
Daily satellite-based sunshine duration estimates over Brazil:
Validation and inter-comparison
Maria Lívia L. M. Gava1, Simone M. S. Costa1, and Anthony C. S. Porfírio2

National Institute for Space ResearchCachoeira Paulista, SP, Brazil
Research Institute for Meteorology and Water ResourcesFortaleza, CE, Brazil

Correspondence: Maria Lívia L. M. Gava (maria.gava@inpe.br)

Abstract.

The broad geographical coverage and high temporal and spatial resolution of geostationary satellite data provide an ex-

cellent opportunity to collect information on variables whose spatial distribution and temporal variability are not adequately

represented by the in situ networks. This study focuses on assessing the effectiveness of two geostationary satellite-based sun-

shine duration (SDU) datasets over Brazil, given the relevance of SDU to various fields, such as agriculture and energy sectors,5

to ensure reliable SDU data over the country. The analyzed datasets are the operational products provided by the Satellite

Application Facility on Climate Monitoring (CMSAF), that uses data achieved with the Meteorological Satellite (Meteosat)

series, and by the Satellite and Meteorological Sensors Divison of the National Institute for Space Research (DISSM/INPE),

that employs Geostationary Operational Environmental Satellite (GOES) data. The analyzed period ranges from September

2013 to December 2017. The mean bias error (MBE), mean absolute error (MAE), root mean squared error (RMSE), correla-10

tion coefficient (r) and scatterplots between satellite products and in situ daily SDU measurements provided by the National

Institute of Meteorology (INMET) were used to access the products performance. They were calculated on a monthly basis

and grouped into climate regions. The statistical parameters exhibited a uniform spatial distribution, indicating homogeneity

within a given region. Except for the Tropical Northeast Oriental (TNO) region, there were no significant seasonal dependen-

cies observed. The Mean Bias Error (MBE) values for both satellite products were generally low across most regions in Brazil,15

mainly between 0 and 1 hour. The correlation coefficient (r) results indicated a strong agreement between the estimated values

and the observed data, with an overall r value exceeding 0.8. Nevertheless, there were notable discrepancies in specific areas.

The CMSAF product showed a tendency to overestimate observations in the TNO region, with MBE consistently exceeding

1 hour for all months, while the DISSM product exhibited a negative gradient of MBE values in the west-east direction, in

the northern portion of Brazil. The scatterplots for the TNO region revealed that the underestimation pattern observed in the20

DISSM product was influenced by the sky condition, with more accurate estimations observed under cloudy skies. Additional

analysis suggested that the biases observed might be attributed to the misrepresentation of clear-sky reflectance. In the case of

the CMSAF product, the overestimation tendency observed in the TNO region appeared to be a result of systematic underesti-

mation of the Effective Cloud Albedo. The findings indicated that both satellite-based SDU products generally exhibited good

agreement with the ground observations across Brazil, although their performance varied across different regions and seasons.25
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The analyzed operational satellite products present a reliable source of data to several applications, being an asset due to its

high spatial resolution and low time latency.

Copyright statement.

1 Introduction

Sunshine duration (SDU) is conceptually defined as the total of hours that sunlight reaches the Earth’s surface directly from the30

sun. With the advance of technology and measurement instruments, it was formally defined as the sum of the periods in which

direct solar irradiance reaches or exceeds 120 W.m−2 (WMO, 2008). Along with precipitation and surface air temperature, it

is one of the most important parameters in climate monitoring (Kothe et al., 2013). In a given area, the amount of sunshine

received is the major factor determining the local climate (Bertrand et al., 2013).

The SDU importance has been known for a long time and its first measurements date back to the 19th century. In fact, there35

are time series as long as 100 years of SDU measurements accumulated at networks all over the world. SDU data is relevant for

a number applications, such as yield planning in agriculture (Rao et al., 1998; Huang et al., 2012; Wang et al., 2015), analysis

of the thermal loads and sunshine duration on buildings (Shao, 1990), input parameter in soil water balance models (Warnant

et al., 1994), and even research on human’s health (McGrath et al., 2002; Nastos and Matzarakis, 2006; Keller et al., 2019).

Akinoglu (2008) stated that SDU data is the best long term, trustworthy, and readily available measurement to estimate the40

surface solar irradiation, due to the linear relationship between these variables, described by Angstrom (1924).

Based on that, it is clear the necessity of SDU records. However, there is a relatively small number of stations that measure it.

