three microprofiler (Fig. 1D) and three BFC (Fig. 1E) deployments were 369 

carried out by the ROV Jason at the seafloor. Construction, deployment and operation of 370 

automated microprofilers and BFCs followed those described in (Treude et al., 2009). The 371 

microprofiler deployed in this study represents a modified, miniaturized version of the 372 

instrument described in (Gundersen and Jørgensen, 1990) that was constructed specifically for 373 

use by ROV. Microprofilers were outfitted with three O2-microelectrodes (Glud et al., 2000), 374 

two pH-microelectrodes (Revsbech and Jørgensen, 1986), two H2S-microelectrodes 375 

(Jeroschewsky et al., 1996), and one conductivity sensor to determine the position of the 376 

sediment-water interface relative to the tips of the microelectrodes. Concentrations of oxygen 377 
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and sulfide, as well as pH were each calculated from microelectrode readings and averaged for 397 

the respective sites where replicates existed.  398 

 399 

The BFC consisted of a frame equipped with a cylindrical polycarbonate chamber (inner 400 

diameter = 19 cm) with its lower portion sticking out of the frame. The upper side of the 401 

chamber was closed by a lid containing a stirrer (Type K/MT 11, K.U.M., Kiel, Germany), 402 

oxygen optodes (Type 4330, Aanderaa Data Instruments, Bergen Norway and Hydroflash, 403 

Contros/Kongsberg Maritime, Kongsberg, Norway), a conductivity sensor (type 5860, Aanderaa 404 

Data Instruments), and a valve. Prior to insertion into the sediments, the chambers were held 405 

upside down by the ROV manipulating arms within approximately 10 m of the seafloor and 406 

moved back and forth to make sure that water from shallower depth that may have been trapped 407 

was replaced by bottom water. Chamber incubations lasted between 240 and 390 minutes. Each 408 

BFC was outfitted with a custom-built syringe sampler containing seven syringes that were 409 

connected by tubes to sampling ports in the upper wall of the chambers (Fig. 1F):  one injection 410 

syringe and six sampling syringes that were fired at regular time intervals over the time course of 411 

the deployment. The injection syringe contained de-ionized water and the reduction in salinity in 412 

the overlaying water after salinity readings stabilized (i.e., full mixing was achieved) 10-30 min 413 

after injection was used to determine BFC volumes (Kononets et al., 2021). Samples obtained 414 

from the overlaying water of the BFC were examined for the same geochemical constituents as 415 

described above (section 2.4). Benthic fluxes of NO3-, NH4+, PO43-, and Fe2+ were calculated as 416 

follows: 417 

 418 

! = !"
!# ∗

$
%                                                                                                                              (EQ # 2) 419 

Deleted: as an 420 

Deleted: per 421 
Deleted: Microprofiler frames (and benthic flux chamber 422 
frames) were outfitted with syntactic foam to reduce the 423 
negative buoyancy of the instruments in water and prevent 424 
them from sinking into the extremely soft sediments in the 425 
SBB.  …426 



 14 

 427 

Where J is the flux in mmol m-2 d-1, $C is the concentration change in mmol m-3, $t is the time 428 

interval in d, V is the overlying water volume in m3, and A is the surface area of the sediment 429 

covered by the benthic flux chamber in m2. An average flux within BFC’s was calculated for 430 

stations of similar depth. One chamber per site contained 15N-NO3- in the injection syringe for in-431 

situ nitrogen cycling experiments. Results are reported from two of these chambers (SDRO and 432 

NDT3-D) and all 15N-NO3- chambers were excluded from benthic flux calculations (see next 433 

section).  434 

 435 

2.8 In Situ 15N Incubations 436 

Two hundred µmol of 15N-labeled potassium nitrate (99% 15N; Cambridge Isotopes) was injected 437 

into the 15N incubation chamber at each site to obtain a final concentration of ~50 – 100 µM 15N-438 

labeled nitrate. Nitrate was amended at this level to prevent its depletion before the last sampling 439 

time point (Valentine et al., 2016). Samples for δ15N analysis were preserved by filling a pre-440 

vacuumed 12-ml exetainer vial with 0.1 ml 7M zinc chloride as a preservative.  Another aliquot 441 

(~12 ml) of seawater for ammonium isotope analysis (see section 2.7.2) was filtered through 0.2 442 

µm syringe filters and stored frozen. Prior to analyzing the samples in 12-ml exetainer vials, 5 443 

mL of sample was replaced with ultra-high purity helium to create a headspace. The 444 

concentration and δ15N of dissolved N2 and N2O was determined using a Sercon CryoPrep gas 445 

concentration system interfaced to a Sercon 20-20 isotope-ratio mass spectrometer (IRMS) at the 446 

University of California Davis Stable Isotope Facility.  447 

 448 

2.9 Ammonium Isotope Analyses 449 
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The production of 15NH4+ in seawater samples was measured using a method adapted from 458 

(Zhang et al., 2007) and described previously by (Peng et al., 2016). In brief, NH4+ was first 459 

oxidized to NO2- using hypobromite (BrO-) and then reduced to N2O using an acetic acid-azide 460 

working solution (Zhang et al., 2007). The δ15N of the produced N2O was determined using an 461 

Elementar Americas PrecisION continuous flow, multicollector, isotope-ratio mass spectrometer 462 

coupled to an automated gas extraction system as described in (Charoenpong et al., 2014). 463 

Calibration and correction were performed as described in (Bourbonnais et al., 2017). The 464 

measurement precision was ±0.2 ‰ for δ15N. Depending on the in-situ ammonium 465 

concentration, the detection limit for total NH4+ production rates ranged between 0.006 and 466 

0.0685 mmol m-2 d-1.  467 

  468 
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3. Results 469 

3.1 Bottom water conditions 470 

O2 and NO3- concentrations in the bottom water along the transects can be seen in Table 1.  O2 471 

concentrations below detection as determined by the ROV sensor could in some cases be 472 

considered to represent anoxia (0 µM O2) based on a set of different analytical methods (see 473 

discussion section 4.1). Bottom water solute concentrations (as defined by the average T0 474 

concentration in BFC at each site) can be seen in Suppl. Figs. 1-4. Bottom water NO3- 475 

concentrations roughly decreased with station depth (e.g., 28 µM at NDT3-D vs. 19 µM at 476 

NDRO). Bottom water NO2- concentrations were below detection at all stations. Bottom water 477 

NH4+ concentrations were 9 µM at NDRO and 13 µM at SDRO and below detection in shallower 478 

stations. Bottom water PO43- concentrations roughly increased with increasing basin depth (e.g., 479 

