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Abstract 23 

In the context of global warming, an increase in atmospheric aridity and global dryland expansion were 24 

expected under the future climate in previous studies. However, it conflicts with observed greening 25 

over drylands and the insignificant increase in hydrological and ecological aridity from the 26 

ecohydrology perspective. Combining climatic, hydrological, and vegetation data, this study evaluated 27 

global dryland aridity changes at meteorological sites from 2003 to 2019. A decoupling between 28 

atmospheric, hydrological, and vegetation aridity was found. Atmospheric aridity represented by the 29 

vapour pressure deficit (VPD) increased, hydrological aridity indicated by machine learning-based 30 

precipitation minus evapotranspiration (P-ET) data did not change significantly, and ecological aridity 31 

represented by leaf area index (LAI) decreased. P-ET showed non-significant changes in most of the 32 

dominant combinations of VPD, LAI, and P-ET. This study highlights the added values of using station 33 

scale data to assess dryland change as a complement to the results based on coarse resolution reanalysis 34 

data and land surface models. 35 

1 Introduction 36 

Drylands are defined as regions with a dry climate, limited water, and scarce vegetation (Berg and 37 

McColl, 2021). In the context of global warming, due to potential higher atmospheric water demand, 38 

the global dryland is expected to expand. It will severely affect the relevant ecosystem functions and 39 

livelihoods in drylands (Reynolds et al., 2007; Yao et al., 2020; Prăvălie, 2016). To date, there are still 40 

major limitations in the consensual knowledge and consistent understanding of global dryland aridity 41 

changes, such as wet-dry changes, the location, magnitude, and persistence of the potential dryland 42 

expansion and associated mechanisms (Berg and McColl, 2021; Lian et al., 2021; Huang et al., 2016, 43 

2017; Grünzweig et al., 2022; Pan et al., 2021). Such knowledge gaps have substantially limited the 44 

effective climate adaptation and related strategy development to realize the Sustainable Development 45 

Goals in drylands, especially in the global south (Li et al., 2021; Fu et al., 2021; Yao et al., 2021; 46 

Ramón Vallejo et al., 2012). 47 

 48 

The difficulty of the current investigation on dryland change lies in its multifaceted nature including 49 

the diverse characteristics of climate, hydrology, and ecosystems. The indicators and methods used to 50 

https://doi.org/10.5194/egusphere-2023-1187
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

assess changes in drylands are thus diverse and previous studies have obtained different findings (Lian 51 

et al., 2021) on dryland change. Typically, the arid index (AI), calculated as the multi-year average 52 

precipitation (P) divided by potential evaporation (PET), was commonly used to measure atmospheric 53 

aridity in long-term global dryland change measuring studies (Huang et al., 2017, 2016). It used only 54 

atmospheric inputs, focused only on atmospheric aridity, and did not take into account the effects of 55 

ecohydrological aridity and the influence of land surface processes (Berg and McColl, 2021). AI-based 56 

studies have found global dryland expansions in the past and future (Huang et al., 2017, 2016) in the 57 

global warming context. However, such AI-based finding appears to be contrary to the global greening 58 

of dryland vegetation based on satellite remote sensing observations (Fensholt et al., 2012; Poulter et 59 

al., 2014; Lian et al., 2021; Hickler et al., 2005; Zhu et al., 2016). This illustrated the necessity of 60 

incorporating changes in surface properties such as vegetation in addition to atmospheric indicators. 61 

Therefore, from an ecohydrological perspective, recent studies have employed various ecohydrological 62 

indicators and land-surface-property changes such as soil moisture, vegetation greenness, 63 

evapotranspiration (ET), P-ET (i.e., P minus ET as surface water availability), and runoff to assess the 64 

dryland change (Berg and McColl, 2021; Lian et al., 2021; Denissen et al., 2022; Yang et al., 2018; 65 

Milly and Dunne, 2016; He et al., 2019). Such recent studies have shown that the dryland changes 66 

indicated by land surface changes and ecohydrological indicators did not confirm the ‘expansion of 67 

drylands’ finding in previous atmospheric-indicator-based studies (Huang et al., 2016, 2017; Feng and 68 