Overall, networks of SDU are sparse and insufficient to cover large areas (Kandirmaz and Kaba, 2014). In Brazil, the National

Institute of Meteorology (INMET) currently operates a network with 245 stations, besides that, it provides SDU time series

from other 85 sites, that are no longer operational. The effort to maintain this network is essential to provide reliable SDU45

records for climate studies. Nonetheless, comparatively to the temperature or precipitation networks with thousand stations,

the SDU current network seems inadequate to cover the Brazilian large territory.

Along with that, once that meteorological station measurements are point-based observations (Zhu et al., 2020), SDU in the

vicinity has to be obtained through interpolation techniques. Therefore the accuracy of the method strongly relies primarily

upon the number and spatial distribution of meteorological stations. Generally, the station’s distribution is heterogeneous, with50

most of them near cities, and for several reasons, extensive areas remain without records. For instance, it can be observed in

Brazil, where some regions as the Northern have very few stations, while the South and Southeast regions present a denser

network. Consequently, the resulting interpolated field is usually poor for representing the temporal and spatial SDU variability

characteristics (Wu et al., 2016).

Geostationary satellites perform measurements with high spatial and temporal resolution and cover large areas, so their data55

can be used as an alternative to estimate SDU. Literature on the subject provides some proposed methods to accomplish it.
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Given the fact that clouds are the primary responsible for SDU changes, several methods to derive SDU rely on it. Different

techniques have been considered, such as SDU estimate based on cloud cover index (Kandirmaz, 2006; Ceballos and Rodrigues,

2008; Shamim et al., 2012) and from satellite-derived cloud-type products (Good, 2010; Wu et al., 2016; Zhu et al., 2020).

Another approach is given by Kothe et al. (2017), in which SDU is calculated based on direct normal radiation threshold,60

using data from the Meteorological Satellite (Meteosat) series operated by the European Organization for the Exploitation

of Meteorological Satellites (EUMETSAT). Currently, this approach has been considered one of the most advanced remote

sensing tool to estimate the SDU, being operational at the Satellite Application Facility on Climate Monitoring (CMSAF).

In South America, Ceballos and Rodrigues (2008) proposed a SDU estimation method based on Geostationary Operational

Environmental Satellite (GOES) data. It is operational at the Satellite and Meteorological Sensors Division in the National65

Institute for Space Research (DISSM/INPE). This method (hereafter DISSM method) was validated by the authors using in

situ measurements from São Paulo and Fortaleza cities, and their results indicated a good agreement between the estimates and

the observed data. Thereafter, Porfirio (2012) extended the validation of INPE method for Northeast Brazil, using records from

53 stations for 2008, showing a good performance of the method. Notwithstanding, the climatic characteristics of that region

are not representative of the whole country.70

In addition, the satellite-derived SDU data set from CMSAF (hereafter CMSAF method) also provides estimates over Brazil-

ian territory. However, the accuracy of the product was only evaluated for the monthly sums, and regarding a few stations Kothe

et al. (2017). Therefore, it is still needed a deep validation of daily SDU estimates based on satellite data over Brazil.

In this study we aimed to evaluate two operational SDU estimates products’ performance over Brazil and inter-compare their

results, the following scientific questions were addressed:75

1. Are those products a good fit for the in situ measurements?

2. Are there regions in which one of the products performs better than the other?

3. Are there seasonal variations in its performance?

4. Could deficiencies in the retrieval be traced to their source?

The manuscript is structured as follows: Section 2 gives a description of the operational algorithms evaluated, i.e. the DISSM80

and CMSAF methods. Section 3 describes the ground measurements and statistical metrics used for the validation. Section 4

and 5 presents the obtained results and conclusions, respectively.

2 Satellite-based methods

2.1 DISSM

The DISSM has the mission to produce high quality satellite products and thus to offer relevant information for different85

Brazilian sectors. The DISSM was instituted in 2020, and incorporated the former Satellite Division and Environmental Sys-

tems (DSA), that operated since 1986. The division established itself as a reference in collecting and processing satellite data
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and product generation for South America (Costa et al., 2018). Among their products are sea surface temperature, severe

weather monitoring, precipitation estimation, sunshine duration and several others (see http://satelite.cptec.inpe.br/ and Costa

et al. (2018).90

To estimate SDU, visible imagery acquired with GOES processed by the DISSM is used. From time to time the GOES plat-

forms are replaced, during the analyzed period in this study (2013-2017), GOES-13 was operational and carried the IMAGER

sensor on board. The IMAGER visible channel is centered at 0,65 µm, with a bandwidth of 0,2 µm.