2 µM at SDT3-D vs. 7 µM at SDRO). Finally, Fe2+ was 2 and 5 µM at the NDRO and SDRO 480 

stations, respectively and below detection at all shallower stations. 481 

 482 

3.2 Sediment characteristics 483 

Photographs of sediment cores with a depth scale are shown below Table 1. Sediment colors 484 

were classified according to (Hossain et al., 2014). Cores from the shallowest (D) stations were 485 

uniformly reddish in color with small pockets of black. The sediment color changed with station 486 

depth, transitioning from a reddish color in the shallowest stations to predominantly black with 487 

reddish laminations at the depocenter stations. The band of black sediment appeared at approx. 8 488 

cm sediment depth in the C-station cores and became progressively more ubiquitous with station 489 

depth. Notably, NDT3-C sediment (Table 1B) contained black bands from approx. 6-14 cm 490 

sediment depth, while SDT3-C sediment (Table 1J) had a much narrower band around 8-10 cm. 491 
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Sediment cores from shallower stations (D and C stations) contained signs of bioturbation (e.g., 511 

u-shaped burrows) and, in some cases, contained visible macrofauna, such as polychaetas and 512 

mollusks. Deeper in the basin (A and depocenter stations) no signs of bioturbation were detected, 513 

 514 

Table 1. Station details and photos of representative ROV push cores taken at each station. Mat presence (Y = 515 
yes, N = no) was determined visually. Station water depth and oxygen concentration were determined by sensors 516 
attached to ROV Jason (bdl = below detection limit (<3 µM O2). Anoxia was confirmed by additional methods 517 
(see discussion section 4.1). Latitude and longitude were determined by triangulation between the ROV and the 518 
ship. Bottom water nitrate concentration was derived from an average of benthic flux chamber nitrate 519 
measurements at time 0 for each station (chambers with no calculatable flux and 15N-nitrate addition excluded). 520 
Note, benthic flux chambers were not deployed at SDT1-A. Photographs show the sediment-water interface 521 
(SWI; top part) and each sediment core in full length (lower part). 522 
 523 

 524 
 525 

 and the sediment-water interface was colonized by patches of white GSOB mats. Spherical cells 526 

(given the moniker ‘ghost balls’) were found mixed amongst giant sulfur bacteria filaments 527 

within the top 0-1 cm of sediment at NDRO (Suppl. Fig. 7). These unknown species had similar 528 

morphological characteristics to the species Thiomargarita namibiensis (Schulz et al., 1999; 529 

Schulz and Schulz, 2005) containing a translucent cell with sulfur granules giving them a ghostly 530 
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white appearance. A small sample of cells (n = 8) were measured, featuring diameters between 535 

48.0 and 99.6 µm, amounting to an average biovolume of 2.5 x 105 µm3, compared to T. 536 

namibiensis with a cell diameter usually between 100-300 µm (Schulz et al., 1999).  537 

 538 
Table 2.  Sediment solid phase data:  porosity, density, total organic carbon (TOC), total organic nitrogen (TON), 539 
C:N ratio, and δ13C. All data were averaged for the top 0-19 cm sediment, except NDT3-C (17 cm), NDT3-A 540 
(11 cm) and SDRO (7 cm), where the core length was shorter. Integrated sulfate reduction rates (iSRR) were 541 
integrated over 0-14 cm sediment depth. No sulfate reduction rates are available for NDT3-B, SDT3-A, and 542 
SDT3-B; rates were not integrated for SDRO due to missing surface samples. 543 
 544 

 545 
 546 
 547 
B station cores contained sporadic GSOB filaments slightly deeper in the sediment (approx. 2-4 548 

cm sediment depth). Sediment solid phase parameters (averaged over the entire sediment core 549 

depth) can be seen in Table 2. Average sediment porosity increased with basin depth (e.g., from 550 

0.79 at NDT3-D to 0.88 at NDRO). TOC, TON, the C/N ratio, and the δ13C isotopic signature of 551 

organic carbon remained relatively constant (2.5 – 4.5%, 0.1 – 0.4%,  8.0 – 8.7 and 21.3 – 552 

22.4 ‰, respectively) over all stations.  553 

 554 

3.3 Sediment porewater geochemistry 555 

Total alkalinity (Figs. 2 A-E & 3 A-F) increased steadily with sediment depth at all stations 556 

starting with, on average, 2.4 mM in the core supernatant reaching a maximum at the respective 557 

deepest sediment sample (20 cm). Porewater alkalinity and DIC also increased with basin depth 558 
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(Figs. 2 A-E & 3 A-F) indicating that total alkalinity was dominated by the carbonate system. 572 

Porewater DIC was, on average, 2.2 mM in the core supernatant and reached maximum 573 

concentrations at the deepest sediment depth (20 cm) at most stations.  574 

 575 

Porewater PO43- profiles (Figs. 2 A-E & 3 A-F) were markedly different between the depocenter 576 

and shallower C and D stations. Porewater PO43- concentrations in the depocenter and A stations 577 

generally increased with sediment depth but several profiles (NDT3-C, NDT3-A, SDRO, SDT1-578 

A) remained unchanged or decreased deeper in the sediment (starting at approx. 10 cm). The 579 

profiles in C and D stations showed a peak in PO43- concentrations near the sediment-water 580 

interface, particularly in the northern basin. Below 2 cm, PO43- decreased with sediment depth, 581 

but sometimes showed a second small peak deeper in the sediment (12-14 cm at NDT3-D and 582 

10-12 cm at SDT3-D). 583 

 584 

Porewater NH4+ concentrations (Figs 2 & 3 A-E) showed trends often similar to alkalinity and 585 

DIC; NH4+ concentrations increased downcore and were higher at depocenter than at D stations 586 

(e.g., 370 and 91 µM at 20 cm for SDRO and SDT3-D, respectively). Porewater NO2- (Suppl. 587 

Table 1) and NO3- (Figs. 2 F-J & F G-L) concentrations were at or near zero below 2 cm at every 588 

station, except  at SDRO and NDT3-A where large peaks in NO3- (376 and 81 µM, respectively) 589 

and NO2- (37 and 5 µM, respectively) occurred in the top 1 cm. 590 

 591 

Porewater Fe2+ concentrations (Figs. 2 F-J & 3 G-L) were several orders of magnitude higher at 592 

shallower D-stations (max. 722 and 395 µM at NDT3-D and SDT3-D, respectively) compared to 593 

depocenter stations (max. 13 and 51 µM at NDRO and SDRO, respectively). NDT3-C porewater 594 
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Fe2+ concentration (Fig. 2G) peaked in the top 1 cm of sediment (similar to deeper stations) 619 

while SDT3-C porewater Fe2+ concentration (Fig. 3H) peaked around 5-cm sediment depth. Fe2+ 620 

concentrations reached a max. at 0-2 cm and declined sharply with depth in depocenter and A-621 

station sediment. Northern basin sediment was similar, but the decline in Fe2+ below 0-2 cm was 622 

less pronounced. 623 

 624 

Maximum porewater sulfide concentrations (Figs. 2 F-J & 3 G-L) were several orders of 625 

magnitude lower at the shallower D-stations (5 and 4 µM at NDT3-D and SDT3-D, respectively) 626 

compared to A stations (350 and 148 µM at NDT3-A and SDT1-A, respectively). Unlike Fe2+, 627 

peaks in sulfide concentration occurred deeper in the sediment (e.g., below 5 cm depth at A 628 

stations). Porewater sulfate concentrations (Figs. 2 K-O & 3 M-R) decreased slightly with depth, 629 

but never reached values below 20 mM at any station. 630 

 631 

3.4 In-situ microprofiling 632 

Microprofiler O2 and sulfide measurements are shown in Fig. 4. Oxygen was rapidly consumed 633 

within the first 0-1 cm of sediment at every station where O2 was detected in the bottom water 634 

