

1 **Global dryland aridity changes indicated by atmospheric,**
2 **hydrological, and vegetation observations at meteorological**
3 **stations**

4 Haiyang Shi^{1,68}, Geping Luo^{2,3,4,6}, Olaf Hellwich⁷, Xiufeng He^4He^8 ⁸, Alishir Kurban^{2,3,4,6}, Philippe De
5 Maeyer^{2,3,5,6} and Tim Van de Voorde^{5,6}

6
7 ¹ SchoolDepartment of Earth SciencesCivil and Environmental Engineering, Hohai University, Nanjing
8 211100, China of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

9 ² State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
10 Chinese Academy of Sciences, Urumqi, Xinjiang, 830011, China.

11 ³College of Resources and Environment, University of the Chinese Academy of Sciences, 19 (A) Yuquan
12 Road, Beijing, 100049, China.

13 ⁴ The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region
14 (proposed), Chinese Academy of Sciences, Urumqi, China.

15 ⁵ Department of Geography, Ghent University, Ghent 9000, Belgium.

16 ⁶Sino-Belgian Joint Laboratory of Geo-Information, Ghent, Belgium.

17 ⁷ Department of Computer Vision & Remote Sensing, Technische Universität Berlin, 10587 Berlin,
18 Germany.

19
20 ⁸School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China.

21 **Correspondence to:** Geping Luo (luogp@ms.xjb.ac.cn) and Olaf Hellwich (olaf.hellwich@tu-berlin.de)

22 **Submitted to:** *Hydrology and Earth System Sciences*

23

24

25 **Abstract**

26 In the context of global warming, an increase in atmospheric aridity and global dryland expansion were
27 expected under the future climate in previous studies. However, it conflicts with observed greening
28 over drylands and the insignificant increase in hydrological and ecological aridity from the
29 ecohydrology perspective. Combining climatic, hydrological, and vegetation data, this study evaluated
30 global dryland aridity changes at meteorological ~~sites~~stations from 2003 to 2019. A decoupling
31 between atmospheric, hydrological, and vegetation aridity was found. Atmospheric aridity represented
32 by the vapour pressure deficit (VPD) increased, hydrological aridity indicated by machine learning-
33 based precipitation minus evapotranspiration (P-ET) data did not change significantly, and ecological
34 aridity represented by leaf area index (LAI) decreased. P-ET showed non-significant changes in most
35 of the dominant combinations of VPD, LAI, and P-ET. This study highlights the added values of using
36 station scale data to assess dryland change as a complement to the results based on coarse resolution
37 reanalysis data and land surface models.

38 **1 Introduction**

39 Drylands are defined as regions with a dry climate, limited water, and scarce vegetation (Berg and
40 McColl, 2021). In the context of global warming, the global dryland is expected to expand due to
41 potential higher atmospheric water demand, ~~the global dryland is expected to expand~~. It will severely
42 affect the relevant ecosystem functions and livelihoods in drylands (Reynolds et al., 2007; Yao et al.,
43 2020; Práválie, 2016). To date, there are still major limitations in the consensual knowledge and
44 consistent understanding of global dryland aridity changes, such as wet-dry changes, the location,
45 magnitude, and persistence of the potential dryland expansion and associated mechanisms (Berg and
46 McColl, 2021; Lian et al., 2021; Huang et al., 2016, 2017; Grünzweig et al., 2022; Pan et al., 2021).
47 Such knowledge gaps have substantially limited the effective climate adaptation and related strategy
48 development to realize the Sustainable Development Goals in drylands, especially in the global south
49 (Li et al., 2021; Fu et al., 2021; Yao et al., 2021; Ramón Vallejo et al., 2012).

50
51 The difficulty of the current investigation on dryland change lies in its multifaceted nature including
52 the diverse characteristics of climate, hydrology, and ecosystems. The indicators and methods used to

53 assess changes in drylands are thus diverse and previous studies have obtained different findings (Lian
54 et al., 2021) on dryland change. ~~Typically, the arid index (AI),~~
55 ~~Typically, the arid index (AI)~~
56 ~~(Programme, 1997)~~, calculated as the multi-year average precipitation (P) divided by potential
57 evaporation (PET), was commonly used to measure atmospheric aridity in long-term global dryland
58 change measuring studies (Huang et al., 2017, 2016). It used only atmospheric inputs, focused only on
59 atmospheric aridity, and did not take into account the effects of ecohydrological aridity and the
60 influence of land surface processes (Berg and McColl, 2021). AI-based studies have found global
61 dryland expansions in the past and future (Huang et al., 2017, 2016) in the global warming context.
62 However, such AI-based finding appears to be contrary to the global greening of dryland vegetation
63 based on satellite remote sensing observations (Fensholt et al., 2012; Poulter et al., 2014; Lian et al.,
64 2021; Hickler et al., 2005; Zhu et al., 2016). This illustrated the necessity of incorporating changes in
65 surface properties such as vegetation in addition to atmospheric indicators. Therefore, from an
66 ecohydrological perspective, recent studies have employed various ecohydrological indicators and
67 land-surface-property changes such as soil moisture, vegetation greenness, evapotranspiration (ET), P-
68 ET (i.e., P minus ET as surface water availability), and runoff to assess the dryland change (Berg and
69 McColl, 2021; Lian et al., 2021; Denissen et al., 2022; Yang et al., 2018; Milly and Dunne, 2016; He et
70 al., 2019). Such recent studies have shown that the dryland changes indicated by land surface changes
71 and ecohydrological indicators did not confirm the ‘expansion of drylands’ finding in previous
72 atmospheric-indicator-based studies (Huang et al., 2016, 2017; Feng and Fu, 2013). In terms of the
73 mechanism explanation, these studies claimed that atmospheric drying and vegetation greening may
74 occur simultaneously, and elevated vapour pressure deficit (VPD) does not fully propagate to surface
75 changes to exacerbate decreases in soil moisture and runoff. Under elevated atmospheric CO₂, plant
76 stomata may close and reduce transpiration and ET, and improve water use efficiency (WUE) (Lian et
77 al., 2021; Berg and McColl, 2021; Roderick et al., 2015), which may compensate for the negative
78 effects of elevated VPD on vegetation growth. This mechanism was not accounted for the physically
79 based estimates of PET (e.g., the Penman-Monteith equation) and thus AI-based findings may have
80 overestimated the aridity and contained considerable uncertainty.