The sensor measures the spectral radiance Lλ (W.m−2.sr−1.µm−1), that represents the mean value at the pixel area. The

spectral irradiance at the top of atmosphere is Eo = µSλ, where Sλ is the solar irradiance at normal incidence in this same95

spectral interval, and µ= cos(SZA) is the cosine of the solar zenith angle. Assuming that the reflected radiance is isotropic,

the emergent spectral irradiance at the top of atmosphere is E ↑= πLλ and the reflectance is R= E↑
Eo

. Operationally, from the

satellite visible imagery the reflectance factor (F) and the planetary reflectance (R) are defined as showed in Eq. (1) (Ceballos

and Rodrigues, 2008):

F = π
Lλ

Sλ
;R= f

F

µ
(1)100

where the factor f is a function correcting the effects of anisotropic reflection (Lubin and Weber, 1995), for the following

purposes, f is considered 1 (Ceballos et al., 2004). The R is provided by DISSM as a by-product of the operational processing

of the GL1.2 shortwave radiation model (Ceballos et al., 2004).

It is usual to regard the reflectance as a mean value between the cloud reflectance (Rmax) and the clear sky reflectance

(Rmin) weighted by the fraction of the pixel covered by clouds (C) as shown in Eq. (2) (Ceballos et al., 2004).105

R= C.Rmax +(1−C).Rmin (2)

which leads to an estimate of cloudiness (C) as:

C =
R−Rmin

Rmax −Rmin
(3)

Ceballos et al. (2004) defined the value of Rmax as 0.465, which corresponds to the transition between a cumuliform and a

stratiform cloud field and the Rmin as 0.09, a reasonable value for the continental surface. In the case of R<Rmin, C is set110

as 0, and if R>Rmax, C=1. In case of R= 0 or marked as "invalid" (i.e. R=−99), C is also tagged as invalid.

Next, assuming that the average cloud cover assessed by C is also representative of the relative time of cloud passage over

a site inside the pixel (Porfirio and Ceballos, 2017), 1−C corresponds to the relative time of clear sky. The daily SDU is

achieved through the Eq. (4), which is similar to the integration via trapezoidal rule (which consists of a numerical method to

approximate the integral value):115

SDU = (1−C1)+
∆t

2
[(1−C1)+ 2(1−C2)+ 2(1−C3)+ 2(1−Ck−1)+ (1−Ck)] + (1−Ck) (4)
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where C is the cloudiness parameter (described in Eq. (3)), C1 corresponds to the first "valid" observation for the pixel, the

subscript index corresponds to the number of the image within a day, k is the last valid image of the day, and ∆t is the time

interval between two consecutive images (for the period analyzed, usually 30 minutes).

On average, for a given pixel, 30 images are available for the daily SDU estimate. However, this value can be smaller and the120

interval between two consecutive images can be larger than 30 minutes. The daily SDU for a given day is considered invalid,

therefore, discarded, if there is an interval greater than three hours: i) between the first image of the day and the sunrise; ii)

between consecutive images; and iii) the last image of the day and the sunset and if less then 5 images were available for the

estimation.

The spatial resolution of the DISSM’s SDU dataset is 0.04 degree on a regular latitude-longitude grid of 1800x1800 pixels125

within latitudes 50° S to 21.96° N and longitudes 100° W to 28.04° W, and cover the time period from February 2007 to near

real time.

2.2 CMSAF

The EUMETSAT’s CMSAF was established to contribute to the operational monitoring of the climate and the detection of

global climatic changes. With this aim, CMSAF’s products follow the highest standards and guidelines as lined out by the130

Global Climate Observing System (GCOS) for satellite data processing.

The SDU is one of the several products of CMSAF based on Surface Radiation Data Set - Heliosat (SARAH) - Edition

2.1 (Pfeifroth et al., 2019). The data record covers the time period from 1983 to near real time with a spatial resolution of

0.05◦ × 0.05◦. In order to derive the SARAH-2 surface parameters, the Heliosat algorithm is used (Hammer et al., 2003). It

provides a continuous dataset of Effective Cloud Albedo and minimizes the impacts of satellite changes and artificial trends135

due to degradation of satellite instruments through an integrated self-calibration parameter Mueller et al. (2011).

