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Abstract

In the context of global warming, an increase in atmospheric aridity and global dryland expansion were
expected under the future climate in previous studies. However, it conflicts with observed greening
over drylands and the insignificant increase in hydrological and ecological aridity from the
ecohydrology perspective. Combining climatic, hydrological, and vegetation data, this study evaluated
global dryland aridity changes at meteorological sitesstations from 2003 to 2019. A decoupling
between atmospheric, hydrological, and vegetation aridity was found. Atmospheric aridity represented
by the vapour pressure deficit (VPD) increased, hydrological aridity indicated by machine learning-
based precipitation minus evapotranspiration (P-ET) data did not change significantly, and ecological
aridity represented by leaf area index (LAI) decreased. P-ET showed non-significant changes in most
of the dominant combinations of VPD, LAI, and P-ET. This study highlights the added values of using
station scale data to assess dryland change as a complement to the results based on coarse resolution

reanalysis data and land surface models.

1 Introduction

Drylands are defined as regions with a dry climate, limited water, and scarce vegetation (Berg and

McColl, 2021). In the context of global warming, the global dryland is expected to expand due to

potential higher atmospheric water demand;-the-glebal-dryland-is-expeeted-to-expand. It will severely

affect the relevant ecosystem functions and livelihoods in drylands (Reynolds et al., 2007; Yao et al.,
2020; Pravalie, 2016). To date, there are still major limitations in the consensual knowledge and
consistent understanding of global dryland aridity changes, such as wet-dry changes, the location,
magnitude, and persistence of the potential dryland expansion and associated mechanisms (Berg and
McColl, 2021; Lian et al., 2021; Huang et al., 2016, 2017; Grinzweig et al., 2022; Pan et al., 2021).
Such knowledge gaps have substantially limited the effective climate adaptation and related strategy
development to realize the Sustainable Development Goals in drylands, especially in the global south

(Lietal., 2021; Fu et al., 2021; Yao et al., 2021; Ramdn Vallejo et al., 2012).

The difficulty of the current investigation on dryland change lies in its multifaceted nature including

the diverse characteristics of climate, hydrology, and ecosystems. The indicators and methods used to
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assess changes in drylands are thus diverse and previous studies have obtained different findings (Lian

et al., 2021) on dryland change. Fypicallysthe-aridindex{Ab; Typically, the arid index (AI)

(Programme, 1997), calculated as the multi-year average precipitation (P) divided by potential
evaporation (PET), was commonly used to measure atmospheric aridity in long-term global dryland
change measuring studies (Huang et al., 2017, 2016). It used only atmospheric inputs, focused only on
atmospheric aridity, and did not take into account the effects of ecohydrological aridity and the
influence of land surface processes (Berg and McColl, 2021). Al-based studies have found global
dryland expansions in the past and future (Huang et al., 2017, 2016) in the global warming context.
However, such Al-based finding appears to be contrary to the global greening of dryland vegetation
based on satellite remote sensing observations (Fensholt et al., 2012; Poulter et al., 2014; Lian et al.,
2021; Hickler et al., 2005; Zhu et al., 2016). This illustrated the necessity of incorporating changes in
surface properties such as vegetation in addition to atmospheric indicators. Therefore, from an
ecohydrological perspective, recent studies have employed various ecohydrological indicators and
land-surface-property changes such as soil moisture, vegetation greenness, evapotranspiration (ET), P-
ET (i.e., P minus ET as surface water availability), and runoff to assess the dryland change (Berg and
McColl, 2021; Lian et al., 2021; Denissen et al., 2022; Yang et al., 2018; Milly and Dunne, 2016; He et
al., 2019). Such recent studies have shown that the dryland changes indicated by land surface changes
and ecohydrological indicators did not confirm the ‘expansion of drylands’ finding in previous
atmospheric-indicator-based studies (Huang et al., 2016, 2017; Feng and Fu, 2013). In terms of the
mechanism explanation, these studies claimed that atmospheric drying and vegetation greening may
occur simultaneously, and elevated vapour pressure deficit (VPD) does not fully propagate to surface
changes to exacerbate decreases in soil moisture and runoff. Under elevated atmospheric CO», plant
stomata may close and reduce transpiration and ET, and improve water use efficiency (WUE) (Lian et
al., 2021; Berg and McColl, 2021; Roderick et al., 2015), which may compensate for the negative
effects of elevated VPD on vegetation growth. This mechanism was not accounted for the physically
based estimates of PET (e.g., the Penman-Monteith equation) and thus Al-based findings may have

