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Abstract 25 

In the context of global warming, an increase in atmospheric aridity and global dryland expansion were 26 

expected under the future climate in previous studies. However, it conflicts with observed greening 27 

over drylands and the insignificant increase in hydrological and ecological aridity from the 28 

ecohydrology perspective. Combining climatic, hydrological, and vegetation data, this study evaluated 29 

global dryland aridity changes at meteorological sitesstations from 2003 to 2019. A decoupling 30 

between atmospheric, hydrological, and vegetation aridity was found. Atmospheric aridity represented 31 

by the vapour pressure deficit (VPD) increased, hydrological aridity indicated by machine learning-32 

based precipitation minus evapotranspiration (P-ET) data did not change significantly, and ecological 33 

aridity represented by leaf area index (LAI) decreased. P-ET showed non-significant changes in most 34 

of the dominant combinations of VPD, LAI, and P-ET. This study highlights the added values of using 35 

station scale data to assess dryland change as a complement to the results based on coarse resolution 36 

reanalysis data and land surface models. 37 

1 Introduction 38 

Drylands are defined as regions with a dry climate, limited water, and scarce vegetation (Berg and 39 

McColl, 2021). In the context of global warming, the global dryland is expected to expand due to 40 

potential higher atmospheric water demand, the global dryland is expected to expand. It will severely 41 

affect the relevant ecosystem functions and livelihoods in drylands (Reynolds et al., 2007; Yao et al., 42 

2020; Prăvălie, 2016). To date, there are still major limitations in the consensual knowledge and 43 

consistent understanding of global dryland aridity changes, such as wet-dry changes, the location, 44 

magnitude, and persistence of the potential dryland expansion and associated mechanisms (Berg and 45 

McColl, 2021; Lian et al., 2021; Huang et al., 2016, 2017; Grünzweig et al., 2022; Pan et al., 2021). 46 

Such knowledge gaps have substantially limited the effective climate adaptation and related strategy 47 

development to realize the Sustainable Development Goals in drylands, especially in the global south 48 

(Li et al., 2021; Fu et al., 2021; Yao et al., 2021; Ramón Vallejo et al., 2012). 49 

 50 

The difficulty of the current investigation on dryland change lies in its multifaceted nature including 51 

the diverse characteristics of climate, hydrology, and ecosystems. The indicators and methods used to 52 



3 

 

assess changes in drylands are thus diverse and previous studies have obtained different findings (Lian 53 

et al., 2021) on dryland change. Typically, the arid index (AI),Typically, the arid index (AI) 54 

(Programme, 1997), calculated as the multi-year average precipitation (P) divided by potential 55 

evaporation (PET), was commonly used to measure atmospheric aridity in long-term global dryland 56 

change measuring studies (Huang et al., 2017, 2016). It used only atmospheric inputs, focused only on 57 

atmospheric aridity, and did not take into account the effects of ecohydrological aridity and the 58 

influence of land surface processes (Berg and McColl, 2021). AI-based studies have found global 59 

dryland expansions in the past and future (Huang et al., 2017, 2016) in the global warming context. 60 

However, such AI-based finding appears to be contrary to the global greening of dryland vegetation 61 

based on satellite remote sensing observations (Fensholt et al., 2012; Poulter et al., 2014; Lian et al., 62 

2021; Hickler et al., 2005; Zhu et al., 2016). This illustrated the necessity of incorporating changes in 63 

surface properties such as vegetation in addition to atmospheric indicators. Therefore, from an 64 

ecohydrological perspective, recent studies have employed various ecohydrological indicators and 65 

land-surface-property changes such as soil moisture, vegetation greenness, evapotranspiration (ET), P-66 

ET (i.e., P minus ET as surface water availability), and runoff to assess the dryland change (Berg and 67 