Fu, 2013). In terms of the mechanism explanation, these studies claimed that atmospheric drying and 69 

vegetation greening may occur simultaneously, and elevated vapour pressure deficit (VPD) does not 70 

fully propagate to surface changes to exacerbate decreases in soil moisture and runoff. Under elevated 71 

atmospheric CO2, plant stomata may close and reduce transpiration and ET, and improve water use 72 

efficiency (WUE) (Lian et al., 2021; Berg and McColl, 2021; Roderick et al., 2015), which may 73 

compensate for the negative effects of elevated VPD on vegetation growth. This mechanism was not 74 

accounted for the physically based estimates of PET (e.g., the Penman-Monteith equation) and thus AI-75 

based findings may have overestimated the aridity and contained considerable uncertainty. 76 

 77 

However, the data used in most of the above-mentioned approaches have large uncertainties, such as 78 

coarse transpiration/ soil moisture data (0.5° × 0.5° resolution) from long-term climate and land surface 79 
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model simulations (Berg and McColl, 2021) and coarse soil moisture/ ET data (0.25° × 0.25° 80 

resolution) from the Global Land Evaporation Amsterdam Model (GLEAM) or the global land data 81 

assimilation system (GLDAS), which are not necessarily applicable to the assessment of dryland 82 

expansion at fine scales. In addition, it is difficult to validate the findings in such coarse-resolution 83 

studies with ground observations. It is thus essential to make better use of station-scale data, which 84 

may have the potential in measuring dryland change at a finer scale, be better combined with ground 85 

observations, and provide more effective climate change adaptation suggestions for local communities. 86 

 87 

Therefore, aimed at reducing scale-related uncertainty and obtaining a comprehensive finding of 88 

multifaceted characteristics, this study investigated dryland change at the meteorological station scale 89 

using the combinations of atmospheric, hydrological, and vegetation condition observations including 90 

VPD, P-ET, and leaf area index (LAI). VPD and P are from meteorological observations, LAI is from 91 

MODIS imagery. ET is estimated by a Random Forest (RF) model trained from dryland flux stations in 92 

FLUXNET2015, and the data-driven methods can avoid uncertainties caused by physically based ET 93 

models. At the station scale, this study provides new insights into global dryland aridity change using 94 

multifaceted data with a higher proportion of observations.  95 

 96 

2 Methodology 97 

We produced ET data for global dryland meteorological stations by applying an ET machine learning 98 

model obtained from FLUXNET2015’s dryland flux station (AI < 0.65) data trained using RF to global 99 

dryland (AI < 0.65) meteorological stations. We selected daily ET observations (i.e., latent heat 100 

observations) from the FLUXNET2015 dataset for stations in drylands as the target variable. The 101 

selected predictor variables include downward shortwave radiation (RSDN), air temperature (Ta), daily 102 

variance (half-hourly daily maximum temperature minus daily minimum temperature, TArange), VPD, 103 

wind speed (WS), and LAI from remote sensing (Table 1). Finally, the parameter-optimized RF model 104 

was applied to the stations in the drylands of the global meteorological stations in the Global Surface 105 

Summary of the Day (GSOD) dataset. In this way, daily-scale ET time series data were predicted for 106 

each meteorological station. For each station, when the number of predicted daily ET records for a 107 

given year exceeded 100, the annual ET mean was calculated using the arithmetic mean of the daily ET 108 
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values. Given the absence of data such as LAI during winter snowpack at a small number of arid zone 109 

stations, this approach allows for an effective dense sampling of growing season days to represent 110 

annual ET and distinguish between high and low annual ET values across years. In the subsequent 111 

formal dryland change analysis, cropland meteorological stations were removed due to potential 112 

considerable irrigation influence.  113 

 114 

 115 

Figure 1 The used 59 flux sites in drylands (AI < 0.65) in FLUXNET2015 in the RF model 116 

construction. AI level classification: hyperarid (0 < AI < 0.05), arid (0.05 < AI < 0.2), semiarid (0.2 117 

< AI < 0.5), dry subhumid (0.5 < AI < 0.65).  118 

 119 

Table 1. Description of the predictors used in the RF model to estimate ET at meteorological stations. 120 

Predictor Source Description 

LAI MCD15A3H dataset 

derived from MODIS 

data 

The 4-daily LAI was linearly interpolated to 

the daily scale.  It was extracted based on 

Google Earth Engine (GEE) at a scale of 500 m 

(i.e., cutouts of the 500 × 500 m pixels 

centered on each station). 

RSDN from the BESS(Ryu et 

al., 2018) dataset 

derived from MODIS 

imagery 

It is of 5.5 km spatial resolution. It was 

extracted based on GEE at a scale of 500 m  

WS In-situ observation  
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TA In-situ observation  

TArange In-situ observation Daily TArange is derived from the half-hourly 

maximum temperature and minimum 

temperature data of FLUXNET2015. 

