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Abstract.

The broad geographical coverage and high temporal and spatial resolution of geostationary satellite data provide an ex-

cellent opportunity to collect information on variables whose spatial distribution and temporal variability are not adequately

represented by the in situ networks. This study focuses on assessing the effectiveness of two geostationary satellite-based sun-

shine duration (SDU) datasets over Brazil, given the relevance of SDU to various fields, such as agriculture and energy sectors,5

to ensure reliable SDU data over the country. The analyzed datasets are the operational products provided by the Satellite

Application Facility on Climate Monitoring (CMSAF), that uses data achieved with the Meteorological Satellite (Meteosat)

series, and by the Satellite and Meteorological Sensors Divison of the National Institute for Space Research (DISSM/INPE),

that employs Geostationary Operational Environmental Satellite (GOES) data. The analyzed period ranges from September

2013 to December 2017. The mean bias error (MBE), mean absolute error (MAE), root mean squared error (RMSE), correla-10

tion coefficient (r) and scatterplots between satellite products and in situ daily SDU measurements provided by the National

Institute of Meteorology (INMET) were used to access the products performance. They were calculated on a monthly basis

and grouped into climate regions. The statistical parameters exhibited a uniform spatial distribution, indicating homogeneity

within a given region. Except for the Tropical Northeast Oriental (TNO) region, there were no significant seasonal dependen-

cies observed. The Mean Bias Error (MBE) values for both satellite products were generally low across most regions in Brazil,15

mainly between 0 and 1 hour. The correlation coefficient (r) results indicated a strong agreement between the estimated values

and the observed data, with an overall r value exceeding 0.8. Nevertheless, there were notable discrepancies in specific areas.

The CMSAF product showed a tendency to overestimate observations in the TNO region, with MBE consistently exceeding

1 hour for all months, while the DISSM product exhibited a negative gradient of MBE values in the west-east direction, in

the northern portion of Brazil. The scatterplots for the TNO region revealed that the underestimation pattern observed in the20

DISSM product was influenced by the sky condition, with more accurate estimations observed under cloudy skies. Additional

analysis suggested that the biases observed might be attributed to the misrepresentation of clear-sky reflectance. In the case of

the CMSAF product, the overestimation tendency observed in the TNO region appeared to be a result of systematic underesti-

mation of the Effective Cloud Albedo. The findings indicated that both satellite-based SDU products generally exhibited good

agreement with the ground observations across Brazil, although their performance varied across different regions and seasons.25
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The analyzed operational satellite products present a reliable source of data to several applications, being an asset due to its

high spatial resolution and low time latency.

1 Introduction

Sunshine duration (SDU) is conceptually defined as the total of hours that sunlight reaches the Earth’s surface directly from30

the sun. With the advance of the technology and the measurement instruments, it was formally defined as the sum of the

periods in which direct solar irradiance reaches or exceeds 120 W.m−2 (WMO, 2008). Along with precipitation and surface

air temperature, it is one of the most important parameters in climate monitoring (Kothe et al., 2013). In a given area, the

amount of sunshine received is the major factor determining the local climate (Bertrand et al., 2013).

The SDU importance has been known for a long time and its first measurements dates back to the 19th century. In fact, there35

are time series as long as 100 years of SDU measurements accumulated at networks all over the world. SDU data is relevant for

a number applications, such as yield planning in agriculture (Rao et al., 1998; Huang et al., 2012; Wang et al., 2015), analysis

of the thermal loads and sunshine duration on buildings (Shao, 1990), input parameter in soil water balance models (Warnant

et al., 1994), and even research on human’s health (McGrath et al., 2002; Nastos and Matzarakis, 2006; Keller et al., 2019).

Akinoglu (2008) stated that SDU data is the best long term, trustworthy, and readily available measurement to estimate the40

surface solar irradiation, due to the linear relationship between these variables, described by Angstrom (1924).

Based on that, it is clear the necessity of SDU records. However, there is a relatively small number of stations that measure it.

Overall, networks of SDU are sparse and insufficient to cover large areas (Kandirmaz and Kaba, 2014). In Brazil, the National

Institute of Meteorology (INMET) currently operates a network with 245 stations, besides that, it provides SDU time series

from other 85 sites, that are no longer operational. The effort to maintain this network is essential to provide reliable SDU45

records for climate studies. Nonetheless, comparatively to the temperature or precipitation networks with thousand stations,

the SDU current network seems inadequate to cover the Brazilian large territory.

Along with that, once that meteorological station measurements are point-based observations (Zhu et al., 2020), SDU in the

vicinity has to be obtained through interpolation techiniques. Therefore the accuracy of the method strongly relies primarily

upon the number and spatial distribution of meteorological stations. Generally, the station’s distribution is heterogeneous, with50

most of them near cities, and for several reasons, extensive areas remain without records. For instance, it can be observed in

Brazil, where some regions as the Northern have very few stations, while the South and Southeast regions present a denser

network. Consequently, the resulting interpolated field is usually poor for representing the temporal and spatial SDU variability

characteristics (Wu et al., 2016).