(i.e., at all stations except NDRO, which showed no positive signal of oxygen in the water 635 

compared to the sediment; note that no oxygen profile is available for SDRO). Sulfide 636 

concentrations from microsensors showed similar trends to spectrophotometric measurements, 637 

albeit with different absolute values (below detection in shallower B-, C- and D-stations that 638 

lacked mats and >1,000 µM at A- and depocenter stations). Microprofiler pH (Fig. 4) was near 639 

7.5 in the bottom water at all stations, and slowly decreased to near 7.0 in the lower parts (3-5 640 
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cm) sediment at most stations except NDT3-C and SDT3-B. pH at 2.5 cm at SDT3-B reached 658 

6.77, which was the lowest observed during this expedition.  659 

 660 

 661 
Figure 2.  Biogeochemical data from ROV sediment push cores collected at stations on the northern transect 662 
(NDT3) and in the northern depocenter (NDRO): total alkalinity (TA), dissolved inorganic carbon (DIC), 663 
ammonium (NH4

+), phosphate (PO4
3-) in the first row; nitrate (NO3

-), total sulfide (sulfide), and iron (II) (Fe2+) 664 
in the second row; sulfate (SO4

2-) and bacterial sulfate reduction rate (SRR) in the third row. Data analyzed from 665 
sediment core supernatant are plotted at -1 cm sediment depth; the dotted line connotes the sediment-water 666 
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interface. Note the change in scale on the primary x-axis in panel I and the change in scale of the secondary x-673 
axis in panels F and I. No spectrophotometric sulfide data is available for NDRO and NDT3-B and no SRR data 674 
is available for NDT3-B. For station details see Fig. 1 and Table 1. 675 
 676 

 677 
Figure 3.  Biogeochemical data from ROV sediment push cores collected at stations on the two southern 678 
transects (SDT1 and SDT3) and the southern depocenter (SDRO): total alkalinity (TA), dissolved inorganic 679 
carbon (DIC), ammonium (NH4

+), phosphate (PO4
3-) in the first row; nitrate (NO3

-), total sulfide (sulfide), and 680 
iron (II) (Fe2+) in the second row; sulfate (SO4

2-) and bacterial sulfate reduction rate (SRR) in the third row. Data 681 
analyzed from sediment core supernatant are plotted at -1 cm sediment depth; the dotted line connotes the 682 
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sediment-water interface. Note the change in scale on the primary x-axis in panel L and the change in scale of 684 
the secondary x-axis in panel G. No sulfide nor SRR data are available for SDT3-B and -A;  spectrophotometric 685 
sulfide data and the top 0-4 cm of SRR data are not available for SDRO. For station details see Fig. 1 and Table 686 
1. 687 
 688 

 689 
 690 
Figure 4. In-situ sediment microprofiler results for all stations (except SDT1-A and SDRO): oxygen (O2) and 691 
total sulfide (sulfide) concentration in the first row; pH profiles in the second row. Note the change in scale on 692 
the secondary x-axis for NDRO sulfide. Values determined in the overlying water are plotted at negative 693 
sediment depths; the dotted line connotes the sediment-water interface. 694 
 695 

3.5 In-situ fluxes of benthic solutes 696 

NO3-, NH4+, PO43-, and Fe2+ flux measured in the BFC revealed different patterns of uptake and 697 

release from the sediment throughout the basin (Fig. 5 and Suppl. Figs. 1-4). BFC O2 698 

concentrations were compromised by O2 release from the chamber’s polycarbonate walls, which 699 

prevented an accurate calculation of O2 fluxes from BFC sensor data. NO3- was consumed at all 700 

stations as indicated by a negative flux (i.e., a flux into the sediment). On the contrary, benthic 701 

release (i.e., a flux out of the sediment) was observed for all other analyzed solutes (NH4+, PO43-, 702 
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and Fe2+), with the lowest fluxes in the shallow D and C-stations and highest fluxes in the 708 

depocenter. Ammonium fluxes were the highest of all the determined solutes and showed the 709 

largest difference between deep and shallow stations, with a flux of 1.6 mmol m-2 d-1 at NDT3-C 710 

(there were no measurable NH4+ fluxes in D-station chambers) and reaching 11.1 ± 3.1 mmol m-2 711 

d-1 (n = 3) at the two depocenter stations. The depocenter ammonium flux far-outpaced the 712 

concomitant flux of nitrate into depocenter sediments (-3.2 ± 0.7 mmol m-2 d-1, n = 3). Iron and 713 

phosphate fluxes were similar at depocenter stations (4.1 ± 0.7, n = 3, and 3.2 ± 0.7, n = 3, mmol 714 

m-2 d-1, respectively). Alkalinity and DIC concentrations from flux chambers (Suppl. Figs. 5 and 715 

6) remained constant at all stations and thus no DIC flux was calculated. Results from BFCs 716 

injected with 15N-NO3- at the SDRO and NDT3-D station are shown in Fig. 6. The rates of 717 

denitrification, anammox, and N2O production were higher at SDRO compared to NDT3-D. 718 

15NH4+ production (DNRA) was one order of magnitude higher at the SDRO station (2.67 mmol 719 

m-2 d-1) compared to the NDT3-D station (0.14 mmol m-2 d-1). DNRA accounted for a much 720 

higher percentage of NO3- reduction at SDRO (54.1%) than NDT3-D (13.3%).  721 

 722 

3.6 Sulfate reduction rates 723 

Vertical profiles of bacterial sulfate reduction as determined by the radioisotope technique 724 

differed throughout the basin (Figs. 2 & 3). Peaks in sulfate reduction were seen in the top 0-1 725 

cm of sediment at stations with a visible GSOB mat on the surface (120.2, 151.0, and 85.3 nmol 726 

cm-3 d-1 at NDRO, SDT1-A, and NDT3-A, respectively). Sediments at most shallower basin 727 

depths exhibited peaks slightly deeper in the sediment and of lower magnitude (25.5, 44.5, 22.5 728 

nmol cm-3 d-1 at SDT3-C, NDT3-D, and SDT3-D respectively). NDT3-C had no visible GSOB 729 

mats but exhibited a peak (133.7 nmol cm-3 d-1) in sulfate reduction at 0-1 cm depth, similar to 730 
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deeper stations (e.g., NDRO in Fig. 2O), which differed from other shallow stations (e.g., SDT3-743 