overestimated the aridity and contained considerable uncertainty.
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However, the data used in most of the above-mentioned approaches have large uncertainties, such as
coarse transpiration/ soil moisture data (0.5° x 0.5° resolution) from long-term climate and land surface
model simulations (Berg and McColl, 2021) and coarse soil moisture/ ET data (0.25° x 0.25°
resolution) from the Global Land Evaporation Amsterdam Model (GLEAM) or the global land data
assimilation system (GLDAS), which are not necessarily applicable to the assessment of dryland
expansion at fine scales. In addition, it is difficult to validate the findings in such coarse-resolution
studies with ground observations. It is thus essential to make better use of station-scale data, which
may have the potential in measuring dryland change at a finer scale, be better combined with ground

observations, and provide more effective climate change adaptation suggestions for local communities.

Therefore, aimed at reducing scale-related uncertainty and obtaining a comprehensive finding of
multifaceted characteristics, this study investigated dryland change at the meteorological station scale
using the combinations of atmospheric, hydrological, and vegetation condition observations including
VPD, P-ET, and leaf area index (LAI). VPD and P are from meteorological observations, LAI is from
MODIS imagery. ET is estimated by a Random Forest (RF) model trained from dryland flux stations in
FLUXNET2015, and the data-driven methods can avoid uncertainties caused by physically based ET
models. At the station scale, this study provides new insights into global dryland aridity change using

multifaceted data with a higher proportion of observations.

2 Methodology

We produced ET data for global dryland meteorological stations by applying an ET machine learning
model obtained from FLUXNET2015’s dryland flux station (Al < 0.65) data trained using RF to global
dryland (AI < 0.65) meteorological stations. We selected daily ET observations (i.e., latent heat
observations) from the FLUXNET2015 dataset for stations in drylands as the target variable. The
selected predictor variables include downward shortwave radiation (RSDN), air temperature (Ta), daily
variance (half-hourly daily maximum temperature minus daily minimum temperature, TArange), VPD,

wind speed (WS), and LAI from remote sensing (Table 1).
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The RF model was constructed using the RandomForestRegressor function from the scikit-learn

package of Python. The parameter ‘n_estimators’ was set to 500, and default parameter values were

used for the other parameters (Zhao et al., 2019). For the evaluation of model performance, we used a

leave-one-station-out cross-validation approach used in previous studies of ET predictions (Tramontana

et al., 2016; Zhang et al., 2021; Shi et al., 2022). It is a type of cross-validation approach in which each

station’s observation is considered as the validation set and the rest stations’ observations are

considered as the training set. It can help us understand the potential adaptability of the model to new

data in the prediction set. Feature importance (IMP) was used to measure the contributions of

predictors, and we adopted the permutation importance indices to represent IMP due to their reliability

(Diaz-Uriarte and Alvarez de Andrés, 2006; Strobl et al., 2008; Gromping, 2009; Zhang et al., 2021) in

RF models.

Finally, the parameter-optimizedconstructed RF model was applied to the stations in the drylands of the
global meteorological stations in the Global Surface Summary of the Day (GSOD) dataset. In this way,
daily-scale ET time series data were predicted for each meteorological station. For each station, when
the number of predicted daily ET records for a given year exceeded 100, the annual ET mean was
calculated using the arithmetic mean of the daily ET values. Given the absence of data such as LAI
during winter snowpack at a small number of arid zone stations, this approach allows for an effective
dense sampling of growing season days to represent annual ET and distinguish between high and low
annual ET values across years. In the subsequent formal dryland change analysis, cropland

meteorological stations were removed due to potential considerable irrigation influence.
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131
132 Figure 1 The used 59 flux sitesstations in drylands (Al < 0.65) in FLUXNET2015 in the RF model

133 construction. Al level classification: (Programme, 1997): hyperarid (0 <Al < 0.05), arid (0.05 <Al
134  <0.2), semiarid (0.2 <Al <0.5), dry subhumid (0.5 <Al < 0.65).
135

136 Table 1. Description of the predictors used in the RF model to estimate ET at meteorological stations.

Predictor Source Description

LAI MCDI15A3H dataset The 4-daily LAI was linearly interpolated to
derived from MODIS | the daily scale. It was extracted based on

data Google Earth Engine (GEE) at a scale of 500 m
(i.e., cutouts of the 500 x 500 m pixels

centered on each station).

