1	Se	nsitivity of cloud phase distribution to cloud microphysics and
2	the	ermodynamics in simulated deep convective clouds and SEVIRI
3	ret	rievals
4 5	Cu	nbo Han ^{1,2} , Corinna Hoose ¹ , Martin Stengel ³ , Quentin Coopman ⁴ , Andrew Barrett ¹
6 7	1.	Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany
8 9	2.	State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy
10		of Sciences, Beijing, China
11	3.	Deutscher Wetterdienst (DWD), Offenbach, Germany
12	4.	Department of Atmospheric and Oceanic Sciences, McGill University, Montreal,
13 14 15		Canada
16 17		
19 20 21 22	Co (<u>cc</u>	rrespondence to: Cunbo Han (<u>cunbo.han@hotmail.com</u>) and Corinna Hoose <u>rinna.hoose@kit.edu</u>)

24 Abstract:

56

forward operator, remote-sensing retrieval algorithms

25 The formation of ice in clouds is an important process in mixed-phase clouds, and 26 the radiative properties and dynamical developments of clouds strongly depend on 27 their partitioning between liquid and ice phases. In this study, we investigate the 28 sensitivities of the cloud phase to ice-nucleating particle (INP) concentration and 29 thermodynamics. Experiments are conducted using the ICOsahedral Nonhydrostatic 30 model (ICON) at the convection-permitting resolution of about 1.2 km on a domain 31 covering significant parts of central Europe, and are compared to two different 32 retrieval products based on SEVIRI measurements. We select a day with multiple, 删除了: several 33 isolated deep convective clouds, reaching a homogeneous freezing temperature at 34 the cloud top. The simulated cloud liquid pixel fractions are found to decrease with 删除了: number 35 increasing INP concentration both within clouds and at the cloud top. The decrease 36 in cloud liquid pixel fraction is not monotonic but is stronger in high INP cases. 删除了: number 37 Cloud-top glaciation temperatures shift toward warmer temperatures with increasing 38 INP concentration by as much as 8 °C. Moreover, the impact of INP concentration on 39 cloud phase partitioning is more pronounced at the cloud top than within the cloud. 40 Moreover, initial and lateral boundary temperature fields are perturbed with 41 increasing and decreasing temperature increments from 0 to +/-3K and +/-5K 42 between 3 and 12 km. Perturbing the initial thermodynamic state is also found to 43 affect the cloud phase distribution systematically. However, the simulated cloud-top 44 liquid pixel fraction, diagnosed using radiative transfer simulations as input to a 删除了: number 45 satellite forward operator and two different satellite remote sensing retrieval 46 algorithms, deviates from one of the satellite products regardless of perturbations in 47 the INP concentration or the initial thermodynamic state for warmer sub-zero 48 temperatures, while agreeing with the other retrieval scheme much better, in particular for the high INP and high convective available potential energy (CAPE) 49 50 scenarios. Perturbing the initial thermodynamic state, which artificially increases the 51 instability of the mid- and upper-troposphere, brings the simulated cloud-top liquid 52 pixel fraction closer to the satellite observations, especially in the warmer mixed-删除了: number 53 phase temperature range. 54 55 Keywords: Mixed-phase clouds, deep convection, INP, thermodynamics, satellite

62 63 Key points: 64 1. Cloud properties are retrieved using a satellite forward operator and remote sensing retrieval algorithms with ICON simulations as input. To our knowledge, 65 66 it is the first time this approach has been used to retrieve cloud phase and other microphysical variables. 67 68 2. Glaciation temperature shifts towards a warmer temperature with increasing INP concentration both within the cloud and at the cloud top. Initial 69 70 thermodynamic states affect the cloud phase distribution significantly as well. 71 3. Simulated cloud-top liquid pixel fraction matches the satellite observations in 删除了: number 72 the high INP and high CAPE scenarios. 73

75 1. Introduction

In the temperature range between 0 and -38°C, ice particles and supercooled liquid 76 77 droplets can coexist in mixed-phase clouds. Mixed-phase clouds are ubiquitous in 78 Earth's atmosphere, occurring at all latitudes from the poles to the tropics. Because 79 of their widespread nature, mixed-phase processes play a critical role in the life cycle 80 of clouds, precipitation formation, cloud electrification, and the radiative energy 81 balance on both regional and global scales (Korolev et al., 2017). Deep convective 82 clouds are always mixed-phase clouds, and their cloud tops reach the homogeneous 83 freezing temperature, -38°C, in most cases. Despite the importance of mixed-phase 84 clouds in shaping global weather and climate, microphysical processes for mixed-85 phase cloud formation and development are still poorly understood, especially ice 86 formation processes. It is not surprising that the representation of mixed-phase 87 clouds is one of the big challenges in weather and climate models (McCoy et al., 88 2016; Korolev et al., 2017; Hoose et al., 2018; Takeishi and Storelvmo, 2018; Vignon 89 et al., 2021; Zhao et al., 2021). 90 91 The distribution of cloud phase has been found to impact cloud thermodynamics and Earth's radiation budget significantly (Korolev et al., 2017; Matus and L'Ecuyer, 92 93 2017; Hawker et al., 2021). The freezing of liquid droplets releases latent heat and 94 hence affects the thermodynamic state of clouds. Moreover, distinct optical 95 properties of liquid droplets and ice particles exert different impacts on cloud's shortwave and longwave radiation. Simulation and observation studies reported that 96 97 the cloud phase in the mixed-phase temperature range of convective clouds is 98 influenced by aerosol and plays a significant role in the development into deeper 99 convective systems (Li et al., 2013; Sheffield et al., 2015; Mecikalski et al., 2016). 100 Observational studies reveal that the cloud phase distribution is highly temperature-101 dependent and influenced by multiple factors, for example, cloud type and cloud microphysics (Rosenfeld et al., 2011; Coopman et al., 2020). Analyzing passive 102 103 satellite observations of mixed-phase clouds over the Southern Ocean, Coopman et 104 al. (2021) found that cloud ice fraction increases with increasing cloud effective 105 radius. Analysis of both passive and active satellite datasets reveals an increase in

106 supercooled liquid fraction with cloud optical thickness (Bruno et al., 2021).

108	A number of in-situ observations of mixed-phase clouds have been made in the past	
109	several decades, covering stratiform clouds (Pinto, 1998; Korolev and Isaac, 2006;	
110	Noh et al., 2013) and convective clouds (Rosenfeld and Woodley, 2000; Stith et al.,	
111	2004; Taylor et al., 2016). Aircraft-based observations of mixed-phase clouds	
112	properties reveal that the frequency distribution of the ice water fraction has a U-	
113	shape, with two explicit maxima, one for ice water fraction smaller than 0.1 and the	
114	other for ice water fraction larger than 0.9, and the frequency of occurrence of mixed-	
115	phase clouds is approximately constant when the ice water fraction is in the range	
116	between 0.2 and 0.5 (Korolev et al., 2003; Field et al., 2004; Korolev et al., 2017).	
117	These findings are very useful constraints of numerical models (Lohmann and	
118	Hoose, 2009; Grabowski et al., 2019). However, in-situ observations of mixed-phase	
119	cloud microphysics are technically difficult and sparse in terms of spatial and	
120	temporal coverage. Thus, understanding ice formation processes and determining	
121	the climatological significance of mixed-phase clouds have proved difficult using	
122	existing in-situ observations only.	
123		
124	Both observations and simulations reveal that ice-nucleating particles (INPs) impact	
125	deep convective cloud properties including the persistence of deep convective	
126	clouds and precipitation (Twohy, 2015; Fan et al., 2016). However, the impact of	
127	INPs on precipitation from deep convective clouds is still uncertain and may depend	
128	on precipitation and cloud types (van den Heever et al., 2006; Min et al., 2009; Fan	
129	et al., 2010; Li and Min, 2010), Although the effects of INPs on convective	
130	precipitation are not conclusive, it is certain that the interactions between convective	$\left \right\rangle$
131	clouds and INPs affect cloud microphysical properties and hence cloud phase	
132	distributions. In addition, previous numerical modeling studies on cloud-aerosols	
133	interactions have focused on influences of aerosols acting as cloud condensation	
134	nuclei (CCN) (Fan et al., 2016), which are linked to the ice phase e.g. through	
135	impacts on the riming efficiency (Barrett and Hoose, 2023). Given the limited	
136	knowledge on ice formation in deep convective clouds and significant uncertainties in	
137	ice nucleation parameterizations, it is necessary to conduct sensitivity simulations to	
138	investigate how ice formation processes are influenced by INP concentrations and	
139	thermodynamic states in deep convective clouds.	
140		\backslash

(删除了:,

删除了: with the occurrence of mixed-phase clouds decreasing toward lower temperatures

删除了: Satellite observations indicate that dust serves as effective INPs in the Saharan air layer, promotes the heterogeneous ice nucleation process, shifts the precipitation size distribution from large to small raindrops in deep convective clouds, and ultimately reduces precipitation

删除了: . However, the convection-permitting simulations by .(<u>van den Heever et al., 2006</u>) showed (<u>van den Heever et al., 2006</u>) showed that convective precipitation increases with increasing INPs. Moreover, some simulation studies argue that dust aerosols acting as INPs have hardly any effect on convective precipitation although they significantly impact cloud microphysical properties (<u>Fan et al., 2010</u>). (<u>Li and Min,</u> <u>2010</u>) suggested that the impacts of INPs on deep convective precipitation systems highly depend on the precipitation type.

删除了: (van den Heever et al., 2006) showed that precipitation increases with increasing INPs. Moreover, some simulation studies argue that dust aerosols acting as INPs have hardly any effect on convective precipitation although they significantly impact cloud microphysical properties (<u>Fan et al., 2010</u>). (<u>Li and Min,</u> 2010) suggested that the impacts of INPs on deep convective precipitation systems highly depend on the precipitation type.

设置了格式:英语(美国)

170 In this study, with the help of realistic convection-permitting simulations using two-171 moment microphysics, we address how and to what extent INP concentration and 172 thermodynamic state affect the in-cloud and cloud-top phase distributions in deep 173 convective clouds. In particular, cloud properties are retrieved using a satellite 174 forward operator and remote sensing retrieval algorithms with radiative transfer 175 simulations as input for a fair comparison to observations from SEVIRI. This method 176 allows us to compare model simulated cloud properties with remote sensing cloud 177 products directly, and is, to our knowledge, the first time this approach is used for the 178 cloud phase and related microphysical variables. We aim to evaluate the satellite 179 retrieval algorithms and investigate whether passive satellite cloud products can 180 detect cloud microphysical and thermodynamical perturbations. 181 182 This paper is structured as follows: In section 2, we introduce our model setups and

183 the experiment design, the satellite forward operator, remote sensing retrieval

184 algorithms, and datasets. Simulation results for the sensitivity experiments are

185 shown in section 3. Section 4 presents discussions; and we summarize the study

186 and draw conclusions in section 5.

