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Abstract 12 

Accurately reconstructing large-scale palaeoclimatepalaeoclimatic patterns from sparse local records is 13 

critical for understanding the evolution of Earth’s climate. Particular challenges arise from the patchiness, 14 

uneven spatial distribution, and disparate nature of palaeoclimatic proxy records. Geochemical data 15 

typically provide temperature estimates via transfer functions derived from experiments. Similarly, transfer 16 

functions based on the climatic requirements of modern taxa exist for some fossil groups, such as pollen 17 

assemblages. In contrast, most ecological and lithological data (e.g. coral reefs and evaporites) only convey 18 

information on broad climatic requirements. Historically, most large-scale proxy-based reconstructions 19 

have used either geochemical or ecological data, but few studies have combined multiple proxy types into 20 

a single quantitative reconstruction. Large spatial gaps in existing proxy records have often been bridged 21 

by simple averaging, without taking into account the spatial distribution of samples, leading to biased 22 

temperature reconstructions. Here, we present a Bayesian hierarchical model to integrate ecological data 23 

with established geochemical proxies into a unified quantitative framework, bridging gaps in the latitudinal 24 

coverage of proxy data. We apply this approach to the early Eocene climatic optimum (EECO), the interval 25 

with the warmest sustained temperatures of the Cenozoic. Assuming the conservation of thermal tolerances 26 

of modern coral reefs and mangrove taxa, we establish broad sea surface temperature ranges for EECO 27 

coral reef and mangrove sites. We integrate these temperature estimates with the EECO geochemical 28 

shallow marine proxy record to model the latitudinal sea surface temperature gradient and global average 29 

temperatures of the EECO. Our results confirm the presence of a flattened latitudinal temperature gradient 30 

and unusually high polar temperatures during the EECO, which is supported by high-latitude ecological 31 
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data. We show that integrating multiple types of proxy data, and adequate prior information, has the 32 

potential to substantially reduce uncertainty in palaeoclimateenhance quantitative palaeoclimatic 33 

reconstructions, allowing for unbiasedimproving temperature estimates from sparse datadatasets with 34 

limited spatial sampling. 35 

Keywords 36 

Palaeoclimate, latitudinal temperature gradients, temperature proxies, Eocene, spatialsampling bias, 37 

Bayesian 38 

Introduction 39 

Understanding the long-term evolution of Earth’s climate system and contextualising currentcontemporary 40 

global warming relies on accurate reconstructions of past climates (Royer et al., 2004; Burke et al., 2018; 41 

Tierney et al., 2020). Recent advances in the synthesis of palaeoclimatepalaeoclimatic data (e.g. Veizer and 42 

Prokoph, 2015; Hollis et al., 2019; Song et al., 2019; Grossman and Joachimski, 2022; Judd et al., 2022) 43 

are offering unprecedented insights into the complex and dynamic nature of the Earth’s climate system, yet 44 

a fundamental challenge remains: the proxy record of past climates is spatially incomplete and afflicted by 45 

imperfect preservation and uneven sampling (Judd et al., 2020; Jones and Eichenseer, 2022; Judd et al., 46 

2022). 47 

WhilstAcknowledging the assumptions and limitations inherent in geochemical temperature proxies, such 48 

as experimentally derived calibrations, influences from seasonality, dissolution effects and differential 49 

preservation (e.g. Tierney et al., 2017proxy data), can provideenable robust estimates of palaeotemperature 50 

at local scales. However, recent work has demonstrated that spatial biases in the geochemical proxy record 51 

can lead to spurious estimates of regional (e.g. latitudinal temperature gradients) and global temperatures 52 

(Judd et al., 2020; Jones and Eichenseer, 2022). Principally, this can be driven by two factors: (1) missing 53 

data for some regions (e.g. no high-latitude data); or (2) overrepresentation of other regions (e.g. a high 54 

proportion of samples from tropical areas). The latter can be addressed through the down-sampling of data 55 

or restricting analyses to specific regions (e.g. Song et al., 2019). However, in order to robustly infer 56 

regional or global-scale patterns from an incomplete record, spatial gaps must ultimately be bridged. One 57 

common approach, which requires no additional computation, is the spatial visualisation of proxy-derived 58 

temperatures against latitude, showing broad latitudinal temperature trends (e.g. Hollis et al., 2019; Vickers 59 

et al., 2021). Interpolation is also sometimes used to bridge spatial gaps in palaeoclimatepalaeoclimatic data 60 

(e.g. Taylor et al., 2004), taking advantage of the autoregressive nature of climatic data: much of the 61 



 

3 
 

information on the climate of any given location is contained in the climate data of nearby locations 62 

(Reynolds and Smith, 1994). Adding to this, some proxy-based reconstructions use statistical modelling to 63 

infer palaeoclimatic patterns. For example, polynomial regression (Bijl et al., 2009) and cosine functions 64 

(Inglis et al., 2020) have been used to reconstruct latitudinal temperature gradients, and 2D-reconstructions 65 

of surface temperatures have been created with Gaussian process regression (Inglis et al., 2020). These 66 

approaches work well for interpolating relatively densely-sampled data, but the absence of constraints on 67 

the modelled parameters means that such models can produce unrealistic temperature estimates when 68 

extrapolating from sparse data. Statistical modelling in a Bayesian framework can help overcome this 69 

problem by requiring the explicit specification of priors for the model parameters, which can be used to 70 

express physical constraints (Chandra et al., 2021). 71 

Spatial gaps in the palaeoclimatepalaeoclimatic record can also be addressed through the integration of 72 

additional data. For example, lithological and fossil data can be used to infer past climatic conditions based 73 

on analogous modern sediments (Chandra et al., 2021), or based on the premise that the climatic 74 

requirements of ancient taxa, biological traits, or ecological communities were similar to those of their 75 

nearest modern relatives (Peppe et al., 2011; Royer, 2012; Salonen et al., 2019). Despite this potential, the 76 

integration of geochemical proxy data with other sources of information (e.g. ecological data) has rarely 77 

been realised in a rigorous, quantitative framework (Burgener et al., 2023). 78 

Here, we present a novel Bayesian hierarchical model (e.g. Gelman et al., 2013; McElreath, 2018) that 79 

combines quantitative proxies and ecological constraints into a fully quantitative model of the latitudinal 80 

gradient of sea surface temperatures, bridging spatial gaps in sparsely sampled climate data.palaeoclimatic 81 

data. The Bayesian approach offers a powerful framework for integrating various sources of uncertainty 82 

and modelling complex hierarchical relationships, and is increasingly used in palaeoclimatic 83 

reconstructions (e.g. Weitzel et al., 2019; Yang and Bowen, 2022; Burgener et al., 2023). This model 84 

expands upon existing, spatially explicit palaeoclimatic reconstructions by allowing for the integration of 85 