Geostationary satellites perform measurements with high spatial and temporal resolution and cover large areas, so their data55

can be used as an alternative to estimate SDU. Literature on the subject provides some proposed methods to accomplishes
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it. Given the fact that clouds are the primary responsible for SDU changes, several methods to derive SDU rely on it. Dif-

ferent techniques have been considered, such as SDU estimate based on cloud cover index (Kandirmaz, 2006; Ceballos and

Rodrigues, 2008; Shamim et al., 2012) and from satellite-derived cloud-type products (Good, 2010; Wu et al., 2016; Zhu et al.,

2020). Another approach is given by Kothe et al. (2017), in which SDU is calculated based on direct normal radiation thresh-60

old, using data from the Meteorological Satellite (Meteosat) series operated by European Organization for the Exploitation

of Meteorological Satellites (EUMETSAT). Currently, this approach has been considered one of the most advanced remote

sensing tool to estimate the SDU, being operational at the Satellite Application Facility on Climate Monitoring (CMSAF).

In the South America, Ceballos and Rodrigues (2008) proposed a SDU estimation method based on Geostationary Opera-

tional Environmental Satellite (GOES) data. It is operational at the Satellite and Meteorological Sensors Divison in the National65

Institute for Space Research (DISSM/INPE). This method (hereafter DISSM method) was validated by the authors using in

situ measurements from São Paulo and Fortaleza cities, and their results indicated a good agreement between the estimates and

the observed data. Thereafter, Porfirio (2012) extended the validation of INPE method for the Northeast Brazil, using records

from 53 stations for 2008, showing a good performance of the method. Notwithstanding, the climatic characteristics of that

region are not representative of the whole country.70

In addition, the satellite-derived SDU data set from CMSAF (hereafter CMSAF method) also provides estimates over Brazil-

ian territory. However, the accuracy of the product was only evaluated for the monthly sums, and regarding few stations Kothe

et al. (2017). Therefore, it is still needed a deep validation of daily SDU estimates based on satellite data over Brazil.

In this study we aimed to evaluate two operational SDU estimates products’ performance over Brazil and inter-compare their

results, the following scientific questions were addressed:75

1. Are those products a good fit to the in situ measurements?

2. There are regions where one of the products performs better than the other?

3. There are seasonal variations in its performance?

4. Deficiencies in the retrieval can be traced to a source?

The manuscript is structured as follows: Section 2 gives a description of the operational algorithms evaluated, i.e. the DISSM80

and CMSAF methods. Section 3 describes the ground measurements and statistical metrics used for the validation. Section 4

and 5 presents the obtained results and conclusions, respectively.

2 Satellite-based methods

2.1 DISSM

The DISSM has the mission to produce high quality satellite products and thus to offer relevant information for different85

Brazilian sectors. The DISSM was instituted in 2020, and incorporated the former Satellite Division and Environmental Sys-

tems (DSA), that operated since 1986. The division established itself as a reference in collecting and processing satellite data
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and product generation for South America (Costa et al., 2018). Among their products are sea surface temperature, severe

weather monitoring, precipitation estimation, sunshine duration and several others (see http://satelite.cptec.inpe.br/ and Costa

et al. (2018).90

To estimate SDU, visible imagery acquired with GOES processed by the DISSM are used. From time to time the GOES plat-

forms are replaced, during the analysed period in this study (2013-2017), GOES-13 was operational and carried the IMAGER

sensor on board. The IMAGER visible channel is centered at 0,65 µm, with a bandwidth of 0,2 µm.

The sensor measures the spectral radiance Lλ (W.m−2.sr−1.µm−1), that represents the mean value at the pixel area. The

spectral irradiance at the top of atmosphere is Eo = µSλ, where Sλ is the solar irradiance at normal incidence in this same95

spectral interval, and µ= cos(SZA) is the cosine of the solar zenith angle. Assuming that the reflected radiance is isotropic,

the emergent spectral irradiance at the top of atmosphere is E ↑= πLλ and the reflectance is R= E↑
Eo

. Operationally, from the

satellite visible imagery the reflectance factor (F) and the planetary reflectance (R) are defined as showed in Eq. (1) (Ceballos

and Rodrigues, 2008):

F = π
Lλ
Sλ

;R= f
F

µ
(1)100

where the factor f is a function correcting the effects of anisotropic reflection (Lubin and Weber, 1995), for the following

purposes, f is considered 1 (Ceballos et al., 2004). The R is provided by DISSM as a by-product of the operational processing

of the GL1.2 shortwave radiation model (Ceballos et al., 2004).

It is usual to regard the reflectance as a mean value between the cloud reflectance (Rmax) and the clear sky reflectance

(Rmin) weighted by the fraction of the pixel covered by clouds (C) as showed in Eq. (2) (Ceballos et al., 2004).105

R= C.Rmax + (1−C).Rmin (2)

which leads to an estimate of cloudiness (C) as:

C =
R−Rmin

Rmax−Rmin
(3)

Ceballos et al. (2004) defined the value of Rmax as 0.465, which corresponds to the transition between a cumuliform and a

stratiform cloud field and the Rmin as 0.09, a reasonable value for continental surface. In the case of R<Rmin, C is set as 0,110

and if R>Rmax, C=1. In case of R= 0 or marked as "invalid" (i.e. R=−99), C is also tagged as invalid.

Next, assuming that the average cloud cover assessed by C is also representative of the relative time of cloud passage over a

site inside the pixel (Porfirio and Ceballos, 2017), 1-C corresponds to the relative time of clear sky. The daily SDU is achieved

through the Eq. (4), that is similar to the integration via trapezoidal rule (which consists of a numerical method to approximate

the integral value):115

SDU = (1−C1) +
∆t
2

[(1−C1) + 2(1−C2) + 2(1−C3) + 2(1−Ck−1) + (1−Ck)] + (1−Ck) (4)
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where C is the cloudiness parameter (described in Equation 3), C1 corresponds to the first "valid" observation for the pixel,

the subscript index corresponds to the number of the image within a day, k is the last valid image of the day, and ∆t is the time

interval between two consecutive images (for the period analyzed, usually 30 minutes).