187 2. Data and Method

188 2.1. Model description

The Icosahedral Nonhydrostatic (ICON) model (Zängl et al., 2015) is a state-of-the-189 190 art unified modeling system offering three physics packages, which are dedicated to 191 numerical weather prediction (NWP), climate simulation, and large-eddy simulation. 192 ICON is a fully compressible model and has been developed collaboratively between 193 the German Weather Service (DWD), Max Planck Institute for Meteorology, German 194 Climate Computing Center (DKRZ), and Karlsruhe Institute of Technology (KIT). In 195 order to maximize the model performance and to remove the singularity at the poles, 196 ICON solves the prognostic variables suggested by Gassmann and Herzog (2008), 197 on an unstructured triangular grid with C-type staggering based on a successive 198 refinement of a spherical icosahedron (Wan et al., 2013). Governing equations are 199 described in Wan et al. (2013) and Zängl et al. (2015). The DWD has operated the ICON model at a spatial resolution of about 13 km on the global scale since January 200 201 2015. In the global ICON, the higher-resolution ICON-EU (resolution 7 km) nesting

下移了 [1]: A similar strategy was used by <u>Kay et al.</u> [2019] for the evaluation of precipitation in a climate model with CloudSat observations and termed "scaleaware and definition-aware evaluation". <u>Stengel et al.</u> (2020) applied a cloud classification algorithm developed for satellite observations to model simulated brightness temperatures in a similar manner.

211	area for Europe has been embedded since July 2015. In this study, ICON-2.6.4 v	vith
212	the NWP physics package is used and initial and lateral boundary conditions are	
213	provided by the ICON-EU analyses.	
214		
215	For cloud microphysics, we use an updated version of the two-moment cloud	
216	microphysics scheme developed by Seifert and Beheng (2006). The two-moment	t
217	scheme predicts the number and mass mixing ratios of two liquid (cloud and rain)
218	and four solid (ice, graupel, snow, and hail) hydrometers. The cloud condensation	า
219	nuclei (CCN) activation is described following the parameterization developed by	
220	Hande et al. (2016). Homogeneous freezing, including freezing of liquid water	
221	droplets and liquid aerosols, is parametrized according to Kärcher et al. (2006).	
222	Heterogeneous ice nucleation, including the immersion and deposition modes, is	
223	parameterized as a function of temperature- and ice supersaturation-dependent I	NP
224	concentration (<u>Hande et al., 2015</u>). The INP concentration due to immersion	
225	nucleation is described as the following equation:	
226	$C_{INP}(T_K) = A \times \exp[-B \times (T_K - T_{\min})^C]$	(1)
227	where T_k is the ambient temperature in Kelvin; A, B, and C are fitting constants w	rith
228	different values to represent seasonally varying dust INP concentrations. The	
229	parameterization for deposition INPs is simply scaled to the diagnosed relative	
230	humidity with respect to ice (RH _{ice}):	
231	$C_{INP}(T_{K}, RH_{ice}) \approx C_{INP}(T_{K}) \times DSF(RH_{ice})$	(2)
232	$DSF(RH_{in}) = a \times \arctan(b \times (RH_{in} - 100) + c) + d$	(3)

$$DSF(RH_{ice}) = a \times \arctan(b \times (RH_{ice} - 100) + c) + d$$
(3)

233 where $C_{INP}(T_K)$ is given by Equation (1); *a*, *b*, c, and *d* are constants. More details 234 are found in Hande et al. (2015).

235 2.2. Simulation setup and sensitivity experiments

236 In this study, the setup consists of two different domains with one-way nesting 237 covering a major part of central Europe (Figure 1). The horizontal resolution for the 238 nested domains is halved from 2400 m to 1200 m in the innermost domain, and the time steps for the two domains are 12 s and 6 s, respectively. 150 vertical levels are 239 240 used, with a grid stretching towards the model top at 21 km. The vertical resolution is 241 the same for all horizontal resolutions and the lowest 1000 m encompass 20 layers. 242 A 1-D vertical turbulence diffusion and transfer scheme is used for the 2400 m and

243 1200 m resolutions, referred to as numerical weather prediction (NWP) physics. 244 Deep convection is assumed to be explicitly resolved, while shallow convection is 245 parameterized for both domains. The simulations are initialized at 00:00 UTC on the 246 study day from ICON-EU analyses and integrated for 24 hours. Simulation results 247 were saved every 15 minutes. At the lateral boundaries of the outer domain, the 248 simulation of the model is updated with 3-hourly ICON-EU analyses. The nested 249 domains are coupled online, and the outer domain provides lateral boundary 250 conditions to the inner domain.

251

261

252 In nature, INP concentration varies across multiple orders of magnitude (Hoose and 253 Möhler, 2012; Kanji et al., 2017). Thus, in our sensitivity experiments, heterogeneous 254 ice formation was scaled by multiplying the default INP concentration (Equation (1)) 255 with a factor of 10⁻², 10⁻¹, 10¹, 10², 10³ for both immersion freezing and deposition ice 256 nucleation. Together with a case with default INP concentration (case CTRL) and 257 one case switching off the secondary-ice production via rime-splintering process (the 258 so called Hallet-Mossop process), 7 cases were created in total to investigate the 259 impact of primary and secondary ice formation on cloud phase distribution in deep 260 convective clouds.

262 In order to assess the sensitivity of the cloud phase to thermodynamics, initial and 263 lateral boundary temperature fields are modified with increasing and decreasing 264 temperature increments, named experiments INC and DEC, respectively. The 265 temperature increment is linearly increased/decreased with height from 0 K at 3 km 266 to +/-3K and +/-5K at 12 km, creating 4 sensitivity experiments DEC03, DEC05, 267 INC03, and INC05. Above 12 km, the increment is constant up to the model top. 268 Initial temperature profiles are shown in Figure 2. The increasing or decreasing 269 environmental temperature leads to changes in the lapse rate and the stability of the 270 atmosphere, and hence results in decrease or increase in the convective available 271 potential energy (CAPE), respectively (Barthlott and Hoose, 2018). Thus, the CAPE 272 increases monotonically from case INC05 (spatial-averaged CAPE at 9:00 UTC: 413 273 J kg⁻¹) to case CTRL (724 J kg⁻¹) and finally to DEC05 (1235 J kg⁻¹). Note that the 274 relative humidity increases/decreases with decreasing/increasing temperature as the 275 specific humidity is unperturbed. The perturbations of INP concentration and 276 initial/lateral temperature profiles are motivated by Hoose et al. (2018) and Barthlott

(删除了:	s
(删除了:	are
$\backslash \gamma$	删除了:	ing
$\backslash \rangle$	删除了:	ing
<u>)</u> (删除了:	between 3 and
	删除了:	Figure 2
γ	设置了格	{式: 字体: 非倾斜

283 and Hoose (2018), respectively. Complementary to these earlier studies, we now

284 investigate an ensemble of several deep convective clouds and focus on influences

- 285 of INP and thermodynamics on cloud phase distribution. Short descriptions of all
- 286 sensitivity experiments performed in this study are listed in <u>Table 1</u>,

287 2.3. Satellite observations and retrieval algorithms

288 The Spinning Enhanced Visible and Infrared Imager (SEVIRI) is a 12-channel imager 289 on board the geostationary Meteosat Second Generation (MSG) satellites. SEVIRI 290 has one high spatial resolution visible channel (HRV) and 11 spectral channels from 291 0.6 to 14 μ m with a 15 min revisit cycle and a spatial resolution of 3 km at nadir 292 (Schmetz et al., 2002). Based on the spectral measurements of SEVIRI, a cloud 293 property data record, the CLAAS-2 dataset (CLoud property dAtAset using SEVIRI, 294 Edition 2), has been generated in the framework of the EUMETSAT Satellite 295 Application Facility on Climate Monitoring (CM SAF) (Benas et al., 2017). CLAAS-2 296 is the successor of CLAAS-1 (Stengel et al., 2014), for which retrieval updates have 297 been implemented in the algorithm for the detection of clouds compared to CLAAS-1 298 (Benas et al., 2017) with the temporal coverage being extended to 2004-2015. 299 Retrieval algorithms for parameters that are important for this study are introduced 300 below. Detailed descriptions for the retrieval algorithms are found in Stengel et al. 301 (2014) and Benas et al. (2017) with the main features being summarized in the 302 following. 303 304 The MSGv2012 software package is employed to detect clouds and their vertical 305 placement (Derrien and Le Gléau, 2005; Benas et al., 2017). Multi-spectral threshold 306 tests, which depend on illumination and surface types, among other factors, are 307 performed to detect cloud appearances. Each satellite pixel is assigned to categories 308 of cloud-filled, cloud-free, cloud water contaminated, or snow/ice contaminated.

- 309 Cloud top pressure (CTP) is retrieved with different approaches using input from
- 310 SEVIRI channels at 6.2, 7.3, 10.8, 12.0, and 13.4 μm (Menzel et al., 1983; Schmetz
- 311 et al., <u>1993; Stengel et al., 2014; Benas et al., 2017</u>). Cloud top height (CTH) and
- 312 cloud top temperature (CTT) are derived from CTP using ancillary data for
- 313 temperature and humidity profiles from ERA-Interim (Dee et al., 2011). The cloud top
- 314 phase (CPH) retrieval is based on a revised version of the multispectral algorithm

(删除了: Table	e 1				
(设置了格式:	字体颜	色: 自动	J设置		
Y	设置了格式 :	字体:	非倾斜,	字体颜色:	自动设置,	检
	宜拼与和诺法					