C in Fig. 3N). The integrated sulfate reduction rate (0-14 cm depth) at NDRO (4.1 mmol m-2 d-1) 744 

was noticeably higher than most other stations with the exception of NDT3-C (3.8 mmol m-2 d-1) 745 

(Table 2). NDT3-D and NDT3-C exhibited higher integrated rates (2.9 and 3.8 mmol m-2 d-1) 746 

than their southern station counterparts SDT3-D and SDT3-C (1.9 and 1.7 mmol m-2 d-1). 747 

 748 

 749 
 750 
Figure 5. Benthic fluxes of solutes (positive flux = release from the seafloor; negative flux = uptake by the 751 
seafloor) determined with in-situ benthic flux chambers. Rates were averaged for stations of same depth from 752 
the northern and southern transect and the depocenter (NDRO and SDRO). Note, giant sulfur-oxidizing bacterial 753 
mats were found at depocenter and A-stations. Error bars represent standard errors. 754 
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 773 
 774 
Figure 6. Areal rates of total N2 production, denitrification, anammox, NH4

+ production (DNRA), and N2O 775 
production 776 
 777 
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4. Discussion 791 

4.1 Giant sulfur-oxidizing bacterial mats proliferated in response to deoxygenation in the 792 

Santa Barbara Basin  793 

The SBB is an ideal environment to study the effect of transient deoxygenation on benthic 794 

biogeochemistry. In Fall 2019, when this expedition took place, the SBB was undergoing a 795 

transition from oxygenated to virtually anoxic conditions (Qin et al., 2022). When the AT42-19 796 

cruise occurred, most of the bottom water in the basin was hypoxic (A-, B-, C-, and D-stations), 797 

except for the depositional center. Separate O2 measurements from the ROV sensor (O2 below 798 

detection limit, Table 1), microprofilers (no signal change between water column and sediment, 799 

Fig. 4), and Winkler titration from CTD/rosette casts (uniform non-zero value below 500 m  (Qin 800 

et al., 2022)) indicated full anoxia in the bottom water at the deeper stations (NDRO and SDRO). 801 

Notably, bottom water conditions revealed a slight asymmetry between the basin transects (Fig. 802 

1); bottom water along the northern transect generally had more O2 and NO3- than the southern 803 

transect (e.g., 9 µM O2 at NDT3-A and 0 µM O2 at SDT3-A). This asymmetry indicated 804 

differences in the circulation and/or microbial communities between the northern and southern 805 

portions of the basin. Whether this asymmetry is a permanent feature of the basin or 806 

symptomatic of the specific conditions in November 2019 is unclear; previous studies in the SBB 807 

have been restricted to the depocenter or one side of the basin (Sholkovitz, 1973; Reimers et al., 808 

1996a; Kuwabara et al., 1999). Regardless of bottom water oxidant concentration, the 809 

energetically most favorable terminal electron acceptors (O2 and NO3-) disappeared in a very 810 

narrow zone below the sediment-water interface (Fig. 4 and Figs. 2 and 3, respectively), 811 

consistent with their expected rapid consumption by the benthic microbial community.  812 
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In the present study, benthic GSOB mats were primarily limited to the anoxic depocenter of the 820 

SBB. Similarly, such mats were replete in the core of the anoxic Peruvian OMZ (Levin et al., 821 

2002; Sommer et al., 2016; Mosch et al., 2012), but absent from the seafloor below the hypoxic, 822 

i.e., slightly oxygenated, Mauritanian OMZ (Schroller-Lomnitz et al., 2019). GSOB mats in 823 

November 2019 were observed deeper in the basin than in October 2013 (Valentine et al., 2016) 824 

but in a similar location to June 1988 (Reimers et al., 1996a) and April 1997 (Kuwabara et al., 825 

1999). During the 2013 sampling, dense GSOB mats were confined to depths between approx. 826 

500-570 m (equivalent to the B-stations from this expedition), corresponding with anoxic 827 

conditions in the bottom water. This habitat was sandwiched between an anoxic, anitric (i.e., 828 

nitrate-free) deep and a hypoxic, nitrigenated (i.e., nitrate-rich) shallower water layer (Valentine 829 

et al., 2016). The difference in depth distribution of GSOB mats between the 2013 and 2019 830 

expedition provides evidence that GSOB mats in the SBB are ephemeral and proliferate where 831 

the bottom water is anoxic but not anitric.  832 

 833 

As our study represents only a snapshot of an oxygen- and nitrate-driven mat dynamic, we can 834 

only speculate how areas of the basin that did not contain GSOB mats in November 2019 fit into 835 

this dynamic. For example, mat-forming sulfur bacteria found slightly deeper in the sediment at 836 

B-stations (see section 3.2) could be progenitors to surface sediment colonization of thick GSOB 837 

mats, as has been recorded in other transiently deoxygenated environments (Jørgensen, 1977). 838 

Alternatively, these subsurface colonies could also be remnants of a former surface GSOB mat 839 

that retreated under changing redox conditions. Oxygenated conditions in the water preceding 840 

the 2019 expedition would, in this context, suggest the mats migrated following a previous 841 

anoxic event (Qin et al., 2022). If deoxygenation persisted in the SBB after the AT42-19 cruise, 842 
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then anitria (i.e., anitric conditions - similar to anoxia) would likely follow in the deepest basin 852 

water. These conditions would be similar to those seen in 2013 (Valentine et al., 2016), where 853 

GSOB mats formed a contiguous “donut ring” at shallower basin depths. Interestingly, GSOB 854 

mats in the Eastern Gotland Basin of the Baltic Sea were confined to a hypoxic transition zone, 855 

where O2 was < 30 µM but did not reach anoxia, while no mats were observed at deeper anoxic 856 

locations (Noffke et al., 2016). This difference in distribution compared to the SBB suggests that 857 

GSOB mats proliferate under different conditions (anoxic or hypoxic), potentially depending on 858 

the species of mat-forming bacteria present and whether they specialize in aerobic or anaerobic 859 

chemosynthesis. 860 

 861 

4.2 Shift from benthic denitrification to dissimilatory nitrate reduction to ammonium in 862 

response to complete deoxygenation in the Santa Barbara Basin  863 

 864 

Benthic uptake and release of nitrogen species by SBB sediment appeared to be affected by the 865 

presence of GSOB mats. While total benthic nitrate uptake was similar between D- and 866 

depocenter stations based on in-situ NO3- flux measurements (Fig. 4), NH4+ release from the 867 

sediment into the water column increased where GSOB mats were present (Fig. 5). This trend is 868 

supported by the porewater profiles of NH4+, which showed a steeper increase over sediment 869 

depth at deeper stations (Figs. 2 & 3). Incubations with 15N-NO3- revealed that N2 production 870 