RSDN from the BESS(Ryu et | It is of 5.5 km spatial resolution. It was
al., 2018) dataset extracted based on GEE at a scale of 500 m
derived from MODIS
imagery

WS In-situ observation

TA In-situ observation

TArange In-situ observation Daily TArange is derived from the half-hourly

maximum temperature and minimum

temperature data of FLUXNET2015.
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VPD In-situ observation VPD is calculated from TAmax, TAmin, and

dew point temperature (Tdew) (Howell and

Dusek, 1995).

3 Results
3.1 ET estimation evaluation
We evaluated the performance of the RF model at each flux sitestation using leave-one-sitestation-out

cross-validation, and most sitesstations showed high accuracy (Fig. 2) in both Pearsen'sPearson’s

correlation coefficients (Rcorr) of observed and predicted daily ET values and the root mean square

error (RMSE-:). It indicated the feasibility of accurate daily ET simulations at most dryland flux

sitesstations. And among the predictors, LAI had the highest featare-importanee[MP (Fig. 2d), followed

by RSDN, TA, WS, VPD, and TARange. This demonstrated the importance of surface vegetation

conditions in ET simulations at dryland sitesstations.
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Figure 2 The model performance and feature importance in the leave-one-sitestation-out cross-
validation. (a) Rcorr and RMSE values of 59 sitesstations. (b) Spatial distribution of Rcorr and
RMSE records. (¢) Rcorr and RMSE of various PFTs. (d) Feature importance (IMP) ranking.

3.2 Climatic, hydrological, and vegetation changes over drylands

The pattern of change in each climate and vegetation variable between the periods 2003-2010 and

2011-2019 showed considerable variations (Fig. 3). The number of sitesstations with significant

increases in TA, LAI, and VPD was considerably greater than the number of sitesstations with

significant decreases. The number of sitesstations with significant increases in P, ET, and P-ET was

also greater than the number of sitesstations with significant decreases. The ratio of the numbers of

sitesstations with increases and decreases in P-ET is the lowest. This shows the spatial variability of the
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trends indicated by the different indicators: the increase in TA and VPD in the context of global

warming is widespread and their spatial pattern similarity is also high. The increasing trend in LAI is

also dominant. The spatial pattern of ET changes is highly similar to that of LAI. Both ET and LAI

show significant regional increases in the high latitudes of North America, and central Eurasia, and

decreases in the middle and low latitudes of North America. The spatial pattern of changes in P-ET is

more similar to that of P, but the increase in P is not completely propagated to P-ET and may be

partially offset by the trend in ET.
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Figure 3 Significant changes (p <0.1) in ET, TA, P, VPD, LAI, and P-ET for dryland meteorological

sitesstations (from 2003-2010 to 2011-2019).

We compared the relationship between AVPD, which represents changes in atmospheric aridity, AP-ET,
which represents changes in hydrological aridity, and ALAI, which represents changes in vegetation
growth. AVPD showed a negative correlation with AP-ET (R =-0.19, p <0.001), indicating that
elevated VPD in drylands did lead to a decrease in surface water availability. However, the negative
correlation between AVPD and ALAI was not strong (R =-0.13, p <0.001), indicating that
atmospheric drying was not a dominant determinant of vegetation greening or browning. The positive
correlation between AP-ET and ALAI was not significant (p > 0.1), indicating a decoupling between

the greening of dryland vegetation and changes in surface water availability.

10
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Figure 4 Relations of (a) ALAI-AVPD, (b) A(P-ET)-AVPD, and (c) A(P-ET)-ALAI at dryland

meteorological sitesstations (from 2003-2010 to 2011-2019).