316	developed by Pavolonis et al. (2005). Clouds are categorized initially into six types,
317	that are liquid, supercooled, opaque ice, cirrus, overlap, and overshooting.
318	Subsequently, the binary cloud phase (liquid or ice) is generated based on the six
319	categories (Benas et al., 2017). Cloud optical and microphysical properties are
320	retrieved using the Cloud Physical Properties (CPP) algorithm (Roebeling et al.,
321	2006). SEVIRI visible (0.6 μm) and near-infrared (1.6 μm) measurements are used
322	to calculate cloud optical thickness (COT) and cloud particle effective radius (r_e) by
323	applying the Nakajima and King (1990) approach in the CPP algorithm (Stengel et
324	al., 2014; Benas et al., 2017). Liquid water path (LWP) and ice water path (IWP) are
325	then computed as a function of liquid/ice water density, COT, and $r_{\rm e}$ of cloud water
326	and cloud ice following the scheme developed by <u>Stephens (1978)</u> .
327	
328	In this study we used instantaneous CLAAS-2 data with temporal resolution of 15
329	minutes and on native SEVIRI projection and resolution. In addition to the CLAAS-2
330	dataset, the recently developed software suite SEVIRI_ML (Philipp and Stengel
331	(2023) in preparation; code available on Github:
332	https://github.com/danielphilipp/seviri ml) was applied to the SEVIRI measurements
333	to obtain cloud top phase and cloud top temperature for the selected case.
334	SEVIRI_ML uses a machine learning approach calibrated against Cloud-Aerosol
335	Lidar with Orthogonal Polarization (CALIOP) data. One feature of the SEVIRI_ML is
336	that it also provides pixel-based uncertainties such that values with low reliability can
337	be filtered out. We applied the retrieval algorithms to the model simulations in this
338	study and compared the results to satellite observations. A similar strategy was used
339	by Kay et al. (2018) for the evaluation of precipitation in a climate model with
340	CloudSat observations and termed "scale-aware and definition-aware evaluation".
1	

341 2.4. Satellite forward operators

342 In order to compare simulation results and satellite observations directly, SEVIRI-like

343 spectral reflectance and brightness temperatures are calculated using the radiative

- 344 transfer model for TOVS (RTTOV, v12.3)(Saunders et al., 2018). RTTOV is a fast
- 345 radiative transfer model for simulating top-of-atmosphere radiances from passive
- 346 visible, infrared, and microwave downward-viewing satellite radiometers. It has been
- 347 widely used in simulating synthetic satellite images and assimilating radiances in

删除了:	Philipp and Stengel,	
	to be submitted	

删除了:

移动了(插入) [1]

删除了: <u>Stengel et al. (2020)</u> applied a cloud classification algorithm developed for satellite observations to model simulated brightness temperatures in a similar manner.

numerical models (<u>Saunders et al., 2018;</u> <u>Pscheidt et al., 2019;</u> <u>Senf et al., 2020;</u>

356 <u>Geiss et al., 2021; Rybka et al., 2021</u>).

357

- 358 In this work, ICON simulated surface skin temperature, near-surface pressure,
- temperature, specific humidity, wind velocity, total liquid water content, total ice water
- 360 content, and effective radius of cloud liquid and cloud ice are used as input to drive
- 361 the RTTOV model. Before inputting to the RTTOV model, ICON simulations are
- 362 remapped onto SEVIRI's full disc coordinate. Brightness temperatures from 8
- 363 channels (at 3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12.0, and 13.4 $\mu m)$ and reflectance from 3
- 364 channels (at 0.6, 0.8, and 1.6 μm) simulated by the RTTOV model are used as input
- 365 to run the remote sensing retrieval algorithms to derive CLAAS-2-like and
- 366 SEVIRI_ML-like retrievals, named ICON_RTTOV_CLAAS-2 and
- 367 ICON_RTTOV_SEVIRI_ML products, respectively.

368 2.5. Synoptic overview

- 369 The day 06 June 2016 was selected to analyze, which was dominated by
- 370 summertime deep convection located in central Europe. The synoptic forcing was
- 371 weak on the day, and convection was triggered mainly by local thermal instabilities.
- 372 The day has been discussed frequently in previous studies in terms of convection
- 373 triggering, cloud microphysics, and its parameterizations (Keil et al., 2019; Geiss et
- 374 <u>al., 2021</u>).

375 3. Results and discussion

- 376 Perturbing INP concentration and temperature profiles directly affects microphysical
- and thermodynamic processes of the developing deep convective clouds, and hence
- 378 impact in-cloud and cloud-top phase distributions. The following section shows
- 379 results and discussions on the sensitivities of cloud phase and cloud microphysics to
- 380 INP concentration and thermodynamic perturbations.

381 **3.1. Spatial distribution of cloud properties**

- 382 Before analyzing the results of sensitivity experiments, retrieved cloud properties via
- 383 RTTOV and the CLAAS-2 retrieval scheme for the CTRL case are compared to
- 384 CLAAS-2 products. Spatial distributions of derived LWP, IWP, and COT at 13:00

385	UTC of the CTRL case and CLAAS-2 satellite observation are shown in Figure 3,	删除了: Figure 3
386	Discrepancies are found between ICON simulation and CLAAS-2 satellite	
387	observations in terms of spatial coverage and intensity. The ICON simulation	
388	overestimates the cloud coverage of low-level liquid clouds compared to CLAAS-2	
389	satellite observations, while LWP derived from the ICON simulation (case CTRL) is	
390	smaller and more homogeneously distributed than that from the CLAAS-2	
391	observation (Figure 3 and 3b). The spatial distributions of IWP and COT represent	删除了: Figure 3
392	the approximate location and spatial extension of deep convective clouds in this	设置了格式: 字体: 非倾斜
393	study. The ICON simulation could reproduce cores of deep convective clouds of a	
394	number and spacing comparable to observations, while the spatial extension and	
395	intensity of individual deep convective clouds are not simulated very well by the	
396	ICON model. The ICON simulation underestimates the spatial extension of deep	
397	convective clouds but overestimates IWP and COT outside the convective cores	
398	compared to the CLAAS-2 observation (Figure 3c-f).	删除了: Figure 3
399		
400	Overall, the simulated clouds appear to be too homogeneous without sufficient	
401	internal structure. Geiss et al. (2021) also reported significant deviations between	
402	model simulations and satellite observations. The error sources are manifold and	
403	may originate from the model physics as well as from the forward operator and the	
404	retrieval algorithm. Geiss et al. (2021) investigated the sensitivity of derived visible	删除了: Moreover,
405	and infrared observation equivalents to model physics and operator settings. They	
406	found that the uncertainty of the visible forward operator is sufficiently low while	
407	infrared channels could bring errors in cloud-top variables. Geiss et al. (2021)	
408	concluded that the primary source of deviations is mainly from model physics,	删除了: concluded
409	especially model assumptions on subgrid-scale clouds. In addition to the subgrid-	
410	scale cloud scheme, multiple critical cloud microphysical processes missing from the	
411	model, introducing significant uncertainties into the simulation results. For example,	
412	entrainment mixing process is not resolved or parameterized in the model, which has	
413	essential influences on processes at cloud boundaries and hence the cloud	
414	properties (Mellado, 2017). Moreover, secondary ice processes including droplet	
415	shattering and collisional breakup due to ice particles collisions are missing, which	
416	have significant impacts on the cloud ice microphysics (Sullivan et al., 2018;	
417	Sotiropoulou et al., 2021).	

423	3.2. Sensitivity of microphysical properties to INP perturbation		
424	Perturbing INP concentration results in a direct influence on the heterogeneous		
425	freezing processes and hence impacts on cloud microphysical properties.		
426	Systematic variations have been found in the spatial- and time-averaged profiles of		
427	mass mixing ratios of cloud hydrometeors as shown in Figure 4, All profiles		(删除了: Figure 4
428	discussed here are averaged over cloudy pixels (defined as having a condensed		设置了格式: 字体:非倾斜
429	mass of cloud water plus total cloud ice greater than a threshold of 1.0×10^{-5} kg kg ⁻¹)	*****	(删除了: cloud
430	and over the time period from 9:00 to 19:00 UTC, when convection was well		
431	developed. The mass concentration of ice crystals decreases with increasing INP		
432	concentration (Figure 4a). However, the mass concentration of snow, graupel, and		(刪除了: Figure 4
433	rainwater increase with increasing INP concentration, especially in the high INP		设置了格式: 字体: 非倾斜
434	concentration cases (cases $A \times 10^2$ and $A \times 10^3$).		
435			
436	In order to further reveal why ice crystal mass concentration decreases with		
437	increasing INP concentration, we investigate process rates related to ice particle		
438	nucleation and growth. Figure 5 shows spatial- and time-averaged (from 9:00 to		(刪除了: Figure 5
439	19:00 UTC) profiles of process rates for homogeneous freezing, heterogeneous		(设置了格式: 字体:非倾斜
440	freezing, secondary ice production via the rime-splintering process, cloud droplets		
441	rimed with ice crystals, rain droplets rimed with ice crystals, and collection between		
442	ice and ice crystals. Heterogeneous freezing (Figure 5a) includes processes of		(刪除了: Figure 5
443	immersion freezing, deposition ice nucleation, and immersion freezing of liquid		(设置了格式: 字体:非倾斜
444	aerosols (Kärcher et al., 2006; Hande et al., 2015), see also equations (1) and (2).		
445	Process rates of heterogeneous freezing increase significantly with increasing INP		
446	concentration compared to the CTRL (Figure 5a). Compensating the change in		(删除了: Figure 5
447	heterogeneous freezing, process rates of homogeneous freezing decrease		(设置了格式: 字体:非倾斜
448	significantly with increasing INP concentration (Figure 5b). However, a decrease in		(刪除了: Figure 5
449	INP concentration (compared to the CTRL) does not have a strong influence on the		(设置了格式: 字体:非倾斜
450	heterogeneous freezing mass rate, which is already low compared to the other		
451	processes in CTRL. Riming processes of cloud droplets and rain droplets onto ice		
452	crystals are greatly invigorated due to enhanced INP concentration (Figure 5d and		(删除了: Figure 5
453	5e). Moreover, process rates of secondary ice production due to rime-splintering are		
454	strengthened as well due to the increase in rimed ice, albeit much lower values.		
455	Figure 5 shows process rates of collection between ice and ice crystals. Process		删除了: Figure 5

465	rates of collection between ice and ice particles increase with increasing INP
466	concentration, especially in high INP concentration cases (cases $A \times 10^2$ and $A \times 10^3$).
467	Process rates of collection of other ice particles all increase with increasing INP
468	concentration, similar to the collection between ice and ice crystals (not shown). The
469	increase in the riming of clouds and rain droplets onto ice crystals and collections
470	between ice particles leads to the increase in the mass concentration of snow,
471	graupel, and hail (Figure 4 b and 4c). However, the total mass increase in snow,
472	graupel, and hail do not outbalance the decrease in the mass concentration of ice
473	crystals (Figure 4). The weakened homogeneous freezing is most likely the dominant
474	factor leading to the decrease in ice mass concentration in high INP cases,
475	considering the magnitude of the process rate of homogeneous freezing (Figure 5b).
476	Supercooled liquid and cloud droplets have been converted into ice crystals before
477	reaching the homogeneous freezing layer, leading to fewer supercooled droplets
478	remaining for homogeneous freezing. Even though homogeneous freezing is
479	weakened in high INP cases, the process rate of homogeneous freezing is still larger
480	than heterogeneous freezing, which means homogeneous freezing is the dominant
481	ice formation process in the convective clouds discussed in this study. Moreover, the
482	enhanced production of large ice particles (snow, graupel, and hail) in the highest
483	INP case, which sediment more rapidly to lower levels, leads to increased surface
484	precipitation by about 10% in the $A \times 10^3$ case (not shown). Interestingly, ice crystal
485	effective radius (r_e^{ice}) increases monotonically with increasing INP concentration,
486	especially in the mixed-phase layer (Figure 4e). Zhao et al. (2019) also reported an
487	increased r_e^{ice} with polluted continental aerosols in their simulated moderate
488	convection cases, and they attributed it to enhanced heterogeneous freezing and
489	prolonged ice crystal growth at higher INP loading.
490	
491	This competition between homogeneous and heterogeneous freezing has been
492	discussed in previous studies (<u>Heymsfield et al., 2005; Deng et al., 2018; Takeishi</u>
493	and Storelvmo, 2018). In contrast, simulations of mixed-phase moderately deep
494	convective clouds by Miltenberger and Field (2021) indicate that cloud ice mass
495	concentration increases with increasing INP concentration, which is in opposition to
496	the findings in this work. The main reason is that the CTT is about -18 $^\circ$ C in

497 <u>Miltenberger and Field (2021)</u>'s study, and heterogeneous freezing does not

(删除了: Figure 4
(设置了格式: 字体:非倾斜
	删除了: Figure 4
	设置了格式: 字体: 非倾斜
(删除了: Figure 5
	设置了格式: 字体:非倾斜

删除了: Figure 4

502 compete with homogeneous freezing. Thus, results on INPs effects on glaciation503 processes in convective clouds can be opposite under different conditions.

