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Abstract. The difficulties of measuring bedload transport in gravel bed rivers have given rise to the morphological 7 

method wherein sediment transport can be inferred from changes in riverbed elevation and estimates of the distance 8 

traveled by sediment, its path length. Because current methods for estimating path length are time and labor intensive, 9 

we present a method to estimate a characteristic path length from repeat digital elevation models (DEMs of difference 10 

i.e., DoDs). We propose an automated method to extract the spacing between erosional and depositional sites on the 11 

DoD by the application of Variational Mode Decomposition (VMD), a signal processing method, to quantify the 12 

spacing as a proxy for path length. We developed this method using flume experiments where bed topography and 13 

sediment flux were measured and then applied it to published field data with physical path length measured from tracer 14 

measurements. Our sediment transport estimates were not significantly different than the measured sediment flux at 15 

lower discharges in the lab. However, we observed an underestimation of sediment flux at the higher discharges in the 16 

flume study. We interpret this as a limit of the method in confined settings, where sediment transport becomes 17 

decoupled from morphological changes. We also explore how the time between survey acquisitions, the morphological 18 

active width relative to the channel width, and DoD thresholding techniques affect the proposed method and the 19 

potential issues they pose to the morphological method in general.  20 

1 Introduction  21 

In gravel bed rivers sediment transport fundamentally controls morphological processes but is notoriously difficult to 22 

measure due to its spatial and temporal heterogeneity (Hoey, 1992; McLean and Church, 1999), measurement uncertainty 23 

(Vericat et al., 2006), and the logistical challenges of field measurements. The morphological approach is a method to 24 

estimate bedload transport based on observed changes in morphology. There have been many implementations of the 25 

morphological method since its inception and it has been reviewed extensively (Ashmore and Church, 1998; Brewer and 26 

Passmore, 2002; Church, 2006; Vericat et al., 2017). With the increased availability of hydrologic data and modeling 27 

capabilities the morphological method has also been applied in two dimensions (x,y) by coupling a 2D hydraulic model 28 

to account for sediment routing (Lane et al., 1995; Antoniazza et al., 2019; Bakker et al., 2019). These 2D applications 29 

shed light on the functional links between topographic changes and spatial distribution of bedload transport. Antoniazza 30 

et al., (2019) quantified the potential errors in estimating sediment transport using with a 1D approach where 2D cross-31 

stream sediment fluxes are neglected.The error associated with neglecting the 2D fluxes  which may be especially 32 

importantuseful in multithreaded channels. They also explored how DEM accuracy and the frequency of acquisitions 33 

affect the estimates of sediment fluxes derived by the morphological method. These 2D apllications contributions confirm 34 

the applicability ofenhance the accuracy of the morphological method to estimate sediment transport, however, these 35 

studies benefited from they require intensive field campaigns and an accurate accounting of upstream water and sediment 36 

supplies, often not available in real case studies. In this paper, the desire is to explore novel approaches to apply the 37 
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morphological method using topographic data alone, as hydraulic and sediment supply data are not available in many 38 

applications and management situations.  39 

 40 

The morphological method can be formalized based on the sediment continuity equation: 41 

                                                       (𝑄𝑏𝑖𝑛
− 𝑄𝑏𝑜𝑢𝑡

)∆𝑡 = (1 − 𝑝)∆𝑉 ,                                                                                 (1) 42 

where 𝑄𝑏𝑖𝑛
 and 𝑄𝑏𝑜𝑢𝑡

 are the volumetric sediment flux in and out of the reach respectively, ∆𝑡 is the time between 43 

surveys, 𝑝 is the sediment porosity, and ∆𝑉 is the change in volume (Ashmore and Church, 1998; Church, 2006). The 44 

sediment continuity equation can be solved in several ways, but in addition to ∆𝑉measured from the DoDs, it requires 45 

that either the incoming flux 𝑄𝑏𝑖𝑛
 or the outgoing flux 𝑄𝑏𝑜𝑢𝑡

  be defined. In most cases, neither of these fluxes are 46 

known, as they are the exact parameters that need to be estimated when applying the morphological method. This 47 

conundrum has been addressed by setting a zero-flux boundary, such as a dam or gravel sand transition (McLean and 48 

Church, 1999), by segmenting the reach such that a zero-flux boundary is set between a section of net deposition to one 49 

of net erosion (Vericat et al., 2017; Calle et al., 2020) or by measuring flux either into or out of the reach (Grams et al., 50 

2013; Antoniazza et al., 2019).  51 

 Alternatively, Eq. (1) can be modified so that active layer depth, 𝑑𝑠 and width 𝑤𝑠 ,and the virtual velocity, 𝑣𝑏 are used: 52 

𝑄𝑏  =  𝑣𝑏 𝑑𝑠 𝑤𝑠 (1 −  𝑝)𝜌𝑠                                                                       (2) 53 