At first, the Effective Cloud Albedo is retrieved by the normalized relation between all-sky and clear sky reflection in the

visible channel of the Meteosat instruments. This parameter is used to derive the cloud index, a measure of the impact of

the clouds on the clear sky irradiance. The SPECMAGIC model is used to estimate clear sky irradiance, and then from the

combination of cloud index and clear sky irradiance, Surface Incoming Shortwave radiation (SIS) is achieved. Thereafter using140

the diffuse radiation model of Skartveit et al. (1998) and the cloud index, Surface Incoming Direct radiation (SID) is calculated.

By normalizing it with the cosine of the solar zenith angle, the DNI is obtained. The SID and DNI are the basis for the SDU

estimates (Kothe et al., 2017).

Daily SDU is calculated as the ratio of slots exceeding the DNI threshold, considered as sunny slots, to all slots during

daylight (Eq. (5)).145

SDU = daylength×
∑daylightslots

i=1 Wi

daylightslots
(5)
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The day length is calculated depending on the date, longitude and latitude and is restricted by a threshold of the solar

elevation angle of 2.5◦ (Kothe et al., 2013). Wi is a weight that varies between 0 and 1, and indicates the influence of a single

slot depending on the number of surrounding cloudy and sunny grid points (Kothe et al., 2017).

A grid point at a time slot i is accounted as sunny if DNI is 120 W.m−2 or larger (Eq. 6). Since SARAH-2 provides150

instantaneous DNI data every 30 minutes, without weighting, one sunny slot would correspond to a 30 min time window. This

is not the case unless it is a bright weather situation. If there are clouds in the vicinity of a grid point, probably not the whole 30

minutes are sunny. The opposite case is also valid. To account for this fact, the information of the 24 surrounding grid points

(Fig. 1) and two successive time steps are used (Kothe et al., 2017).

SIni =

1 if DNI(x,y)≥ 120W.m−2

0 if DNI(x,y)< 120W.m−2
(6)155

Source: Kothe et al. (2017).

Figure 1. Demonstration for accounting for surrounding grid points. The target grid point is marked in the center.

For each grid point, the number of sunny slots in the 24 pixels in the vicinity plus the center cell grid of interest is summed

up (Eq. (7)).

#SIni(x,y) =

m = y+2∑
m = y−2

n = x+2∑
n = x−2

SIni(m,n) (7)

First, for each daytime slot i this is done. Then to also incorporate the temporal shift of clouds, the number of each time step

is combined with the number of the previous time step for each pixel (Eq. (8)).160

N1 = #SIn1 × 0.04

Ni = (#SIni + #SIni−1) × 0.02
(8)

The factor 0.04 is used for the first time slot of the day, for i > 1, 0.02 is used, thus if all 25 grid points are sunny the resulting

number N is 1, and 0 in the case that no grid point is sunny.
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Thereafter the impact of sunny and cloudy grid points on the temporal length of one time slot is estimated. The fraction of

time, which slot i accounts to the daily SDU is achieved by Eq. (9).165

Wi =

max(Ni,C1) if DNI(Cgp)≥ 120W.m−2

Ni ·C2 if DNI(Cgp)< 120W.m−2
(9)

If the DNI in the center grid point is equal or greater than 120W.m−2, the grid point is taken as sunny, and the weight (Wi) is

defined by the maximum value between Ni and C1. Otherwise, Wi is the product of Ni and C2. These constants were derived

empirically through sensitivity tests, by minimizing the bias compared to reference station data in Germany. They are set as

C1 = 0.4, that indicates the minimum fraction that a sunny slot can contribute, and C2 = 0.05, the weight for the contribution170

of a non-sunny slot (Kothe et al., 2017). The daily SDU in hours is then derived by Eq. (5).

3 Ground data and evaluation methods

To evaluate the satellite products for the period from September 2013 to December 2017 data from INMET’s network were

used as ground "truth". This network provides daily measurements obtained with Campbell-Stokes recorders. The stations

were selected based on data availability: only stations with less than 20% of missing observations over the study period were175

retained. A total of 193 stations were chosen. Quality checks were applied in order to exclude spurious data, e.g. measurements

higher than its physical limits and false zeros (Gava, 2021).

Due to the considerable extension of the Brazilian territory, as well as the great variety of biomes and climates, the stations

were grouped by climate zones, as suggested in Raichijk (2012). This classification was developed by the Brazilian Institute

of Geography and Statistics (IBGE) and takes into account the average air temperature and precipitation regimes (highly180

anticorrelated to sunshine duration). The regions are illustrated in Fig. 2.