504 3.3. Cloud liquid mass fraction

505 Varying the INP concentration has a direct impact on the primary ice formation. 506 Thus, it affects cloud liquid mass fraction within the clouds (directly for all cloudy 507 layers where heterogeneous freezing is active and indirectly for warmer and colder 508 temperatures) and at the cloud top. Cloud liquid mass fraction is defined as the ratio 509 of mass mixing ratio between cloud droplets (qc) and the sum of cloud droplets and 510 cloud ice crystals (qi). In-cloud liquid mass fraction, sampled at a time interval of 15 511 minutes between 9:00 to 19:00 from all cloudy pixels, is shown as scatterplots **5**12 versus temperature in Figure 6a-d. The corresponding frequencies of the occurrence 513 of the temperature/liquid fraction bins are shown in Figure 6e-h. Similar analyses 514 were made by Hoose et al. (2018), but for idealized simulations of deep convective 515 clouds. In-cloud liquid mass fractions smaller than 0.5 are quite common already at 516 temperature just below -3 °C except for the case without rime-splintering process 517 (A×10⁰ NSIP). The decrease in INP concentrations has limited effects on the in-518 cloud liquid mass fraction (Figure 6 and 6g), while a stronger influence has been 519 found in the case with enhanced INP concentration (Figure 6d and 6h). The number 520 of pixels having high liquid mass fraction values at temperatures lower than -30 °C 521 decreases with increasing INP concentration. In addition, more and more pixels 522 having liquid mass fraction smaller than 0.5 appear with increasing INP 523 concentration and the number of pure ice pixels increases with increasing INP 524 concentration as well. This is because higher INP concentration intensifies the 525 heterogeneous freezing processes (immersion freezing and deposition ice 526 nucleation) and invigorates the rime-splintering process as well (will be discussed in 527 section 3.4). Interestingly, at the lower end of the mixed-phase temperature range (-38 ~ -28 °C), there are fewer pixels having high liquid mass fraction in the high INP 528 529 case, and those remaining are mainly the ones at high vertical velocities (above ~ 10 530 m/s). This is probably because supercooled droplets are more easily frozen in high 531 INP cases and stronger updrafts are needed to offset the Wegener-Begeron-532 Findeisen process to maintain the supersaturation with respect to water. Switching 533 off the secondary ice production via rime-splintering process, pixels having a liquid

(删除了: Figure 6
(设置了格式: 字体: 非倾斜
(删除了: Figure 6
\geq	设置了格式: 字体: 非倾斜

(删除了: Figure 6
(设置了格式: 字体: 非倾斜
(删除了: Figure 6
\geq	设置了格式: 字体: 非倾斜

_ 删除了:3

539	mass fraction smaller than 0.9 are reduced significantly at temperatures between -			
5 40	10 °C and 0 °C (<u>Figure 6</u> b and 6f).		删除了: Figure 6	
1 541			设置了格式: 字体:非倾斜	
542	At the cloud top (Figure 7), the number of pixels having a liquid mass fraction smaller	······	删除了: Figure 7	
543	than 0.5 increases with increasing INP concentration, which is the same as within		设置了格式: 字体: 非倾斜	
544	the clouds. "Cloud top" is defined as the height of the uppermost cloud layer (which			
545	has a condensed mass of cloud water plus cloud total cloud ice greater than a			
546	threshold of 1.0×10^{-5} kg kg ⁻¹) in a pixel column. At the cloud top, the liquid mass			
547	fraction has a more polarized distribution, with either large values or small values,			
548	and intermediate values are less common than within the clouds. This is because the			
549	vertical velocities at the cloud top are significantly smaller compared to that within			
550	the cloud, which leads to a more efficient Wegener-Begeron-Findeisen process at			
551	the cloud top.			
552	3.4. Liquid cloud pixel, fraction		删除了: number	
553	Liquid cloud pixel fractions are calculated differently for model simulations and	******	删除了: number	
554	retrieved cloud products. For simulation results, a cloudy pixel having a cloud liquid			
555	mass fraction larger than 0.5 is counted as a liquid pixel, otherwise, it is an ice pixel.			
556	Both CLAAS-2 and SEVIRI ML products and the corresponding retrievals derived			
557	from ICON simulations by the satellite forward operators (see section 2.4) provide			
558	binary cloud phase information (liquid or ice) only. For these data, the liquid cloud			
559	pixel fraction is calculated as the ratio between the number of liquid cloud pixels and		删除了: pixel number fraction	
l 560	the sum of all cloudy pixels.		<u></u>	
561				
562	Liquid cloud pixel fractions within clouds and at the cloud top are shown in Figure 8.		删除了: pixel number fraction	
563	Decrease in INP concentration has limited impacts on the liquid cloud pixel fraction		删除了: Figure 8	
 564	for in-cloud layers. Increase in INP concentration leads to a decrease in liquid cloud		设置了格式: 字体:非倾斜	
565	pixel fraction but not monotonically (Figure & a). The decrease in liquid cloud pixel	******	删除了: pixel number fraction	
566	fraction is significant in the highest INP concentration case (case A×10 ³), while		删除了:Figure 8	
l 567	decreases in intermediate INP concentration cases (cases $A \times 10^1$ and $A \times 10^2$) are		删除了: pixel number fraction	
568	only obvious in temperature ranges from -30 °C to -20 °C and from -15 °C to -5 °C		以里」 1177 1, 于件, 非限耐	
569	Moreover, liquid mass fraction decreases monotonically with increasing INP			
570	concentration in the temperature range from about -15 to -35 °C both within the cloud			
Γ.				

582	and at the cloud top (except for the lowest INP concentrations), and the decreasing		
583	trend is more significant at the cloud top compared to within the cloud (not shown).		
584	Switching off the rime-splintering process results in an increase in liquid cloud pixel		删除了: pixel number fraction
585	fraction in the temperature range between -10 °C and -3 °C, which is consistent with		
586	the strong decrease in pixels of cloud liquid mass fraction lower than 0.9 in the same		
587	temperature range (Figure 7b). The temperature at which the liquid cloud pixel	(删除了: Figure 7
588	fraction equals 0.5 is often termed "glaciation temperature". The glaciation	\sim	删除了: pixel number fraction
1 589	temperature shifts slightly to a warmer temperature by ~2 °C at the highest INP	X	设置了格式: 字体: 非倾斜
590	concentration case (case $A \times 10^3$, Figure 8a).	(删除了: Figure 8
 591			
592	Sensitivities of the cloud phase to INP concentration are more complex at the cloud		
593	top than inside the cloud. Liquid cloud <u>pixel fraction</u> s at the cloud top calculated	(删除了: pixel number fraction
594	directly from ICON simulations on its native grid (~1200 m) are shown in Figure 8b.	(删除了:Figure 8
595	Cloud-top liquid pixel fraction decreases significantly with increasing INP		设置了格式: 字体: 非倾斜
l 596	concentration. In the temperature range between -35 °C and -15 °C, where	(删除了: pixel number fraction
597	heterogeneous freezing processes (immersion freezing and deposition nucleation)		
598	are dominant, the impact of INP is most pronounced. Above -15 °C, the impact of		
599	INP does not disappear, especially in the highest INP concentration case (case		
600	$A \times 10^3$). This is mostly likely due to the sedimentation of ice crystals from upper		
601	layers and the secondary ice production invigorated by the Wegener-Begeron-		
602	Findeisen process. Switching off the rime-splintering process increases cloud-top		
603	liquid <u>pixel fraction</u> only slightly in the temperature range from -10 °C to -3 °C and is	(删除了: pixel number fraction
604	almost identical to the control run (case CTRL) outside this temperature range.		
605	Interestingly, the shift of glaciation temperature with increasing INP concentration is		
606	about 8 °C (Figure <u>8</u> b) at the cloud top, which is stronger than that inside the clouds	(删除了: Figure 8
607	(~2 °C, Figure &a). A possible explanation is that, typically, the vertical velocity at the	(设置了格式: 字体: 非倾斜
l 608	cloud top is smaller than within the cloud and the ice formation through the Wegener-		删除了: Figure 8 没買了終式・ 字体・非価斜
609	Bergeron-Findeisen process is expected to be more efficient. Thus, the Wegener-	(
610	Begeron-Findeisen process is more sensitive to INP perturbation at the cloud top		
611	than within clouds, and leads to the glaciation temperature shifting to be more		
612	significant at the cloud top		