(1) prior information based on physical principles and the observed modern sea surface temperature 86 

distribution, and of (2) geochemical and ecological climatepalaeoclimatic proxies in a common, 87 

quantitative framework. We usechose a generalised logistic function to accurately infer the shape of the 88 

temperature gradient despite a patchy latitudinal coverage, and. This choice is motivated by the flexibility 89 

and ability of this function to approximate a variety of nonlinear patterns in the underlying temperature 90 

gradients that other parametric approaches, such as lower order polynomials (e.g. Bijl et al., 2009; Keating-91 

Bitonti et al., 2011), lack. We test the robustness of this method using down-sampled, simulated latitudinal 92 

temperature gradients. 93 
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We apply this model to the record of the early Eocene climatic optimum (EECO), combining a compilation 94 

of geochemical proxies (Hollis et al., 2019), mangrove communities (Popescu et al., 2021), and coral reefs 95 

(Zamagni et al., 2012), using). We use a nearest-living-relative approach (e.g. Greenwood et al., 2017) to 96 

establish broad temperature ranges for the ecological data. We choose the EECO to demonstrate the 97 

application of the model due to its significance as the interval with the warmest sustained temperatures of 98 

the Cenozoic (Pross et al., 2012), rendering it a potential analogue for extreme climate warming scenarios 99 

(Burke et al., 2018). Our integrative approach allows us to shed new light on the long-standing dispute on 100 

the steepness of the early Eocene temperature gradient (Table 1; Sloan and Barron, 1990; Markwick, 1994; 101 

Huber and Caballero, 2011; Tierney et al., 2017; Inglis et al., 2020). 102 

Table 1: Inferred latitudinal sea surface temperature (SST) gradients for the early Eocene (EE) or the EECO, 103 

as shown in earlier, proxy-based studies. The gradient values denote the SST difference between the equator 104 

and the polar circle, or other types of gradients. For comparison, a gradient derived from an atmosphere-105 

ocean general circulation model (GCM) ensemble is, and a range of gradients from a model intercomparison 106 

project, are also shown. 107 

Source Time 
Gradient 

(°C) 

Type of 

gradient 
Model Proxy system 

Bijl et al. (2009) EE 7 equator - polar 

circle 

2𝑛𝑑 order 

polynomial 

𝑇𝐸𝑋86, 𝑈𝐾37
𝐾′ 

Keating-Bitoni et 

al. (2011) 

EECO 13 equator - polar 

circle 

2𝑛𝑑 order 

polynomial 

𝑇𝐸𝑋86, MBT/CBT, 

𝛥47, Mg/Ca, 𝛿18𝑂 

Tierney et al. (2017) EE 12 equator - polar 

circle 

Gaussian 

function 

𝑇𝐸𝑋86 

Cramwinckel et 

al. (2018) 

EECO 21 (±1) equator - deep 

water 

- 𝑇𝐸𝑋86, 𝛥47, 

Mg/Ca, 𝛿18𝑂, 

deepwater 𝛿18𝑂 

Evans et al. (2018) EE 20 (±3) tropics - deep 

water 

- 𝛥47, deepwater 

Mg/Ca 

Pross et al. (2012), as 

shown in Tierney et 

al. (2017) 

EE 26 equator - polar 

circle 

climate model 

ensemble 

(GCM) 

none (GCM 

simulations) 

Lunt et al. (2021) EECO 18–26 tropics - high 

latitude 

DeepMIP 

climate models 

none (GCM 

simulations) 
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Materials & Methods 108 

Geochemical data 109 

Geochemical climateclimatic proxy data were extracted from a latest Paleocene and early Eocene 110 

compilation (Hollis et al., 2019). This compilation provides sea surface temperature data on four different 111 

geochemical proxies for reconstructing seawater temperature: δ18O, Δ47, Mg/Ca and TEX86. For our 112 

analyses, this dataset was restricted to the EECO (defined as 53.8 – –49.1 Ma) and samples originating 113 

from near the continental shelfocean surface or mixed layer. Consequently, samples labelled as 114 

“thermocline”, or “sub-thermocline”, were excluded. Recrystallised δ18O samples were also excluded as 115 

secondary diagenetic calcite precipitated after deposition can bias isotope measurements and offset 116 

temperature values (Schrag, 1999). This filtering resulted in most δ18O samples being excluded from the 117 

dataset (retaining 8 out of 152). After data filtering, 308 geochemical proxy samples from 23 locations 118 

remained. (Fig. 1). For a detailed description of each proxy see Hollis et al. (2019). 119 

Ecological data 120 

Coral reefs. Today, shallow warm-water coral reefs are limited to tropical and subtropical latitudes (~34° N 121 

– –32° S), with minimum sea surface temperature tolerances (~18°C) being the primary constraint on this 122 

distribution (Johannes et al., 1983; Kleypas et al., 1999; Yamano et al., 2001). As coral reefs reside at the 123 

upper thermal limit of the oceans today, their maximum sea surface temperature tolerance is less well-124 

constrained, with some studies suggesting up to 35.6°C in the geological past (Jones et al., 2022). 125 

Nevertheless, coral reefs have frequently been recognised as tracers of past (sub-)tropical conditions 126 

(Ziegler et al., 1984; Kiessling, 2001). During the Eocene, coral communities and reefs expanded across 127 

tropical and temperate latitudes, with communities found up to palaeolatitudes of 43 ° N (Zamagni et al., 128 

2012). Using a compilation of Paleocene – –early Eocene coral reefs and community localities (Zamagni 129 

et al., 2012), we generated quantitative sea surface temperature estimates for the ECCO. To do so, we 130 

extracted localities from the compilation that are inferred to be Ilerdian (early Eocene) coral reefs, and that 131 

could be confidently assigned to the EECO. We excluded coral knobs and coral-bearing mounds which 132 

might have broader climatic limits than warm-water coral reef ecosystems. This filtering resulted in four 133 

unique coral reef localities remaining for the EECO, all of which conform to the modern latitudinal range 134 

of coral reefs (<34° N). Subsequently, we used statistically derived temperature limits (minimum = 21°C, 135 

average = 27.6°C, maximum = 29.5°C) from the published literature (Kleypas et al., 1999) to define a 136 

normal probability distribution of potential temperature values for coral reef localities. This normal 137 

probability distribution was defined with a mean of 27.6°C and a standard deviation of 2.125, placing 138 