McColl, 2021; Lian et al., 2021; Denissen et al., 2022; Yang et al., 2018; Milly and Dunne, 2016; He et 68 

al., 2019). Such recent studies have shown that the dryland changes indicated by land surface changes 69 

and ecohydrological indicators did not confirm the ‘expansion of drylands’ finding in previous 70 

atmospheric-indicator-based studies (Huang et al., 2016, 2017; Feng and Fu, 2013). In terms of the 71 

mechanism explanation, these studies claimed that atmospheric drying and vegetation greening may 72 

occur simultaneously, and elevated vapour pressure deficit (VPD) does not fully propagate to surface 73 

changes to exacerbate decreases in soil moisture and runoff. Under elevated atmospheric CO2, plant 74 

stomata may close and reduce transpiration and ET, and improve water use efficiency (WUE) (Lian et 75 

al., 2021; Berg and McColl, 2021; Roderick et al., 2015), which may compensate for the negative 76 

effects of elevated VPD on vegetation growth. This mechanism was not accounted for the physically 77 

based estimates of PET (e.g., the Penman-Monteith equation) and thus AI-based findings may have 78 

overestimated the aridity and contained considerable uncertainty. 79 

 80 
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However, the data used in most of the above-mentioned approaches have large uncertainties, such as 81 

coarse transpiration/ soil moisture data (0.5° × 0.5° resolution) from long-term climate and land surface 82 

model simulations (Berg and McColl, 2021) and coarse soil moisture/ ET data (0.25° × 0.25° 83 

resolution) from the Global Land Evaporation Amsterdam Model (GLEAM) or the global land data 84 

assimilation system (GLDAS), which are not necessarily applicable to the assessment of dryland 85 

expansion at fine scales. In addition, it is difficult to validate the findings in such coarse-resolution 86 

studies with ground observations. It is thus essential to make better use of station-scale data, which 87 

may have the potential in measuring dryland change at a finer scale, be better combined with ground 88 

observations, and provide more effective climate change adaptation suggestions for local communities. 89 

 90 

Therefore, aimed at reducing scale-related uncertainty and obtaining a comprehensive finding of 91 

multifaceted characteristics, this study investigated dryland change at the meteorological station scale 92 

using the combinations of atmospheric, hydrological, and vegetation condition observations including 93 

VPD, P-ET, and leaf area index (LAI). VPD and P are from meteorological observations, LAI is from 94 

MODIS imagery. ET is estimated by a Random Forest (RF) model trained from dryland flux stations in 95 

FLUXNET2015, and the data-driven methods can avoid uncertainties caused by physically based ET 96 

models. At the station scale, this study provides new insights into global dryland aridity change using 97 

multifaceted data with a higher proportion of observations.  98 

 99 

2 Methodology 100 

We produced ET data for global dryland meteorological stations by applying an ET machine learning 101 

model obtained from FLUXNET2015’s dryland flux station (AI < 0.65) data trained using RF to global 102 

dryland (AI < 0.65) meteorological stations. We selected daily ET observations (i.e., latent heat 103 

observations) from the FLUXNET2015 dataset for stations in drylands as the target variable. The 104 

selected predictor variables include downward shortwave radiation (RSDN), air temperature (Ta), daily 105 

variance (half-hourly daily maximum temperature minus daily minimum temperature, TArange), VPD, 106 

wind speed (WS), and LAI from remote sensing (Table 1).  107 

 108 
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The RF model was constructed using the RandomForestRegressor function from the scikit-learn 109 

package of Python. The parameter ‘n_estimators’ was set to 500, and default parameter values were 110 

used for the other parameters (Zhao et al., 2019). For the evaluation of model performance, we used a 111 

leave-one-station-out cross-validation approach used in previous studies of ET predictions (Tramontana 112 

et al., 2016; Zhang et al., 2021; Shi et al., 2022). It is a type of cross-validation approach in which each 113 

station’s observation is considered as the validation set and the rest stations’ observations are 114 

considered as the training set. It can help us understand the potential adaptability of the model to new 115 

data in the prediction set. Feature importance (IMP) was used to measure the contributions of 116 

predictors, and we adopted the permutation importance indices to represent IMP due to their reliability 117 

(Díaz-Uriarte and Alvarez de Andrés, 2006; Strobl et al., 2008; Grömping, 2009; Zhang et al., 2021) in 118 