VPD In-situ observation VPD is calculated from TAmax, TAmin, and 

dew point temperature (Tdew) (Howell and 

Dusek, 1995). 

 121 

3 Results 122 

3.1 ET estimation evaluation 123 

We evaluated the performance of the RF model at each flux site using leave-one-site-out cross-124 

validation, and most sites showed high accuracy (Fig. 2) in both Pearson's correlation coefficients 125 

(Rcorr) of observed and predicted daily ET values and RMSE. It indicated the feasibility of accurate 126 

daily ET simulations at most dryland flux sites. And among the predictors, LAI had the highest feature 127 

importance (Fig. 2d), followed by RSDN, TA, WS, VPD, and TARange. This demonstrated the 128 

importance of surface vegetation conditions in ET simulations at dryland sites. 129 

https://doi.org/10.5194/egusphere-2023-1187
Preprint. Discussion started: 20 June 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

 130 

Figure 2 The model performance and feature importance in the leave-one-site-out cross-validation. 131 

(a) Rcorr and RMSE values of 59 sites. (b) Spatial distribution of Rcorr and RMSE records. (c) 132 

Rcorr and RMSE of various PFTs. (d) Feature importance (IMP) ranking.  133 

 134 

3.2 Climatic, hydrological, and vegetation changes over drylands  135 

The pattern of change in each climate and vegetation variable between the periods 2003-2010 and 136 

2011-2019 showed considerable variations (Fig. 3). The number of sites with significant increases in 137 

TA, LAI, and VPD was considerably greater than the number of sites with significant decreases. The 138 

number of sites with significant increases in P, ET, and P-ET was also greater than the number of sites 139 

with significant decreases. The ratio of the numbers of sites with increases and decreases in P-ET is the 140 

lowest. This shows the spatial variability of the trends indicated by the different indicators: the increase 141 
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in TA and VPD in the context of global warming is widespread and their spatial pattern similarity is 142 

also high. The increasing trend in LAI is also dominant. The spatial pattern of ET changes is highly 143 

similar to that of LAI. Both ET and LAI show significant regional increases in the high latitudes of 144 

North America, and central Eurasia, and decreases in the middle and low latitudes of North America. 145 

The spatial pattern of changes in P-ET is more similar to that of P, but the increase in P is not 146 

completely propagated to P-ET and may be partially offset by the trend in ET. 147 

 148 

 149 

Figure 3 Significant changes (p < 0.1) in ET, TA, P, VPD, LAI, and P-ET for dryland meteorological 150 

sites (from 2003-2010 to 2011-2019).  151 

 152 

We compared the relationship between ΔVPD, which represents changes in atmospheric aridity, ΔP-ET, 153 

which represents changes in hydrological aridity, and ΔLAI, which represents changes in vegetation 154 

growth. ΔVPD showed a negative correlation with ΔP-ET (R = -0.19, p < 0.001), indicating that 155 

elevated VPD in drylands did lead to a decrease in surface water availability. However, the negative 156 

correlation between ΔVPD and ΔLAI was not strong (R = -0.13, p < 0.001), indicating that 157 

atmospheric drying was not a dominant determinant of vegetation greening or browning. The positive 158 

correlation between ΔP-ET and ΔLAI was not significant (p > 0.1), indicating a decoupling between 159 

the greening of dryland vegetation and changes in surface water availability. 160 
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 161 

 162 

Figure 4 Relations of (a) ΔLAI-ΔVPD, (b) Δ(P-ET)-ΔVPD, and (c) Δ(P-ET)-ΔLAI at dryland 163 

meteorological sites (from 2003-2010 to 2011-2019).  164 

 165 

3.3 Combined atmospheric, hydrological, and vegetation perspectives 166 

We also analyzed the combinations of VPD, LAI, and P-ET changes, and the distribution patterns of 167 

the different combinations across the globe represented different mechanisms of dryland changes (Fig. 168 

5). In the Dry subhumid, Semiarid and Arid regions, three of the top four combinations exhibited 169 

significant increases in LAI, while VPD exhibited increases, no significant change, increases, and 170 

decreases, respectively. In the top four combinations, the combination with an increase in VPD 171 

accompanied by LAI decrease only ranked third or fourth. This suggests that the effect of vegetation 172 

browning caused by increasing VPD may not be dominant and that the increasing atmospheric water 173 

demand did not considerably decrease vegetation growth. In the Dry subhumid region, compared to the 174 