(denitrification and anammox) accounted for 86% of NO3-/NO2- reduction in the shallow basin, 871 

while NH4+ production (DNRA) accounted for 13% and N2O production accounted for 1% 872 

(NDT3-D, Fig. 6;(Peng et al., 2023)). In contrast, most (54%) of NO3- reduction at the 873 

depositional center occurred via DNRA; N2 production accounted for 45% and N2O production 874 
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accounted for 1% of NO3- reduction at the SDRO (Fig. 6; Peng et al. 2023). It is important to 898 

note that these results only describe patterns of NO3- reduction in the basin, while other 899 

mechanisms of nitrate uptake by sediment (e.g., hyper-accumulation of nitrate into vacuoles) are 900 

more difficult to calculate accurately. It is also important to note that diatoms hyper-accumulate 901 

nitrate (Kamp et al., 2011) and meiofauna (e.g., nematodes) can positively impact rates of 902 

denitrification (Bonaglia et al., 2014). Both diatoms and meiofauna were seen in SBB depocenter 903 

and A-station sediments in November 2019 (data not shown), so their impact on SBB benthic 904 

nitrogen cycling is likely important and remains to be disentangled from the mats themselves.   905 

 906 

This data suggests a transition from denitrification-dominated sediment in the oxygenated basin 907 

to an increasing influence of DNRA on N cycling in the deeper, anoxic basin. Placed in the 908 

context of other OMZs, Mauritanian shelf sediment was dominated by denitrification (Dale et al., 909 

2014), similar to SBB shallow sediment (below hypoxic water) while core Peruvian OMZ 910 

sediment was dominated by DNRA, similar to sediment of the deeper SBB (below anoxic water) 911 

(Sommer et al., 2016). Nitrate reduction in sediment below the seasonally hypoxic Eckernförde 912 

Bay (Dale et al., 2011) and below the hypoxic transition zone of the Eastern Gotland Basin 913 

(Noffke et al., 2016) also showed increased DNRA where GSOB mats were present, though with 914 

an order of magnitude lower NH4+ flux (avg. 1.74 mmol m-2 d-1 and max. 1.10 mmol m-2 d-1, 915 

respectively) than the SBB depocenter.   916 

 917 

While our study suggests a shift from denitrification to DNRA during deoxygenation of SBB 918 

bottom water, other studies examined changes in benthic nitrogen cycling under reverse 919 

conditions, i.e., the reoxidation of the environment following anoxia  (Hylén et al., 2022; De 920 
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Brabandere et al., 2015). After a decadal oxygenation event in the Eastern Gotland Basin (Baltic 930 

Sea) in 2015-2016, sediment exhibited a slight increase in denitrification, but remained 931 

dominated by DNRA and N2O production (Hylén et al., 2022). The lack of N2 production via 932 

denitrification following this oxygenation event was attributed to the reoxygenation event being 933 

too weak to substantially oxidize sediments, which would favor denitrification (Hylén et al., 934 

2022). In an engineered reoxygenation event of the By Fjord on Sweden’s western coast, where 935 

dissolved O2 and NO3- content of anoxic and anitric bottom water was artificially increased to 936 

approx. 130 µM O2 and 20 µM NO3- over a period of roughly 2 years, denitrification rates were 937 

increased by an order of magnitude and DNRA rates were also stimulated (De Brabandere et al., 938 

2015). Comparing our results to these two studies suggests that DNRA bacteria are more 939 

resilient to weak reoxygenation events and thrive in transiently deoxygenated systems that 940 

remain hypoxic (O2 < 63 μM). The frequency and magnitude of reoxygenation and 941 

deoxygenation of SBB bottom waters, and the effect of these processes on the benthic microbial 942 

community, could be a major factor supporting some of the highest recorded total nitrate 943 

reduction rates in a natural benthic marine setting (Peng et al., 2023). 944 

Table 3.  Example reactions of nitrate reduction pathways with associated energy yield in respect to the electron 945 
donor (H2 or HS-) and electron acceptor (NO3

-) and electron accepting capacity. Modified from Table 2 in (Tiedje 946 
et al., 1983). 947 
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A high ratio of electron donor to electron acceptor favors DNRA over denitrification  (Marchant 955 

et al., 2014; Hardison et al., 2015; Tiedje et al., 1983) and this ratio appears to be critical in 956 

determining the dominant nitrate reduction pathway in SBB sediments, similar to the Eastern 957 

Gotland Basin (Hylén et al., 2022) and the By Fjord (De Brabandere et al., 2015). Example 958 

energy yields for denitrification and DNRA are shown in Table 3.  As discussed in (Tiedje et al., 959 

1983), heterotrophic denitrification yields more energy per mol of electron donor than DNRA. 960 

However, the reverse is true when considering energy yield per mol of electron acceptor (NO3-). 961 

DNRA also yields 3 more electrons per molecule of NO3- than denitrification. Tiedje et al. 962 

argued that in environments that are starved of powerful terminal electron acceptors, such as 963 

anoxic, organic-rich sediment, the energy yield per electron acceptor and additional electrons 964 

available for transfer could push nitrate reduction towards DNRA. Multiple laboratory and 965 

model studies have converged on an electron donor to acceptor ratio of approximately 3 to 966 

encourage DNRA over denitrification (Hardison et al., 2015; Algar and Vallino, 2014) though 967 

other studies have found higher values (Porubsky et al., 2009; Kraft et al., 2014). Sulfide 968 

concentrations near the sediment-water interface at the SBB depocenter (approx. 200 µM at 0.5 969 

cm depth; Fig. 3, NDRO) would favor chemoautotrophic DNRA over denitrification at ambient 970 

marine nitrate concentrations (approx. 28 µM). Additionally, DNRA appears to be the preferred 971 

nitrate reduction pathway for chemoautotrophs that utilize iron or sulfide as an electron donor 972 

(Caffrey et al., 2019; Kessler et al., 2019; An and Gardner, 2002). As GSOB mats hyper-973 

accumulate nitrate from the bottom water into their intracellular vacuoles, the resulting decline in 974 

electron acceptors at the sediment-water interface coupled with an elevation of the sulfate 975 

reduction zone would create an electron donor to acceptor ratio that favors DNRA. Since GSOB 976 

mats in the SBB seem to prefer DNRA, starving the bottom water of electron acceptors coupled 977 
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with the high sulfate reduction rates could give them a competitive advantage and allow them to 980 

proliferate into the largest-yet mapped GSOB mat in Earth’s oceans, as seen in other expeditions 981 