RF models.  119 

 120 

Finally, the parameter-optimizedconstructed RF model was applied to the stations in the drylands of the 121 

global meteorological stations in the Global Surface Summary of the Day (GSOD) dataset. In this way, 122 

daily-scale ET time series data were predicted for each meteorological station. For each station, when 123 

the number of predicted daily ET records for a given year exceeded 100, the annual ET mean was 124 

calculated using the arithmetic mean of the daily ET values. Given the absence of data such as LAI 125 

during winter snowpack at a small number of arid zone stations, this approach allows for an effective 126 

dense sampling of growing season days to represent annual ET and distinguish between high and low 127 

annual ET values across years. In the subsequent formal dryland change analysis, cropland 128 

meteorological stations were removed due to potential considerable irrigation influence.  129 

 130 
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 131 

Figure 1 The used 59 flux sitesstations in drylands (AI < 0.65) in FLUXNET2015 in the RF model 132 

construction. AI level classification: (Programme, 1997): hyperarid (0 < AI < 0.05), arid (0.05 < AI 133 

< 0.2), semiarid (0.2 < AI < 0.5), dry subhumid (0.5 < AI < 0.65).  134 

 135 

Table 1. Description of the predictors used in the RF model to estimate ET at meteorological stations. 136 

Predictor Source Description 

LAI MCD15A3H dataset 

derived from MODIS 

data 

The 4-daily LAI was linearly interpolated to 

the daily scale.  It was extracted based on 

Google Earth Engine (GEE) at a scale of 500 m 

(i.e., cutouts of the 500 × 500 m pixels 

centered on each station). 

RSDN from the BESS(Ryu et 

al., 2018) dataset 

derived from MODIS 

imagery 

It is of 5.5 km spatial resolution. It was 

extracted based on GEE at a scale of 500 m  

WS In-situ observation  

TA In-situ observation  

TArange In-situ observation Daily TArange is derived from the half-hourly 

maximum temperature and minimum 

temperature data of FLUXNET2015. 
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VPD In-situ observation VPD is calculated from TAmax, TAmin, and 

dew point temperature (Tdew) (Howell and 

Dusek, 1995). 

 137 

3 Results 138 

3.1 ET estimation evaluation 139 

We evaluated the performance of the RF model at each flux sitestation using leave-one-sitestation-out 140 

cross-validation, and most sitesstations showed high accuracy (Fig. 2) in both Pearson'sPearson’s 141 

correlation coefficients (Rcorr) of observed and predicted daily ET values and the root mean square 142 

error (RMSE.). It indicated the feasibility of accurate daily ET simulations at most dryland flux 143 

sitesstations. And among the predictors, LAI had the highest feature importanceIMP (Fig. 2d), followed 144 

by RSDN, TA, WS, VPD, and TARange. This demonstrated the importance of surface vegetation 145 

conditions in ET simulations at dryland sitesstations. 146 
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 147 

Figure 2 The model performance and feature importance in the leave-one-sitestation-out cross-148 

validation. (a) Rcorr and RMSE values of 59 sitesstations. (b) Spatial distribution of Rcorr and 149 

RMSE records. (c) Rcorr and RMSE of various PFTs. (d) Feature importance (IMP) ranking.  150 

 151 

3.2 Climatic, hydrological, and vegetation changes over drylands  152 

The pattern of change in each climate and vegetation variable between the periods 2003-2010 and 153 

2011-2019 showed considerable variations (Fig. 3). The number of sitesstations with significant 154 

increases in TA, LAI, and VPD was considerably greater than the number of sitesstations with 155 

significant decreases. The number of sitesstations with significant increases in P, ET, and P-ET was 156 

also greater than the number of sitesstations with significant decreases. The ratio of the numbers of 157 

sitesstations with increases and decreases in P-ET is the lowest. This shows the spatial variability of the 158 
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trends indicated by the different indicators: the increase in TA and VPD in the context of global 159 

warming is widespread and their spatial pattern similarity is also high. The increasing trend in LAI is 160 

also dominant. The spatial pattern of ET changes is highly similar to that of LAI. Both ET and LAI 161 