624 Liquid cloud pixel fractions at the cloud top calculated directly from ICON simulations 625 on SEVIRI's grid (~ 5000 m) are shown in Figure 8c. They are noisier and do not 626 exhibit the small minimum between -10 °C and -3 °C related to rime-splintering, but 627 are otherwise very similar to Figure 8b. In contrast, the scale-aware and definition-628 aware ICON RTTOV CLAAS-2 cloud-top liquid pixel fractions shown in Figure &d 629 differ markedly from the direct or regridded model output. Above -23 °C, increase 630 and decrease in INP concentration both lead to a decrease in cloud-top liquid pixel 631 fraction at certain temperature, but the high INP concentration cases (cases A×10² and A×10³), still exhibit the lowest liquid fractions, and case A×10⁰ NSIP the highest. 632 633 Thus, the fingerprints of primary and secondary ice formation are retained in the 634 ICON RTTOV CLAAS-2 liquid fraction in this temperature range only for very strong 635 perturbations. At the same time, it must be noted that the decrease of the liquid <u>pixel</u> 636 fraction to values around 0.8 above -15 °C is not related to the rime-splintering 637 process, but to the application of the CLAAS-2 satellite simulator. Below -23 °C, in 638 the high INP cases $A \times 10^2$ and $A \times 10^3$, cloud-top liquid pixel fractions even increase 639 with increasing INP concentration. In moderate and low INP cases, the impacts of 640 INP perturbation are not pronounced. Moreover, the shape of cloud-top liquid pixel 641 fraction decreasing with cloud-top temperature is different from that in Figure 8b. 642 Here, the fingerprints of the ice formation processes are completely lost. As 643 demonstrated in Figure &c, remapping of simulation data onto SEVIRI's coarser grid 644 is not the cause of liquid pixel fraction difference between direct ICON output and the 645 ICON_RTTOV_CLAAS-2 diagnostics, but the <u>CLAAS-2 retrieval algorithm itself</u> is 646 responsible. 647 648 The satellite observed cloud-top liquid pixel fraction from CLAAS-2 is plotted as a 649 grey dashed line in Figure 8d. It does not reach 1.0 for all cases even as the cloud-650 top temperature is approaching 0 °C, and shows a different temperature dependency 651 than the simulated curves. No matter how strong the INP concentration and rimesplintering are perturbed, the retrieved cloud-top liquid pixel fractions from simulation 652 653 data deviate strongly from the CLAAS-2 products. In this context one should note 654 that in particular cloud edges have been found to be problematic situations for the

- 655 cloud retrievals, being to some extent responsible for biasing the liquid-pixel fraction
- 656 towards smaller values, in particular for the CLAAS-2 data.

/ 删除了: pixel number fraction
删除了: Figure 8
设置了格式: 字体: 非倾斜
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
删除了: Figure 8
设置了格式: 字体: 非倾斜
删除了: pixel number fraction

(删除了: pixel number fraction
₩除了: ↔
删除了: pixel number fraction
(删除了: pixel number fraction
/ 删除了:Figure 8
设置了格式: 字体:非倾斜
删除了: Figure 8
设置了格式: 字体:非倾斜
删除了: pixel number fraction
删除了: loss of information through the postprocessing
设置了格式: 非突出显示
- / 删除了: pixel number fraction

~		· · · ·				
(删除了:	Figu	re 8			
~~(设置了榕	(式:	字体:	非倾斜		

-(删除	ſ	:	pixel	number	fractio

675		
676	Finally, the comparison to observations is repeated with the SEVIRI_ML retrieval	
677	scheme applied to both simulated radiances (ICON RTTOV SEVIRI ML) and the	
678	SEVIRI observations themselves (Figure 8e), As SEVIRI ML provides uncertainty	删除了: Figure 8
679	estimates nixels for which either the cloud mask uncertainty or the cloud phase	设置了格式:字体:非倾斜
680	uncertainty is larger than 10% are filtered out. While this ensures that only very	
681	contain values are kent, it has a significant impact on the number of remaining values	
6001	contain values are kept, it has a significant impact on the number of remaining values	
002		m际1: pixel number fraction
683	ICON_RTTOV_SEVIRI_ML bear a much stronger similarity to the regridded model	
684	output in Figure &c. Remaining differences are a noisier behavior, a plateau of non-	/ 删除了: Figure 8
685	zero liquid <u>pixel fraction</u> s even below -40 °C, and a general shift to lower	设置了格式: 字体: 非倾斜
686	temperatures. SEVIRI_ML applied to observations (dashed black line in Figure &e),	删除了: pixer number fraction
687	with the same uncertainty criterion, exhibits the expected behavior with a liquid	设置了格式:字体:非倾斜
688	fraction of approximately 1 above -10 <u>°C</u> and 0 below approximately -30 °C, and	
689	results in a very good agreement to the A×10 ³ case. Generally, the SEVIRI ML	
690	retrieval algorithm is assumed to perform better than the CLAAS-2 scheme for both	
691	cloud top temperature and cloud phase. This is because SEVIRI ML employs state-	
692	of-the-art neural networks to emulate CALIOP v4 data. Moreover, SEVIRI ML	
693	provides uncertainty estimates which facilitates fliting out pixels with high	
694	uncertainties. Nevertheless, retrieval inaccuracies are unavoidable for passive	
695	satellite retrievals which holds true for CLAAS-2 but also for SEVIRI ML.	
696	3.5. Sensitivity of cloud phase to atmospheric stability perturbations	
697	In addition to the reference run (case CTRL) four cases with perturbations in initial	
698	temperatures are analyzed. Mean undraft velocities increase gradually from the low	
400	CAPE case INCO5 to high CAPE case DEC05 (Figure 9) and cause differences in	· 刪除了· Figure 9
700	CAPE case intoos to high CAPE case DECOS (<u>Figure a)</u> and cause differences in	设置了格式: 字体: 非倾斜
700	cioud microphysics and cioud phase distributions.	
701		
702	In-cloud and cloud-top liquid cloud <u>pixel fractions</u> for the five cases are shown in	 一删除了: pixel number fraction
703	Figure 10, Systematic shifting of liquid cloud pixel fractions is detected both inside	删除了: Figure 10
704	clouds and at the cloud top. Liquid cloud <u>pixel fraction</u> decreases with increasing	删除了: pixel number fraction
l 705	CAPE from INC05 to DEC05. Both in-cloud and cloud-top glaciation temperatures	设置了格式: 字体:非倾斜
706	shift toward warmer temperatures as the CAPE increases from case INICO5 to	删除了: pixel number fraction
100		August 1 . IIIA

删除了: Figure 8
设置了格式: 字体: 非倾斜
删除了: pixel number fraction
删除了: Figure 8
设置了格式: 字体: 非倾斜
페야구· °C

719 DEC05. This is different from the results reported by Hoose et al. (2018) that cloud-720 top glaciation temperatures hardly changed with increasing temperature in the 721 boundary-layer by 2 °C, and appears to be contradictory to the expectation that 722 stronger vertical velocities result in a lower glaciation temperature due to 723 suppression of the Wegener-Bergeron-Findeisen process (Korolev, 2007). Further 724 analysis (not shown) revealed that the mass concentration of cloud ice particle 725 increases while the mass concentration of cloud droplet decreases with the increase 726 in CAPE from case INC05 to DEC05. Moreover, homogeneous and heterogeneous 727 freezing are both enhanced in the high CAPE cases (Figure 11), possibly due to 728 more transport of moisture to upper levels in the stronger updrafts (Figure 9). With 729 more ice generated, the Wegener-Begeron-Findeisen process can be stimulated 730 despite the higher updrafts. Interestingly, cloud-top liquid <u>pixel fractions</u> from the two 731 high CAPE cases (cases DEC03 and DEC05) are closer to SEVIRI observations, 732 both using the CLAAS-2 retrieval (Figure 10c) and the SEVIRI ML retrieval (Figure 733 10d), especially in the temperature range between -10 and -28 °C. Overall, 734 perturbing initial thermodynamic states or CAPE of convective clouds is as important 735 as and may even stronger than the modifications to cloud heterogeneous freezing

736 parameterizations.

737 4. Conclusions

738 Remote sensing products, which cover the entire globe, provide a unique opportunity 739 to constrain the representation of cloud microphysics in global and regional 740 numerical models. In this study, instead of comparing simulation results to satellite 741 observations directly, we derived cloud properties using a radiative transfer model 742 and two different satellite remote sensing retrieval algorithms and then performed the 743 comparison. This enables us to make apples-to-apples comparisons between model 744 simulations and satellite observations. A series of numerical experiments were 745 performed applying convection-permitting simulations with perturbations in INP 746 concentrations and initial thermodynamic states to investigate their impacts on cloud 747 phase distributions in deep convective clouds. Moreover, cloud properties were 748 derived using a satellite forward operator and retrieval algorithms with ICON simulations as input, and compared with CLAAS-2 and SEVIRI ML satellite cloud 749

- 50 products to evaluate whether satellite retrievals could detect perturbations in cloud

 Figure 11	
	_
 Figure 9	

(删除了: pixel number fraction

(删除了: Figure 10
(设置了格式: 字体: 非倾斜
(删除了: Figure 10
\geq	设置了格式: 字体: 非倾斜

删除了: evaluate cloud microphysical processes of numerical models using satellite observations directly.

758	microphysics and thermodynamics. Uncertainties in the forward operator were		
759	however not assessed in this study, which may influence the validity of		
760	corresponding results in some extent.		删除了: Simulation results were compared to cloud
761			evaluate the model performance in simulating cloud-top
762	INP concentration was found to have a significant role in shaping cloud phase		microphysical properties.
763	distributions both within clouds and at the cloud top. Cloud liquid pixel fraction		删除了: pixel number fraction
764	decreased with increasing INP concentration both within the cloud and at the cloud		删除了: s
765	top, indicating a higher glaciation temperature and more intense heterogeneous		
766	freezing processes in enhanced INP concentration cases. Interestingly, the		
767	influences of INP did not increase linearly but are more pronounced in the high INP		删除了: do
768	concentration cases. In addition, the shifting of glaciation temperature was more		删除了: i
769	significant at the cloud top than within the cloud, which means the impact of INP		
770	concentration on cloud phase distribution is more pronounced at the cloud top. Jt		删除了: This has implications for analyzing cloud
771	turned out that with the CLAAS-2 retrieval scheme, the INP sensitivity of the cloud-		observations
772	top phase distribution was not detectable, while the SEVIRI_ML retrieval scheme, for		
773	which the most uncertain pixels could be excluded, resulted in a better agreement		
774	and retained the sensitivity to INP. In contrast, secondary ice production via rime-		
775	splintering did not have a detectable impact on the cloud-top phase distribution.		
776	Therefore, in future studies, we recommend using the SEVIRI_ML retrieval scheme		
777	and SEVIRI_ML satellite-based cloud products.		
778			
779	Lce crystal mass concentration, did, not increase but decreases with increasing INP		删除了:Total cloud i
780	concentrations in the simulated deep convective clouds. Process rate analyses		删除了: s
781	revealed that heterogeneous freezing process rates increased with increasing INP)	删除]: o
782	concentration, while homogeneous freezing process rates decreased with increasing		删除了: s
783	INP concentration. The competition between heterogeneous freezing and		删除了: concerns
784	homogeneous freezing for water vapor suppressed ice formation via homogeneous		删除了: s
785	freezing, which was the dominant nucleation process in the simulated deep		删除了: i
786	convective clouds, and hence <u>reduced</u> the cloud ice mass concentration. The		删除了: decreases
787	increase in heterogeneous nucleation in high INP cases invigorated riming and		删除了: invigorates
788	collection processes of ice particles, making it easier for small ice crystals to grow		
789	into large ice aggregates and sediment to lower levels. This was the reason why		删除了: i
790	precipitation increases in enhanced INP cases.		
791			