                                                                                                                                                             54 

Where 𝑤𝑠  is the active layer thickness, generally measured by chains and estimated by depth of scour (Church and 55 

Haschenburger, 2017), and 𝑣𝑏  is equal to  𝐿/𝑇  , 𝐿 being the distance the particles travel and 𝑇 the time over which the 56 

particles are traveling (Church, 2006). The virtual velocity approach has been successfully applied using tracer gravels to 57 

estimate the path length parameter 𝐿 in a variety of morphological settings (Liébault et al., 2012; Mao et al., 2017; Brenna 58 

et al., 2019, 2020; Brenna and Surian, 2023). Unfortunately, tracer studies are time and labor intensive, requiring multiple 59 

site visits and intensive recovery campaigns which often have low recovery rates, especially for painted clasts (Hassan 60 

and Bradley, 2017; Brenna et al., 2019). Furthermore, tracer studies are often applicable only to exposed bars, ignoring a 61 

large portion of in-channel transport, and can be sensitive to the seeding location (Liébault et al., 2012). To overcome 62 

these limitations, several methods have been proposed to estimate path length based on the connection to morphology.   63 

The term path length describes the distance traveled by a particle from entrainment to deposition during a transport event 64 

and is punctuated by shorter bursts of movement termed step lengths (Einstein, 1937). Individual particles do not all 65 

entrain, travel, and deposit together in unison but rather form a distribution of path lengths potentially dependent on grain 66 

size, flow strength and duration, and channel morphology. The relative strength of these physical controls on path length 67 

has been explored with varied results. Some studies have found relationships between path length and flow metrics such 68 

as stream power (Hassan et al., 1992; Schneider et al., 2014; Vázquez-Tarrío and Batalla, 2019; Vázquez-Tarrío et al., 69 

2019) but a considerable scatter in the data has reinvigorated the debate over the role of morphology as a primary control 70 

of path length (Hassan and Bradley, 2017; Vázquez-Tarrío and Batalla, 2019; Vázquez-Tarrío et al., 2019).  71 
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The connection between morphology and path length has long been discussed. Neill (1971) proposed that path length in 72 

meandering rivers should be equal to the distance from an erosional site (eroding bank) to the next depositional site (point 73 

bar) downstream. Many others have observed similar relationships based on the spacing of erosional and depositional 74 

sites and channel morphology (Beechie, 2001; Pyrce and Ashmore, 2003a, b; Hundey and Ashmore, 2009; Kasprak et 75 

al., 2015; Vázquez-Tarrío et al., 2019). Further, depositional areas (typically bars), have demonstrated a higher probability 76 

of ‘trapping’ particles than erosional morphological units (McDowell and Hassan, 2020; McDowell et al., 2021). Finally, 77 

experimental research has confirmed the preferential deposition of particles specifically at bar heads and margins even in 78 

channels with more complex morphology, for example, in braided rivers (Kasprak et al., 2015) but it is reasonable to 79 

assume that in multithreaded channels, multiple path lengths might exist at different flow stages in primary and secondary 80 

channels.  81 

The path length used for the virtual velocity approach is generally taken as the mean travel distance (Wilcock, 1997; 82 

Vericat et al., 2017; Mao et al., 2017; Brenna et al., 2019). However, as we have seen from tracer studies, particles tend 83 

to form a distribution of travel distances, therefore, it is unclear if the mean path length as measured by tracers is the best 84 

representation of a ‘characteristic’ path length to estimate bedload transport. To obtain an estimate of reach scale sediment 85 

transport we want to approximateconsider the distance travelled by the bedload involved inthat buildsing geomorphic 86 

units, this is what we will consider as representative a ‘characteristic path length’. Tracer studies have allowed us to see 87 

that tThis may not necessarily be the average distance, as evidenced by the wide variety of path length distributions, it is 88 

often the case that many or even most (the mode) of path lengths are very short, thus skewing the average depending on 89 

the distribution. For example, Pyrce and Ashmore published synthesis of tracer studies and demonstrated that at formative 90 

discharges, particle path length distributions often exhibit primary or secondary modes corresponding to the location of 91 

bars, where deposition occurs (Pyrce and Ashmore, 2003a). Further, flume experiments with tracers showed that the 92 

majority of particles eroded from an upstream scour pool were deposited at the point bar apex and corresponded to peaks 93 

in bi or multimodal path length distributions (Pyrce and Ashmore, 2005). Therefore, the characteristic path length, i.e., 94 

the most representative and sound value to be used in sediment transport estimations, might be better described by these 95 

primary or secondary modes in channels with bar morphology at channel forming flows.  96 