On average, for a given pixel, 30 images are available for the daily SDU estimate. However, this value can be smaller and the120

interval between two consecutive images can be larger than 30 minutes. The daily SDU for a given day is considered invalid,

therefore, discarded, if there is a interval greater than three hours: i) between the first image of the day and the sunrise; ii)

between consecutive images; and iii) the last image of the day and the sunset and if less then 5 images were available for the

estimation.

The spatial resolution of the DISSM’s SDU dataset is 0.04 degrees on a regular latitude-longitude grid of 1800x1800 pixels125

within latitudes 50° S to 21.96° N and longitudes 100° W to 28.04° W, and cover the time period from February 2007 to near

real time.

2.2 CMSAF

The EUMETSAT’s CMSAF was established to contribute to the operational monitoring of the climate and the detection of

global climatic changes. With this aim CMSAF’s products follow the highest standards and guidelines as lined out by Global130

Climate Observing System (GCOS) for the satellite data processing.

The SDU is one of the several products of CMSAF based on Surface Radiation Data Set - Heliosat (SARAH) - Edition

2.1 (Pfeifroth et al., 2019). The data record covers the time period from 1983 to near real time with a spatial resolution of

0.05◦× 0.05◦. In order to derive the SARAH-2 surface parameters, the Heliosat algorithm is used (Hammer et al., 2003). It

provides a continuous dataset of Effective Cloud Albedo and minimizes the impacts of satellite changes and artificial trends135

due to degradation of satellite instruments through an integrated self-calibration parameter Mueller et al. (2011).

At first, the Effective Cloud Albedo is retrieved by the normalized relation between all sky and clear sky reflection in the

visible channel of the Meteosat instruments. This parameter is used to derive cloud index, a measure of the impact of the clouds

on the clear sky irradiance. The SPECMAGIC model is used to estimate clear sky irradiance, and then from the combination

of cloud index and clear sky irradiance, Surface Incoming Shortwave radiation (SIS) is achieved. Thereafter using the diffuse140

radiation model of Skartveit et al. (1998) and the cloud index, Surface Incoming Direct radiation (SID) is calculated. By

normalizing it with the cosine of the solar zenith angle, the DNI is obtained. The SID and DNI are the basis for the SDU

estimates (Kothe et al., 2017).

Daily SDU is calculated as the ratio of slots exceeding the DNI threshold, considered as sunny slots, to all slots during

daylight (Eq. (5)).145

SDU = daylength×
∑daylightslots
i=1 Wi

daylightslots
(5)
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The day length is calculated depending on the date, longitude and latitude and is restricted by a threshold of the solar

elevation angle of 2.5◦ (Kothe et al., 2013). Wi is a weight that varies between 0 and 1, and indicates the influence of a single

slot depending on the number of surrounding cloudy and sunny grid points (Kothe et al., 2017).

A grid point at a time slot i is accounted as sunny if DNI is 120 W.m−2 or larger (Equation 6). Since SARAH-2 provides150

instantaneous DNI data every 30 minutes, without weighting, one sunny slot would correspond to a 30 min time window. This

is not the case unless it is a bright weather situation. If there are clouds in the vicinity of a grid point, probably not the whole

30 minutes are sunny. The opposite case is also valid. To account this fact, the information of the 24 surrounding grid points

(Figure 1) and two successive time steps are used (Kothe et al., 2017).

SIni =





1 if DNI(x,y)≥ 120W.m−2

0 if DNI(x,y)< 120W.m−2
(6)155

Source: Kothe et al. (2017).

Figure 1. Demonstration for accounting for surrounding grid points. The target grid point is marked in the center.

For each grid point, the number of sunny slots in the 24 pixels in the vicinity plus the center cell grid of interest is summed

up (Equation 7).

#SIni(x,y) =
m= y+2∑

m= y−2

n= x+2∑

n= x−2

SIni(m,n) (7)

First, for each daytime slot i this is done. Then to also incorporate the temporal shift of clouds, the number of each time step

is combined with the number of the previous time step for each pixel (Equation 8).160

N1 = #SIn1 × 0.04

Ni = (#SIni + #SIni−1) × 0.02
(8)

The factor 0.04 is used for the first time slot of the day, for i > 1, 0.02 is used, thus if all 25 grid points are sunny the resulting

number N is 1, and 0 in the case that no grid point is sunny.
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Thereafter the impact of sunny and cloudy grid points on the temporal length of one time slot is estimated. The fraction of

time, which slot i accounts to the daily SDU is achieved by Equation 9.165

Wi =




max(Ni,C1) if DNI(Cgp)≥ 120W.m−2

Ni ·C2 if DNI(Cgp)< 120W.m−2
(9)

If the DNI in the center grid point is equal or greater than 120W.m−2, the grid point is taken as sunny, and the weight (Wi) is

defined by the maximum value between Ni and C1. Otherwise, Wi is the product of Ni and C2. These constants were derived

empirically through sensitivity tests, by minimizing the bias compared to reference station data in Germany. They are set as

C1 = 0.4, that indicates the minimum fraction that a sunny slot can contribute, and C2 = 0.05, the weight for the contribution170

of a non-sunny slot (Kothe et al., 2017).

The daily SDU in hours is then derived by Eq. (5).