show significant regional increases in the high latitudes of North America, and central Eurasia, and 162 

decreases in the middle and low latitudes of North America. The spatial pattern of changes in P-ET is 163 

more similar to that of P, but the increase in P is not completely propagated to P-ET and may be 164 

partially offset by the trend in ET. 165 

 166 

 167 
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 168 

Figure 3 Significant changes (p < 0.1) in ET, TA, P, VPD, LAI, and P-ET for dryland meteorological 169 

sitesstations (from 2003-2010 to 2011-2019).  170 

 171 

We compared the relationship between ΔVPD, which represents changes in atmospheric aridity, ΔP-ET, 172 

which represents changes in hydrological aridity, and ΔLAI, which represents changes in vegetation 173 

growth. ΔVPD showed a negative correlation with ΔP-ET (R = -0.19, p < 0.001), indicating that 174 

elevated VPD in drylands did lead to a decrease in surface water availability. However, the negative 175 

correlation between ΔVPD and ΔLAI was not strong (R = -0.13, p < 0.001), indicating that 176 

atmospheric drying was not a dominant determinant of vegetation greening or browning. The positive 177 

correlation between ΔP-ET and ΔLAI was not significant (p > 0.1), indicating a decoupling between 178 

the greening of dryland vegetation and changes in surface water availability. 179 

 180 
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 181 

Figure 4 Relations of (a) ΔLAI-ΔVPD, (b) Δ(P-ET)-ΔVPD, and (c) Δ(P-ET)-ΔLAI at dryland 182 

meteorological sitesstations (from 2003-2010 to 2011-2019).  183 

 184 

3.3 Combined atmospheric, hydrological, and vegetation perspectives 185 

We also analyzed the combinations of VPD, LAI, and P-ET changes, and the distribution patterns of 186 

the different combinations across the globe represented different mechanisms of dryland changes (Fig. 187 

5). In the Dry subhumid, Semiarid and Arid regions, three of the top four combinations exhibited 188 

significant increases in LAI, while VPD exhibited increases, no significant change, increases, and 189 

decreases, respectively. In the top four combinations, the combination with an increase in VPD 190 

accompanied by LAI decrease only ranked third or fourth. This suggests that the effect of vegetation 191 

browning caused by increasing VPD may not be dominant and that the increasing atmospheric water 192 

demand did not considerably decrease vegetation growth. In the Dry subhumid region, compared to the 193 

Semiarid and Arid regions, the combinations of 'VPD↓ & LAI↑ & P-ET (-)' and 'VPD↓ & LAI↑ & P-194 

ET↑ ' combinations ranked higher. It indicates that in the Dry subhumid region, the possibility of the 195 

combination of VPD decrease accompanied by LAI increase is higher. In the Arid region, the 196 

combination of 'VPD↑ & LAI↑ & P-ET (-)' dropped from the first to the second in the ranking 197 

compared to the Dry sub-humid and Semiarid regions, indicating that when AI is lower, the mechanism 198 

represented by the combination of the simultaneous increase in VPD and LAI are less likely to occur. 199 

Surprisingly, of the seven combinations of VPD, LAI, and P-ET in the top ranking, P-ET showed no 200 

significant change. This suggests a smaller contribution from changes in surface water availability in 201 

explaining the variation of combinations of mechanisms for dryland change, although the changes in P-202 
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ET and VPD in the lower-ranked combinations showed oppositeoppostation trends. The surface water 203 

represented aridity increase obtained in this study is smaller than that indicated by soil moisture and 204 

runoff reported previously (Lian et al., 2021). 205 

 206 

Figure 5 Combinations of VPD, LAI, and P-ET changes across various AI areas from 2003-2010 to 207 

2011-2019. The symbol ‘↑’ represents a significant increase (p < 0.1) of VPD, LAI, or P-ET. The 208 

symbol ‘↓’ represents a significant decrease (p < 0.1) and ‘(-)’ represents insignificant changes.  209 