97.5%°C, which places the minimum (21°C) at the lower end of the probability95% highest density above 139 
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the minimuminterval of that distribution. As the distribution of modern corals is skewed towards warmer 140 

temperatures, this approach results in 16.5% of the probability being placed on temperatures > 29.5°C, 141 

allowing for the possibility that Eocene coral reefs were adapted to warmer conditions than present-day 142 

coral reefs. 143 

Mangroves. Mangroves are distributed throughout the tropics and subtropics today. While factors besides 144 

sea surface temperatures (SST) influence the distribution of mangroves, empirical, lower temperature limits 145 

have been established for the genera Avicennia (15.6°C) and Rhizophora (20.7°C) (Quisthoudt et al., 2012). 146 

Both Avicennia and members of the Rhizophoraceae family were widespread and co-occurred across 147 

tropical and temperate latitudes in the early Eocene. Only Avicennia, however, occurred at polar latitudes 148 

(Suan et al., 2017; Popescu et al., 2021). Assuming that Eocene members of these mangrove taxa conform 149 

to similar climatic requirements as their modern relatives, the presence and absence of Avicennia and 150 

Rhizophoraceae pollen can be used as a palaeotemperature indicator. For this analysis, published mangrove 151 

occurrence data were taken from Popescu et al. (2021), and converted to quantitative temperature estimates. 152 

From this data, we identify two types of pollen assemblages which we ascribe different temperature 153 

distributions: 154 

1) Avicennia-only assemblages (𝑛 = 2): the absence of Rhizophoraceae is indicative of temperatures 155 

being between 15.6°C (lower temperature limit of Avicennia) and 20.7°C (lower temperature 156 

limit of Rhizophora). However, a value of 22.5°C is ascribedassumed as the upper temperature 157 

limit here as Rhizophora is rare below this temperature. We define the Avicennia-only 158 

temperature distribution as a normal distribution with a mean of 19.05°C and a standard deviation 159 

of 1.725°C, resulting in 95% of the probability density being placed within the temperature limits. 160 

2) Avicennia and Rhizophoraceae assemblages (𝑛 = 5): the presence of both groups suggests that 161 

the locality should have a minimum temperature of 20.7°C (lower temperature limit of 162 

Rhizophora). As the upper thermal limits of Aviciennia and Rhizophora are not well established 163 

in Quisthoudt et al. (2012), we assign the same maximum temperature limits (29.5°C) as coral 164 

reef localities, because mangroves are also widely distributed throughout tropical regions. 165 

Consequently, we define the temperature distribution for this locality as a normal distribution 166 

with a mean of 25.1°C and a standard deviation of 2.2°C, with 95% probability density within the 167 

temperature limits. 168 
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Figure 1: Palaeogeographic distribution of the geochemical and ecological data compilation used in this 

study.  Map is presented in the Robinson projection (ESRI:54030). 

Palaeogeographic reconstruction 169 

The palaeogeographic distribution of geochemical and ecological data was reconstructed using the Merdith 170 

et al. (2021) plate rotation modelGlobal Plate Model via the palaeoverse R package (version 1.2.0, Jones et 171 
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al., 2023). The midpoint age of the EECO (51.2 Ma), along with the present-day coordinates of geochemical 172 

and ecological data, were used for palaeogeographic reconstruction. 173 

Bayesian framework 174 

Model structure. We model the mean temperature (𝜇) at location 𝑗 as a function of absolute latitude 175 

(𝑎𝑏𝑠(𝑙)) with a logistic regression (also known as “growth curve” or “Richard’s curve”) of the form: 176 

𝜇𝑗 ∼ 𝑁(𝜈𝑗, 𝜎),  (1) 177 

𝜈𝑗 = 𝐴 +
𝐾 − 𝐴

𝑒𝐵(𝑎𝑏𝑠(𝑙𝑗)−𝑀)

𝐾 − 𝐴

1 + 𝑒𝐵(𝑎𝑏𝑠(𝑙𝑗)−𝑀)
 ,      𝑗 = 1, . . . , 𝑛,  (2) 178 

where 𝐴 and 𝐾 denote the lower and upper asymptote, respectively, 𝑀 specifies the latitude of maximal 179 

growth, i.e. the latitude around which temperature falls most steeply with latitude, 𝐵 denotes the growth 180 

rate, 𝜎 denotes the residual standard deviation, and 𝑛 denotes the number of locations. 181 

We use this generalised logistic function because it can follow the equatorial and polar asymptotes observed 182 

in the modern, latitudinal SST gradient, but can also accommodate a variety of other shapes, while 183 

consisting of only four shape parameters. This flexibility is primarily achieved by shifting the location of 184 

the curve along the latitudinal axis by varying 𝑀, and by altering the steepness of the curve by varying 𝐵. 185 

For example, one limb of a second-order polynomial as in Bijl et al. (2009) can be approximated by 186 

increasing 𝑀 towards high latitudes, and decreasing 𝐵 to reduce the steepness of the curve. The model is 187 

designed for modelling the average gradient across both hemispheres, but can also be applied to individual 188 

hemispheres, to assess hemispherical differences (see Fig. S4). 189 

We infer 𝜇𝑗 from 𝑚 individual temperature observations 𝑡𝑖=1,...𝑚, derived from geochemical data, at 190 

location 𝑗 as 191 

𝑡𝑖,𝑗 ∼ 𝑁(𝜇𝑗, 𝜎𝑗),      𝑖 = 1, . . . , 𝑚,  (3) 192 

where 𝑚 is the number of observations at each location, and 𝜎𝑗 is the estimated standard deviation of the 193 

temperatures at location 𝑗. 194 

Similarly, 𝜇𝑗 is inferred for locations with ecological proxies from the associated normal temperature 195 

distributions with a given mean and standard deviation, 𝑡𝜇,𝑗 and 𝑡𝜎,𝑗, as 196 

𝑡𝜇,𝑗 ∼ 𝑁(𝜇𝑗 , 𝑡𝜎,𝑗).  (4) 197 
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This structure implies that 𝜇𝑗 is not fixed at the mean proxy temperature at location 𝑗,  but is drawn towards 198 

the overall logistic regression curve, i.e. towards 𝜈𝑗. The pull towards 𝜈𝑗 tends to be strong when 𝑚 is low, 199 

when the observations 𝑡𝑖=1,...,𝑚, 𝑗 are scattered, i.e. 𝜎𝑗 is high, and/or when the overall standard deviation 𝜎 200 

is low. In practice, this has the desirable consequence that locations with few observations and large 201 

temperature differences between observations have less influence on the overall regression than well-202 

sampled locations with consistent reconstructed temperatures. 203 

We show an expanded model that includes uncertainties on individual temperature observations in the 204 