81 However, the data used in most of the above-mentioned approaches have large uncertainties, such as
82 coarse transpiration/ soil moisture data ($0.5^\circ \times 0.5^\circ$ resolution) from long-term climate and land surface
83 model simulations (Berg and McColl, 2021) and coarse soil moisture/ ET data ($0.25^\circ \times 0.25^\circ$
84 resolution) from the Global Land Evaporation Amsterdam Model (GLEAM) or the global land data
85 assimilation system (GLDAS), which are not necessarily applicable to the assessment of dryland
86 expansion at fine scales. In addition, it is difficult to validate the findings in such coarse-resolution
87 studies with ground observations. It is thus essential to make better use of station-scale data, which
88 may have the potential in measuring dryland change at a finer scale, be better combined with ground
89 observations, and provide more effective climate change adaptation suggestions for local communities.

90

91 Therefore, aimed at reducing scale-related uncertainty and obtaining a comprehensive finding of
92 multifaceted characteristics, this study investigated dryland change at the meteorological station scale
93 using the combinations of atmospheric, hydrological, and vegetation condition observations including
94 VPD, P-ET, and leaf area index (LAI). VPD and P are from meteorological observations, LAI is from
95 MODIS imagery. ET is estimated by a Random Forest (RF) model trained from dryland flux stations in
96 FLUXNET2015, and the data-driven methods can avoid uncertainties caused by physically based ET
97 models. At the station scale, this study provides new insights into global dryland aridity change using
98 multifaceted data with a higher proportion of observations.

99

100 **2 Methodology**

101 We produced ET data for global dryland meteorological stations by applying an ET machine learning
102 model obtained from FLUXNET2015's dryland flux station (AI < 0.65) data trained using RF to global
103 dryland (AI < 0.65) meteorological stations. We selected daily ET observations (i.e., latent heat
104 observations) from the FLUXNET2015 dataset for stations in drylands as the target variable. The
105 selected predictor variables include downward shortwave radiation (RSDN), air temperature (Ta), daily
106 variance (half-hourly daily maximum temperature minus daily minimum temperature, TArange), VPD,
107 wind speed (WS), and LAI from remote sensing (Table 1).

108

109 The RF model was constructed using the RandomForestRegressor function from the scikit-learn
110 package of Python. The parameter ‘n_estimators’ was set to 500, and default parameter values were
111 used for the other parameters (Zhao et al., 2019). For the evaluation of model performance, we used a
112 leave-one-station-out cross-validation approach used in previous studies of ET predictions (Tramontana
113 et al., 2016; Zhang et al., 2021; Shi et al., 2022). It is a type of cross-validation approach in which each
114 station’s observation is considered as the validation set and the rest stations’ observations are
115 considered as the training set. It can help us understand the potential adaptability of the model to new
116 data in the prediction set. Feature importance (IMP) was used to measure the contributions of
117 predictors, and we adopted the permutation importance indices to represent IMP due to their reliability
118 (Díaz-Uriarte and Alvarez de Andrés, 2006; Strobl et al., 2008; Grömping, 2009; Zhang et al., 2021) in
119 RF models.

120

121 Finally, the ~~parameter optimized~~^{constructed} RF model was applied to the stations in the drylands of the
122 global meteorological stations in the Global Surface Summary of the Day (GSOD) dataset. In this way,
123 daily-scale ET time series data were predicted for each meteorological station. For each station, when
124 the number of predicted daily ET records for a given year exceeded 100, the annual ET mean was
125 calculated using the arithmetic mean of the daily ET values. Given the absence of data such as LAI
126 during winter snowpack at a small number of arid zone stations, this approach allows for an effective
127 dense sampling of growing season days to represent annual ET and distinguish between high and low
128 annual ET values across years. In the subsequent formal dryland change analysis, cropland
129 meteorological stations were removed due to potential considerable irrigation influence.

130

Flux Stations Used in the Model Training

131
132 Figure 1 The used 59 flux ~~sites~~stations in drylands ($AI < 0.65$) in FLUXNET2015 in the RF model
133 construction. AI level classification: [\(Programme, 1997\)](#): hyperarid ($0 < AI < 0.05$), arid ($0.05 < AI < 0.2$),
134 semiarid ($0.2 < AI < 0.5$), dry subhumid ($0.5 < AI < 0.65$).

135

136 Table 1. Description of the predictors used in the RF model to estimate ET at meteorological stations.

Predictor	Source	Description
LAI	MCD15A3H dataset derived from MODIS data	The 4-daily LAI was linearly interpolated to the daily scale. It was extracted based on Google Earth Engine (GEE) at a scale of 500 m (i.e., cutouts of the 500×500 m pixels centered on each station).
RSDN	from the BESS(Ryu et al., 2018) dataset derived from MODIS imagery	It is of 5.5 km spatial resolution. It was extracted based on GEE at a scale of 500 m
WS	In-situ observation	
TA	In-situ observation	
TArange	In-situ observation	Daily TArange is derived from the half-hourly maximum temperature and minimum temperature data of FLUXNET2015.

VPD	In-situ observation	VPD is calculated from TMax, TMin, and dew point temperature (Tdew) (Howell and Dusek, 1995).
-----	---------------------	---

137

138 **3 Results**

139 **3.1 ET estimation evaluation**

140 We evaluated the performance of the RF model at each flux sitesstation using leave-one-sitesstation-out
 141 cross-validation, and most sitesstations showed high accuracy (Fig. 2) in both Pearson'sPearson's
 142 correlation coefficients (Rcorr) of observed and predicted daily ET values and the root mean square
 143 error (RMSE-). It indicated the feasibility of accurate daily ET simulations at most dryland flux
 144 sitesstations. And among the predictors, LAI had the highest feature importanceIMP (Fig. 2d), followed
 145 by RSDN, TA, WS, VPD, and TARange. This demonstrated the importance of surface vegetation
 146 conditions in ET simulations at dryland sitesstations.