3 Ground data and evaluation methods

To evaluate the satellite products for the period from September 2013 to December 2017 data from INMET’s network were

used as ground "truth". This network provides daily measurements obtained with Campbell-Stokes recorders. The stations175

were selected based on data availability: only stations with less than 20% of missing observations over the study period were

retained. A total of 193 stations were chosen. Quality checks were applied in order to exclude spurious data, e.g. measurements

higher than its physical limits and false zeros (Gava, 2021).

Due to the considerable extension of the Brazilian territory, as well as the great variety of biomes and climates, the stations

were grouped by climate zones, as suggested in Raichijk (2012). This classification was developed by the Brazilian Institute180

of Geography and Statistics (IBGE) and takes into account the average air temperature and precipitation regimes (highly

anticorrelated to sunshine duration). The regions are illustrated in Figure 2.

Figure 3 presents the boxplot of SDU ground measurements for the analysed period grouped by the climate zones. The main

characteristics of the regions are described below, indicating inside parentheses the number of stations included in each one.

– Equatorial region (EQ, 27(*)): has Af/Am climate according to the Köppen-Geiger classification, it presents average185

annual temperatures between 24 and 27°C, and average annual precipitation of 2300mm. Presents a short dry season in

winter, lasting under 3 months (Raichijk, 2012). The average SDU values ranges from 4.5 h in the wet season to 8.5 h in

the dry period, which shows smaller variability.

(*) For the CMSAF evaluation, 22 stations were used, since 5 of the listed stations are out of the METEOSAT disk.

– Tropical Equatorial region (TE, 43): with Aw/BSh climate according to the Köppen-Geiger classification. Hot, semi-arid190

with a prolonged dry season (over 8 months). This region comprises the northeast Brazilian Sertão, going south until

approximately 10°S (Raichijk, 2012). Presents high SDU values, on average, over the whole year. With highest values

in the winter, along with the smallest variability, indicating predominance of clear sky days.
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Figure 2. Spatial distribution of INMET’s stations used in this study.

– Tropical Northeast Oriental region (TNO, 21): Mainly Aw/BSh climate according to the Köppen-Geiger classification,

with average annual temperatures ranging from 24 to 26°C. The mean SDU values are high for most of the year. Smaller195

SDU values are found in late autumn-winter, due to the precipitation regime of this location that exhibits the maximum

precipitation rates during this period (Palharini and Vila, 2017), when it also displays the highest variability along the

year.

– Tropical Central Brazil region: This main region was sub-divided in a) Mesothermal/Subwarm (hereinafter, Mesother-

mal) and b) Warm.200

– Mesothermal (TCB-M, 29): Classified as Cw climate, conform to the Köppen-Geiger classification (Raichijk,

2012). It includes part of Brazil’s Southeast and north of Paraná. This region exhibits average annual tempera-

tures between 10 and 18ºC, with dry winter. It presents great SDU variability through most of the year, with the

highest mean SDU values in winter.
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Figure 3. Boxplot of SDU ground measurements. The “whiskers” (lines extending parallel from the boxes) indicate variability outside the

first and third quartiles. Outliers are plotted as individual crosses. The red line indicates the median and the blue ’x’ the mean.

– Warm (TCB-W, 49): Aw climate according to the Köppen-Geiger classification. This region comprises the Brazilian205

Central Plain. Semi-humid, marked by rainy summer and dry winter (Cavalcanti, 2009). This feature is noticeable

in Figure 3. During summer, the mean SDU is smaller, with higher variability.

– Humid Temperate region (HU, 25): It is defined as Cfa by the Köppen-Geiger classification. This region presents mild

temperatures between 10 and 15°C, with a well distributed precipitation regime (without a dry season) (Raichijk, 2012).

Which is perceptible in Figure 3. There is no clear seasonality in mean SDU values, moreover there is high variability in210

the entire year.

In order to compare the satellite-based gridded SDU estimates with the in situ records, the satellite data was extracted at

the station sites, by selecting the satellite pixel in which the station is located. Therefore, for each month, the mean bias error
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(MBE), mean absolute error (MAE), root mean squared error (RMSE) and the correlation coefficient (r) of the daily SDU were

calculated for every station, and then, grouped into the regions.215

The definitions of the statistical measures are presented below Wilks (2011):

MBE =
1
n

k∑

i=1

(Zi−Oi)

MAE =
1
n

k∑

i=1

|Zi−Oi|

RMSE =

√√√√ 1
n

k∑

i=1

(Zi−Oi)2

220

r =
∑k
i=1(Zi− Z̄)(Oi− Ō)√∑k

i=1(Zi− Z̄)
2
√∑k

i=1(Oi− Ō)
2

Thereby, the variable Z describes the dataset to be validated (e.g. DISSM SDU) and O denotes the reference dataset (i.e. in

situ measurements). The individual time step is marked with i and k is the total number of time steps.

4 Results and Discussion

Figure 4 displays the spatial distribution of the monthly MBE of daily SDU. It is possible to observe that the behavior of the225

models is homogeneous within regions. Small bias values are noticeable for the majority of the Brazilian territory for both SDU

products, overall, ranging from -1 to 1 h. The exception is the TNO region for the CMSAF product and most of the northern

and northeast regions for the DISSM product.

On the Northeastern Brazilian coastline, the CMSAF method presents a significant tendency to overestimate the SDU values,

exhibiting high positive MBE values, reaching 4 h in some stations.230

The DISSM method presents high MBE values for the EQ, TE, and TNO regions. For the first, an overestimation tendency

is observed, while the others show a negative bias. The MBE results on the TE region do not present the same homogeneity of

the other zones. The eastern portion of the region shows negative values, while the states of Maranhão and Piaui do not indicate

biases (values close to zero).