Supplementary Material (Fig. S5). 205 

Priors. In a Bayesian framework, priors need to be placed on the unknown parameters of a model. We 206 

placed weakly informative, conjugate inverse-gamma priors on 𝜎 and 𝜎𝑗=1,..𝑛: 207 

𝜎 ∼ √𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (𝛼 +
𝑛

2
, 𝛽 + 0.5 × (𝜇𝑗 − 𝜈𝑗)) ,      𝑗 = 1, . . . , 𝑛,  (5) 208 

𝜎𝑗 ∼ √𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (𝛼 +
𝑚

2
, 𝛽 + 0.5 × (𝑡𝑖,𝑗 − 𝜇𝑗)) ,      𝑖 = 1, . . . , 𝑚,      𝑗 = 1, . . . , 𝑛.  (6) 209 

We set 𝛼 = 𝛽 = 1, allowing these priors to be quickly overwhelmed by the data as 𝑛 and 𝑚 increase, as 210 

we have little a priori knowledge of these parameters. 211 

In contrast, we put informative priors on the regression coefficients 𝐴, 𝐾, 𝑀 and 𝐵, based on physical 212 

principles, and loosely based on the modern climate system: 213 

A. Predicted seawater surface temperatures are not allowed to be << −2∘𝐶2°C, the freezing point of sea 214 

water. The highest prior density of 𝐴 is placed around 0∘𝐶0°C, and it slowly tapers off towards higher 215 

temperatures. This shape is achieved by placing a skew-normal prior on the lower asymptote, specified as 216 

𝐴 ∼ 𝑆𝑁(𝜉 = −3.0,𝜔 = 12, 𝛼𝑆𝑁 = 30),  (7) 217 

where 𝜉, 𝜔, and 𝛼𝑆𝑁 are the location, scale and shape parameters. 218 

K. Input of solar energy decreases from the tropics to the poles. Hence, the latitudinal temperature gradient 219 

is broadly negative, i.e. temperature decreases with absolute latitude. This is achieved by setting 𝐾 ≥ 𝐴. 220 

The prior on the upper asymptote 𝐾 is a truncated normal distribution with the mean set to 𝐾 of the modern 221 

SST gradient, with a broad standard deviation: 222 
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𝐾 ∼ 𝑇𝑁(𝜇𝑇𝑁 = 28, 𝜎𝑇𝑁 = 15, 𝛼𝑇𝑁 = 𝐴, 𝛽𝑇𝑁 = ∞)  (8) 223 

The distribution is truncated to the left at 𝛼𝑇𝑁 = 𝐴, but not truncated to the right (𝛽𝑇𝑁). 224 

M. A uniform prior is placed on the latitude of greatest steepness of the gradient, allowing it to be steepest 225 

anywhere between latitudes 0° and 90° absolute latitude, as this parameter may vary greatly depending on 226 

the climate state: 227 

𝑀 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,90)  (9) 228 

B. The steepness or growth rate 𝐵 of the gradient is constrained to be ≥ 0 and to not be exceedingly high, 229 

as oceanic and atmospheric heat transfer is bound to limit very abrupt SST changes across latitudes on a 230 

global scale. A gamma-distributed prior of the form 231 

𝐵 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝐺 = 4.3, 𝛽𝐺 = 30)  (10) 232 

was placed on 𝐵. The shape and rate parameters 𝛼𝐺 and 𝛽𝐺 were chosen such that the highest prior density 233 

is at 𝐵 of the modern SST gradient, 0.11. We informed the prior distribution on 𝐵 based on a provisional 234 

model run with the modern SST data. 235 

Model validation 236 

To test whether our logistic regression model can adequately describe different latitudinal temperature 237 

gradients at various sample sizes, we generated fourused the empirical, modern gradient, representative of 238 

an icehouse climate, and generated three idealised gradients that emulate potential climatic states 239 

throughout Earth’s geological history: extreme icehouse, icehouse, (modern), greenhouse, and extreme 240 

greenhouse (Frakes et al., 1992). The idealised gradients serve to test whether our model setup is able to 241 

infer gradients that are strongly different from the modern from a varying number of samples. 242 

We thencreated test data from these gradients as follows: We randomly sampled (1,0001000 iterations) 243 

these gradients using increasinglatitudes at sample sizes (of 5, 10, and 20) and reconstructed the latitudinal, 244 

with the probability of a latitude being sampled scaling with the decreasing surface area towards higher 245 

latitudes, i.e. lower latitudes are sampled more frequently. For the largest sample size (n = 34), we used the 246 

latitudes of the EECO data set of this study in all iterations. For each latitude, we took the location mean 247 

temperature gradient using our model for each of these sample sizes and gradient types. Using the same 248 

idealised gradients, we also tested whether our model could accurately reconstruct latitudinal temperature 249 

gradients using the palaeogeographicfrom the gradients, adding random noise from a normal distribution 250 

of Eocene samples (n = 34), providing an empirical, exemplary distribution that captures both limited 251 

sample size and skewed geographic origins of samples. with a standard deviation of 3.8, which corresponds 252 
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to the average uncertainty associated with the EECO geochemical proxy data (Hollis et al. 2019). With that, 253 

we aim to simulate randomly distributed errors in the proxy data, which could arise from miscalibrations, 254 

measurement errors, seasonal effects, ect. We acknowledge that this approach cannot quantify the potential 255 

impact of systematic offsets that may bias all proxy data in the same direction, nor do we know whether a 256 

standard deviation of 3.8 is the actual average magnitude of uncertainty that the proxy compilation is 257 

afflicted with. 258 

To evaluate how well the model performed in reconstructing the idealised gradients from limited sampling, 259 

we calculated the coefficient of determination (𝑅2) for Bayesian regression models (Gelman et al., 2019). 260 