If a characteristic path length can be inferred from changes in morphology as previously discussed, advances in 97 

topographic survey techniques to acquire detailed digital elevation models (DEMs) and facilitate change detection, 98 

provide an opportunity to streamline the estimation of sediment transport. The high-resolution topography (HRT) 99 

revolution (Vericat et al., 2017) has provided an abundance of high quality surveys and an increased frequency of 100 

change detection based on the differencing of DEMs to create digital elevation models of difference (DoDs) 101 

(Brasington et al., 2000; Lane et al., 2003). Vericat et al. (2017) proposed an equation to use the path length with the 102 

volume of erosion derived directly from the DoD  103 

𝑄𝑏 =  (𝑣𝑏  ∑ 𝑉𝑒 (1 − 𝑝)𝜌𝑠 )/𝐿𝑐  ,                                                                  (3) 104 

where ∑ 𝑉𝑒  is the total volume of erosion from the DoD and 𝐿𝑐  is the length of the analyzed DEM by which the volume 105 

of erosion is normalized (Vericat et al., 2017). To use this method, Lc must be long enough for average path lengths (L) 106 

to occur and 𝑇 must be short enough to prevent repeated erosion and deposition, known as compensation (Lindsay and 107 

Ashmore, 2002).  108 
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Redolfi (2014) attempted to estimate the path length parameter directly from the DoD using the length of individual 109 

erosional patches as a proxy for the length of the erosion-deposition sequence. This approach avoids the need to couple 110 

each erosional area to a downstream depositional area, which can be difficult to automate in multi-thread rivers. While 111 

this method scales well with flow metrics and provides reasonable estimates (Redolfi, 2014; Vericat et al., 2017), the 112 

hypothesis that the length of erosional areas is equivalent to the erosion-deposition distance has not been tested in 113 

different morphologies, and it is not clear how the survey resolution may affect the estimates by fragmenting the 114 

erosional areas into smaller parts. Recently, Calle et al. (2020) used a method of river segmentation to visualize the 115 

pattern of erosion and deposition and infer sediment connectivity as well as to estimate potential travel distances. They 116 

defined boundaries between river segments and classified them into types based on their net erosional or depositional 117 

characteristics. Focusing on the “type 1 depositional boundary” wherein the upstream section is erosional and the 118 

immediate downstream boundary is depositional and depending on the volumes of deposition and erosion in these 119 

segments they were able to estimate minimum or maximum transport distances (Calle et al., 2020). This approach 120 

provides greater insight into the spatial connectivity of the river corridor and is useful to understand reach scale 121 

processes. However, depending on the river, and the sections surveyed, the number of type 1 boundaries may limit the 122 

applicability of the method in defining a characteristic path length and crucial information may be missed where the 123 

pattern of erosion and deposition is not clear, or the periodicity spans multiple sections. For example, where there are 124 

back-to-back patches of erosion or deposition or the overall pattern is separated by small areas of mixed boundaries.  125 

Given the observations linking path length to morphology and building on the aforementioned methods, we seek to 126 

expand on the idea that characteristic path length can be inferred from changes in morphology at near transport event 127 

scale comparisons. If during a flood, sediment is mobilized from an area of erosion to an area of deposition as 128 

represented on the DoD, the distance between the two should correspond to a characteristic path length. Following these 129 

assumptions this work has the following objectives: i) to propose an objective and semiautomatic method to quantify a 130 

characteristic path length as represented by the periodic nature of erosion and deposition from the DoD using flume 131 

data; ii) to compare these estimates of a characteristic path length to measured path length distributions obtained from 132 

tracer data in the field; iii) and finally to evaluate the conditions in which a characteristic path length is appropriate to 133 

estimate sediment transport.  134 

 135 

2 Methods  136 

To meet our objectives, we use flume experiments at varying discharges with direct measurement of output sediment flux 137 

and sets of repeat DEMs from which DoDs are created and used to identify patterns of erosion and deposition. We then 138 

develop a semiautomated method to extract these distances between erosion and deposition as a proxy for the 139 

characteristic path length and then compare our estimates of sediment flux calculated using the characteristic path length 140 

to measured sediment flux. Finally, we compare the characteristic path length estimates from a published case study to 141 

the physical path length distributions as measured by tracers in the field to see how the characteristic path length 142 

corresponds to path length distributions.  143 

 144 

2.1 Path length  145 

 146 
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A key assumption inherent in our objectives is that sediment moves from an area of net erosion to an area of net 147 

deposition during the time period between DEM acquisitions and that this represents a characteristic path length. 148 

Ferguson and Ashworth (1992) proposed a similar method of matching specific erosional and depositional patches 149 

albeit without the assistance of a DoD. This method was then implemented in the Sunwapta River, Canada (Goff and 150 