Figure 3 presents the boxplot of SDU ground measurements for the analyzed period grouped by the climate zones. The main

characteristics of the regions are described below, indicating inside parentheses the number of stations included in each one.

– Equatorial region (EQ, 27(*)): has Af/Am climate according to the Köppen-Geiger classification, it presents average

annual temperatures between 24 and 27°C, and average annual precipitation of 2300mm. Presents a short dry season185

during austral winter, lasting under 3 months (Raichijk, 2012). The average SDU values range from 4.5 h in the wet

season to 8.5 h in the dry period, which shows smaller variability.

(*) For the CMSAF evaluation, 22 stations were used, since 5 of the listed stations are out of the METEOSAT disk.

– Tropical Equatorial region (TE, 43): with Aw/BSh climate according to the Köppen-Geiger classification. Hot, semi-arid

with a prolonged dry season (over 8 months). This region comprises the northeast Brazilian Sertão, going south until190

approximately 10°S (Raichijk, 2012). On average, this region presents high SDU over the whole year. From June to

September, the highest values are reached and the variability is low, indicating the predominance of clear sky days.
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Figure 2. Spatial distribution of INMET’s stations used in this study.

– Tropical Northeast Oriental region (TNO, 21): Mainly Aw/BSh climate according to the Köppen-Geiger classification,

with average annual temperatures ranging from 24 to 26°C. The mean SDU values are high for most of the year. Smaller

SDU values are found in late austral autumn-winter, due to the precipitation regime of this location that exhibits the195

maximum precipitation rates during this period (Palharini and Vila, 2017), when it also displays the highest variability

along the year.

– Tropical Central Brazil region: This main region was sub-divided into a) Mesothermal/Subwarm (hereinafter, Mesother-

mal) and b) Warm.

– Mesothermal (TCB-M, 29): Classified as Cw climate, conform to the Köppen-Geiger classification (Raichijk,200

2012). It includes part of Brazil’s Southeast and north of Paraná. This region exhibits average annual tempera-

tures between 10 and 18ºC, with dry winter. It presents great SDU variability through most of the year, with the

highest mean SDU values occurring in the austral winter.

– Warm (TCB-W, 49): Aw climate according to the Köppen-Geiger classification. This region comprises the Brazilian

Central Plain. Semi-humid, marked by rainy summer (December to February) and dry winter (June to August)205
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Figure 3. Boxplot of SDU ground measurements. The “whiskers” (lines extending parallel from the boxes) indicate variability outside the

first and third quartiles. Outliers are plotted as individual crosses. The red line indicates the median and the blue ’x’ the mean.

(Cavalcanti, 2009). This feature is noticeable in Fig. 3. During austral summer, the mean SDU is smaller, with

higher variability.

– Humid Temperate region (HU, 25): It is defined as Cfa by the Köppen-Geiger classification. This region presents mild

temperatures between 10 and 15°C, with a well distributed precipitation regime (without a dry season) (Raichijk, 2012).

Which is perceptible in Fig. 3. There is no clear seasonality in mean SDU values, moreover, there is high variability in210

the entire year.

In order to compare the satellite-based gridded SDU estimates with the in situ records, the satellite data was extracted at

the station sites, by selecting the satellite pixel in which the station is located. Therefore, for each month, the mean bias error

(MBE), mean absolute error (MAE), root mean squared error (RMSE) and the correlation coefficient (r) of the daily SDU were

calculated for every station, and then, grouped into the regions.215
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The definitions of the statistical measures are presented below Wilks (2011):

MBE =
1

n

k∑
i=1

(Zi −Oi)

MAE =
1

n

k∑
i=1

|Zi −Oi|

RMSE =

√√√√ 1

n

k∑
i=1

(Zi −Oi)2

220

r =

∑k
i=1(Zi − Z̄)(Oi − Ō)√∑k

i=1(Zi − Z̄)
2
√∑k

i=1(Oi − Ō)
2

Thereby, the variable Z describes the dataset to be validated (e.g. DISSM SDU) and O denotes the reference dataset (i.e. in

situ measurements). The individual time step is marked with i and k is the total number of time steps.