For every iteration from the posterior, we intercepted the modelled and the idealised gradient in intervals 261 

of 1° latitude and calculated the 𝑅2 based on these values. We report the median, and 95% credible intervals 262 

(CI) of the resulting 𝑅2 values. Here and in all other instances, the 95% CI refer to the interval between the 263 

2.5% point and the 97.5% point of the samples or sampled posterior distribution. 264 

To test whether our model can accurately depict the shape of the modern sea surface temperature gradient, 265 

and to facilitate comparison with the Eocene gradient, we applied our model to mean annual sea surface 266 

mean temperatures from Bio-Oracle (Assis et al., 2018), aggregated to a spatial grid resolution of 1∘ × 1∘ 267 

raster (n = 46,131). The 𝑅2 for the modern gradient was calculated as above (Gelman et al., 2019), 268 

comparing the modelled gradient and the empirical temperature averages in 1° latitude bins. Only the 269 

medians are reported for the modern gradient, as the 95% credible intervals are extremely narrow due to 270 

the high precision of the posterior estimates. 271 

To reconstruct the idealised gradients and the modern gradient, we used a simplified, non-hierarchical 272 

version of our model, as every location is associated with only one temperature value, making the 273 

hierarchical structure superfluous. To achieve this, we substituted temperature (𝑡𝑗) for 𝜇𝑗 in Equation 1 and 274 

Equation 5. 275 

Parameter estimation 276 

We estimated the posterior distributions of the model parameters using a Markov chain Monte Carlo 277 

(MCMC) algorithm, written in R. Specifically, we sampled the unknown parameters 𝐴, 𝐾, 𝑀 and 𝐵 with 278 

Metropolis-Hastings, and used Gibbs sampling to estimate all other unknown parameters (see Gilks et al., 279 

1995; Gelman et al., 2013). Posterior inference on the modern gradient is based on four chains with 60,000 280 

iterations each, 10,000 of which were discarded as burn-in. Every 10th10𝑡ℎ iteration was retained, resulting 281 

in a total of 20,000 iterations with low autocorrelation. The re-sampled, simulated gradients and the re-282 

sampled, modern gradient were modelled in one chain with 10,000 iterations for each of the 1,000 random 283 
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samples. 5,000 iterations each were discarded as burn-in, and every 25th25𝑡ℎ iteration was kept, resulting 284 

in a total of 200,000 iterations across all 1,000 model runs. For the Eocene model, we ran four chains with 285 

600,000 iterations each, discarding 100,000 as burn-in and keeping every 100th100𝑡ℎ iteration, as the 286 

hierarchical model structure results in higher autocorrelation of the chains. The Eocene posterior inference 287 

is thus based on a total of 20,000 iterations with low autocorrelation (effective multivariate sample size for 288 

𝐴, 𝐾, 𝑀 and 𝐵 is > 18,000). Trace plots of the MCMC chains indicate convergence and good mixing of the 289 

chains (Fig. S1). 290 

Processing of model results 291 

modelledModelled sea surface temperature estimates were generated with Equation 2, calculating the sea 292 

surface temperatures at any latitude with the parameter estimates of each iteration from the posterior 293 

samples. The median and 95% CI of temperatures wherewere then taken from all temperature estimates 294 

obtained at the latitudes of interest. 295 

The latitudinal gradient iswas calculated as the difference between the modelled temperature at the equator 296 

(0° latitude) and at the poles (90° absolute latitude). To facilitate comparison with earlier estimates, we also 297 

calculatecalculated the gradient with the temperature at the polar circle (66.6° absolute latitude) being used 298 

instead of the temperature at the poles. Given the sigmoidal shape of the modern as well as the Eocene 299 

gradient (see Fig. 4), these results are broadly comparable to a gradient inferred from the zonal average of 300 

equatorial and high-latitude temperatures, as has been done in some earlier studies (Evans et al., 2018). 301 

Differences between Eocene and modern temperatures at a certain latitude were calculated by randomly 302 

pairing all iterations of the posterior from the Eocene and modern temperature gradient model, calculating 303 

the Eocene and modern temperature using the respective iterations, taking the difference, and then 304 

calculating the median (95% CI) from all pairs of iterations. 305 

Global average temperatures with 95% credible intervals were calculated by taking the weighted mean of 306 

the median (95% CI) of temperature estimates in 1° latitudinal bins. The weights were set to the proportion 307 

of global surface area in each latitudinal bin, i.e. decreasing with increasing latitude as: 308 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑠𝑖𝑛(𝛼1,𝑖) − 𝑠𝑖𝑛(𝛼2,𝑖),  (11) 309 

where 𝛼1 is the upper, and 𝛼2 is the lower latitudinal boundary of bin 𝑖, i.e. we approximated the shape of 310 

the globe as a spheroid. 311 
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Results 312 

Model validation 313 
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Figure 2: Model reconstructions of simulated latitudinal temperature gradients at various sample sizes. 

Each column depicts a different reconstruction for given sample sizes: 5, 10, 20 (randomly sampled 

latitudes), and 34 (latitudes of EECO samples). Each row depicts a different simulated latitudinal 

temperature gradient that represents idealised or observed climatic states: idealised extreme icehouse, 

icehouse, greenhouse, and extreme greenhouse. gradients, and the modern gradient, which represents 

an icehouse state. The black line illustrates the simulatedoriginal gradient. The blue line depicts the 

reconstructed gradient represented by the median sea surface temperature value estimated from 1,000 

model runs with different random samples. To generate the random samples, different random noise 

from a normal distribution with a standard deviation of 3.8°C was added to each temperature. The blue 

shadings depict the 90%, 95%, and 99% credible intervals. Bold black text within each panel depicts 

the coefficient of determination (𝑅2) for estimating goodness of fit between the simulated and modelled 

gradient. The median (50%) 𝑅2 value along with the 95% credible intervals from all model runs are 

shown. Each gradient is depicted in absolute latitude. 

 314 
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Figure 3: Present-day latitudinal temperature gradient. The present-day empirical latitudinal 

temperature gradient (median sea surface temperature) is depicted as a black line, and the gradient 

estimated by the Bayesian model is shown in turquoise. (𝑅2 = 0.97,𝑁 = 42,896). Grey points depict 

the individual cell values of the Bio-ORACLE grid of mean sea surface temperatures, which were used 
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to infer the empirical and the modelled gradient. Higher opacity of points indicates higher density of 

data (multiple overlapping points). 