147

148 Figure 2 The model performance and feature importance in the leave-one-sites-out cross-
 149 validation. (a) Rcorr and RMSE values of 59 sites. (b) Spatial distribution of Rcorr and
 150 RMSE records. (c) Rcorr and RMSE of various PFTs. (d) Feature importance (IMP) ranking.
 151

152 **3.2 Climatic, hydrological, and vegetation changes over drylands**

153 The pattern of change in each climate and vegetation variable between the periods 2003-2010 and
 154 2011-2019 showed considerable variations (Fig. 3). The number of sites with significant
 155 increases in TA, LAI, and VPD was considerably greater than the number of sites with
 156 significant decreases. The number of sites with significant increases in P, ET, and P-ET was
 157 also greater than the number of sites with significant decreases. The ratio of the numbers of
 158 sites with increases and decreases in P-ET is the lowest. This shows the spatial variability of the

159 trends indicated by the different indicators: the increase in TA and VPD in the context of global
 160 warming is widespread and their spatial pattern similarity is also high. The increasing trend in LAI is
 161 also dominant. The spatial pattern of ET changes is highly similar to that of LAI. Both ET and LAI
 162 show significant regional increases in the high latitudes of North America, and central Eurasia, and
 163 decreases in the middle and low latitudes of North America. The spatial pattern of changes in P-ET is
 164 more similar to that of P, but the increase in P is not completely propagated to P-ET and may be
 165 partially offset by the trend in ET.

166

167

168
169 Figure 3 Significant changes ($p < 0.1$) in ET, TA, P, VPD, LAI, and P-ET for dryland meteorological
170 [sites](#) (from 2003-2010 to 2011-2019).

171
172 We compared the relationship between ΔVPD , which represents changes in atmospheric aridity, $\Delta P-ET$,
173 which represents changes in hydrological aridity, and ΔLAI , which represents changes in vegetation
174 growth. ΔVPD showed a negative correlation with $\Delta P-ET$ ($R = -0.19$, $p < 0.001$), indicating that
175 elevated VPD in drylands did lead to a decrease in surface water availability. However, the negative
176 correlation between ΔVPD and ΔLAI was not strong ($R = -0.13$, $p < 0.001$), indicating that atmospheric
177 drying was not a dominant determinant of vegetation greening or browning. The positive
178 correlation between $\Delta P-ET$ and ΔLAI was not significant ($p > 0.1$), indicating a decoupling between
179 the greening of dryland vegetation and changes in surface water availability.

180

181

182 Figure 4 Relations of (a) ΔLAI - ΔVPD , (b) $\Delta(\text{P-ET})$ - ΔVPD , and (c) $\Delta(\text{P-ET})$ - ΔLAI at dryland
183 meteorological [sites](#)[stations](#) (from 2003-2010 to 2011-2019).

184

185 3.3 Combined atmospheric, hydrological, and vegetation perspectives

186 We also analyzed the combinations of VPD, LAI, and P-ET changes, and the distribution patterns of
187 the different combinations across the globe represented different mechanisms of dryland changes (Fig.
188 5). In the Dry subhumid, Semiarid and Arid regions, three of the top four combinations exhibited
189 significant increases in LAI, while VPD exhibited increases, no significant change, increases, and
190 decreases, respectively. In the top four combinations, the combination with an increase in VPD
191 accompanied by LAI decrease only ranked third or fourth. This suggests that the effect of vegetation
192 browning caused by increasing VPD may not be dominant and that the increasing atmospheric water
193 demand did not considerably decrease vegetation growth. In the Dry subhumid region, compared to the
194 Semiarid and Arid regions, the combinations of 'VPD↓ & LAI↑ & P-ET (-)' and 'VPD↓ & LAI↑ & P-
195 ET↑' combinations ranked higher. It indicates that in the Dry subhumid region, the possibility of the
196 combination of VPD decrease accompanied by LAI increase is higher. In the Arid region, the
197 combination of 'VPD↑ & LAI↑ & P-ET (-)' dropped from the first to the second in the ranking
198 compared to the Dry sub-humid and Semiarid regions, indicating that when AI is lower, the mechanism
199 represented by the combination of the simultaneous increase in VPD and LAI are less likely to occur.
200 Surprisingly, of the seven combinations of VPD, LAI, and P-ET in the top ranking, P-ET showed no
201 significant change. This suggests a smaller contribution from changes in surface water availability in
202 explaining the variation of combinations of mechanisms for dryland change, although the changes in P-

203 ET and VPD in the lower-ranked combinations showed oppositeoppostation trends. The surface water
204 represented aridity increase obtained in this study is smaller than that indicated by soil moisture and
205 runoff reported previously (Lian et al., 2021).

206
207 Figure 5 Combinations of VPD, LAI, and P-ET changes across various AI areas from 2003-2010 to
208 2011-2019. The symbol '↑' represents a significant increase ($p < 0.1$) of VPD, LAI, or P-ET. The
209 symbol '↓' represents a significant decrease ($p < 0.1$) and '(-)' represents insignificant changes.

210
211 The distribution of these combinations is also highly heterogeneous spatially, indicating the high
212 regional heterogeneity in global dryland change (Feng et al., 2022; Lian et al., 2021). Given this study
213 is at the station scale, the impacts of heterogeneous underlying surface conditions can be higher.
214 Combinations with non-significant changes in P-ET are widely distributed globally (Fig. 6a,b,c,d,e,f,g),
215 including in the western part of North America, Australia, and southern Europe, where there are more
216 dense stations. Although the combinations of VPD and LAI changes appear to be spatially variable,
217 some regional patterns were still found. For example, 'VPD↑ & LAI↑ & P-ET (-)' is the dominant
218 combination in Mongolian grasslands (Fig. 6a). The increase in LAI due to increased P-ET was also
219 observed in northwest China and northern Central Asia (Fig. 6i, 6k), suggesting that the recent trend of
220 wetting and greening in this region is more likely to be caused by increased surface water availability
221 (Shi et al., 2007). The results of previous coarse regional patterns of dryland change may not

222 necessarily be applicable to the station scale, which needs more station-scale evaluation and
223 validations.