4 Results and Discussion

The spatial distribution of the monthly MBE of daily SDU was generated for all months. However, Fig. 4 displays only the225

central months of each season, since the general behavior observed across months within seasons is very similar. It is possible

to observe that the behavior of the models is homogeneous within regions. Small bias values are noticeable for the majority of

the Brazilian territory for both SDU products, overall, ranging from -1 to 1 h. The exception is the TNO region for the CMSAF

product and most of the northern and northeast regions for the DISSM product.

On the Northeastern Brazilian coastline, the CMSAF method presents a significant tendency to overestimate the SDU values,230

exhibiting high positive MBE values, reaching 4 h in some stations.

The DISSM method presents high MBE values for the EQ, TE, and TNO regions. For the first, an overestimation tendency

is observed, while the others show a negative bias. The MBE results on the TE region do not present the same homogeneity of

the other zones. The eastern portion of the region shows negative values, while the states of Maranhão and Piaui do not indicate

biases (values close to zero).235

The MBE results over the Northeastern Brazilian littoral of both products presented a marked seasonality, with smaller

values during austral winter. On the DISSM method, this behavior extends to the inland of the Northeast. This characteristic

is evident in Fig. 5 (a). It can be seen that, from April to August, the DISSM’s MBE approaches zero while the CMSAF’s

decreases (from 1.7 h in December to 1 h). In this period, all the summary statistics present the best results: smaller MAE and

RMSE (overall, under 1.5 h and 2.0 h, respectively), and higher correlation coefficients (r > 0.65).240
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Figure 4. Spatial distribution of monthly MBE (hours) between daily satellite-based SDU and in situ data for the period of 2013-2017.

DISSM’s (CMSAF’s) MBE results are shown for Jan, Apr, Jul and Oct in panels a, b, c and d (e, f, g and h), respectively. Shades of red

correspond to overestimation, while shades of blue correspond to underestimation.
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Figure 5. Summary statistics of the comparison between satellite-based SDU and ground data, on a monthly basis, over the Brazilian regions:

(a) MBE, (b) MAE, (c) RMSE, and (d) r. The regions are plotted in different colors: EQ is in blue, TE is in lilac, TNO is in green, TCB-W

is in purple, TCB-M is in yellow and HT is in red. For every region the point’s x-coordinates refer to the month of the year from January

through December. Open circles (filled dots) represent DISSM’s (CMSAF’s) results.

On the other regions, the CMSAF’s MBE lies close to 0.5 h, with some variation depending on the month. The DISSM

method shows small biases for the southern regions, on average, smaller than 0.5 h. On the EQ region, as previously mentioned,

high positive biases are found: with its highest (smallest) value in December (October), 1.61 h (1.16 h).

Figure 5 (b, c and d) presents the MAE, RMSE, and r, respectively. Those are measurements of accuracy, and together they

can be used to acquire information regarding the data spread. Considering the MAE and RMSE, it can be noticed that the245

CMSAF product presents mostly smaller values than the DISSM method. Over all regions, the RMSE values are higher than

the MAE, indicating the presence of outliers and some dispersion of points.
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On the TE and the southern regions (TCB-W/M and HT), both products exhibit the smallest errors: the MAE (RMSE) lies,

typically, under 1.5 h (2 h). These areas also present high values of r (on average, r> 0.7), indicating a good agreement between

the products and the in situ data, with the exception of the TE region, which presents great variability in the r results, mostly250

for the DISSM product.

On the EQ region, although the CMSAF’s MAE and RMSE results imply smaller errors compared to the DISSM data, the r

results indicate the same degree of spread, varying between 0.5 and 0.8.

Over the TNO region, the products present high values of MAE and RMSE, with the above mentioned seasonality (smaller

values during austral winter). Along with highly variable values of r, varying from 0.5 in November to 0.77 in May for255

the DISSM product, and between 0.64 in October/November and 0.83 in May for the CMSAF method. To assess the main

characteristics of the products for this region, the satellite-based data was plotted against ground measurements, as well as

the difference between product and observations against observations. Those scatterplots are displayed in Fig. 6 and 7, for the

CMSAF and DISSM products, respectively. The data is grouped by frequency of occurrence.

There is a common pattern that can be observed in both figures: an overestimation of SDU values when the ground measure-260

ments indicate zero brightness hours. This discrepancy arises from the presence of false zeros in the SDU reference time series.