3.3 Combined atmospheric, hydrological, and vegetation perspectives

We also analyzed the combinations of VPD, LAI, and P-ET changes, and the distribution patterns of
the different combinations across the globe represented different mechanisms of dryland changes (Fig.
5). In the Dry subhumid, Semiarid and Arid regions, three of the top four combinations exhibited
significant increases in LAI, while VPD exhibited increases, no significant change, increases, and
decreases, respectively. In the top four combinations, the combination with an increase in VPD
accompanied by LAI decrease only ranked third or fourth. This suggests that the effect of vegetation
browning caused by increasing VPD may not be dominant and that the increasing atmospheric water
demand did not considerably decrease vegetation growth. In the Dry subhumid region, compared to the
Semiarid and Arid regions, the combinations of 'VPD| & LAIT & P-ET (-)' and 'VPD| & LAIT & P-
ET1 ' combinations ranked higher. It indicates that in the Dry subhumid region, the possibility of the
combination of VPD decrease accompanied by LAI increase is higher. In the Arid region, the
combination of 'VPD1 & LAIT & P-ET (-)' dropped from the first to the second in the ranking
compared to the Dry sub-humid and Semiarid regions, indicating that when Al is lower, the mechanism
represented by the combination of the simultaneous increase in VPD and LAI are less likely to occur.
Surprisingly, of the seven combinations of VPD, LAI, and P-ET in the top ranking, P-ET showed no
significant change. This suggests a smaller contribution from changes in surface water availability in

explaining the variation of combinations of mechanisms for dryland change, although the changes in P-

11
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ET and VPD in the lower-ranked combinations showed eppesiteoppostation trends. The surface water
represented aridity increase obtained in this study is smaller than that indicated by soil moisture and

runoff reported previously (Lian et al., 2021).
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Figure 5 Combinations of VPD, LAI, and P-ET changes across various Al areas from 2003-2010 to
2011-2019. The symbol ‘1’ represents a significant increase (p < 0.1) of VPD, LAI, or P-ET. The

symbol ‘|’ represents a significant decrease (p <0.1) and ‘(-)’ represents insignificant changes.

The distribution of these combinations is also highly heterogeneous spatially, indicating the high
regional heterogeneity in global dryland change (Feng et al., 2022; Lian et al., 2021). Given this study
is at the station scale, the impacts of heterogeneous underlying surface conditions can be higher.
Combinations with non-significant changes in P-ET are widely distributed globally (Fig. 6a,b,c,d,e,f,g),
including in the western part of North America, Australia, and southern Europe, where there are more
dense stations. Although the combinations of VPD and LAI changes appear to be spatially variable,
some regional patterns were still found. For example, "VPD?1 & LAIT & P-ET (-)' is the dominant
combination in Mongolian grasslands (Fig. 6a). The increase in LAI due to increased P-ET was also
observed in northwest China and northern Central Asia (Fig. 61, 6k), suggesting that the recent trend of
wetting and greening in this region is more likely to be caused by increased surface water availability

(Shi et al., 2007). The results of previous coarse regional patterns of dryland change may not

12
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Figure 6 Locations of combinations of VPD, LAI, and P-ET changes from 2003-2010 to 2011-2019.

The symbol ‘1’ represents a significant increase (p < 0.1) of VPD, LAI, or P-ET. The symbol ‘|’

represents a significant decrease (p < 0.1) and ‘(-)’ represents insignificant changes.
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4, Discussions

4.1 Implications and Perspective

This study investigated the characteristics of dryland change at global dryland meteorological stations
using a combination of atmospheric, hydrological, and vegetation indicators. A decoupling between
atmospheric, hydrological, and ecological aridity was found in this study, specifically, atmospheric
aridity represented by VPD increased, hydrological aridity indicated by P-ET did not change
significantly, and ecological aridity represented by LAI decreased. It is consistent with the decoupling
found in previous studies based on reanalysis data and coarse-resolution land surface model
simulations (Lian et al., 2021) which considered the impacts of elevated CO, concentration. This study
also found that P-ET showed non-significant changes in most of the dominant combinations of VPD,
LAI and P-ET. This is slightly different from the reported weak aridity hydrological increase in
previous studies based on soil moisture and runoff data (Lian et al., 2021), although the year span from

2003 to 2019 in the present study was smaller than these studies (usually more than 50 years).