224

225

226 Figure 6 Locations of combinations of VPD, LAI, and P-ET changes from 2003-2010 to 2011-2019.
227 The symbol '↑' represents a significant increase ($p < 0.1$) of VPD, LAI, or P-ET. The symbol '↓'
228 represents a significant decrease ($p < 0.1$) and '(-)' represents insignificant changes.
229

230 **4. Discussions**

231 **4.1 Implications and Perspective**

232 This study investigated the characteristics of dryland change at global dryland meteorological stations
233 using a combination of atmospheric, hydrological, and vegetation indicators. A decoupling between
234 atmospheric, hydrological, and ecological aridity was found in this study, specifically, atmospheric
235 aridity represented by VPD increased, hydrological aridity indicated by P-ET did not change
236 significantly, and ecological aridity represented by LAI decreased. It is consistent with the decoupling
237 found in previous studies based on reanalysis data and coarse-resolution land surface model
238 simulations (Lian et al., 2021) which considered the impacts of elevated CO₂ concentration. This study
239 also found that P-ET showed non-significant changes in most of the dominant combinations of VPD,
240 LAI, and P-ET. This is slightly different from the reported weak aridity hydrological increase in
241 previous studies based on soil moisture and runoff data (Lian et al., 2021), although the year span from
242 2003 to 2019 in the present study was smaller than these studies (usually more than 50 years).

243

244 The value of this study is revisiting the dryland change issue at the station scale. The key to this is the
245 use of a machine learning approach to estimate daily-scale ET data from meteorological stations and to
246 combine the measured P and thus calculate P-ET. Machine learning-based ET simulations (Jung et al.,
247 2010, 2019) may effectively avoid the setting of various hypothetical mechanisms in physics-based ET
248 models ([Martens et al., 2017; Zhang et al., 2010; Mu et al., 2011](#))[\(Martens et al., 2017; Zhang et al.,](#)
249 [2010; Mu et al., 2011\)](#), mine the relationship between dryland ET and various environmental factors
250 such as climate and vegetation from measured data, and achieve a high estimation accuracy. Therefore,
251 the estimation of P-ET at the station scale effectively measured the status of surface water change since
252 soil moisture and runoff data are difficult to obtain at the meteorological station scale. Station-scale
253 studies of dryland change may be a new direction for the future, given the limitation in the coarse
254 resolution of current reanalysis data, land surface models, etc., and the difficulty of validating their
255 results in the field via ground in situ data. Combined use of climate, hydrological, and vegetation
256 condition variables at the station scale may have the potential to provide an interface for dryland
257 change studies to be more connected to ground observations and associated field experiments. The
258 current satellite remote sensing data still cannot fully capture the physiological and hydraulic

259 characteristics (Zeng et al., 2022) of dryland plants in the context of climate change and extreme
260 weather conditions. It illustrates that station-scale studies will be further important in the future.
261

262 **4.2 Limitations and Uncertainties**

263 **4.2.1 Uncertainties in the ET Estimation**

264 In the past, data for P-ET have rarely been produced at the meteorological station scale, while most in
265 the coarse-resolution grid scale (Jung et al., 2019; Martens et al., 2017; Zhang et al., 2010), and this
266 ~~study combined machine learning-based estimates of daily ET with actual measurements of P to~~
267 ~~produce P-ET data for dryland meteorological stations. ET simulations exhibit high accuracy at most~~
268 ~~stations, but accuracy is limited at a few stations, possibly due to the inefficiency of the selected~~
269 ~~predictor variables in the explanation of the site-specific ET variations (Shi et al., 2022a). In future~~
270 ~~studies, it can be effective to incorporate station-specific plant hydraulic characteristics as well as~~
271 ~~vegetation trait related predictor variables (Anderegg, 2015; Anderegg et al., 2018; Shi et al., 2022b;~~
272 ~~Zhao et al., 2022). In addition, combining data-driven machine learning methods with physical process~~
273 ~~based ET estimation models would be promising (Zhao et al., 2019) (Jung et al., 2019; Martens et al.,~~
274 ~~2017; Zhang et al., 2010), and this study combined machine-learning-based estimates of daily ET with~~
275 ~~actual measurements of P to produce P-ET data for dryland meteorological stations. ET simulations~~
276 ~~exhibit high accuracy at most stations, but accuracy is limited at a few stations, possibly due to the~~
277 ~~inefficiency of the selected predictor variables in the explanation of the station-specific ET variations~~
278 ~~(Shi et al., 2022). In future studies, it can be effective to incorporate station-specific plant hydraulic~~
279 ~~characteristics as well as vegetation-trait-related predictor variables (Anderegg, 2015; Anderegg et al.,~~
280 ~~2018; Zhao et al., 2022; Shi et al., 2023). In addition, combining data-driven machine learning methods~~
281 ~~with physical process-based ET estimation models would be promising (Zhao et al., 2019), with the~~
282 potential to further improve ET simulation accuracy. In addition, it may be beneficial to combine
283 transpiration observations such as SAPFLUXNET (Poyatos et al., 2021) to provide estimates of
284 transpiration. Compared to ET, transpiration can be more precisely correlated to plant physiological
285 and hydraulic characteristics, thus providing more detailed mechanism interpretations in dryland aridity
286 change.

288 In addition, mismatches between the flux footprints of flux stations and remote sensing data pixels may
289 also cause uncertainty, especially if the flux footprints include considerable spatial heterogeneity (Chu
290 et al., 2021). The 500 m scale of data extraction in this study may have reduced this effect partially, but
291 it may still exist due to the variability of flux footprints across stations. Previous studies have shown
292 that when data are extracted at scales larger than 500 m, the representativeness of the flux footprint
293 area's land cover types can be considerably decreased (Chu et al., 2021). The use of a fixed target area
294 extent for data extraction may bias model-data integration in multi-station level studies. In the future, to
295 reduce the related bias, we should pay more attention to the heterogeneity within the flux footprints of
296 specific flux stations especially in remote sensing data extraction and processing (Walther et al., 2022).