 210 

The distribution of these combinations is also highly heterogeneous spatially, indicating the high 211 

regional heterogeneity in global dryland change (Feng et al., 2022; Lian et al., 2021). Given this study 212 

is at the station scale, the impacts of heterogeneous underlying surface conditions can be higher. 213 

Combinations with non-significant changes in P-ET are widely distributed globally (Fig. 6a,b,c,d,e,f,g), 214 

including in the western part of North America, Australia, and southern Europe, where there are more 215 

dense stations. Although the combinations of VPD and LAI changes appear to be spatially variable, 216 

some regional patterns were still found. For example, 'VPD↑ & LAI↑ & P-ET (-)' is the dominant 217 

combination in Mongolian grasslands (Fig. 6a). The increase in LAI due to increased P-ET was also 218 

observed in northwest China and northern Central Asia (Fig. 6i, 6k), suggesting that the recent trend of 219 

wetting and greening in this region is more likely to be caused by increased surface water availability 220 

(Shi et al., 2007). The results of previous coarse regional patterns of dryland change may not 221 
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necessarily be applicable to the station scale, which needs more station-scale evaluation and 222 

validations. 223 

 224 

 225 

Figure 6 Locations of combinations of VPD, LAI, and P-ET changes from 2003-2010 to 2011-2019. 226 

The symbol ‘↑’ represents a significant increase (p < 0.1) of VPD, LAI, or P-ET. The symbol ‘↓’ 227 

represents a significant decrease (p < 0.1) and ‘(-)’ represents insignificant changes. 228 

 229 
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4. Discussions 230 

4.1 Implications and Perspective 231 

This study investigated the characteristics of dryland change at global dryland meteorological stations 232 

using a combination of atmospheric, hydrological, and vegetation indicators. A decoupling between 233 

atmospheric, hydrological, and ecological aridity was found in this study, specifically, atmospheric 234 

aridity represented by VPD increased, hydrological aridity indicated by P-ET did not change 235 

significantly, and ecological aridity represented by LAI decreased. It is consistent with the decoupling 236 

found in previous studies based on reanalysis data and coarse-resolution land surface model 237 

simulations (Lian et al., 2021) which considered the impacts of elevated CO2 concentration. This study 238 

also found that P-ET showed non-significant changes in most of the dominant combinations of VPD, 239 

LAI, and P-ET. This is slightly different from the reported weak aridity hydrological increase in 240 

previous studies based on soil moisture and runoff data (Lian et al., 2021), although the year span from 241 

2003 to 2019 in the present study was smaller than these studies (usually more than 50 years). 242 

 243 

The value of this study is revisiting the dryland change issue at the station scale. The key to this is the 244 

use of a machine learning approach to estimate daily-scale ET data from meteorological stations and to 245 

combine the measured P and thus calculate P-ET. Machine learning-based ET simulations (Jung et al., 246 

2010, 2019) may effectively avoid the setting of various hypothetical mechanisms in physics-based ET 247 

models (Martens et al., 2017; Zhang et al., 2010; Mu et al., 2011)(Martens et al., 2017; Zhang et al., 248 

2010; Mu et al., 2011), mine the relationship between dryland ET and various environmental factors 249 

such as climate and vegetation from measured data, and achieve a high estimation accuracy. Therefore, 250 

the estimation of P-ET at the station scale effectively measured the status of surface water change since 251 

soil moisture and runoff data are difficult to obtain at the meteorological station scale. Station-scale 252 

studies of dryland change may be a new direction for the future, given the limitation in the coarse 253 

resolution of current reanalysis data, land surface models, etc., and the difficulty of validating their 254 

results in the field via ground in situ data. Combined use of climate, hydrological, and vegetation 255 

condition variables at the station scale may have the potential to provide an interface for dryland 256 

change studies to be more connected to ground observations and associated field experiments. The 257 

current satellite remote sensing data still cannot fully capture the physiological and hydraulic 258 
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characteristics (Zeng et al., 2022) of dryland plants in the context of climate change and extreme 259 

weather conditions. It illustrates that station-scale studies will be further important in the future.  260 