Semiarid and Arid regions, the combinations of 'VPD↓ & LAI↑ & P-ET (-)' and 'VPD↓ & LAI↑ & P-175 

ET↑ ' combinations ranked higher. It indicates that in the Dry subhumid region, the possibility of the 176 

combination of VPD decrease accompanied by LAI increase is higher. In the Arid region, the 177 

combination of 'VPD↑ & LAI↑ & P-ET (-)' dropped from the first to the second in the ranking 178 

compared to the Dry sub-humid and Semiarid regions, indicating that when AI is lower, the mechanism 179 

represented by the combination of the simultaneous increase in VPD and LAI are less likely to occur. 180 

Surprisingly, of the seven combinations of VPD, LAI, and P-ET in the top ranking, P-ET showed no 181 

significant change. This suggests a smaller contribution from changes in surface water availability in 182 

explaining the variation of combinations of mechanisms for dryland change, although the changes in P-183 
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ET and VPD in the lower-ranked combinations showed opposite trends. The surface water represented 184 

aridity increase obtained in this study is smaller than that indicated by soil moisture and runoff reported 185 

previously (Lian et al., 2021). 186 

 187 

Figure 5 Combinations of VPD, LAI, and P-ET changes across various AI areas from 2003-2010 to 188 

2011-2019. The symbol ‘↑’ represents a significant increase (p < 0.1) of VPD, LAI, or P-ET. The 189 

symbol ‘↓’ represents a significant decrease (p < 0.1) and ‘(-)’ represents insignificant changes.  190 

 191 

The distribution of these combinations is also highly heterogeneous spatially, indicating the high 192 

regional heterogeneity in global dryland change (Feng et al., 2022; Lian et al., 2021). Given this study 193 

is at the station scale, the impacts of heterogeneous underlying surface conditions can be higher. 194 

Combinations with non-significant changes in P-ET are widely distributed globally (Fig. 6a,b,c,d,e,f,g), 195 

including in the western part of North America, Australia, and southern Europe, where there are more 196 

dense stations. Although the combinations of VPD and LAI changes appear to be spatially variable, 197 

some regional patterns were still found. For example, 'VPD↑ & LAI↑ & P-ET (-)' is the dominant 198 

combination in Mongolian grasslands (Fig. 6a). The increase in LAI due to increased P-ET was also 199 

observed in northwest China and northern Central Asia (Fig. 6i, 6k), suggesting that the recent trend of 200 

wetting and greening in this region is more likely to be caused by increased surface water availability 201 

(Shi et al., 2007). The results of previous coarse regional patterns of dryland change may not 202 
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necessarily be applicable to the station scale, which needs more station-scale evaluation and 203 

validations. 204 

 205 

 206 

Figure 6 Locations of combinations of VPD, LAI, and P-ET changes from 2003-2010 to 2011-2019. 207 

The symbol ‘↑’ represents a significant increase (p < 0.1) of VPD, LAI, or P-ET. The symbol ‘↓’ 208 

represents a significant decrease (p < 0.1) and ‘(-)’ represents insignificant changes. 209 

 210 
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4. Discussions 211 

4.1 Implications and Perspective 212 

This study investigated the characteristics of dryland change at global dryland meteorological stations 213 

using a combination of atmospheric, hydrological, and vegetation indicators. A decoupling between 214 

atmospheric, hydrological, and ecological aridity was found in this study, specifically, atmospheric 215 

aridity represented by VPD increased, hydrological aridity indicated by P-ET did not change 216 

significantly, and ecological aridity represented by LAI decreased. It is consistent with the decoupling 217 

found in previous studies based on reanalysis data and coarse-resolution land surface model 218 

simulations (Lian et al., 2021) which considered the impacts of elevated CO2 concentration. This study 219 

also found that P-ET showed non-significant changes in most of the dominant combinations of VPD, 220 

LAI, and P-ET. This is slightly different from the reported weak aridity hydrological increase in 221 

previous studies based on soil moisture and runoff data (Lian et al., 2021), although the year span from 222 

2003 to 2019 in the present study was smaller than these studies (usually more than 50 years). 223 

 224 

The value of this study is revisiting the dryland change issue at the station scale. The key to this is the 225 

use of a machine learning approach to estimate daily-scale ET data from meteorological stations and to 226 

combine the measured P and thus calculate P-ET. Machine learning-based ET simulations (Jung et al., 227 