297

298 The low performance of some flux stations (e.g., shrubland stations), may be related to inadequate
299 modelling of the influence of belowground hydrologic processes. Belowground hydrogeologic
300 properties and groundwater dynamics are difficult to quantify directly through remote sensing or
301 meteorological data. It is thus difficult to capture the effects of subterranean ventilation (López-
302 Ballesteros et al., 2017) and the dynamic relationship between plant root zone and groundwater.
303 Previous studies have shown that the root zone storage capacity (Gao et al., 2014; Wang-Erlandsson et
304 al., 2016; Singh et al., 2020) is important in hydrological processes in drylands and during drought
305 events. Researchers have attempted to estimate root depth and root zone storage capacity (Wang-
306 Erlandsson et al., 2016; Stocker et al., 2023), or to couple drylands' deep-root distribution modules into
307 earth system models (Zhang et al., 2013; Li et al., 2015), and improved the hydrological and ecological
308 prediction (Gao et al., 2014). However, in these approaches, there remain partial limitations such as the
309 dependency on satellite-based ET data (Wang-Erlandsson et al., 2016) containing uncertainty. On the
310 other hand, accurately modelling groundwater dynamics remains limited (Gleeson et al., 2016, 2021).
311 Uncertainties in station-scale groundwater dynamics also affect our understanding of the root-
312 groundwater relationship and groundwater's contribution to ET. Combining drought index at different
313 time scales (e.g., the Standardized Precipitation Evapotranspiration Index (SPEI)) at the regional scale
314 (Secci et al., 2021), and the Gravity Recovery and Climate Experiment (GRACE) based anomalies in
315 terrestrial water storage (Li et al., 2019) can be promising in indirectly representing the groundwater
316 dynamics, but mismatches in spatial scales may still cause errors. In addition, our accuracy evaluation

317 was based on the leave-one-station-out cross-validation (Zhang et al., 2021). The validation accuracy
318 may be relatively low when there are no stations with similar environmental conditions in the training
319 set. The RF model that we finally applied to the weather stations included all stations (i.e., no flux
320 station was left), the accuracy can thus be improved a little, especially at weather stations with similar
321 environmental conditions (e.g., shrubland stations) to the previously left flux station in the leave-one-
322 station-out cross-validation.

323

324 **4.2.2 Spatial and temporal representativeness of meteorological stations on dryland change**

325 Although meteorological stations can provide more accurate climate, hydrology, and vegetation data at
326 fine scales to support studies associated with dryland change, they may still have limitations in spatial
327 and temporal representativeness. First, the temporal representativeness of meteorological stations is
328 highly variable across different regions of the globe. Inconsistencies in the length of station observation
329 records, etc., may lead to unbalance when comparing between regions. Second, meteorological stations
330 are sparsely located in hyperarid areas, and the representativeness of hyperarid regions can be low. In
331 other dryland types (i.e., Dry subhumid, Semiarid, and Arid), the representativeness of meteorological
332 stations may also be affected by other factors such as human activities. In this study, it was considered
333 that irrigation of dryland cropland could greatly affect the assessment of P-ET and VPD, and therefore
334 stations in croplands were removed. However, other disturbances from human activities may still exist,
335 such as possible grazing (Huang et al., 2018) within the 500 m surrounding extent of the station.

336

337 In contrast, climate adaptation management in surrounding regions of local meteorological stations
338 may not require much attention to the lack of spatial and temporal representativeness. The combined
339 use of station-scale VPD, LAI, and P-ET data would be valuable for the development of associated
340 adaptation policies in local agriculture management and ecological conservation.

341

342 Compared to previous dryland change studies with decades of span, the period in this study is only
343 2003-2019 due to the constraint of using MODIS-derived data. We split 2003-2019 into two periods
344 with similar year spans, 2003-2010 and 2011-2019. In this way, it is possible to reduce the effect of
345 extreme years when comparing the differences between the two periods. However, the year spans in

346 this study are not very long compared to studies with longer time series (Lian et al., 2021; Huang et al.,
347 2016), and thus the associated findings should be treated with more caution.
348

349 **5. Conclusion**

350 Combining climatic, hydrological, and vegetation data, this study assesses global dryland change at
351 meteorological ~~sites~~stations from 2003 to 2019. ~~A decoupling between~~It shows that global drylands'
352 atmospheric, hydrological, and ecological aridity ~~was found in this study, specifically~~changes are
353 inconsistent. Specifically, atmospheric aridity ~~represented by VPD~~ increased, ~~hydrological aridity~~
354 ~~indicated by machine learning based P-ET data did not change significantly,~~ and ecological aridity
355 ~~represented by LAI~~ decreased. ~~P-ET showed non-~~Changes in hydrologic aridity were not significant
356 changes in most of the dominant combinations of VPD, LAI, and P-ET. This study highlights the
357 significance to investigate dryland aridity changes using weather station scale data, which can
358 complement previous findings based on coarse-resolution climate reanalysis. It also has the promise of
359 being combined with more station-scale data to provide support for local community's climate change
360 adaptation.

361

362 **Acknowledgment**

363 We would like to thank Prof. Pierre Gentine for his insightful suggestions on ET modeling.

364 **Financial support**

365 This research was supported by the Tianshan Talent Cultivation (Grant No. 2022TSYCLJ0001), the
366 Key projects of the Natural Science Foundation of Xinjiang Autonomous Region (Grant No.
367 2022D01D01), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant
368 No. XDA20060302), and High-End Foreign Experts Project.

369 **Author Contributions**

370 HS and GL initiated this research and were responsible for the integrity of the work as a whole. HS
371 performed formal analysis and calculations and drafted the manuscript. HS was responsible for the data
372 collection and analysis. GL, PDM, TVdV, OH, XH and AK contributed resources and financial support.

373 **Competing interests**

374 The authors declare that they have no conflict of interest.

375 **Code availability**

376 The codes that were used for all analyses are available from the first author (haiyang.shi@hhu.edu.cn).

377 **Data availability**

378 The data used in this study are available from the first author (haiyang.shi@hhu.edu.cn).

379

380

381 **References**

382 Anderegg, W. R.: Spatial and temporal variation in plant hydraulic traits and their relevance
383 for climate change impacts on vegetation, *New Phytologist*, 205, 1008–1014, 2015.