On days when no data is available, SDU is assigned a value of zero, resulting in these false zeros. The substantial overesti-

mation observed highlights that the steps undertaken in the quality control process were insufficient to eliminate all erroneous

data from the analysis. Despite that, it is important to note that for non-zero values of SDU, the recorded measurements should

still fall within the instrument uncertainty range of 0.1 h (Stanhill, 2003).265

Figure 6. Upper: Scatter plot of the CMSAF product vs. SDU in situ data for the TNO region. Lower: Scatter plot of the difference between

CMSAF product and SDU in situ data vs. SDU in situ data. Plots are grouped by frequency of occurrence. Boxes from left to right presents

the data for January, April , July and October.
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Figures 6 and 7 (a, b and d) present a high count frequency in the right upper corner mainly due to the fact that in the TNO

region for the corresponding months, there is a high frequency of clear sky days as can be observed in Figure 3 (c). So, most

of the counts are concentrated above 8 hours for the observed data.

In Fig. 6 and 7 (g), a different behavior is seen, mostly due to the higher occurrence of intermediary SDU values in this

month. This is illustrated in Fig. 3 (c): For July, it shows that the mean SDU value is lower than that of other months and270

exhibits significantly higher variability. This higher variability is associated with a greater frequency of cloudiness in the

region due to the rainy season. This translates into a spread of counts along the x-coordinate.

In Fig. 6, it is evident that the CMSAF product tends to overestimate the SDU for all analyzed months, under all sky

conditions. This is particularly clear from the scatterplots of the difference against observations, as the majority of counts tend

to fall above the 0.0 line. Kothe et al. (2017), when evaluating the CMSAF product found a similar behavior on the Canary275

Islands (Northwestern Africa), in the daily evaluation (MBE values close to 2h), and on the West coast of Africa, in the monthly

sums analysis (bias values up to 50h were found). The authors attributed those uncertainties to two causes: the frequent low

cloud fields, predominant cloud types in these regions that cause a systematic underestimation of the Effective Cloud Albedo

by the Heliosat algorithm because of the self-calibrating method (Hannak et al., 2017), leading to an overestimation of SDU;

and to the constants used during the SDU estimates, which were derived empirically using data from Germany to take into280

account the contribution of different sky conditions to the SDU. Consequently, the presence of low warm clouds, that are

most frequent over the ocean and subtropical subsidence regions (Huang et al., 2015) may not be well represented by these

parameters. This might be the case of the Northeast Brazil, since low clouds with relatively warm tops are the prevailing cloud

type due to subsidence in the area associated with the Walker cell (Machado et al., 2014).

Figure 7. Same as Fig. 6, but for the DISSM product.
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In the DISSM scatterplots’ results, the aforementioned underestimation tendency is clearly seen, mostly under clear sky285

conditions (SDU > 8 h), and is less pronounced in July. In this month, it is noticeable from Fig. 7 (g) that the counts tend

to group along the zero line for low and intermediary values of SDU (SDU < 8 h). For clear sky conditions, although it still

presents a tendency to underestimate the observations, the differences tend to be smaller when compared to similar values in

the other months. The higher frequency of points is bounded close to -2.5 h, while in other months there is a great amount of

counts for differences between -2.5 and -5 h.290

The better agreement between the DISSM estimates and the observations under partly covered sky, and the higher errors in

clear-sky cases suggest that this might be caused by a misrepresentation of the clear-sky reflectance used in the algorithm. This

characteristic was pointed out by Porfirio et al. (2020), when evaluating the global solar irradiance (a variable highly correlated

to SDU (Stanhill, 2003) estimated from GL1.2 model, the authors also found an east-west gradient in the MBE values. They

highlighted the importance of a proper assessment of the clear sky reflectance to the estimation of the cloud cover, which is295

estimated in the GL1.2 in the same fashion as SDU product.

Figure 8 presents the mean Rmin fields for the central months of each season for the period from October 2013 to October

2017. This figure was constructed to help explore the Rmin influence on DISSM SDU product. The fields were generated by

taking the minimum (not null) reflectance values for each pixel considering the available images in the interval between 14 and

16 UTC, within the target month. Thereafter, they were smoothed by performing 3x3 pixel means, then, monthly averaged.300

It is noticeable that there is great variability within the country. Over Brazil, higher reflectance values are observed in

Northeast Brazil and lower values in the Amazon region for all seasons, and most of the regions display seasonal variations in

clear sky reflectance.

Evaluating the MBE results and Fig. 8, it can be seen that the Rmin has a remarkable influence on the performance of the

product, particularly in the North and Northeast regions. The overestimation (underestimation) tendency found in the E (TNO)305

region seems to be related to clear sky reflectance values systematically lower (higher) than the Rmin used in the model (0.09).