 261 

4.2 Limitations and Uncertainties 262 

4.2.1 Uncertainties in the ET Estimation 263 

In the past, data for P-ET have rarely been produced at the meteorological station scale, while most in 264 

the coarse-resolution grid scale (Jung et al., 2019; Martens et al., 2017; Zhang et al., 2010), and this 265 

study combined machine-learning-based estimates of daily ET with actual measurements of P to 266 

produce P-ET data for dryland meteorological stations. ET simulations exhibit high accuracy at most 267 

stations, but accuracy is limited at a few stations, possibly due to the inefficiency of the selected 268 

predictor variables in the explanation of the site-specific ET variations (Shi et al., 2022a). In future 269 

studies, it can be effective to incorporate station-specific plant hydraulic characteristics as well as 270 

vegetation-trait-related predictor variables (Anderegg, 2015; Anderegg et al., 2018; Shi et al., 2022b; 271 

Zhao et al., 2022). In addition, combining data-driven machine learning methods with physical process-272 

based ET estimation models would be promising (Zhao et al., 2019)(Jung et al., 2019; Martens et al., 273 

2017; Zhang et al., 2010), and this study combined machine-learning-based estimates of daily ET with 274 

actual measurements of P to produce P-ET data for dryland meteorological stations. ET simulations 275 

exhibit high accuracy at most stations, but accuracy is limited at a few stations, possibly due to the 276 

inefficiency of the selected predictor variables in the explanation of the station-specific ET variations 277 

(Shi et al., 2022). In future studies, it can be effective to incorporate station-specific plant hydraulic 278 

characteristics as well as vegetation-trait-related predictor variables (Anderegg, 2015; Anderegg et al., 279 

2018; Zhao et al., 2022; Shi et al., 2023). In addition, combining data-driven machine learning methods 280 

with physical process-based ET estimation models would be promising (Zhao et al., 2019), with the 281 

potential to further improve ET simulation accuracy. In addition, it may be beneficial to combine 282 

transpiration observations such as SAPFLUXNET (Poyatos et al., 2021) to provide estimates of 283 

transpiration. Compared to ET, transpiration can be more precisely correlated to plant physiological 284 

and hydraulic characteristics, thus providing more detailed mechanism interpretations in dryland aridity 285 

change.  286 

 287 
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In addition, mismatches between the flux footprints of flux stations and remote sensing data pixels may 288 

also cause uncertainty, especially if the flux footprints include considerable spatial heterogeneity (Chu 289 

et al., 2021). The 500 m scale of data extraction in this study may have reduced this effect partially, but 290 

it may still exist due to the variability of flux footprints across stations. Previous studies have shown 291 

that when data are extracted at scales larger than 500 m, the representativeness of the flux footprint 292 

area’s land cover types can be considerably decreased (Chu et al., 2021). The use of a fixed target area 293 

extent for data extraction may bias model-data integration in multi-station level studies. In the future, to 294 

reduce the related bias, we should pay more attention to the heterogeneity within the flux footprints of 295 

specific flux stations especially in remote sensing data extraction and processing (Walther et al., 2022). 296 

 297 

The low performance of some flux stations (e.g., shrubland stations), may be related to inadequate 298 

modelling of the influence of belowground hydrologic processes. Belowground hydrogeologic 299 

properties and groundwater dynamics are difficult to quantify directly through remote sensing or 300 

meteorological data. It is thus difficult to capture the effects of subterranean ventilation (López-301 

Ballesteros et al., 2017) and the dynamic relationship between plant root zone and groundwater. 302 

Previous studies have shown that the root zone storage capacity (Gao et al., 2014; Wang-Erlandsson et 303 

al., 2016; Singh et al., 2020) is important in hydrological processes in drylands and during drought 304 

events. Researchers have attempted to estimate root depth and root zone storage capacity (Wang-305 

Erlandsson et al., 2016; Stocker et al., 2023), or to couple drylands’ deep-root distribution modules into 306 

earth system models (Zhang et al., 2013; Li et al., 2015), and improved the hydrological and ecological 307 

prediction (Gao et al., 2014). However, in these approaches, there remain partial limitations such as the 308 

dependency on satellite-based ET data (Wang-Erlandsson et al., 2016) containing uncertainty. On the 309 

other hand, accurately modelling groundwater dynamics remains limited (Gleeson et al., 2016, 2021). 310 