The value of this study is revisiting the dryland change issue at the station scale. The key to this is the
use of a machine learning approach to estimate daily-scale ET data from meteorological stations and to
combine the measured P and thus calculate P-ET. Machine learning-based ET simulations (Jung et al.,
2010, 2019) may effectively avoid the setting of various hypothetical mechanisms in physics-based ET

models ¢

Y Martens et al., 2017; Zhang et al.,

2010; Mu et al., 2011), mine the relationship between dryland ET and various environmental factors

such as climate and vegetation from measured data, and achieve a high estimation accuracy. Therefore,
the estimation of P-ET at the station scale effectively measured the status of surface water change since
soil moisture and runoff data are difficult to obtain at the meteorological station scale. Station-scale
studies of dryland change may be a new direction for the future, given the limitation in the coarse
resolution of current reanalysis data, land surface models, etc., and the difficulty of validating their
results in the field via ground in situ data. Combined use of climate, hydrological, and vegetation
condition variables at the station scale may have the potential to provide an interface for dryland
change studies to be more connected to ground observations and associated field experiments. The

current satellite remote sensing data still cannot fully capture the physiological and hydraulic
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characteristics (Zeng et al., 2022) of dryland plants in the context of climate change and extreme

weather conditions. It illustrates that station-scale studies will be further important in the future.

4.2 Limitations and Uncertainties

4.2.1 Uncertainties in the ET Estimation

In the past, data for P-ET have rarely been produced at the meteorological station scale, while most in

the coarse-resolution grid scale (Jung-etal; 2049 Martens-et-al; 2017 Zhang et-al2010)-and-this—

2017; Zhang et al., 2010), and this study combined machine-learning-based estimates of daily ET with

actual measurements of P to produce P-ET data for dryland meteorological stations. ET simulations

exhibit high accuracy at most stations, but accuracy is limited at a few stations, possibly due to the

inefficiency of the selected predictor variables in the explanation of the station-specific ET variations

(Shi et al., 2022). In future studies, it can be effective to incorporate station-specific plant hydraulic

characteristics as well as vegetation-trait-related predictor variables (Anderegg, 2015; Anderegg et al.

2018; Zhao et al., 2022; Shi et al., 2023). In addition, combining data-driven machine learning methods

with physical process-based ET estimation models would be promising (Zhao et al., 2019), with the

potential to further improve ET simulation accuracy. In addition, it may be beneficial to combine
transpiration observations such as SAPFLUXNET (Poyatos et al., 2021) to provide estimates of
transpiration. Compared to ET, transpiration can be more precisely correlated to plant physiological
and hydraulic characteristics, thus providing more detailed mechanism interpretations in dryland aridity

change.
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In addition, mismatches between the flux footprints of flux stations and remote sensing data pixels may

also cause uncertainty, especially if the flux footprints include considerable spatial heterogeneity (Chu

et al., 2021). The 500 m scale of data extraction in this study may have reduced this effect partially, but

it may still exist due to the variability of flux footprints across stations. Previous studies have shown

that when data are extracted at scales larger than 500 m, the representativeness of the flux footprint

area’s land cover types can be considerably decreased (Chu et al., 2021). The use of a fixed target area

extent for data extraction may bias model-data integration in multi-station level studies. In the future, to

reduce the related bias, we should pay more attention to the heterogeneity within the flux footprints of

specific flux stations especially in remote sensing data extraction and processing (Walther et al., 2022).

The low performance of some flux stations (e.g., shrubland stations), may be related to inadequate

modelling of the influence of belowground hydrologic processes. Belowground hydrogeologic

properties and groundwater dynamics are difficult to quantify directly through remote sensing or

meteorological data. It is thus difficult to capture the effects of subterranean ventilation (Lopez-

Ballesteros et al., 2017) and the dynamic relationship between plant root zone and groundwater.