813	Perturbations in initial thermodynamic states had a strong impact on the cloud phase	删除了: have
814	distribution both within the cloud and at the cloud top, although the used	
815	perturbations might be rather large compared to initial condition uncertainty in a	
816	weather forecasting context. Moreover, cloud thermodynamics can perturb the cloud	
817	phase distribution even stronger than microphysics. To completely distinguish	
818	microphysical impacts from thermodynamic impacts, applying a piggybacking	
819	approach (<u>Grabowski, 2015</u> ; <u>Thomas et al., 2023</u>) in future simulations is necessary.	
820		
821	Utilizing satellite forward operator (the RTTOV radiative model) and remote sensing	
822	retrieval algorithms enabled us to derive cloud-top microphysical properties and	删除了: roduct
823	compare simulation results to satellite products more consistently. However, there	
824	were significant differences in retrieved cloud-top liquid fractions between model	删除了: are
825	simulations and satellite products. The sources of errors were, very complicated and	删除了: are
826	may come from simulation results, satellite operators, and, retrieval algorithms, which	删除了: or
827	will be investigated in the future. Moreover, the cloud-top property analysis	
828	presented in this study was based on domain-wide statistics, including clouds of	删除了: i
829	varying types. Statistical results could differ if individual clouds are tracked, as clouds	
830	differ in different experiments in terms of locations and extensions. Although there	
831	are significant uncertainties in satellite forward operators and retrieval algorithms,	
832	passively remote-sensed cloud products provide potential opportunities to constrain	
833	microphysical processes in numerical models.	
834		
835	Simulation results of this study revealed a close dependence of heterogeneous	
836	freezing and cloud phase distribution on INP concentrations. Despite this finding, the	
837	ice formation processes in deep convective clouds remain poorly understood. It is	
838	necessary to investigate how and in which conditions the competition of	
839	heterogeneous with homogeneous freezing for water vapor and cloud water depends	
840	on INP availability and vertical velocities in different types of deep convective clouds.	
841	Moreover, the importance of other secondary ice production processes than rime-	
842	splintering (droplet shattering and collisional breakup) in deep convective clouds	

- need to be quantified in the future.

851 Competing interests

- 852 One of the (co-)authors (Corinna Hoose) is a member of the editorial board of
- 853 Atmospheric Chemistry and Physics.
- 854

855 Acknowledgments

- 856 This project has received funding from the European Research Council (ERC) under
- 857 the European Union's Horizon 2020 research and innovation programme under grant
- agreement 714062 (ERC Starting Grant "C2Phase"). We gratefully acknowledge the
- 859 computing time allowed by the German Climate Computing Centre (DKRZ) on the
- 860 HPC system Mistral and the Steinbuch Centre for Computing (SCC) on the HPC
- 861 system ForHLR II. The contribution of Martin Stengel was supported by EUMETSAT
- and its member states through CM SAF.
- 863

864 References

- Barrett, A. I. and Hoose, C.: Microphysical pathways active within thunderstorms and their sensitivity to CCN concentration and wind shear, Journal of Geophysical Research: Atmospheres, 128, e2022JD036965, <u>https://doi.org/10.1029/2022JD036965</u>, 2023.
- Barthlott, C. and Hoose, C.: Aerosol effects on clouds and precipitation over central
 Europe in different weather regimes, Journal of the Atmospheric Sciences, 75,
 4247-4264, <u>https://doi.org/10.1175/JAS-D-18-0110.1</u>, 2018.
- 872 Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G. J., Hanschmann, T.,
 873 Hollmann, R., and Meirink, J. F.: The MSG-SEVIRI-based cloud property data
 874 record CLAAS-2, Earth Syst. Sci. Data, 9, 415-434,
 875 <u>http://dx.doi.org/10.5194/essd-9-415-2017</u>, 2017.
- Bruno, O., Hoose, C., Storelvmo, T., Coopman, Q., and Stengel, M.: Exploring the
 cloud top phase partitioning in different cloud types using active and passive
 satellite sensors, Geophysical Research Letters, 48, e2020GL089863e082020GL089863, https://doi.org/10.1029/2020GL089863, 2021.
- Coopman, Q., Hoose, C., and Stengel, M.: Analysis of the thermodynamic phase transition of tracked convective clouds based on geostationary satellite observations, Journal of Geophysical Research: Atmospheres, 125, e2019JD032146, <u>https://doi.org/10.1029/2019JD032146</u>, 2020.
- Coopman, Q., Hoose, C., and Stengel, M.: Analyzing the thermodynamic phase
 partitioning of mixed phase clouds over the southern ocean using passive
 satellite observations, Geophysical Research Letters, 48, e2021GL093225,
 <u>https://doi.org/10.1029/2021GL093225</u>, 2021.
- Bee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.,
 Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,

- A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
 Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E.
- 892 V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-
- 893 Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P.,
- 894 Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis:
- configuration and performance of the data assimilation system, Quarterly
 Journal of the Royal Meteorological Society, 137, 553-597,

897 <u>https://doi.org/10.1002/qj.828</u>, 2011.

- Boeng, X., Xue, H., and Meng, Z.: The effect of ice nuclei on a deep convective cloud
 in South China, Atmospheric Research, 206, 1-12,
 https://doi.org/10.1016/j.atmosres.2018.02.013, 2018.
- Derrien, M. and Le Gléau, H.: MSG/SEVIRI cloud mask and type from SAFNWC,
 International Journal of Remote Sensing, 26, 4707-4732,
 https://doi.org/10.1080/01431160500166128, 2005.
- Fan, J., Comstock, J. M., and Ovchinnikov, M.: The cloud condensation nuclei and ice nuclei effects on tropical anvil characteristics and water vapor of the tropical tropopause layer, Environmental Research Letters, 5, 044005, https://doi.org/10.1088/1748-9326/5/4/044005, 2010.
- Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of aerosol–cloud interactions:
 Mechanisms, significance, and challenges, Journal of the Atmospheric
 Sciences, 73, 4221-4252, https://doi.org/10.1175/JAS-D-16-0037.1, 2016.
- Field, P. R., Hogan, R. J., Brown, P. R. A., Illingworth, A. J., Choularton, T. W., Kaye,
 P. H., Hirst, E., and Greenaway, R.: Simultaneous radar and aircraft
 observations of mixed-phase cloud at the 100 m scale, Quarterly Journal of
 the Royal Meteorological Society, 130, 1877-1904,
 <u>https://doi.org/10.1256/qi.03.102</u>, 2004.
- Gassmann, A. and Herzog, H.-J.: Towards a consistent numerical compressible nonhydrostatic model using generalized Hamiltonian tools, Quarterly Journal of the Royal Meteorological Society, 134, 1597-1613, http://dx.doi.org/10.1002/gj.297, 2008.
- Geiss, S., Scheck, L., de Lozar, A., and Weissmann, M.: Understanding the model
 representation of clouds based on visible and infrared satellite observations,
 Atmos. Chem. Phys., 21, 12273-12290, <u>https://doi.org/10.5194/acp-21-12273-</u>
 2021, 2021.
- Grabowski, W. W.: Untangling microphysical impacts on deep convection applying a novel modeling methodology, Journal of the Atmospheric Sciences, 72, 2446-2464, <u>https://doi.org/10.1175/JAS-D-14-0307.1</u>, 2015.
- 927 Grabowski, W. W., Morrison, H., Shima, S.-I., Abade, G. C., Dziekan, P., and
 928 Pawlowska, H.: Modeling of cloud microphysics: Can we do better?, Bulletin
 929 of the American Meteorological Society, 100, 655-672,
 930 <u>https://doi.org/10.1175/BAMS-D-18-0005.1</u>, 2019.
- Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Seasonal variability of Saharan
 desert dust and ice nucleating particles over Europe, Atmos. Chem. Phys.,
 15, 4389-4397, <u>http://dx.doi.org/10.5194/acp-15-4389-2015</u>, 2015.
- Hande, L. B., Engler, C., Hoose, C., and Tegen, I.: Parameterizing cloud
 condensation nuclei concentrations during HOPE, Atmos. Chem. Phys., 16,
 12059-12079, <u>http://dx.doi.org/10.5194/acp-16-12059-2016</u>, 2016.
- Hawker, R. E., Miltenberger, A. K., Wilkinson, J. M., Hill, A. A., Shipway, B. J., Cui,
 Z., Cotton, R. J., Carslaw, K. S., Field, P. R., and Murray, B. J.: The
 temperature dependence of ice-nucleating particle concentrations affects the
 - 24