384 Anderegg, W. R., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbertas, R., Karp, D. S.,
385 Pacala, S., Sperry, J. S., and Sulman, B. N.: Hydraulic diversity of forests regulates ecosystem
386 resilience during drought, *Nature*, 561, 538–541, 2018.

387 Berg, A. and McColl, K. A.: No projected global drylands expansion under greenhouse
388 warming, *Nat. Clim. Chang.*, 11, 331–337, <https://doi.org/10.1038/s41558-021-01007-8>,
389 2021.

390 Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S.,
391 Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A.,
392 Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K.,
393 Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T.,
394 Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H.,
395 Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick,
396 K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J.,
397 Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C.,
398 Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood,
399 J. D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas
400 surrounding AmeriFlux sites, Agricultural and Forest Meteorology, 301–302, 108350,
401 <https://doi.org/10.1016/j.agrformet.2021.108350>, 2021.

402 Denissen, J. M., Teuling, A. J., Pitman, A. J., Koirala, S., Migliavacca, M., Li, W., Reichstein, M.,
403 Winkler, A. J., Zhan, C., and Orth, R.: Widespread shift from ecosystem energy to water
404 limitation with climate change, *Nature Climate Change*, 12, 677–684, 2022.

405 Díaz-Uriarte, R. and Alvarez de Andrés, S.: Gene selection and classification of microarray data
406 using random forest, BMC bioinformatics, 7, 1–13, 2006.

407 Feng, S. and Fu, Q.: Expansion of global drylands under a warming climate, *Atmospheric*
408 *Chemistry and Physics*, 13, 10081–10094, <https://doi.org/10.5194/acp-13-10081-2013>, 2013.

409 Feng, S., Gu, X., Luo, S., Liu, R., Gulakhmadov, A., Slater, L. J., Li, J., Zhang, X., and Kong, D.:
410 Greenhouse gas emissions drive global dryland expansion but not spatial patterns of change
411 in aridification, *Journal of Climate*, 35, 2901–2917, 2022.

412 Fensholt, R., Langanke, T., Rasmussen, K., Reenberg, A., Prince, S. D., Tucker, C., Scholes, R. J.,
413 Le, Q. B., Bondeau, A., and Eastman, R.: Greenness in semi-arid areas across the globe 1981–
414 2007—an Earth Observing Satellite based analysis of trends and drivers, *Remote sensing of*
415 *environment*, 121, 144–158, 2012.

416 Fu, B., Stafford-Smith, M., Wang, Y., Wu, B., Yu, X., Lv, N., Ojima, D. S., Lv, Y., Fu, C., Liu, Y., Niu,

417 S., Zhang, Y., Zeng, H., Liu, Y., Liu, Y., Feng, X., Zhang, L., Wei, Y., Xu, Z., Li, F., Cui, X., Diop, S.,
418 and Chen, X.: The Global-DEP conceptual framework — research on dryland ecosystems to
419 promote sustainability, *Current Opinion in Environmental Sustainability*, 48, 17–28,
420 <https://doi.org/10.1016/j.cosust.2020.08.009>, 2021.

421 [Gao, H., Hrachowitz, M., Schymanski, S., Fenicia, F., Sriwongsitanon, N., and Savenije, H.:](#)
422 [Climate controls how ecosystems size the root zone storage capacity at catchment scale,](#)
423 [Geophysical Research Letters, 41, 7916–7923, 2014.](#)

424 [Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M. B.: The global volume](#)
425 [and distribution of modern groundwater, Nature Geoscience, 9, 161–167, 2016.](#)

426 [Gleeson, T., Wagener, T., Döll, P., Zipper, S. C., West, C., Wada, Y., Taylor, R., Scanlon, B.,](#)
427 [Rosolem, R., and Rahman, S.: GMD Perspective: The quest to improve the evaluation of](#)
428 [groundwater representation in continental to global scale models, Geoscientific Model](#)
429 [Development Discussions, 2021, 1–59, 2021.](#)

430 [Grömping, U.: Variable importance assessment in regression: linear regression versus random](#)
431 [forest, The American Statistician, 63, 308–319, 2009.](#)

432 Grünzweig, J. M., De Boeck, H. J., Rey, A., Santos, M. J., Adam, O., Bahn, M., Belnap, J., Deckmyn,
433 G., Dekker, S. C., Flores, O., Gliksman, D., Helman, D., Hultine, K. R., Liu, L., Meron, E., Michael,
434 Y., Sheffer, E., Throop, H. L., Tzuk, O., and Yakir, D.: Dryland mechanisms could widely control
435 ecosystem functioning in a drier and warmer world, *Nat Ecol Evol*, 6, 1064–1076,
436 <https://doi.org/10.1038/s41559-022-01779-y>, 2022.

437 He, B., Wang, S., Guo, L., and Wu, X.: Aridity change and its correlation with greening over
438 drylands, *Agricultural and Forest Meteorology*, 278, 107663,
439 <https://doi.org/10.1016/j.agrformet.2019.107663>, 2019.

440 Hickler, T., Eklundh, L., Seaquist, J. W., Smith, B., Ardö, J., Olsson, L., Sykes, M. T., and Sjöström,
441 M.: Precipitation controls Sahel greening trend, *Geophysical Research Letters*, 32, 2005.

442 Howell, T. A. and Dusek, D. A.: Comparison of vapor-pressure-deficit calculation methods--
443 Southern High Plains, 1995.

444 Huang, J., Yu, H., Guan, X., Wang, G., and Guo, R.: Accelerated dryland expansion under
445 climate change, *Nature Clim Change*, 6, 166–171, <https://doi.org/10.1038/nclimate2837>, 2016.

446 Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., Shinoda, M., Ma, Z., Guo, W., Li, Z., Zhang, L.,
447 Liu, Y., Yu, H., He, Y., Xie, Y., Guan, X., Ji, M., Lin, L., Wang, S., Yan, H., and Wang, G.: Dryland
448 climate change: Recent progress and challenges, *Reviews of Geophysics*, 55, 719–778,
449 <https://doi.org/10.1002/2016RG000550>, 2017.