The MBE results over the Northeastern Brazilian littoral of both products presented a marked seasonality, with smaller235

values in the winter. On the DISSM method, this behavior extends to the inland of the Northeast. This characteristic is evident

in Figure 5a. It can be seen that, from April to August, the DISSM’s MBE approaches zero while the CMSAF’s decreases

(from 1.7 h in December to 1 h). In this period, all the summary statistics present the best results: smaller MAE and RMSE

(overall, under 1.5 h and 2.0 h, respectively), and higher correlation coefficients (r > 0.65).
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Figure 4. Spatial distribution of monthly MBE (h) between daily satellite-based SDU and in situ data for the period of 2013-2017. DISSM’s

(CMSAF’s) MBE results are shown for Jan, Apr, Jul and Oct in panels a, b, c and d (e, f, g and h), respectively. Shades of red correspond to

overestimation, while shades of blue correspond to underestimation.
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Figure 5. Summary statistics of the comparison between satellite-based SDU and ground data, on a monthly basis, over the Brazilian regions:

(a) MBE, (b) MAE, (c) RMSE, and (d) r. The regions are plotted in different colors: EQ is in blue, TE is in lilac, TNO is in green, TCB-W

is in purple, TCB-M is in yellow and HT is in red. For every region the point’s x-coordinates refer to the month of the year from January

through December. Open circles (filled dots) represent DISSM’s (CMSAF’s) results.

On the other regions, the CMSAF’s MBE lies close to 0.5 h, with some variation depending on the month. The DISSM240

method shows small biases for the southern regions, on average, smaller than 0.5 h. On the EQ region, as previously mentioned,

high positive biases are found: with its highest (smallest) value in December (October), 1.61 h (1.16 h).

Figure 5b,c,d presents the MAE, RMSE, and r, respectively. Those are measurements of accuracy, and together they can be

used to acquire information regarding the of data spread. Considering the MAE and RMSE, it can be noticed that the CMSAF

product presents mostly smaller values than the DISSM method. Over all regions, the RMSE values are higher that the MAE,245

indicating the presence of outliers and some dispersion of points.
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On the TE and the southern regions (TCB-W/M and HT), both products exhibit the smallest errors: the MAE (RMSE) lies,

typically, under 1.5 h (2 h). These areas also present high values of r (on average, r> 0.7), indicating a good agreement between

the products and the in situ data, with exception of the TE region, which presents great variability in the r results, mostly for

the DISSM product.250

On the EQ region, although the CMSAF’s MAE and RMSE results imply smaller errors compared to the the DISSM data,

the r results indicate the same degree of spread, varying between 0.5 and 0.8.

Over the TNO region, the products present high values of MAE and RMSE, with the above mentioned seasonality (smaller

values during winter). Along with highly variable values of r, varying from 0.5 in November to 0.77 in May for the DISSM

product, and between 0.64 in October/November and 0.83 in May for the CMSAF method. To assess the main characteristics255

of the products for this region, the satellite-based data was plotted against ground measurements, as well as the difference

between product and observations against observations. Those scatterplots are displayed in Figure 6 and 7, for the CMSAF and

DISSM products, respectively. The data is grouped by frequency of occurrence.

There is a common pattern that can be observed in both figures: an overestimation of SDU values when the ground mea-

surements indicate zero brightness hours. This discrepancy arises from the presence of false zeros in the SDU reference time260

series. On days where no data is available, SDU is assigned a value of zero, resulting in these false zeros. The substantial

overestimation observed highlights that the steps undertaken in the quality control process were insufficient to eliminate all

erroneous data from the analysis. However, it is important to note that for non-zero values of SDU, the recorded measurements

should still fall within the instrument uncertainty range of 0.1 h (Stanhill, 2003).

Figure 6. Upper: Scatter plot of the CMSAF product vs. SDU in situ data for the TNO region. Lower: Scatter plot of the difference between

CMSAF product and SDU in situ data vs. SDU in situ data. Plots are grouped by frequency of occurrence. Boxes from left to right presents

the data for January, April , July and October.
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In Figure 6, the tendency to overestimation of the CMSAF product is evident in all analyzed months, with great dispersion265

above the 1:1 line. The scatterplots of the difference against observations show that under all sky conditions the product tends

to present higher values than the observations. Kothe et al. (2017), when evaluating the CMSAF product found a similar

behavior on the Canary Islands (Northwestern Africa), in the daily evaluation (MBE values close to 2h) and on the West coast

of Africa, in the monthly sums analysis (bias values up to 50h were found). The authors attributed those uncertainties to two

causes: the frequent low cloud fields, predominant cloud types in these regions that cause a systematically underestimation of270

the Effective Cloud Albedo by the Heliosat algorithm because of the self-calibrating method (Hannak et al., 2017), leading

to an overestimation of SDU; and to the constants used during the SDU estimates, which were derived empirically using data

from Germany to take into account the contribution of different sky conditions to the SDU. Consequently, the presence of low

warm clouds, that are most frequent over the ocean and subtropical subsidence regions (Huang et al., 2015) may not be well

represented by these parameters. This might be the case of the Northeast Brazil, since low clouds with relatively warm tops are275

the prevailing cloud type due to subsidence in the area associated with the Walker cell (Machado et al., 2014).

Figure 7. Same as Figure 6, but for the DISSM product.