Uncertainties in station-scale groundwater dynamics also affect our understanding of the root-311 

groundwater relationship and groundwater’s contribution to ET. Combining drought index at different 312 

time scales (e.g., the Standardized Precipitation Evapotranspiration Index (SPEI)) at the regional scale 313 

(Secci et al., 2021), and the Gravity Recovery and Climate Experiment (GRACE) based anomalies in 314 

terrestrial water storage (Li et al., 2019) can be promising in indirectly representing the groundwater 315 

dynamics, but mismatches in spatial scales may still cause errors. In addition, our accuracy evaluation 316 
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was based on the leave-one-station-out cross-validation (Zhang et al., 2021). The validation accuracy 317 

may be relatively low when there are no stations with similar environmental conditions in the training 318 

set. The RF model that we finally applied to the weather stations included all stations (i.e., no flux 319 

station was left), the accuracy can thus be improved a little, especially at weather stations with similar 320 

environmental conditions (e.g., shrubland stations) to the previously left flux station in the leave-one-321 

station-out cross-validation.  322 

 323 

4.2.2 Spatial and temporal representativeness of meteorological stations on dryland change 324 

Although meteorological stations can provide more accurate climate, hydrology, and vegetation data at 325 

fine scales to support studies associated with dryland change, they may still have limitations in spatial 326 

and temporal representativeness. First, the temporal representativeness of meteorological stations is 327 

highly variable across different regions of the globe. Inconsistencies in the length of station observation 328 

records, etc., may lead to unbalance when comparing between regions. Second, meteorological stations 329 

are sparsely located in hyperarid areas, and the representativeness of hyperarid regions can be low. In 330 

other dryland types (i.e., Dry subhumid, Semiarid, and Arid), the representativeness of meteorological 331 

stations may also be affected by other factors such as human activities. In this study, it was considered 332 

that irrigation of dryland cropland could greatly affect the assessment of P-ET and VPD, and therefore 333 

stations in croplands were removed. However, other disturbances from human activities may still exist, 334 

such as possible grazing (Huang et al., 2018) within the 500 m surrounding extent of the station. 335 

 336 

 In contrast, climate adaptation management in surrounding regions of local meteorological stations 337 

may not require much attention to the lack of spatial and temporal representativeness. The combined 338 

use of station-scale VPD, LAI, and P-ET data would be valuable for the development of associated 339 

adaptation policies in local agriculture management and ecological conservation. 340 

 341 

Compared to previous dryland change studies with decades of span, the period in this study is only 342 

2003-2019 due to the constraint of using MODIS-derived data. We split 2003-2019 into two periods 343 

with similar year spans, 2003-2010 and 2011-2019. In this way, it is possible to reduce the effect of 344 

extreme years when comparing the differences between the two periods. However, the year spans in 345 
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this study are not very long compared to studies with longer time series (Lian et al., 2021; Huang et al., 346 

2016), and thus the associated findings should be treated with more caution. 347 

 348 

5. Conclusion 349 

Combining climatic, hydrological, and vegetation data, this study assesses global dryland change at 350 

meteorological sitesstations from 2003 to 2019. A decoupling betweenIt shows that global drylands’ 351 

atmospheric, hydrological, and ecological aridity was found in this study, specificallychanges are 352 

inconsistent. Specifically, atmospheric aridity represented by VPD increased, hydrological aridity 353 

indicated by machine learning-based P-ET data did not change significantly, and ecological aridity 354 

represented by LAI decreased. P-ET showed non-Changes in hydrologic aridity were not significant 355 

changes in most of the dominant combinations of VPD, LAI, and P-ET. This study highlights the 356 

significance to investigate dryland aridity changes using weather station scale data, which can 357 

complement previous findings based on coarse-resolution climate reanalysis. It also has the promise of 358 

being combined with more station-scale data to provide support for local community’s climate change 359 

adaptation. 360 

  361 
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