450 Huang, X., Luo, G., Ye, F., and Han, Q.: Effects of grazing on net primary productivity,
451 evapotranspiration and water use efficiency in the grasslands of Xinjiang, China, *Journal of*
452 *Arid Land*, 10, 588–600, 2018.

453 Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., Bonan, G.,
454 Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N.,
455 Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson, K., Papale, D.,
456 Richardson, A. D., Rouspard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U., Williams, C.,
457 Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land evapotranspiration trend
458 due to limited moisture supply, *Nature*, 467, 951–954, <https://doi.org/10.1038/nature09396>,
459 2010.

460 Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C.,
461 Tramontana, G., and Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere
462 energy fluxes, *Sci Data*, 6, 74, <https://doi.org/10.1038/s41597-019-0076-8>, 2019.

463 Li, [B.](#), Rodell, M., Kumar, S., Beaudoin, H. K., Getirana, A., Zaitchik, B. F., de Goncalves, L. G.,
464 Cossetin, C., Bhanja, S., and Mukherjee, A.: Global GRACE data assimilation for groundwater
465 and drought monitoring: Advances and challenges, *Water Resources Research*, 55, 7564–
466 7586, 2019.

467 Li, C., Zhang, C., Luo, G., Chen, X., Maisupova, B., Madaminov, A. A., Han, Q., and Djenbaev,
468 B. M.: Carbon stock and its responses to climate change in Central Asia, *Global change
469 biology*, 21, 1951–1967, 2015.

470 [Li](#), C., Fu, B., Wang, S., Stringer, L. C., Wang, Y., Li, Z., Liu, Y., and Zhou, W.: Drivers and impacts
471 of changes in China's drylands, *Nat Rev Earth Environ*, 2, 858–873,
472 <https://doi.org/10.1038/s43017-021-00226-z>, 2021.

473 Lian, X., Piao, S., Chen, A., Huntingford, C., Fu, B., Li, L. Z. X., Huang, J., Sheffield, J., Berg, A. M.,
474 Keenan, T. F., McVicar, T. R., Wada, Y., Wang, X., Wang, T., Yang, Y., and Roderick, M. L.:
475 Multifaceted characteristics of dryland aridity changes in a warming world, *Nat Rev Earth
476 Environ*, 2, 232–250, <https://doi.org/10.1038/s43017-021-00144-0>, 2021.

477 López-Ballesteros, A., Serrano-Ortiz, P., Kowalski, A. S., Sánchez-Cañete, E. P., Scott, R. L., and
478 Domingo, F.: Subterranean ventilation of allochthonous CO₂ governs net CO₂ exchange in a
479 semiarid Mediterranean grassland, *Agricultural and Forest Meteorology*, 234–235, 115–126,
480 <https://doi.org/10.1016/j.agrformet.2016.12.021>, 2017.

481 Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A., Fernández-Prieto, D.,
482 Beck, H. E., Dorigo, W. A., and Verhoest, N. E.: GLEAM v3: Satellite-based land evaporation
483 and root-zone soil moisture, *Geoscientific Model Development*, 10, 1903–1925, 2017.

484 Milly, P. C. D. and Dunne, K. A.: Potential evapotranspiration and continental drying, *Nature
485 Clim Change*, 6, 946–949, <https://doi.org/10.1038/nclimate3046>, 2016.

486 Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS global terrestrial
487 evapotranspiration algorithm, *Remote Sensing of Environment*, 115, 1781–1800,
488 <https://doi.org/10.1016/j.rse.2011.02.019>, 2011.

489 Pan, N., Wang, S., Liu, Y., Li, Y., Xue, F., Wei, F., Yu, H., and Fu, B.: Rapid increase of potential
490 evapotranspiration weakens the effect of precipitation on aridity in global drylands, *Journal
491 of Arid Environments*, 186, 104414, <https://doi.org/10.1016/j.jaridenv.2020.104414>, 2021.

492 Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., Broquet, G., Canadell, J. G.,
493 Chevallier, F., and Liu, Y. Y.: Contribution of semi-arid ecosystems to interannual variability of
494 the global carbon cycle, *Nature*, 509, 600–603, 2014.

495 Poyatos, R., Granda, V., Flo, V., Adams, M. A., Adorján, B., Aguadé, D., Aidar, M. P., Allen, S.,
496 Alvarado-Barrientos, M. S., and Anderson-Teixeira, K. J.: Global transpiration data from sap
497 flow measurements: the SAPFLUXNET database, *Earth System Science Data*, 13, 2607–2649,
498 2021.

499 Prăvălie, R.: Drylands extent and environmental issues. A global approach, *Earth-Science
500 Reviews*, 161, 259–278, <https://doi.org/10.1016/j.earscirev.2016.08.003>, 2016.

501 [Programme, U. N. E.: World Atlas of Desertification: Second Edition, 1997.](#)

502 Ramón Vallejo, V., Smanis, A., Chirino, E., Fuentes, D., Valdecantos, A., and Vilagrosa, A.:
503 Perspectives in dryland restoration: approaches for climate change adaptation, *New Forests*,
504 43, 561–579, 2012.

505 Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. P. J.,
506 Downing, T. E., Dowlatbadi, H., Fernández, R. J., Herrick, J. E., Huber-Sannwald, E., Jiang, H.,
507 Leemans, R., Lynam, T., Maestre, F. T., Ayarza, M., and Walker, B.: Global Desertification:
508 Building a Science for Dryland Development, *Science*, 316, 847–851,
509 <https://doi.org/10.1126/science.1131634>, 2007.

510 Roderick, M. L., Greve, P., and Farquhar, G. D.: On the assessment of aridity with changes in
511 atmospheric CO₂, *Water Resources Research*, 51, 5450–5463, 2015.

512 Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land products of
513 shortwave radiation and diffuse and total photosynthetically active radiation at 5 km
514 resolution from 2000, *Remote Sensing of Environment*, 204, 812–825,
515 <https://doi.org/10.1016/j.rse.2017.09.021>, 2018.