Our Bayesian model is able to accurately model a range of idealised temperature gradients, ranging from 315 

extreme icehouse to ‘super greenhouse’ scenarios (Fig. 2). Random latitudinal sampling results in highly 316 

accurate reconstructions for most random samples at a sample sizes as low asof 10 and 20 for the icehouse 317 

scenarios (95 % CImedian of 𝑅2 > 0.9). Greenhouse scenarios require additional samples perform 318 

somewhat worse due to accurately predictthe increased uncertainty at high-latitude temperatures. This is 319 

because in the absence of high-latitude samples, the modelled gradient is heavily influenced by the priors, 320 

which we based on the modern, the only empirically known latitudinal temperature gradient. latitudes 321 

(median of 𝑅2 > 0.7 at sample sizes 10 and 20). A sampling distribution resembling that of the early Eocene 322 

data setdataset used in this study allows for a highly accurate reconstruction of evenall scenarios, although 323 

the 𝑅2 is still relatively low in the extreme greenhouse scenario (95 % CI of 𝑅2 > 0.95)., as a perfectly flat 324 

gradient, predicted by the model, would result in an 𝑅2 of 0, despite the original gradient being very flat. 325 

This also explains the low lower bounds of the 95% credible intervals in the greenhouse scenarios. 326 

The average, modern temperature gradient can be closely approximated with our model when using the full 327 

modern SST dataset (Fig. 3); almost all of the variation in the empirical median temperatures in bins of 1° 328 

absolute latitude (black line) is explained by the modelled gradient (𝑅2 = 0.997).99.7%). The empirical 329 

gradient spans 29.3°C from the equator to the poles, the modelled gradient is only slightly higher at 29.6°C. 330 

The modern, global mean temperature (GMST) based on our modelled, median gradient is 17.6°C, very 331 

similarwhich is nearly equal to the GMST derived from the empirical median gradient (17.5°C). 332 

EECO reconstruction 333 

The modelled Eocene temperature gradient reconstructed with our Bayesian model is starkly different from 334 

the modern (Fig. 4). Modelled, median equatorial temperatures are 4.2.2°C (95% CI: -0.2 – 8.3)°–8.5°C) 335 

higher for the EECO, and polar temperatures are 25.0 (17.0 – 29.1)°C18.9°C (5.3–28.9°C) higher. This 336 

results in a flattened latitudinal temperature gradient of 9.0 ( 13.3°C (3.9–25.2.5 – 17.8)°°C) for the EECO, 337 

as opposed to 29.6°C for the modern. To facilitate the comparison with latitudinal gradients reported in the 338 

literature, which sometimes do not report temperatures at very high latitudes, we report also the EECO 339 

gradient between the equator and the modern-day polar circle (66.6°),° latitude), which is slightlymarkedly 340 

lower at 75.8 ( 2.2 – 13.7)°°C. (0.5–12.8°C). 341 

The high variability of EECO palaeotemperature proxies, particularly in the mid-latitudes, and the scarcity 342 

of high-latitude data, result in substantial uncertainties in the modelled temperature gradient. This is 343 

reflected in the residual standard deviation (𝜎) of the EECO gradient – –4.9°C (3.8 – 9–6.5)°°C – )–which 344 
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is more than double the 𝜎 for the modern gradient, 2.2°C. This signifies that the early Eocene data does not 345 

fit as well to the logistic latitudinal gradient model, which can also be seen fromis illustrated by the drastic 346 

departure of some of the proxy data from the gradient estimates (Fig. 4). 347 

The early Eocene GMST is estimated at 28.73°C (26.7 – 3–30.3°C), 10.7)°C, 11.1°C higher than the 348 

modern. A model run excluding the ecological proxies increases the GMST by 1.67°C (-1.8 – 4.8)°– 349 

5.0°C.). The median latitudinal gradient is similarmodelled temperature is higher near the equator and in 350 

high latitudes when excluding the ecological proxies, with a flattened median gradient of 10.9.2°C, but with 351 

a 20% wider 95% CI°C (Fig. S2). This indicates that theIn contrast, including ecological proxies, but 352 

widening the uncertainty around the low-latitude ecological proxy data are broadly in agreement with the 353 

geochemical proxies, while providing additional constraints on the shape ofdoes not significantly change 354 

the early Eocene temperature resulting gradient. (Fig. S3). 355 

Due to the limited spatial coverage of the early Eocene proxy record, and due to the added model complexity 356 

of simultaneously estimating a model across both hemispheres, we pooled the proxy data across both 357 

hemispheres. Applying the model separately within each hemisphere results in substantial differences in 358 

hemispherical, average temperatures, with the Southern Hemisphere being warmer by 6.5 (3.5 – 1°C 359 

(2.9.4)°–9.2°C.). The inferred latitudinal gradient is somewhat steeper in the Northern Hemisphere (steeper 360 

by 41.8°C, although the 95% CI of that difference spans -6.6 – 18.0–14.35°C), but the large uncertainties 361 

associated with both gradients, and the lack of polar proxy data in the Southern Hemisphere preclude a 362 

more precise statement (see Fig. S3S4). 363 
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Figure 4: Estimates of the median, latitudinal sea surface temperature gradients of the early Eocene 

climatic optimum (purple line) and of the present-day (turquoise), both estimated with the Bayesian 

model. The purple ribbon (shading) depictdepicts the 95% credible interval of the Eocene gradient, the 

uncertainty of the modern gradient is too low to be visible. Points within the plot depict the 
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geochemical (e.g. TEX86) and the ecological (e.g. mangroves) data. Geochemical data are plotted by 

their point estimate temperature value. Ecological data are plotted at the mean temperature values of 

their respective normal distributions. 