In the DISSM scatterplots’ results, the aforementioned underestimation tendency is clearly seen, mostly under clear sky

conditions (SDU > 8h), and is less pronounced in July. In this period, the data tend to align along the 1:1 line, which is partly

due to the fact that it coincides with the rainy season in the area and ,therefore, days with less sunshine hours are more common.

Notwithstanding, in this particular month, for high values of SDU, the differences tend to be smaller when compared to similar280

values on the other months. It can be observed in Figure 7(g) that the higher frequency of points is bounded close to -2.5 h,

while on other months there is a great amount of observations for differences between -2.5 and -5 h.

The better agreement between the DISSM estimates and the observations under partly covered sky, and the higher errors in

clear sky cases suggests that this might be caused by a misrepresentation of the clear-sky reflectance used in the algorithm. This
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characteristic was pointed out by Porfirio et al. (2020), when evaluating the global solar irradiance (a variable highly correlated285

to SDU (Stanhill, 2003) estimated from GL1.2 model, the authors also found an east-west gradient in the MBE values. They

highlighted the importance of a proper assessment of the clear sky reflectance to the estimation of the cloud cover, which is

estimated in the GL1.2 in the same fashion as SDU product.

Figure 8 presents the mean Rmin fields for the central months of each season for the period from October 2013 to October

2017. This figure was constructed to help explore the Rmin influence on DISSM SDU product. The fields were generated by290

taking the minimum (not null) reflectance values for each pixel considering the available images in the interval between 14 and

16 UTC, within the target month. Thereafter, they were smoothed by performing 3x3 pixel means, then, monthly averaged.

Figure 8. Average Rmin obtained for each analysed month in the period from Oct/2013 to Oct/2017. Blueish (Redish) colors correspond to

low (high) reflectance values.
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It is noticeable that there is a great variability within the country. Over Brazil, higher reflectance values are observed in

Northeast Brazil and lower values in the Amazon region for all seasons and most of the regions display seasonal variations in

clear sky reflectance.295

Evaluating the MBE results and Figure 8, it can be seen that the Rmin has a remarkable influence on the performance of the

product, particularly in the North and Northeast regions. The overestimation (underestimation) tendency found in the E (TNO)

region seems to be related to clear sky reflectance values systematically lower (higher) than the Rmin used in the model (0.09).

This leads to an underestimation (overestimation) of cloudiness and consequently an overestimation (underestimation) of SDU.

Those results suggests that the use of fields ofRmin with spatial-temporal variations may improve the DISSM product’s results.300

5 Conclusions

The agreement between two satellite-derived SDU products and in situ measurements was accessed. The monthly bias discloses

a fine agreement between SDU retrieved and observed. Both products presents low bias to most of the country (among -1 and

1 h). Exceptions emerges for the CMSAF product on the Northeastern Brazilian coastline, reaching 4 h in some stations, and

for the DISSM product on the Nothern portion of Brazil, where it presents a negative gradient of MBE values in the west-east305

direction. The best results obtained were for southern regions (TCB-W/M and HT), with MAE (RMSE) under 1.5 h (2 h) to all

months and overall high values of r. To the Equatorial region, the DISSM product presents an overestimation tendency through

the year, with highest (smallest) MBE value in December (October), 1.61 h (1.16 h). MAE and RMSE results of the CMSAF

suggest lower errors when compared to the DISSM data, despite that the values of r indicate a similar level of variability,

ranging from 0.5 to 0.8. To the Northeastern Brazilian coastline, both product exhibits a seasonal variation in performance, with310

better fit for the winter months. Although, this feature is more evident to DISSM data. During this season, both products shows

smaller MAE and RMSE (generally, under 1.5 h and 2.0 h, respectively), and higher correlation coefficients (r > 0.65). For

other periods, MAE (RMSE) varies between 1.5 and 2 h (2 and 2.5 h) and the CMSAF data generally has a higher correlation

coefficient than DISSM product. In the TNO region, the systematically underestimation of the Effective Cloud Albedo due to

the low warm clouds might be the cause to the observed SDU overestimation of the CMSAF product. The scatterplot analysis315

indicated that the DISSM’s underestimation tendency over the TNO region is more evident under clear sky condition (SDU >

8h), which suggests that this might be caused by a misrepresentation of the clear-sky reflectance used in the algorithm. Further

investigation on the Rmin showed that, in fact, in this region, the usual values of Rmin are over the Rmin specified in the

algorithm, leading to overestimation of the cloudiness parameter and consequently underestimation of SDU. The opposite is

observed on the Equatorial region, where the Rmin is usually under the algorithm’s parameter. This suggests that including the320

spatial-temporal variations of Rmin in the DISSM algorithm may improve its performance. All in all, the results obtained in

this study suggests that both products are adequate in providing reliable SDU data to a variety of applications.
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Author contributions. Conceptualization, M.L.L.M.G., A.C.S.P. and S.M.S.C.c.; Data acquisition and analysis, M.L.L.M.G.; Writing—Original

Draft Preparation, M.L.L.M.G.; all authors contributed to the discussion, review, and editing. All authors have read and agreed to this version

of the manuscript.330

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)

- Finance Code 001. We acknowledge CMSAF and DISSM for developing and keeping the satellite-based SDU datasets, and INMET for the

recognized effort to provide ground measurements.

17

https://doi.org/10.5194/egusphere-2023-1195
Preprint. Discussion started: 8 August 2023
c© Author(s) 2023. CC BY 4.0 License.