940	radiative properties of tropical convective cloud systems, Atmos. Chem.			
941	Phys., 21, 5439-5461, <u>https://doi.org/10.5194/acp-21-5439-2021,</u> 2021.			
942	Heymsfield, A. J., Miloshevich, L. M., Schmitt, C., Bansemer, A., Twohy, C., Poellot,			
943	M. R., Fridlind, A., and Gerber, H.: Homogeneous ice nucleation in subtropical			
944	and tropical convection and its influence on cirrus anvil microphysics. Journal			
9/5	of the Atmospheric Sciences 62, 41-64, http://dx/doi.org/10.1175/JAS-3360.1			
94J 046	2005			
940	2005.			
947	Hoose, C. and Mohler, O.: Heterogeneous ice nucleation on atmospheric aerosols: a			
948	review of results from laboratory experiments, Atmos. Chem. Phys., 12, 9817-			
949	9854, <u>https://doi.org/10.5194/acp-12-9817-2012</u> , 2012.			
950	Hoose, C., Karrer, M., and Barthlott, C.: Cloud top phase distributions of simulated			
951	deep convective clouds, Journal of Geophysical Research: Atmospheres,			
952	123, 10,410-464,476, https://doi.org/10,1029/2018.JD028381, 2018			
953	Kanji Z A Ladino L A Wey H Boose X Burkert-Kohn M Cziczo D L and			
054	Krämer M.: Overview of ice publiciting particles. Meteorological Monographs			
904	Fig. 1 4 2 2 https://doi.org/10.1175/JMCNO.000000000000000000000000000000000000			
900	56, 1.1-1.33, <u>https://doi.org/10.1173/AMSMONOGRAPHS-D-16-0006.1</u> , 2017.			
956	Karcher, B., Hendricks, J., and Lohmann, U.: Physically based parameterization of			
957	cirrus cloud formation for use in global atmospheric models, Journal of			
958	Geophysical Research: Atmospheres, 111,			
959	https://doi.org/10.1029/2005JD006219, 2006.			
960	Kay, J. E., L'Ecuyer, T., Pendergrass, A., Chepfer, H., Guzman, R., and Yettella, V.:			
961	Scale-aware and definition-aware evaluation of modeled near-surface			
962	precipitation frequency using CloudSat observations, Journal of Geophysical			
963	Research: Atmospheres 123 /204-/300			
064	https://doi.org/10.1002/2017.1002/2012.2019			
904	<u>Intels://doi.org/10.1002/20173D028213</u> , 2018.			
965	Kell, C., Baur, F., Bachmann, K., Rasp, S., Schneider, L., and Barthlott, C.: Relative			
966	contribution of soil moisture, boundary-layer and microphysical perturbations			
967	on convective predictability in different weather regimes, Quarterly Journal of			
968	the Royal Meteorological Society, 145, 3102-3115,			
969	https://doi.org/10.1002/gj.3607, 2019.			
970	Korolev, A. and Isaac, G. A.: Relative humidity in liquid, mixed-phase, and ice			
971	clouds, Journal of the Atmospheric Sciences, 63, 2865-2880,			
972	https://doi.org/10.1175/JAS3784.1.2006			
973	Koroley, A : Limitations of the Wegener-Bergeron-Findeisen mechanism in the			
97/	evolution of mixed-phase clouds. Journal of the Atmospheric Sciences 64			
075	3372 3375 http://doi.org/10.1175/10.84035.1.2007			
076	Karolay A. Margarubar C. Field P. P. Franklin C. Lawren P. Wang 7			
970	Korolev, A., Michardunar, G., Field, P. R., Frankin, C., Lawson, P., Wang, Z.,			
977	Williams, E., Abel, S. J., Axisa, D., Borrmann, S., Croster, J., Fugai, J.,			
978	Kramer, M., Lohmann, U., Schlenczek, O., Schnalter, M., and Wendlsch, M.:			
979	Mixed-phase clouds: Progress and challenges, Meteorological Monographs,			
980	58, 5.1-5.50, <u>https://doi.org/10.1175/AMSMONOGRAPHS-D-17-0001.1</u> , 2017.			
981	Korolev, A. V., Isaac, G. A., Cober, S. G., Strapp, J. W., and Hallett, J.:			
982	Microphysical characterization of mixed-phase clouds. Quarterly Journal of			
983	the Royal Meteorological Society 129, 39-65			
984	https://doi.org/10.1256/gi.01.204.2003			
085	Li \mathbf{P} and Min \mathbf{O} L : Impacts of mineral dust on the vertical structure of precipitation			
900	Li, r. and win, G. L. impacts of mineral dust on the vertical structure of precipitation,			
900	Journal of Geophysical Research: Atmospheres, 115,			
987	<u>nttps://doi.org/10.1029/2009JD011925</u> , 2010.			
988	Li, X., Tao, WK., Masunaga, H., Masunaga, Gu, G., and Zeng, X.: Aerosol effects			
989	on cumulus congestus population over the tropical acific: A cloud-resolving			
	25			
	20			

990 001	modeling study, Journal of the Meteorological Society of Japan, 91, 817-833,				
991	10.2151/jmsj.2013-607, 2013.				
992	mixed phase clouds Atmos Chem Phys. 9 8017 8034				
990	https://doi.org/10.519//acp.9.8917.2009.2009				
005	Matus A V and L'Ecuver T S: The role of cloud phase in Earth's radiation budget				
999	Journal of Geophysical Research: Atmospheres, 122, 2559-2578				
997	https://doi.org/10.1002/2016.ID025951_2017				
998	McCov D T Tan L Hartmann D L Zelinka M D and Storelymo T On the				
999	relationships among cloud cover, mixed-phase partitioning, and planetary				
1000	albedo in GCMs. Journal of Advances in Modeling Earth Systems, 8, 650-668.				
1001	https://doi.org/10.1002/2015MS000589, 2016.				
1002	Mecikalski, J. R., Jewett, C. P., Apke, J. M., and Carey, L. D.: Analysis of Cumulus				
1003	Cloud Updrafts as Observed with 1-Min Resolution Super Rapid Scan GOES				
1004	Imagery, Monthly Weather Review, 144, 811-830,				
1005	https://doi.org/10.1175/MWR-D-14-00399.1, 2016.				
1006	Mellado, J. P.: Cloud-top entrainment in stratocumulus clouds, Annual Review of				
1007	Fluid Mechanics, 49, 145-169, 10.1146/annurev-fluid-010816-060231, 2017.				
1008	Menzel, W. P., Smith, W. L., and Stewart, T. R.: Improved cloud motion wind vector				
1009	and altitude assignment using VAS, Journal of Applied Meteorology and				
1010	Climatology, 22, 377-384, <u>https://doi.org/10.1175/1520-</u>				
1011	0450(1983)022<0377:ICMWVA>2.0.CO;2, 1983.				
1012	Miltenberger, A. K. and Field, P. R.: Sensitivity of mixed-phase moderately deep				
1013	convective clouds to parameterizations of ice formation – an ensemble				
1014	perspective, Atmos. Chem. Phys., 21, 3627-3642,				
1015	http://dx.doi.org/10.5194/acp-21-3627-2021, 2021.				
1016	Min, Q. L., Li, R., Lin, B., Joseph, E., Wang, S., Hu, Y., Morris, V., and Chang, F.:				
1017	Evidence of mineral dust altering cloud microphysics and precipitation,				
1018	Atmospheric Chemistry and Physics, 9, 3223-3231,				
1019	<u>Milps://doi.org/10.5194/acp-9-3223-2009</u> , 2009.				
1020	nakajima, T. and King, M. D. Determination of the optical thickness and effective				
1021	Theory Journal of Atmospheric Sciences 47, 1878, 1803				
1022	https://doi.org/10.1175/1520-0/69/1990/047<1878.DOTOTA>2.0 CO.2. 1990				
1023	Noh Y - L Seaman C. L. Vonder Haar T. H. and Liu G.: In situ aircraft				
1025	measurements of the vertical distribution of liquid and ice water content in				
1026	midlatitude mixed-phase clouds Journal of Applied Meteorology and				
1027	Climatology, 52, 269-279, https://doi.org/10.1175/JAMC-D-11-0202.1, 2013.				
1028	Pavolonis, M. J., Heidinger, A. K., and Uttal, T.: Davtime global cloud typing from				
1029	AVHRR and VIIRS: Algorithm description, validation, and comparisons.				
1030	Journal of Applied Meteorology, 44, 804-826,				
1031	https://doi.org/10.1175/JAM2236.1, 2005.				
1032	Pinto, J. O.: Autumnal mixed-phase cloudy boundary layers in the Arctic, Journal of				
1033	the Atmospheric Sciences, 55, 2016-2038, https://doi.org/10.1175/1520-				
1034	0469(1998)055<2016:AMPCBL>2.0.CO;2, 1998.				
1035	Pscheidt, I., Senf, F., Heinze, R., Deneke, H., Trömel, S., and Hohenegger, C.: How				
1036	organized is deep convection over Germany?, Quarterly Journal of the Royal				
1037	Meteorological Society, 145, 2366-2384, <u>http://dx.doi.org/10.1002/qj.3552</u> ,				
1038	2019.				

- Roebeling, R. A., Feijt, A. J., and Stammes, P.: Cloud property retrievals for climate
 monitoring: Implications of differences between Spinning Enhanced Visible
 and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High
 Resolution Radiometer (AVHRR) on NOAA-17, Journal of Geophysical
 Research: Atmospheres, 111, https://doi.org/10.1029/2005JD006990, 2006.
- 1044Rosenfeld, D. and Woodley, W. L.: Deep convective clouds with sustained1045supercooled liquid water down to -37.5 °C, Nature, 405, 440-442,1046https://doi.org/10.1038/35013030, 2000.
- Rosenfeld, D., Yu, X., Liu, G., Xu, X., Zhu, Y., Yue, Z., Dai, J., Dong, Z., Dong, Y.,
 and Peng, Y.: Glaciation temperatures of convective clouds ingesting desert
 dust, air pollution and smoke from forest fires, Geophysical Research Letters,
 38, https://doi.org/10.1029/2011GL049423, 2011.
- Rybka, H., Burkhardt, U., Köhler, M., Arka, I., Bugliaro, L., Görsdorf, U., Horváth, Á.,
 Meyer, C. I., Reichardt, J., Seifert, A., and Strandgren, J.: The behavior of
 high-CAPE (convective available potential energy) summer convection in
 large-domain large-eddy simulations with ICON, Atmos. Chem. Phys., 21,
 4285-4318, <u>http://dx.doi.org/10.5194/acp-21-4285-2021</u>, 2021.
- Saunders, R., Hocking, J., Turner, E., Rayer, P., Rundle, D., Brunel, P., Vidot, J.,
 Roquet, P., Matricardi, M., Geer, A., Bormann, N., and Lupu, C.: An update on
 the RTTOV fast radiative transfer model (currently at version 12), Geosci.
 Model Dev., 11, 2717-2737, <u>http://dx.doi.org/10.5194/gmd-11-2717-2018</u>,
 2018.
- Schmetz, J., Holmlund, K., Hoffman, J., Strauss, B., Mason, B., Gaertner, V., Koch,
 A., and Van De Berg, L.: Operational cloud-motion winds from meteosat
 infrared images, Journal of Applied Meteorology and Climatology, 32, 12061225, https://doi.org/10.1175/1520-
- 1065 <u>0450(1993)032</u><1206:OCMWFM>2.0.CO;2, 1993.
- Schmetz, J., Pili, P., Tjemkes, S., Just, D., Kerkmann, J., Rota, S., and Ratier, A.: An
 introduction to meteosat second generation (MSG), Bulletin of the American
 Meteorological Society, 83, 977-992, <u>http://dx.doi.org/10.1175/1520-</u>
 0477(2002)083<0977:AITMSG>2.3.CO;2, 2002.
- Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics parameterization
 for mixed-phase clouds. Part 1: Model description, Meteorology and
 Atmospheric Physics, 92, 45-66, <u>http://dx.doi.org/10.1007/s00703-005-0112-</u>
 <u>4</u>, 2006.
- 1074 Senf, F., Voigt, A., Clerbaux, N., Hünerbein, A., and Deneke, H.: Increasing
 1075 resolution and resolving convection improve the simulation of cloud-radiative
 1076 effects over the North Atlantic, Journal of Geophysical Research:
 1077 Atmospheres, 125, e2020JD032667, <u>https://doi.org/10.1029/2020JD032667</u>,
 1078 2020.
- Sheffield, A. M., Saleeby, S. M., and van den Heever, S. C.: Aerosol-induced mechanisms for cumulus congestus growth, Journal of Geophysical Research: Atmospheres, 120, 8941-8952, https://doi.org/10.1002/2015JD023743, 2015.
- Sotiropoulou, G., Vignon, É., Young, G., Morrison, H., O'Shea, S. J., Lachlan-Cope,
 T., Berne, A., and Nenes, A.: Secondary ice production in summer clouds
 over the Antarctic coast: an underappreciated process in atmospheric models,
 Atmos. Chem. Phys., 21, 755-771, <u>https://doi.org/10.5194/acp-21-755-2021</u>,
 2021.