Previous studies have shown that the root zone storage capacity (Gao et al., 2014; Wang-Erlandsson et

al., 2016; Singh et al., 2020) is important in hydrological processes in drylands and during drought

events. Researchers have attempted to estimate root depth and root zone storage capacity (Wang-

Erlandsson et al., 2016; Stocker et al., 2023), or to couple drylands’ deep-root distribution modules into

earth system models (Zhang et al., 2013 Li et al., 2015), and improved the hydrological and ecological

prediction (Gao et al., 2014). However, in these approaches, there remain partial limitations such as the

dependency on satellite-based ET data (Wang-Erlandsson et al., 2016) containing uncertainty. On the

other hand, accurately modelling groundwater dynamics remains limited (Gleeson et al., 2016, 2021).

Uncertainties in station-scale groundwater dynamics also affect our understanding of the root-

groundwater relationship and groundwater’s contribution to ET. Combining drought index at different

time scales (e.g., the Standardized Precipitation Evapotranspiration Index (SPEI)) at the regional scale

(Secci et al., 2021), and the Gravity Recovery and Climate Experiment (GRACE) based anomalies in

terrestrial water storage (Li et al., 2019) can be promising in indirectly representing the groundwater

dynamics, but mismatches in spatial scales may still cause errors. In addition, our accuracy evaluation
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317 was based on the leave-one-station-out cross-validation (Zhang et al., 2021). The validation accuracy

318 may be relatively low when there are no stations with similar environmental conditions in the training

319 set. The RF model that we finally applied to the weather stations included all stations (i.e., no flux

320 station was left), the accuracy can thus be improved a little, especially at weather stations with similar

321 environmental conditions (e.g., shrubland stations) to the previously left flux station in the leave-one-

322 station-out cross-validation.

323

324 4.2.2 Spatial and temporal representativeness of meteorological stations on dryland change

325 Although meteorological stations can provide more accurate climate, hydrology, and vegetation data at
326 fine scales to support studies associated with dryland change, they may still have limitations in spatial
327 and temporal representativeness. First, the temporal representativeness of meteorological stations is
328 highly variable across different regions of the globe. Inconsistencies in the length of station observation
329 records, etc., may lead to unbalance when comparing between regions. Second, meteorological stations
330 are sparsely located in hyperarid areas, and the representativeness of hyperarid regions can be low. In
331 other dryland types (i.e., Dry subhumid, Semiarid, and Arid), the representativeness of meteorological
332 stations may also be affected by other factors such as human activities. In this study, it was considered
333 that irrigation of dryland cropland could greatly affect the assessment of P-ET and VPD, and therefore
334  stations in croplands were removed. However, other disturbances from human activities may still exist,
335 such as possible grazing (Huang et al., 2018) within the 500 m surrounding extent of the station.

336

337 _In contrast, climate adaptation management in surrounding regions of local meteorological stations
338  may not require much attention to the lack of spatial and temporal representativeness. The combined
339 use of station-scale VPD, LAI, and P-ET data would be valuable for the development of associated
340 adaptation policies in local agriculture management and ecological conservation.

341

342 Compared to previous dryland change studies with decades of span, the period in this study is only

343 2003-2019 due to the constraint of using MODIS-derived data. We split 2003-2019 into two periods

344 with similar year spans, 2003-2010 and 2011-2019. In this way, it is possible to reduce the effect of

345 extreme years when comparing the differences between the two periods. However, the year spans in

17



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360
361

this study are not very long compared to studies with longer time series (Lian et al., 2021; Huang et al.

2016), and thus the associated findings should be treated with more caution.

5. Conclusion

Combining climatic, hydrological, and vegetation data, this study assesses global dryland change at

meteorological sitesstations from 2003 to 2019. A-decouplingbetweenlt shows that global drylands’

atmospheric, hydrological; and ecological aridity swasfound-in-this-study-speeifieallychanges are

inconsistent. Specifically, atmospheric aridity represented-byVPB-increased; hydrelogical-aridity—

#~ and ecological aridity

represented-by-LAl-decreased. P-ETshewednen-Changes in hydrologic aridity were not significant—

changes in most of the dominant combinations of VPD, LAI, and P-ET. This study highlights the

significance to investigate dryland aridity changes using weather station scale data, which can

complement previous findings based on coarse-resolution climate reanalysis. It also has the promise of

being combined with more station-scale data to provide support for local community’s climate change

adaptation.
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