References335

Akinoglu, B. G.: Recent advances in the relations between bright sunshine hours and solar irradiation, in: Modeling solar radiation at the

earth’s surface, edited by Badescu, V., pp. 115–143, Springer, https://doi.org/10.1007/978-3-540-77455-6_5, 2008.

Angstrom, A.: Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar

and atmospheric radiation, Q. J. Roy. Meteor. Soc., 50, 121–126, https://doi.org/10.1002/qj.49705021008, 1924.

Bertrand, C., Demain, C., and Journée, M.: Estimating daily sunshine duration over Belgium by combination of station and satellite data,340

Remote Sens. Lett., 4, 735–744, https://doi.org/10.1080/2150704X.2013.789569, 2013.

Cavalcanti, I. F.: Tempo e clima no Brasil, Oficina de textos, ISBN 9788586238925, 2009.

Ceballos, J. C. and Rodrigues, M. L.: Estimativa de insolaçao mediante satélite geoestacionário: resultados preliminares, in: Proceedings of

the 15th Congresso Brasileiro de Meteorologia, São Paulo, Brazil, 24–29 August 2008, 2008.

Ceballos, J. C., Bottino, M. J., and De Souza, J. M.: A simplified physical model for assessing solar radiation over Brazil using GOES 8345

visible imagery, J. Geophys. Res.- Atmos., 109, https://doi.org/10.1029/2003JD003531, 2004.

Costa, S. et al.: A successful practical experience with dedicated geostationary operational environmental satellites GOES-10 and-12 sup-

porting Brazil, B. Am. Meteorol. Soc., 99, 33–47, https://doi.org/10.1175/BAMS-D-16-0029.1, 2018.

Gava, M. L. L. M.: Estimation of Sunshine Duration over Brazil based on geostationary satellite data: CPTEC/INPE model validation and

improvement, Dissertation (master in meteorology), National Institute for Space Research, São José do Campos, 2021.350

Gava, M. L. L. M., Coelho, s. M. S. C., and Porfírio, A. C. S.: GOES 13 - visible reflectance, https://doi.org/10.5281/zenodo.7963354, 2023a.

Gava, M. L. L. M., Coelho, s. M. S. C., and Porfírio, A. C. S.: Satellite-derived sunshine duration product - DISSM/INPE,

https://doi.org/10.5281/zenodo.7958199, 2023b.

Good, E.: Estimating daily sunshine duration over the UK from geostationary satellite data, Weather, 65, 324–328,

https://doi.org/10.1002/wea.619, 2010.355

Hammer, A., Heinemann, D., Hoyer, C., Kuhlemann, R., Lorenz, E., Müller, R., and Beyer, H. G.: Solar energy assessment using remote

sensing technologies, Remote Sens. Environ., 86, 423–432, https://doi.org/10.1016/S0034-4257(03)00083-X, 2003.

Hannak, L., Knippertz, P., Fink, A. H., Kniffka, A., and Pante, G.: Why do global climate models struggle to represent low-level clouds in

the West African summer monsoon?, J. Climate, 30, 1665–1687, https://doi.org/10.1175/JCLI-D-16-0451.1, 2017.

Huang, L., Jiang, J. H., Wang, Z., Su, H., Deng, M., and Massie, S.: Climatology of cloud water content associated with different cloud types360

observed by A-Train satellites, J. Geophys. Res.- Atmos., 120, 4196–4212, https://doi.org/10.1002/2014JD022779, 2015.

Huang, Y. L., Xiu, S. Y., Zhong, S. Q., Zheng, L., and Sun, H.: Division of banana for climatic suitability based on a decision tree, J. Trop.

Meteorol., 28, 140–144, 2012.

INMET: Banco de Dados Meteorológicos do INMET, available at https://bdmep.inmet.gov.br/, last access: 19 May 2023, 2023.

Kandirmaz, H.: A model for the estimation of the daily global sunshine duration from meteorological geostationary satellite data, Int. J.365

Remote Sens., 27, 5061–5071, https://doi.org/10.1080/01431160600840960, 2006.

Kandirmaz, H. M. and Kaba, K.: Estimation of daily sunshine duration from terra and aqua modis data, Adv. Meteorol., 2014,

https://doi.org/10.1155/2014/613267, 2014.

Keller, A., Frederiksen, P., Händel, M. N., Jacobsen, R., McGrath, J. J., Cohen, A. S., and Heitmann, B. L.: Environmental and individual

predictors of 25-hydroxyvitamin D concentrations in Denmark measured from neonatal dried blood spots: the D-tect study, Brit. J. Nutr.,370

121, 567–575, https://doi.org/10.1017/S0007114518003604, 2019.

18

https://doi.org/10.5194/egusphere-2023-1195
Preprint. Discussion started: 8 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Kothe, S., Good, E., Obregón, A., Ahrens, B., and Nitsche, H.: Satellite-based sunshine duration for Europe, Remote Sens., 5, 2943–2972,

https://doi.org/10.3390/rs5062943, 2013.

Kothe, S., Pfeifroth, U., Cremer, R., Trentmann, J., and Hollmann, R.: A satellite-based sunshine duration climate data record for Europe and

Africa, Remote Sens., 9, 429, https://doi.org/10.3390/rs9050429, 2017.375

Lubin, D. and Weber, P. G.: The use of cloud reflectance functions with satellite data for surface radiation budget estimation, J. Appl.

Meteorol., 34, 1333–1347, https://doi.org/10.1175/1520-0450(1995)034<1333:TUOCRF>2.0.CO;2, 1995.