(Valentine et al., 2016; Reimers et al., 1996a; Kuwabara et al., 1999). 982 

 983 

4.3 Microbial mat proliferation and benthic phosphate remineralization dependent on high 984 

rates of organic matter degradation in the Santa Barbara Basin 985 

 986 

Organic carbon content of the benthic environment appears to be a key control on sulfate 987 

reduction rates near the sediment-water interface as well as microbial mat proliferation. Sulfate 988 

reduction rates in the SBB depocenter are most similar in magnitude and profile (i.e., highest 989 

rates found at the sediment-water interface and decline drastically thereafter) to those found in 990 

sediments below the transiently deoxygenated portion of the Peruvian shelf (e.g., 4.1 mmol m-2 991 

d-1 at the SBB NDRO station vs. 2.5-3.8 mmol m-2 d-1 at 128-144 m water depth on the Peruvian 992 

margin (Gier et al., 2016; Treude et al., 2021)). The TOC content of surface sediments in these 993 

two regions are both high and within the same order of magnitude (maximum recorded TOC of 994 

5.2% at the 0-1 cm margin at the SDT1-A station compared with 7.6% in the Peruvian margin 995 

145 m depth (Noffke et al., 2012)). In comparison, sulfate reduction rates in the SBB were at 996 

least one order of magnitude lower than found in sediment below the OMZ on the Namibian 997 

Shelf, which has much higher TOC contents of >10%  (Brüchert et al., 2003; Bremner, 1981).  998 

Sulfate reduction rates in the shelf sediments below the Eastern Arabian OMZ were much lower 999 

(0.18 – 1.27 mmol m-2 d-1) than rates in the SBB depocenter (Naik et al., 2017) despite similar 1000 

hypoxic to anoxic bottom water conditions. These lower sulfate reduction rates were attributed to 1001 

the relatively low amount of pelagic primary productivity and ergo benthic organic matter 1002 
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delivery in the Eastern Arabian OMZ compared to other upwelling systems (Naik et al., 2017). 1186 

The organic matter content of the sediment appears to be important in the proliferation of GSOB 1187 

mats; too much TOC could result in toxic levels of sulfide at the sediment-water interface 1188 

(Beggiatoa exhibit an aversion to sulfidic sediments but toxicity has not been quantified) 1189 

(Preisler et al., 2007), whereas too little sulfide would not provide enough electron donor for the 1190 

GSOB’s chemoautotrophic metabolism.  1191 

 1192 

The profiles of several indicators for benthic anaerobic organic matter remineralization (total 1193 

alkalinity, DIC, PO43-, NH4+) increased in steepness with increasing water depth (Figs. 2 A-E & 1194 

3A-F). One divergence from this trend can be seen in PO43- profiles from the shallow C- and D-1195 

stations, which also featured low rates of sulfate reduction. PO43- profiles in these sediments 1196 

track closely to Fe2+ profiles; both solutes dip in concentration in areas with visible iron sulfide 1197 

formation (e.g., 5-11 cm in NDT3-D as seen in Fig. 2A). Additionally, several stations that 1198 

exhibited high sulfate reduction rates in surface sediment (e.g., SDT1-A) showed almost no 1199 

change in PO43- at depths below 5 cm (e.g., Fig. 2 K-O compared to Fig. 2 A-E). This 1200 

phenomenon has been previously documented in SBB sediment and is attributed to the 1201 

precipitation of carbonate fluorapatite (Reimers et al., 1996a). The confinement of these flat 1202 

PO43- profiles to stations with >100 nmol cm-3 d-1 sulfate reduction in surface sediment suggests 1203 

that this mineralogical sink of PO43- in SBB sediment may be dependent on high sulfate 1204 

reduction rates, owing to the bicarbonate produced by sulfate reduction (Reimers et al., 1996a), 1205 

and is not found throughout the basin. Flat PO43- profiles were also reported from the transiently 1206 

deoxygenated portion of the Peruvian OMZ, where phosphate mineral precipitation has been 1207 

documented (Noffke et al., 2012). Similar to the shallow margins of the SBB, PO43- in 1208 
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Mauritanian OMZ porewater tracks closely with changes in porewater Fe2+ (Schroller-Lomnitz 1211 

et al., 2019), indicating that iron mineralization/dissolution mechanisms hold a greater influence 1212 

on PO43- concentrations under hypoxic bottom waters.  1213 

 1214 

4.4 Iron oxide exhaustion is critical for raising the sulfate reduction zone close to the 1215 

sediment-water interface in Santa Barbara Basin sediment. 1216 

 1217 

The hyper-accumulation of NO3- by GSOB mats potentially facilitates sulfate reduction close to 1218 

the sediment-water interface in the SBB (e.g., NDRO and NDT3-A as seen in fig. 2N and 2O) by 1219 

starving the sediment of this more powerful electron acceptor. The rise of the sulfate reduction 1220 

zone at NDT3-C (fig. 2L) further suggests that the exhaustion of iron oxides and the formation of 1221 

iron sulfide below the sediment-water interface may play a crucial role in controlling the 1222 

distribution of sulfate reduction as well. SBB sediments showed a wide vertical and horizontal 1223 

heterogeneity of redox states based on visual appearance (Fig. 1A-K). Sediment beneath the 1224 

hypoxic bottom water at the shallowest D-stations was reddish, consistent with a high content of 1225 

iron oxides. Interestingly, porewater Fe2+ concentrations in shallower parts of the basin (e.g., 1226 

NDT3-D, max. ~700 µM Fe2+) were an order of magnitude larger than those found in both the 1227 

Peruvian (max ~60 and ~30 µM Fe2+, respectively; (Noffke et al., 2012; Plass et al., 2020) and 1228 

Mauritanian (max. ~50 µM Fe2+; Schroller-Lomnitz et al 2019) OMZ. It should be noted that 1229 

porewater samples for geochemical analyses were unfiltered and hence reported iron 1230 

concentrations include aqueous, colloidal, and nanoparticulate species. Regardless, all these 1231 

components represent bioavailable sources of iron. Further, since filtering through 0.45 or 0.2 1232 

µm filters only removes a fraction of colloidal particles and no nanoparticles (Raiswell and 1233 
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Canfield, 2012), potential surplus porewater iron in SBB samples in comparison to studies that 1262 

applied filtering was likely minimal. 1263 

 1264 

Deeper in the basin, bands of black sediment that appear mid-core at NDT3-C (6-14 cm) and 1265 

SDT3-C (6-10 cm) indicate the formation of iron sulfides as a result of sulfide produced by 1266 

sulfate reduction (Canfield, 1989). Both D-stations had similar bottom water conditions (Table 1267 