This leads to an underestimation (overestimation) of cloudiness and consequently an overestimation (underestimation) of SDU.

Those results suggest that the use of fields of Rmin with spatial-temporal variations may improve the DISSM product’s results.

5 Conclusions

The agreement between two satellite-derived SDU products and in situ measurements was accessed. There are some chal-310

lenges in comparing satellite-based products and station data. Satellite-derived observations are area measurements, and station

records are point data, therefore, some representativeness errors are expected due to the inherent differing spatial scale (Huang

et al., 2016). Nevertheless, monthly bias discloses a fine agreement between SDU retrieved and observed. Both products present

low bias to most of the country (between -1 and 1 h).

Exceptions emerge for the CMSAF product on the Northeastern Brazilian coastline, reaching 4 h in some stations, and for315

the DISSM product on the Nothern portion of Brazil, where it presents a negative gradient of MBE values in the west-east

direction. The best results obtained were for southern regions (TCB-W/M and HT), with MAE (RMSE) under 1.5 h (2 h) to all

15



Figure 8. Average Rmin obtained for each analyzed month in the period from October 2013 to October 2017. Darker (Lighter) colors

correspond to low (high) reflectance values.
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months and overall high values of r. On the Equatorial region, DISSM product presents an overestimation tendency through

the year, with highest (smallest) MBE value in December (October), 1.61 h (1.16 h). MAE and RMSE results of the CMSAF

suggest lower errors when compared to the DISSM data. Although, the values of r indicate a similar level of variability, ranging320

from 0.5 to 0.8. CMSAF’s performance is remarkable, given that METEOSAT covers Brazil, particularly the EQ region, with

a very high satellite viewing angle, which contributes to uncertainties on the observation due to different effects. In fact, the

results indicate that the algorithm is robust and its performance seems to be independent of the viewing angle.

On the Northeastern Brazilian coastline, both products exhibit a seasonal variation in performance, with better fit for the

austral winter months. However, this feature is more evident in DISSM data. During this season, both products show smaller325

MAE and RMSE (generally, under 1.5 h and 2.0 h, respectively), and higher correlation coefficients (r > 0.65). For other

periods, MAE (RMSE) varies between 1.5 and 2 h (2 and 2.5 h) and the CMSAF data generally has a higher correlation

coefficient than DISSM product.

In the TNO region, the systematic underestimation of the Effective Cloud Albedo due to the low warm clouds might be the

cause of the observed SDU overestimation of the CMSAF product.330

The scatterplot analysis indicated that the DISSM’s underestimation tendency over the TNO region is more evident under

clear-sky conditions (SDU > 8h), which suggests that this might be caused by a misrepresentation of the clear-sky reflectance

used in the algorithm. Further investigation on the Rmin showed that, in fact, in this region, the usual values of Rmin are higher

than the 0.09 specified in the algorithm, leading to overestimation of the cloudiness parameter and consequently underestima-

tion of SDU. The opposite is observed in the Equatorial region, where the Rmin is usually under the algorithm’s parameter.335

This suggests that including the spatial-temporal variations of Rmin in the DISSM algorithm may improve its performance.

All in all, the results obtained in this study suggest that both products are adequate in providing reliable SDU data to a variety

of applications. Furthermore, it is important to highlight that both products are undergoing continuous development, thus im-

provements in their quality are expected. For instance, the new generation of GOES reduced the time gap between consecutive

images from 30 minutes to 10 minutes; CMSAF has recently introduced an upgraded version of SARAH, which incorporates340

various enhancements in ancillary data, such as surface albedo, atmospheric aerosol, and water vapor profiles. These adjust-

ments have the potential to decrease uncertainties in SDU measurements and further enhance the overall performance of these

products.

Data availability. CMSAF SDU data is available at https://wui.cmsaf.eu/safira/action/viewProduktDetails?eid=21845_22003&fid=28 (Pfeifroth

et al., 2019). DISSM SDU data for the period used in this study and GOES reflectance data used for producing Fig. 8 are available at:345

https://doi.org/10.5281/zenodo.7958199 (Gava et al., 2023b) and https://doi.org/10.5281/zenodo.7963354 (Gava et al., 2023a), respectively.

For the entire period covered by the DISSM SDU product, the data can be made available upon request to DISSM/INPE. The SDU ground

measurements are available at https://bdmep.inmet.gov.br (INMET, 2023).
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