Machado, L. A. et al.: The CHUVA project: how does convection vary across Brazil?, B. Am. Meteorol. Soc., 95, 1365–1380,

https://doi.org/10.1175/BAMS-D-13-00084.1, 2014.

McGrath, J., Selten, J.-P., and Chant, D.: Long-term trends in sunshine duration and its association with schizophrenia birth rates and age at380

first registration—data from Australia and the Netherlands, Schizophr. Res., 54, 199–212, https://doi.org/10.1016/S0920-9964(01)00259-

6, 2002.

Mueller, R., Trentmann, J., Träger-Chatterjee, C., Posselt, R., and Stöckli, R.: The role of the effective cloud albedo for climate monitoring

and analysis, Remote Sens., 3, 2305–2320, https://doi.org/10.3390/rs3112305, 2011.

Nastos, P. T. and Matzarakis, A.: Weather impacts on respiratory infections in Athens, Greece, Int. J. Biometeorol., 50, 358–369,385

https://doi.org/10.1007/s00484-006-0031-1, 2006.

Palharini, R. S. A. and Vila, D. A.: Climatological behavior of precipitating clouds in the northeast region of Brazil, Adv. Meteorol., 2017,

12, https://doi.org//10.1155/2017/5916150, 2017.

Pfeifroth, U., Kothe, S., Trentmann, J., Hollmann, R., Fuchs, P., Kaiser, J., and Werscheck, M.: Surface Radiation Data Set - Heliosat

(SARAH) - Edition 2.1, https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002, 2019.390

Porfirio, A. and Ceballos, J.: A method for estimating direct normal irradiation from GOES geostationary satellite imagery: validation and

application over Northeast Brazil, Sol. Energy, 155, 178–190, https://doi.org/10.1016/j.solener.2017.05.096, 2017.

Porfirio, A., Ceballos, J. C., Britto, J., and Costa, S.: Evaluation of Global Solar Irradiance Estimates from GL1. 2 Satellite-Based Model

over Brazil Using an Extended Radiometric Network, Remote Sens., 12, 1331, https://doi.org/10.3390/rs12081331, 2020.

Porfirio, A. C. S.: Estimativa de irradiação solar direta normal mediante satélite: um estudo para o nordeste brasileiro, Dissertation (master395

in meteorology), National Institute for Space Research, São José do Campos, 2012.

Raichijk, C.: Observed trends in sunshine duration over South America, Int. J. Climatol., 32, 669–680, https://doi.org/10.1002/joc.2296,

2012.

Rao, P. S., Saraswathyamma, C. K., and Sethuraj, M. R.: Studies on the relationship between yield and meteorological parameters of para

rubber tree (Hevea brasiliensis), Agr. Forest Meteorology, 90, 235–245, https://doi.org/10.1016/S0168-1923(98)00051-3, 1998.400

Shamim, M. A., Remesan, R., Han, D.-w., Ejaz, N., and Elahi, A.: An improved technique for global daily sunshine duration estimation

using satellite imagery, J. Zhejiang Univ.- SC A, 13, 717–722, https://doi.org/10.1631/jzus.A1100292, 2012.

Shao, J.: Calculation of sunshine duration and saving of land use in urban building design, Energ. Buildings, 15, 407–415,

https://doi.org/10.1016/0378-7788(90)90015-B, 1990.

Skartveit, A., Olseth, J. A., and Tuft, M. E.: An hourly diffuse fraction model with correction for variability and surface albedo, Sol. Energy,405

63, 173–183, https://doi.org/10.1016/S0038-092X(98)00067-X, 1998.

Stanhill, G.: Through a glass brightly: some new light on the Campbell–Stokes sunshine recorder, Weather, 58, 3–11,

https://doi.org/10.1256/wea.278.01, 2003.

19

https://doi.org/10.5194/egusphere-2023-1195
Preprint. Discussion started: 8 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Wang, H., Liu, D., Lin, H., Montenegro, A., and Zhu, X.: NDVI and vegetation phenology dynamics under the influence of sunshine duration

on the Tibetan plateau, Int. J. Climatol., 35, 687–698, https://doi.org/10.1002/joc.4013, 2015.410

Warnant, P., François, L., Strivay, D., and Gérard, J.-C.: CARAIB: a global model of terrestrial biological productivity, Global Biogeochem

Cy, 8, 255–270, https://doi.org/10.1029/94GB00850, 1994.

Wilks, D. S.: Statistical methods in the atmospheric sciences, vol. 100, Academic Press, ISBN 9780123850225, 2011.

WMO: WMO guide to meteorological instruments and methods of observation, Tech. rep., WMO, 2008.

Wu, B., Liu, S., Zhu, W., Yu, M., Yan, N., and Xing, Q.: A method to estimate sunshine duration using cloud classification data from a415

geostationary meteorological satellite (FY-2D) over the Heihe River Basin, Sensors, 16, 1859, https://doi.org/10.3390/s16111859, 2016.

Zhu, W., Wu, B., Yan, N., Ma, Z., Wang, L., Liu, W., Xing, Q., and Xu, J.: Estimating Sunshine Duration Using Hourly Total Cloud Amount

Data from a Geostationary Meteorological Satellite, Atmosphere, 11, 26, https://doi.org/10.3390/atmos11010026, 2020.

20

https://doi.org/10.5194/egusphere-2023-1195
Preprint. Discussion started: 8 August 2023
c© Author(s) 2023. CC BY 4.0 License.