2010, 2019) may effectively avoid the setting of various hypothetical mechanisms in physics-based ET 228 

models (Martens et al., 2017; Zhang et al., 2010; Mu et al., 2011), mine the relationship between 229 

dryland ET and various environmental factors such as climate and vegetation from measured data, and 230 

achieve a high estimation accuracy. Therefore, the estimation of P-ET at the station scale effectively 231 

measured the status of surface water change since soil moisture and runoff data are difficult to obtain at 232 

the meteorological station scale. Station-scale studies of dryland change may be a new direction for the 233 

future, given the limitation in the coarse resolution of current reanalysis data, land surface models, etc., 234 

and the difficulty of validating their results in the field via ground in situ data. Combined use of 235 

climate, hydrological, and vegetation condition variables at the station scale may have the potential to 236 

provide an interface for dryland change studies to be more connected to ground observations and 237 

associated field experiments. The current satellite remote sensing data still cannot fully capture the 238 

physiological and hydraulic characteristics (Zeng et al., 2022) of dryland plants in the context of 239 
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climate change and extreme weather conditions. It illustrates that station-scale studies will be further 240 

important in the future.  241 

 242 

4.2 Limitations and Uncertainties 243 

4.2.1 Uncertainties in the ET Estimation 244 

In the past, data for P-ET have rarely been produced at the meteorological station scale, while most in 245 

the coarse-resolution grid scale (Jung et al., 2019; Martens et al., 2017; Zhang et al., 2010), and this 246 

study combined machine-learning-based estimates of daily ET with actual measurements of P to 247 

produce P-ET data for dryland meteorological stations. ET simulations exhibit high accuracy at most 248 

stations, but accuracy is limited at a few stations, possibly due to the inefficiency of the selected 249 

predictor variables in the explanation of the site-specific ET variations (Shi et al., 2022a). In future 250 

studies, it can be effective to incorporate station-specific plant hydraulic characteristics as well as 251 

vegetation-trait-related predictor variables (Anderegg, 2015; Anderegg et al., 2018; Shi et al., 2022b; 252 

Zhao et al., 2022). In addition, combining data-driven machine learning methods with physical process-253 

based ET estimation models would be promising (Zhao et al., 2019), with the potential to further 254 

improve ET simulation accuracy. In addition, it may be beneficial to combine transpiration 255 

observations such as SAPFLUXNET (Poyatos et al., 2021) to provide estimates of transpiration. 256 

Compared to ET, transpiration can be more precisely correlated to plant physiological and hydraulic 257 

characteristics, thus providing more detailed mechanism interpretations in dryland aridity change.  258 

 259 

4.2.2 Spatial and temporal representativeness of meteorological stations on dryland change 260 

Although meteorological stations can provide more accurate climate, hydrology, and vegetation data at 261 

fine scales to support studies associated with dryland change, they may still have limitations in spatial 262 

and temporal representativeness. First, the temporal representativeness of meteorological stations is 263 

highly variable across different regions of the globe. Inconsistencies in the length of station observation 264 

records, etc., may lead to unbalance when comparing between regions. Second, meteorological stations 265 

are sparsely located in hyperarid areas, and the representativeness of hyperarid regions can be low. In 266 

other dryland types (i.e., Dry subhumid, Semiarid, and Arid), the representativeness of meteorological 267 

stations may also be affected by other factors such as human activities. In this study, it was considered 268 
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that irrigation of dryland cropland could greatly affect the assessment of P-ET and VPD, and therefore 269 

stations in croplands were removed. However, other disturbances from human activities may still exist, 270 

such as possible grazing (Huang et al., 2018) within the 500 m surrounding extent of the station. 271 

 272 

In contrast, climate adaptation management in surrounding regions of local meteorological stations 273 

may not require much attention to the lack of spatial and temporal representativeness. The combined 274 

use of station-scale VPD, LAI, and P-ET data would be valuable for the development of associated 275 

adaptation policies in local agriculture management and ecological conservation. 276 

5. Conclusion 277 

Combining climatic, hydrological, and vegetation data, this study assesses global dryland change at 278 

meteorological sites from 2003 to 2019. A decoupling between atmospheric, hydrological, and 279 

ecological aridity was found in this study, specifically, atmospheric aridity represented by VPD 280 

increased, hydrological aridity indicated by machine learning-based P-ET data did not change 281 

significantly, and ecological aridity represented by LAI decreased. P-ET showed non-significant 282 

changes in most of the dominant combinations of VPD, LAI, and P-ET. 283 

  284 
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