Discussion 364 

Improved estimation of latitudinal and global palaeotemperatures 365 

Our results show that our Bayesian model can be used to reconstruct different types of latitudinal SST 366 

gradients from proxy data, even with smallmoderate sample sizes (n = 10 – 20–34) and patchy sampling 367 

distributions (Fig. 2). This is an advancement over previously used linear, quadratic, or Gaussian 368 

approximations (e.g. Bijl et al., 2009; Tierney et al., 2017), which can fit only specific types of gradients. 369 

As such, our model presents an alternative to non-parametric methods for inferring latitudinal temperature 370 

gradients, which are sometimes favoured as they can flexibly follow the shape of an unknown temperature 371 

gradient (e.g. Zhang et al., 2019; Jones and Eichenseer, 2022). However, when used for interpolation or 372 

prediction outside the proxy range, non-parametric methods such as Gaussian process regression strictly 373 

respond to the data (e.g. Inglis et al., 2020). This means that the idiosyncrasies of a patchy proxy record, 374 

potentially afflicted with measurement errors, calibration errors, and palaeogeographic and temporal 375 

uncertainty, (e.g. Buffan et al., 2023), dictate the reconstruction of large-scale climateclimatic patterns, 376 

without the option of including additional knowledge (e.g. that latitudinal temperature gradients should be 377 

broadly negative). 378 

In contrast, our Bayesian, parametric model allows for the inclusion of informative priors on the model 379 

parameters. The modelled sea surface temperature gradient thus does not strictly follow the proxy data, but 380 

instead represents a compromise between the data and prior knowledge. In the EECO example (Fig. 4), the 381 

inclusion of informative priors improves the prediction of sea surface temperatures in the unsampled, very 382 

high latitudes: Notice that the upper limit of the credible interval does not increase beyond the range of the 383 

data, whereas unconstrained approaches such as splines, Gaussian processes or even standard linear 384 

regression could lead to unrealistically high upper bounds in this case (see Rasmussen and Williams, 2004). 385 

Prior information on the shape of latitudinal temperature gradients on Earth exists for all geological time 386 

periods. For example, the greater amount of solar radiation per unit area in low latitudes causes Earth’s 387 

latitudinal temperature gradient to be broadly negative (Beer et al., 2008). The ease with which such prior 388 

information can be integrated is a major advantage of our method, as the shape of the modelled gradient is 389 

controlled by four parameters which clearly relate to its magnitude, steepness, and the latitude of its greatest 390 

steepness. 391 
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Palaeoclimate reconstructions are often summarised as global mean surface temperatures (GMST), 392 

providing a standardised metric for characterising the state of the Earth’s climate (Royer et al., 2004; Inglis 393 

et al., 2020). The calculation of global mean surface temperatures directly from sparse proxy data is 394 

susceptible to bias (Jones and Eichenseer, 2022). By modelling the temperature variation across latitudes, 395 

a complete temperature distribution along a latitudinal axis can be obtained, filling in gaps in the proxy 396 

record through inter- or extrapolation. This eliminates the common problem that specific climateclimatic 397 

zones dominate the proxy record. Reconstructing the GMST directly from the proxies would lead to an 398 

estimate biased towards the well-sampled latitudes. Calculating zonal averages alleviates this problem, but 399 

this method relies on comprehensive latitudinal coverage (Inglis et al., 2020). Instead, our method allows 400 

for intersecting the modelled temperature gradient at narrow latitudinal intervals, even when significant 401 

latitudinal gaps exist. Weighting the temperatures of those latitudinal intervals by area results in GMST 402 

estimates without intrinsic spatial biases. We anticipate that this improved method may significantly alter 403 

Phanerozoic, proxy-based temperature curves, which have often been directly calculated from the proxy 404 

record (Royer et al., 2004; Veizer and Prokoph, 2015). This is particularly relevant for the early Mesozoic 405 

and older intervals, for which the spatial coverage is generally poor due to the absence of data from ocean 406 

drilling sites (Jones and Eichenseer, 2022). 407 

The role of ecological constraints in palaeoclimatepalaeoclimatic 408 

reconstructions 409 

Our results further exemplify how incorporating quantified ecological temperature constraints can provide 410 

more precise temperature reconstructions than geochemical proxies alone, adding to the advances in 411 

palaeoclimatepalaeoclimatic reconstructions achieved by integrating lithological data (Scotese et al., 2021; 412 

Burgener et al., 2023). Combining the occurrences of climate-sensitive plant communities (Greenwood and 413 

Wing, 1995), reptiles (Markwick, 2007), and leaf shapes (Peppe et al., 2011), with geochemical proxies 414 

offers substantial potential for improving quantitative palaeoclimatepalaeoclimatic reconstructions across 415 

the Phanerozoic. Our modelling framework offers a straightforward, efficient way of integrating ecological 416 

climatepalaeoclimatic data with other proxy data: The hierarchical model structure accounts for variation 417 

of temperature estimates from proxies at individual localities, which is treated equivalent to the uncertainty 418 

associated with the ecological temperature proxies. A local temperature estimate, based on multiple 419 

geochemical proxies, thus has the same weight as a local temperature estimate obtained from the occurrence 420 

of a climate-sensitive plant community, whilst preserving the uncertainty associated with each estimate. 421 

The model could easily be extended to include uncertainties on individual geochemical proxy data (see Fig. 422 

S5), or to variably weight proxy records classified as more or less reliable. 423 
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Our approach for deriving fully quantitative climate reconstructions from ecological data is borrowed from 424 

nearest living relative methods, commonly employed in terrestrial, Cenozoic climatepalaeoclimatic 425 

reconstructions (Fauquette et al., 2007; Pross et al., 2012). One major limitation to these methods is that the 426 

thermal preferences of taxa may have changed over time. More significantly, in the early Eocene, sea 427 

surface temperatures may have reached heights unknown in the modern world, and nearest living relative 428 

methods based on the modern are inherently unable to predict such elevated temperatures. This is especially 429 

true for taxa that inhabit the warmest part of the ocean today, e.g. coral reefs (Kleypas et al., 1999). 430 

Although coral reefs are threatened by warming sea surface temperatures today (Hoegh-Guldberg, 2011), 431 

it is conceivable that Eocene reef corals were adapted to a warmer climate. The fossil record indicates that 432 

reef development may have been stunted in the early Eocene, with few early Eocene coral reefs occurring 433 

in low latitudes (Zamagni et al., 2012). The absence of coral reefs in higher latitudes in the early Eocene 434 

could be due to requirements in irradiance, rather than temperature (Muir et al., 2015). Tropical 435 

temperatures predicted by the geochemical proxy record indicate hotter-than-modern tropical temperatures 436 

for the early Eocene (Fig. S2), suggesting that the modern climateclimatic range of coral reefs may 437 

underestimate the early Eocene thermal nichelimits for coral reefs. We have tried to account for that 438 

possibility by widening the temperature probability distribution for coral reefs, but the predicted 439 

temperatures for the reef and mangrove sites still lie below the temperatures indicated by the geochemical 440 

proxy record (Fig. 4, Fig. S2). 441 

Early Eocene climate 442 

The geochemical proxy record and ecological data indicate that the latitudinal SST gradient of the early 443 