1), sulfate reduction rates (Fig. 3W-AG), porewater concentrations of solutes (Figs. 2 and 3), and 1268 

visual sediment characteristics (Section 3.1). On the contrary, there are some noticeable 1269 

differences in the porewater geochemistry between the two C-stations. At the C-stations, peaks 1270 

in sulfate reduction were in the surface sediment, above the iron sulfide layers, and declined 1271 

below approximately 4 cm, indicating a discrepancy between observed peak sulfate reduction 1272 

activity and the mineralogical clues left behind by the process.  Comparing NDT3-C and SDT3-1273 

C, iron sulfide formation (Table 1B compared to 1J), porewater Fe2+ profiles (Fig. 2G compared 1274 

to Fig. 3H), and sulfate reduction rates (Fig. 2L compared to Fig. 3N) show that NDT3-C 1275 

sediment appears to be in transition towards a more sulfidic state, while SDT3-C sediments still 1276 

mimic the shallow D-station ferruginous state. While sulfate reduction rates for B-stations are 1277 

not available due to technical issues during sample processing, porewater Fe2+ profiles show a 1278 

similar difference between the north and south basin (Fig. 2H compared to Fig. 3I) as did visual 1279 

sediment characteristics (Table 1C compared to 1I). This difference in biogeochemical profiles 1280 

and apparent minerology between the north and south C- and B-stations could be a result of 1281 

hydrographic and/or bathymetric differences in the basin (Sholkovitz and Gieskes, 1971; Bograd 1282 

et al., 2002), but a discernable link between the differences in sediment biogeochemistry and the 1283 

differences in bottom water oxygen (Table 1) need to be further explored. 1284 
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 1314 

Deeper in the basin (depocenter and A-stations), porewater Fe2+ concentrations in sediment 1315 

beneath anoxic bottom water (max. 84 µM Fe2+) were similar to concentrations found below the 1316 

Peruvian OMZ in 2008 under anoxic bottom water conditions (78 m water depth, max. 80 µM 1317 

Fe2+) (Noffke et al., 2012). These deep basin porewater Fe2+ concentrations were, however, an 1318 

order of magnitude larger than those found at a similar site on the Peruvian shelf (75 m water 1319 

depth, max. 1 µM Fe2+) in 2017 during a kelvin-wave-associated “Coastal El Niño” event that 1320 

created oxygenated bottom waters during the sampling and the disappearance of previously 1321 

observed dense GSOB mats (Plass et al., 2020). As the SBB water column was undergoing rapid 1322 

deoxygenation in the weeks preceding this study (Qin et al., 2022), the sediments below the sill 1323 

appeared to be actively shifting from a ferruginous state to a sulfidic state, with this change 1324 

starting around the C-stations and being complete in the depocenter. Comparing apparent iron 1325 

sulfide formation with dips in porewater Fe2+ concentrations in C-station profiles (Fig. 1B 1326 

compared to Fig. 2G and Fig. 1J compared to Fig. 3H) signals a shift away from a ferruginous 1327 

state occurring just below the SBB sill.  1328 

 1329 

C-station porewater Fe2+ concentrations and sulfate reduction rates indicate that migration of the 1330 

sulfate reduction zone towards the sediment-water interface is associated with iron sulfide 1331 

formation deeper in the sediment. The activity (or lack thereof) of cable bacteria, which are able 1332 

to bridge the gap between the oxidized sediment-water interface and reduced sediment below 1333 

using a biofilament (Pfeffer et al., 2012), could explain the interplay between sulfate reduction 1334 

and iron cycling in SBB sediments. Cable bacteria, such as Ca. Electronema sp., contain  genes 1335 

involved in DNRA (Kjeldsen et al., 2019) and can perform nitrate reduction in incubation 1336 
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experiments (Marzocchi et al., 2014), but their direct transformation of NO3- in the environment 1341 

appears limited (Kessler et al., 2019) and they appear to be inactive in anoxic aquatic 1342 

environments (Seitaj et al., 2015; Marzocchi et al., 2018; Hermans et al., 2019). Cable bacteria 1343 

primarily conduct aerobic sulfide oxidation (Pfeffer et al., 2012), though they can also utilize 1344 

Fe2+ as an electron donor (Seitaj et al., 2015). The maximum recorded filament length of cable 1345 

bacteria is 7 cm (Van De Velde et al., 2016), though typically they are not stretched completely 1346 

vertically through the sediment. The appearance of black sediment in the SBB C-station 1347 

sediments, starting at approx. 5 cm depth, could be an indication that cable bacteria are oxidizing 1348 

iron sulfides at that sediment depth and prevent their formation at shallower depths. Further, 1349 

cable bacteria have been found to directly compete with GSOB in transiently deoxygenated 1350 

systems, with cable bacteria active under oxygenated conditions and GSOB active in anoxic 1351 

conditions (Seitaj et al., 2015).  Cable bacteria can also prevent the benthic release of sulfide, 1352 

which is toxic to many pelagic animals, via the creation of an iron-oxide buffer (formed through 1353 

Fe2+ oxidation) in near-surface sediments (Seitaj et al., 2015). Therefore, if cable bacteria activity 1354 

in the SBB decreased with declining oxygen concentrations below the sill, the iron oxide buffer 1355 

they create could have been reduced, encouraging the sulfate reduction zone to migrate towards 1356 

the sediment surface (as seen at NDT3-C). Cable bacteria can sometimes be detected in 1357 

sediments via a slight pH increase (typically pH > 8) (Schauer et al., 2014) which was not 1358 

reflected in our pH results, but this phenomenon is more typically seen in the laboratory and not 1359 

the field (Hermans et al., 2019).  1360 

 1361 

4.5 Iron and phosphate flux into SBB bottom water is a feature of transient deoxygenation. 1362 

 1363 
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Release of dissolved iron and phosphate from sediment below anoxic waters is a well-1381 

documented phenomenon (e.g., (Mortimer, 1941; Van Cappellen and Ingall, 1994; Van De 1382 

Velde et al., 2020; Noffke et al., 2012)) and this phenomenon is seen in the SBB as well. As 1383 

postulated previously (Kuwabara et al., 1999), basin flushing oxidizes iron sulfides at the 1384 

sediment-water interface, providing ample substrate for microbial iron reduction once anoxia 1385 

returns. This iron reduction initiates high rates of Fe2+ release from SBB depocenter sediment 1386 

(Fig. 5). Iron reduction further releases iron-bound PO43- (Mortimer, 1941) as seen by high 1387 

benthic fluxes of PO43- at the depocenter (Fig. 5), although notably some of this PO43- release is 1388 

likely attributed to organic matter degradation (Van Cappellen and Ingall, 1994). High benthic 1389 

Fe2+ and PO43- fluxes were also seen on the Peruvian shelf during transient anoxia (Noffke et al., 1390 