516 [Secci, D., Tanda, M. G., D'Oria, M., Todaro, V., and Fagandini, C.: Impacts of climate change
517 on groundwater droughts by means of standardized indices and regional climate models,
518 Journal of Hydrology, 603, 127154, https://doi.org/10.1016/j.jhydrol.2021.127154, 2021.](#)

519 Shi, H., Luo, G., Hellwich, O., Xie, M., Zhang, C., Zhang, Y., Wang, Y., Yuan, X., Ma, X., Zhang,
520 W., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Evaluation of water flux predictive
521 models developed using eddy-covariance observations and machine learning: a meta-
522 analysis, *Hydrology and Earth System Sciences*, 26, 4603–4618, <https://doi.org/10.5194/hess-26-4603-2022>, [2022a2022](#).

524 Shi, H., Luo, G., Hellwich, O., Kurban, A., De Maeyer, P., and Van de Voorde, T.: Revisiting and

525 attributing the global controls ~~on over~~ terrestrial ecosystem functions of climate and plant
526 traits at FLUXNET sites ~~with via~~ causal ~~networks graphical models~~, Biogeosciences ~~Discussions~~,
527 ~~1-22, 20, 2727-2741~~, <https://doi.org/10.5194/bg-2022-191, 2022b20-2727-2023, 2023>.

528 Shi, Y., Shen, Y., Kang, E., Li, D., Ding, Y., Zhang, G., and Hu, R.: Recent and future climate
529 change in northwest China, Climatic change, 80, 379–393, 2007.

530 [Singh, C., Wang-Erlandsson, L., Fetzer, I., Rockström, J., and Van Der Ent, R.: Rootzone storage](#)
531 [capacity reveals drought coping strategies along rainforest-savanna transitions, Environmental Research Letters, 15, 124021, 2020.](#)

533 [Stocker, B. D., Tumber-Dávila, S. J., Konings, A. G., Anderson, M. C., Hain, C., and Jackson, R.](#)
534 [B.: Global patterns of water storage in the rooting zones of vegetation, Nat. Geosci., 16, 250–](#)
535 [256, https://doi.org/10.1038/s41561-023-01125-2, 2023.](#)

536 [Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., and Zeileis, A.: Conditional variable](#)
537 [importance for random forests, BMC Bioinformatics, 9, 307, https://doi.org/10.1186/1471-](#)
538 [2105-9-307, 2008.](#)

539 [Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M.,](#)
540 [Araín, M. A., Cescatti, A., Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale,](#)
541 [D.: Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression](#)
542 [algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-4291-2016, 2016.](#)

543 [Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M., Weber, U., Carvalhais,](#)
544 [N., Ermida, S. L., Brümmer, C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.:](#)
545 [Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO](#)
546 [data set, Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, 2022.](#)

547 [Wang-Erlandsson, L., Bastiaanssen, W. G., Gao, H., Jägermeyr, J., Senay, G. B., Van Dijk, A. I.,](#)
548 [Guerschman, J. P., Keys, P. W., Gordon, L. J., and Savenije, H. H.: Global root zone storage](#)
549 [capacity from satellite-based evaporation, Hydrology and Earth System Sciences, 20, 1459–](#)
550 [1481, 2016.](#)

551 Yang, Y., Zhang, S., McVicar, T. R., Beck, H. E., Zhang, Y., and Liu, B.: Disconnection Between
552 Trends of Atmospheric Drying and Continental Runoff, Water Resources Research, 54, 4700–
553 4713, <https://doi.org/10.1029/2018WR022593>, 2018.

554 Yao, J., Liu, H., Huang, J., Gao, Z., Wang, G., Li, D., Yu, H., and Chen, X.: Accelerated dryland
555 expansion regulates future variability in dryland gross primary production, Nat Commun, 11,
556 1665, <https://doi.org/10.1038/s41467-020-15515-2>, 2020.

557 Yao, Y., Liu, Y., Wang, Y., and Fu, B.: Greater increases in China's dryland ecosystem
558 vulnerability in drier conditions than in wetter conditions, Journal of Environmental
559 Management, 291, 112689, 2021.

560 Zeng, Y., Hao, D., Huete, A., Dechant, B., Berry, J., Chen, J. M., Joiner, J., Frankenberg, C., Bond-

561 Lamberty, B., Ryu, Y., Xiao, J., Asrar, G. R., and Chen, M.: Optical vegetation indices for
562 monitoring terrestrial ecosystems globally, *Nat Rev Earth Environ*, 1–17,
563 <https://doi.org/10.1038/s43017-022-00298-5>, 2022.

564 Zhang, C., Li, C., Luo, G., and Chen, X.: Modeling plant structure and its impacts on carbon
565 and water cycles of the Central Asian arid ecosystem in the context of climate change,
566 Ecological Modelling, 267, 158–179, <https://doi.org/10.1016/j.ecolmodel.2013.06.008>, 2013.

567 Zhang, C., Luo, G., Hellwich, O., Chen, C., Zhang, W., Xie, M., He, H., Shi, H., and Wang, Y.: A
568 framework for estimating actual evapotranspiration at weather stations without flux
569 observations by combining data from MODIS and flux towers through a machine learning
570 approach, *Journal of Hydrology*, 603, 127047, <https://doi.org/10.1016/j.jhydrol.2021.127047>,
571 2021.

572 Zhang, K., Kimball, J. S., Nemani, R. R., and Running, S. W.: A continuous satellite-derived
573 global record of land surface evapotranspiration from 1983 to 2006, *Water Resources*
574 Research, Resour. Res., 46, <https://doi.org/10.1029/2009WR008800>, 2010.

575 Zhao, M., A, G., Liu, Y., and Konings, A. G.: Evapotranspiration frequently increases during
576 droughts, *Nat. Clim. Chang.*, 12, 1024–1030, <https://doi.org/10.1038/s41558-022-01505-3>,
577 2022.

578 Zhao, W. L., Gentine, P., Reichstein, M., Zhang, Y., Zhou, S., Wen, Y., Lin, C., Li, X., and Qiu, G.
579 Y.: Physics-Constrained Machine Learning of Evapotranspiration, *Geophysical Research*
580 Letters, 46, 14496–14507, <https://doi.org/10.1029/2019GL085291>, 2019.

581 Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S.,
582 Friedlingstein, P., and Arneth, A.: Greening of the Earth and its drivers, *Nature climate change*,
583 6, 791–795, 2016.

584