Eocene climatic optimum was significantly shallower than the modern (Huber and Caballero, 2011), but 444 

beyond that, there is little agreement. Earlier, reconstructed early Eocene and EECO SST gradients range 445 

from 7 – –21°C (Table 1); a more recent reconstruction that includes terrestrial air and sea surface 446 

temperatures arrives at a gradient of ~13°C (Inglis et al., 2020). Our polar circle median poles-to equatorial-447 

equator gradient estimate is lower than most previous estimatessimilar at 713.3°C, but notably shallower 448 

when taking the equator-to-polar-circle estimate, 5.8°C, although the 95% credible interval extendsas the 449 

geochemical proxy data suggest high temperatures up to 13.7°C and thus overlaps earlier estimates based 450 

on shallow water proxies. The confirmationlatitudes of a very flat gradient by both~ 60°. Both geochemical 451 

and ecological shallow water data indicatesindicate that inferred SST gradients based on tropical, shallow 452 

water and deep water samples (Cramwinckel et al., 2018; Evans et al., 2018) may overestimate the SST 453 

gradient of the early Eocene greenhouse world. Likewise, palaeoclimatic simulations from General 454 

Circulation Models tend to estimate steeper gradients than most proxy records (Table 1; Pross et al., 2012; 455 

Lunt et al., 2021) 456 
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Discrepancies between earlier, proxy-based reconstructions and our modelling results are most pronounced 457 

in latitudes beyond the polar circle, as earlier approaches (e.g. Tierney et al., 2017) predict almost linearly 458 

decreasing SSTs towards the poles, whereas our median prediction suggests only a slight decrease beyond 459 

the polar circle. The scarcity of temperature records in this range leads to widening credible intervals in our 460 

prediction, including the possibility of stronger temperature decreases. Polar temperature estimates from 461 

our model are thus conservative in that they admit large uncertainty where data is absent, which is desirable. 462 

However, the presence of high proxy-derived temperature estimates at ~ 60° latitudes forces the modelled 463 

median temperature curve to be too high at ~ 24°C, relative to the temperatures indicated by the high-464 

latitude mangrove communities (15.6 - 22.5°C). In contrast, the extrapolated polar temperatures of most 465 

previous proxy-based models are likely too low, given the abundance of ecological data indicating 466 

temperate or subtropical high-latitude climates during the EECO (Pross et al., 2012; Popescu et al., 2021). 467 

The very high variability of the proxy record in mid-latitudes results in large uncertainties on the shape of 468 

temperature gradient and on the GMST. Some of this variability may stem from spatial variability in SSTs, 469 

as can be observed in the modern (Fig. 3), e.g. due to ocean circulation (Rahmstorf, 2002). Biases and errors 470 

in the proxy reconstructions also likely contribute to the observed variability, as geochemical proxies reflect 471 

many other factors besides seawater temperature (Hollis et al., 2019). Despite excluding δ18O measurements 472 

from recrystallised fossils, systematic offsets remain between mostly warm temperatures derived from 473 

TEX86, and cooler temperatures derived from δ18O, Δ47, and the ecological proxies. Seasonality (Keating-474 

Bitonti et al., 2011) and temporal changes within the EECO (Westerhold et al., 2018) may also contribute 475 

to the large variability of the EECO proxy data. 476 

Temporal changes within the EECO (Westerhold et al., 2018), and seasonality (Keating-Bitonti et al., 2011; 477 

Ivany and Judd, 2022) may also contribute to the large variability of the EECO proxy data. Based on the 478 

occurrence of heterotrophic carbonates, Davies et al. (2019) suggested that mid- and high-latitude 479 

geochemical proxy data from the EECO may be biased towards summer temperatures. Some of the 480 

geochemical mid-latitude geochemical proxy data from Hollis et al. (2019) may therefore suggest higher 481 

than actual mean annual temperatures, and the variability of temperature estimates from individual localities 482 

is higher in mid - high latitudes (Fig. S6). It is difficult to attribute this variability to seasonality alone, as 483 

temporal climate variability is also expected to be higher in mid and high latitudes (Schwartz, 2008). 484 

Critically, however, the mangrove data strongly supports our inference of a flattened gradient independent 485 

of the geochemical proxy record. 486 

Recent, marine GMST estimates of the EECO and of the early Eocene range from 23.4 – –37.1°C, with the 487 

lowest GMSTs being derived from δ18O, and the higher estimates including TEX86 (Inglis et al., 2020). 488 

Many studies include both marine and terrestrial proxies to derive GMST estimates, but despite great 489 
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differences in proxy selection and in the calculation of global average temperatures, many recent estimates 490 

fall in the range of 27 - 29.5°C (Hansen et al., 2013; Caballero and Huber, 2013; Cramwinckel et al., 2018; 491 

Zhu et al., 2019), similar to our median GMST estimate of 28.73°C and well within the 95% credible 492 

interval of our GMST estimate (26.7 – 3–30.3°C).  493 

Conclusions 494 

The Bayesian hierarchical model presented here is able to reconstruct latitudinal gradients from both 495 

geochemical and ecological proxy data, while reflecting the uncertainty associated with the ecological 496 

temperature proxies, and accounting for the variation of multiple temperature estimates at individual 497 

localities. Using informative prior information allows for accurate temperature reconstructions from records 498 

with geographically incompletesparse sampling. By providing temperature estimates across the entire 499 

latitudinal range, this method also facilitates the reconstruction of unbiased global average temperatures. 500 

Application of our model to the EECO suggests that latitudinal sea surface temperature gradients were 501 

shallower than estimated by most previous proxy-based studies. High-latitude pollen records support this 502 

interpretation. Our GMST estimate is in good agreement with most existing estimates, indicating that 503 

broadly accurate GMST reconstructions are possible even with substantial deviations in the shape of the 504 

latitudinal temperature gradient. Our new method opens the door for improving the accuracy of proxy-505 

based palaeoclimatepalaeoclimatic reconstructions and Phanerozoic temperature curves, particularly in 506 

intervals with a patchy and unenvenlyunevenly sampled record. Finally, the flexibility of our approach 507 

means that estimates can be efficiently updated when new data, or constraints, are made available. 508 
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