2012). The release of these solutes was interpreted to be sourced from a layer of reactive iron 1391 

hydroxides existing near the sediment surface, likely established during a recent oxygenation 1392 

event. Similar conditions, i.e., visibly oxidized (reddish) sediment laminae and a thin zone of 1393 

iron reduction apparent from a peak in Fe2+ at the sediment-water interface, were found in 1394 

sediment from the SBB depocenter. Deeper in the persistently anoxic core of the Peruvian OMZ, 1395 

sediment appears to have little to no flux of Fe2+and PO43- into the bottom water (Noffke et al., 1396 

2012). Here, iron at the sediment-water interface is hypothesized to be locked up in iron sulfides, 1397 

which are rarely re-oxidized due to persistent anoxia.  1398 

 1399 

In a different study from the Eastern Gotland Basin in the Baltic Sea, enhanced elemental fluxes 1400 

were observed during a decadal oxygen flushing event (Van De Velde et al., 2020), which was 1401 

attributed to enhanced elemental recycling, or cycles of mineral precipitation in the water column 1402 

followed by mineral dissolution once those minerals sink to the sediment. Notably, the iron flux 1403 
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observed in the Eastern Gotland Basin (max. 0.08 mmol m-2 d-1) (Van De Velde et al., 2020) was 1447 

two orders of magnitude lower than the flux observed in the anoxic depocenter of the Santa 1448 

Barbara Basin (max. 4.9 mmol m-2 d-1). It is further notable that benthic fluxes of PO43- in the 1449 

SBB depocenter were also an order of magnitude higher than fluxes in the Eastern Gotland 1450 

Basin's hypoxic transition zone (3.6 vs. 0.23 mmol PO43- m-2 d-1) - both of which contained 1451 

GSOB mats, but while the SBB was anoxic and the Eastern Gotland Basin was hypoxic (Noffke 1452 

et al., 2016). These differences in Fe2+ and PO43- flux between the SBB and the Eastern Gotland 1453 

Basin suggest that reoxidation of the sediment-water interface during basin flushing, as opposed 1454 

to water-column-associated reoxidation, appears to encourage higher benthic iron fluxes.  1455 

 1456 

Fe2+ and PO43- flux from the SBB depocenter were also approximately five times higher (Fig. 5) 1457 

compared to the anoxic Peruvian shelf (4.9 vs. 0.9 mmol Fe2+ m-2 d-1 and 3.6 vs. 0.8 mmol PO43- 1458 

m-2 d-1, respectively) (Noffke et al., 2012). Based on Fe2+ profiles, the zone of iron reduction in 1459 

Peruvian shelf sediments extended down to approx. 10 cm, while the zone appeared to be much 1460 

shallower and narrower (less than the top 5 cm) in the SBB depocenter. These differences in 1461 

magnitude of Fe2+ concentration and Fe2+ and PO43- flux between the SBB depocenter and the 1462 

Peruvian shelf could be attributed to differences in the recency and magnitude of reoxygenation 1463 

events. The release of Fe2+ from sediment into the bottom water could create a buffer against 1464 

reoxygenation in transiently deoxygenated systems, giving a competitive advantage to anaerobic 1465 

benthic metabolisms (Dale et al., 2013; Wallmann et al., 2022). Additionally, both Fe2+ and 1466 

PO43- release from the SBB sediment could allow for higher rates of primary productivity if 1467 

those constituents diffused into the photic zone (Robinson et al., 2022). The fate of Fe2+ and 1468 
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PO43- diffusing into SBB waters from the sediment-water interface is a focus of ongoing work 1476 

within the basin. 1477 

 1478 
5 Conclusions 1479 
 1480 

This research expands upon the wealth of science already conducted in the SBB and other 1481 

transiently deoxygenated environments by examining changes in benthic biogeochemistry 1482 

promoted by the onset of anoxia. Our main interpretations are summarized in Fig. 7. We found 1483 

that GSOB mats proliferate in the SBB where the bottom water is anoxic and nitrate 1484 

concentrations are declining (Fig. 7, A- and depocenter stations). Nitrate uptake by SBB 1485 

sediment is similar regardless of GSOB mat presence, but these mats appear to initiate a shift 1486 

from denitrification to DNRA as the primary nitrate reduction pathway (Fig. 7, beginning at B-1487 

stations). The zone of sulfate reduction rises to the sediment-water interface where GSOB mats 1488 

are present (Fig. 7, A-stations), possibly because the hyper-accumulation of nitrate into their 1489 

intracellular vacuoles starves the environment of this more powerful electron acceptor. However, 1490 

following the natural order of electron acceptor utilization (Boudreau and Jorgensen, 2001), iron 1491 

oxides near the sediment-water interface must be exhausted before sulfate reduction can 1492 

dominate surface sediments and GSOB mats can proliferate in the SBB (Fig. 7, depocenter 1493 

stations). If anoxic events become longer and more frequent in the SBB because of global 1494 

warming (see, e.g., (Qin et al., 2022; Stramma et al., 2008)), the iron oxide buffer built up in 1495 

shallower basin depths could be exhausted, allowing for surface sulfate reduction and the 1496 

proliferation of GSOB mats in shallower margins of the basin than currently seen. Further, the 1497 

same transient deoxygenation that allows for these mats to re-stablish themselves also allows for 1498 

a high Fe2+ and PO43- flux into the SBB water column. In order to fully understand the complex 1499 
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changes in the benthic environment in response to deoxygenation, genomic and molecular work 1517 

of the upper sediment community needs to be characterized. Overall, the insights gleaned from 1518 

this research will aid in the understanding of fundamental biogeochemical changes that occur 1519 

when marine environments become anoxic. 1520 

 1521 

 1522 
Figure 7:  Schematic of biogeochemical processes in the Santa Barbara Basin along the depth gradients 1523 
studied in October/November 2019. Teal to Lavender gradient represents a decline in O2 and NO3

- 1524 
concentrations with basin depth. In the shallower, hypoxic basin (D-stations), denitrification and iron reduction 1525 
are dominant and reduced iron is rapidly re-oxidized in near-surface sediment by cable bacteria. Deeper in the 1526 
basin (A-stations and depocenter), nitrogen cycling shifts towards dissimilatory nitrate reduction to ammonia 1527 
(DNRA). Reduced iron combines with sulfide, produced by sulfate reduction, diffusing from deeper sediment 1528 
layers to form iron sulfides. As oxygen concentration approaches zero between the A-stations and the basin’s 1529 
depocenter, giant sulfur-oxidizing bacteria hyper-accumulate nitrate in their intracellular vacuoles. Nitrate 1530 
removal combined with the exhaustion of available iron oxides in the near-surface sediments allows the zone 1531 
of sulfate reduction to migrate towards the surface (see dashed arrows at A-stations), providing the giant 1532 
sulfur-oxidizing bacteria with sufficient reduced sulfur to proliferate into thick, contiguous mats. Note: Figure 1533 
is not to scale, and processes are simplified to illustrate main concepts.   1534 
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