- 1088 Stengel, M., Kniffka, A., Meirink, J. F., Lockhoff, M., Tan, J., and Hollmann, R.: 1089 CLAAS: the CM SAF cloud property data set using SEVIRI, Atmos. Chem. 1090 Phys., 14, 4297-4311, http://dx.doi.org/10.5194/acp-14-4297-2014, 2014. 1091 Stephens, G. L.: Radiation profiles in extended water clouds. II: Parameterization 1092 schemes, Journal of Atmospheric Sciences, 35, 2123-2132. https://doi.org/10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2, 1978. 1093 1094 Stith, J. L., Haggerty, J. A., Heymsfield, A., and Grainger, C. A.: Microphysical 1095 characteristics of tropical updrafts in clean conditions, Journal of Applied Meteorology, 43, 779-794, https://doi.org/10.1175/2104.1, 2004. 1096 1097 Sullivan, S. C., Barthlott, C., Crosier, J., Zhukov, I., Nenes, A., and Hoose, C.: The 1098 effect of secondary ice production parameterization on the simulation of a cold 1099 frontal rainband, Atmos. Chem. Phys., 18, 16461-16480, https://doi.org/10.5194/acp-18-16461-2018, 2018. 1100 1101 Takeishi, A. and Storelvmo, T.: A study of enhanced heterogeneous ice nucleation in 1102 simulated deep convective clouds observed during DC3, Journal of Geophysical Research: Atmospheres, 123, 13,396-313,420, 1103 1104 https://doi.org/10.1029/2018JD028889, 2018. Taylor, J. W., Choularton, T. W., Blyth, A. M., Liu, Z., Bower, K. N., Crosier, J., 1105 1106 Gallagher, M. W., Williams, P. I., Dorsey, J. R., Flynn, M. J., Bennett, L. J., 1107 Huang, Y., French, J., Korolev, A., and Brown, P. R. A.: Observations of cloud 1108 microphysics and ice formation during COPE, Atmos. Chem. Phys., 16, 799-1109 826, https://doi.org/10.5194/acp-16-799-2016, 2016. Thomas, J., Barrett, A., and Hoose, C.: Temperature and cloud condensation nuclei 1110 (CCN) sensitivity of orographic precipitation enhanced by a mixed-phase 1111 seeder-feeder mechanism: a case study for the 2015 Cumbria flood, Atmos. 1112 1113 Chem. Phys., 23, 1987-2002, 10.5194/acp-23-1987-2023, 2023. 1114 Twohy, C. H.: Measurements of Saharan dust in convective clouds over the tropical eastern Atlantic ocean, Journal of the Atmospheric Sciences, 72, 75-81, 1115 1116 https://doi.org/10.1175/JAS-D-14-0133.1, 2015. van den Heever, S. C., Carrió, G. G., Cotton, W. R., DeMott, P. J., and Prenni, A. J.: 1117 1118 Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations, Journal of the Atmospheric Sciences, 63, 1752-1775, 1119 1120 https://doi.org/10.1175/JAS3713.1, 2006. 1121 Vignon, É., Alexander, S. P., DeMott, P. J., Sotiropoulou, G., Gerber, F., Hill, T. C. J., Marchand, R., Nenes, A., and Berne, A.: Challenging and improving the 1122 1123 simulation of mid-level mixed-phase clouds over the high-latitude southern 1124 ocean, Journal of Geophysical Research: Atmospheres, 126, e2020JD033490, https://doi.org/10.1029/2020JD033490, 2021. 1125 1126 Wan, H., Giorgetta, M. A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., 1127 Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L., and Förstner, J.: The 1128 ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids - Part 1: 1129 Formulation and performance of the baseline version, Geosci, Model Dev., 6. 1130 735-763, http://dx.doi.org/10.5194/gmd-6-735-2013, 2013. Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-1131 hydrostatic) modelling framework of DWD and MPI-M: Description of the non-1132 1133 hydrostatic dynamical core, Quarterly Journal of the Royal Meteorological 1134 Society, 141, 563-579, http://dx.doi.org/10.1002/gj.2378, 2015. 1135 Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X., Huang, L., and Yung, Y. L.: Ice nucleation by aerosols from anthropogenic pollution, Nature 1136 1137 Geoscience, 12, 602-607, https://doi.org/10.1038/s41561-019-0389-4, 2019.
 - 28

1138	Zhao, X., Liu, X., Burrows, S. M., and Shi, Y.: Effects of marine organic aerosols as
1139	sources of immersion-mode ice-nucleating particles on high-latitude mixed-
1140	phase clouds, Atmos. Chem. Phys., 21, 2305-2327,
1141	https://doi.org/10.5194/acp-21-2305-2021_2021

Tables:

1145 Table 1: Setups of simulations performed in this study.

Num	Experiment	Description
1	A×10 ⁰ (CTRL)	Without any perturbations, the CTRL run, used as a
		reference.
2	A×10 ⁻²	INP concentrations for both immersion and deposition mode
		are scaled by multiplying parameter A in Equation (1) by 10 ⁻
		2.
3	A×10 ⁻¹	Same as num. 2, but multiplying by 10 ⁻¹ .
4	A×10 ¹	Same as num. 2, but multiplying by 10 ¹ .
5	A×10 ²	Same as num. 2, but multiplying by 10 ² .
6	A×10 ³	Same as num. 2, but multiplying by 10 ³ .
7	A×10 ⁰ _NSIP	INP concentration as in CTRL. The secondary ice
		production (rime-splintering process) is switched off.
8	DEC05	Initial and lateral temperature decreases from 3 to 12 km
		with a maximum increment of 5 K. No perturbations in INPs
		(A×10 ⁰).
9	DEC03	Same as num. 8, but with a maximum increment of 3 K.
10	INC03	Initial and lateral temperature increases from 3 to 12 km with
		a maximum increment of 3 K. No perturbations in INPs
		(A×10 ⁰).
11	INC05	Same as num. 10, but with a maximum increment of 5 K.

1150 Figures:

1154 Figure 1: The simulation domains.

Figure 2: Domain averaged initial temperature profiles. The same modification was applied to the lateral boundary conditions.

Figure 3: Spatial distributions of retrieved cloud liquid water path (LWP), ice water path (IWP), and cloud optical thickness (COT) at 13:00 UTC. The left panel is for the CTRL case (a, c, e) and the right panel is for the CLAAS-2 product (b, d, f).

Figure 4: Spatial- and time-averaged (9:00~19:00) profiles of cloud mass mixing ratios of (a) ice crystals, (b) snow, (c) graupel, (d) rainwater, and (e) ice crystal effective radius. Mass mixing ratio unit is g kg⁻¹ and the unit of ice crystal effective radius is µm. Shaded area indicates the spatial- and time-averaged mixed-phase 1171 region.

1176 Figure 5: Spatial- and time-averaged (9:00~19:00) profiles of process rates of (a) 1177 heterogeneous freezing (immersion and deposition nucleation), (b) homogeneous freezing, (c) secondary-ice production (rime-splintering), (d) cloud droplets rimed 1178 1179 with ice crystals, (e) rain droplets rimed with ice crystals, (f) collection between ice

1180 and ice. Unit is g kg-1 s-1. The average mixed-phase layer (0~-38 °C) is roughly in

1181 between 3.2 and 8.6 km. Shaded area indicates the spatial- and time-averaged

1182 <u>mixed-phase region.</u> Unit is g kg⁻¹s⁻¹.

- Figure 6: In-cloud supercooled liquid mass fraction distribution as a function of
- temperature (binned by 1°C) between 9:00 and 19:00 (a-d) for the 4 cases (A×10⁰,
- $A \times 10^{0}$ NSIP, $A \times 10^{-2}$, $A \times 10^{3}$), the colour of points indicates the vertical wind velocity (unit, m s⁻¹). 2-D histogram of in-cloud liquid mass fraction versus temperature (e-f).

- Figure 7: Cloud-top supercooled liquid mass fraction distribution as a function of temperature (binned by 1°C) between 9:00 and 19:00 (a-d) for the 4 cases (A×10⁰,
- $A \times 10^{0}$ _NSIP, $A \times 10^{-2}$, $A \times 10^{3}$), the colour of points indicates the vertical wind velocity (unit, m s⁻¹). 2-D histogram of cloud-top liquid mass fraction versus temperature (e-f).

1199 Figure 8: Liquid cloud pixel fraction as a function of temperature from 9:00 to 19:00

1200 UTC for the INP sensitivity experiments, (a) in-cloud fraction calculated from

simulations on ICON native grid (~1200 m), (b) cloud-top fraction calculated from simulations on ICON native grid (~1200 m), (c) cloud-top fraction calculated from simulations on SEVIRI's grid (~5000 m), (d) cloud-top fraction calculated by remote-1201

1202

1203

1204 sensing retrieval algorithms to produce CLAAS-2 dataset, and (e) cloud-top fraction calculated by remote-sensing retrieval software suite SEVIRI_ML. The temperature

1205 1206 is binned by 1°C in (a), (b), (c), and (d), and by 2°C in (e).

1207

(删除了: pixel number fraction

1219 Figure 10: Liquid cloud pixel fraction as a function of temperature from 9:00 to 19:00 1220 for the thermodynamic sensitivity experiments, (a) in-cloud fraction calculated 1221 directly from simulations, (b) cloud-top fraction calculated from directly simulations, 1222 (c) cloud-top fraction calculated by remote-sensing retrieval algorithms to produce CLAAS-2 dataset, and (d) cloud-top fraction calculated by remote-sensing retrieval software suite SEVIRI_ML. The temperature is binned by 1°C in (a), (b), and (c), and 1223 1224 1225 by 2°C in (d).

Figure 11: Spatial- and time-averaged (9:00~19:00) profiles of process rates of (a) homogeneous freezing, (b) heterogeneous freezing (immersion and deposition nucleation) for cases with perturbed initial thermodynamic states. <u>Shaded area</u> indicates the spatial and time-averaged mixed-phase region. Unit is g kg⁻¹ s⁻¹.