Ashmore, 1994) although the authors note the difficulty in finding perfectly matching patches and conclude that 151 

erosional and depositional processes are likely more dispersed. Here we will implement this “manual method” as a 152 

means of comparison for the automated method presented later. The most obvious method to quantify this distance 153 

between erosional and depositional sites on the DoD is to measure the spacing manually using a GIS program however, 154 

this requires many subjective evaluations. Firstly, we must decide where on the patches of erosion and deposition to 155 

begin and end the measurements. Because patches of erosion and deposition are not symmetrical or of equal size, the 156 

distance between the two depends on which area of the patch we choose to begin and end the measurements. For 157 

consistency, we choose the center of the patch (Fig. 1) after Ashmore and Church (1998). Next, we must determine 158 

which patch of erosion matches with which patch of deposition which is not always obvious, and as noted previously, 159 

likely does not accurately represent the nature of bedload transport (Goff and Ashmore, 1994). Here we perform this 160 

method solely for comparative purposes and therefore used our knowledge of morphological processes to make a best 161 

estimate. For example, a patch of erosion on an outside bend likely corresponds to the deposition of the next point bar 162 

downstream (Fig. 1). Although this method is capable of producing crude estimates of path length to overcome the 163 

aforementioned biases (Ferguson and Ashworth, 1992; Goff and Ashmore, 1994; Ashmore and Church, 1998) we 164 

propose a method to estimate a characteristic path length without relying on the matching of erosion and deposition but 165 

rather to use the periodic nature of these processes. Additionally, we seek to create a method that is both objective and 166 

semiautomated. 167 

 168 

Figure 1: Manual method to measure spacing of erosional patches (red) and depositional patches (blue) on a 169 
DoD.  170 

 171 

2.2 Semiautomated extraction of path length  172 
To visualize and then quantify the periodic nature of erosion and deposition from the DoD we simplify the spatial 173 

heterogeneity of the DoD into a vector of the net change in elevation in a streamwise direction (Fig. 2a). Because 174 

natural rivers are rarely straight, for field case studies, we must enforce a linear downstream directionality essentially 175 

straightening the bends in the river. This is achieved by segmenting the DoD into a series of equally sized “bins” using 176 
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the segmentation tool of the Fluvial Corridor Toolbox (Roux et al., 2015) (Fig. 2a). The bin size can affect the pattern of 177 

erosion and deposition in that by selecting too large of bins we may miss important erosional or depositional areas when 178 

they are summed in the same bin. Similar methods that require river segmentation have proposed using the reach 179 

averaged width for the length of the bins (McDowell et al., 2021) or half of the width of the reach (McDowell and 180 

Hassan, 2020) although these studies had different objectives. Calle et al. (2020) applied a segmentation method with a 181 

similar goal of identifying corresponding zones of erosion and deposition and set the bin sized based an assessment of 182 

the river dimensions as well as the minimum transfer distance of interest. Therefore, depending on the river, the user 183 

may select differently sized bins. Once the river is segmented, we then sum the values in each bin to obtain a vector of 184 

the net change in elevation in a downstream direction (Fig. 2b). In the flume studies, where there is no sinuosity, we 185 

simply sum each cross section of the DoD matrix. Oftentimes a reach is aggrading or incising and therefore the net 186 

vector will have an increasing or decreasing trend (Fig. 2b). Because we are interested in the spacing between areas of 187 

erosion and deposition rather than the overall trend, we remove it by subtracting a best-fit linear trend from the net 188 

vector (Fig. 2b). Because we simplify the heterogeneity of erosion and deposition into a net vector of elevation change, 189 

we risk compensating erosion and deposition within the same cross section, therefore we also create a vector of just 190 

erosion and one of just deposition as well as the net allowing for a visual comparison of the relative contribution of 191 

erosion and deposition to the net as well as the periodicity of the individual processes (Fig. A1). We can see that there 192 

appears to be a periodicity as the net vector oscillates forming peaks and troughs and although this periodicity seems 193 

apparent, quantifying the distance is not straightforward. 194 
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  195 

Figure 2: VMD- HD method (a) Segmentation of the DoD (example orthophoto and DoD from the Tagliamento 196 
River, Italy). (b) Plot of the net original and detrended vector. (c) Variational mode decomposition (VMD) with 5 197 
intrinsic mode functions (IMFs). (d) Probability density function (PDF) of each IMF and the original net vector.   198 

One approach could be to count the zero crossings and then use that distance as the proxy for path length. However, we 199 

risk measuring low magnitude spikes that cross zero that may not necessarily represent the overall periodicity or large 200 
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oscillations that don’t cross the zero line. A smoothing filter may be used to remove these low magnitude oscillations 201 

but we risk losing potentially relevant information. To solve this problem, we turn to the realm of signal processing 202 

where the practice of “denoising” and extracting information from oscillations is ubiquitous. 203 

Signal processing is a field that deals regularly with extracting information and patterns that are not visually apparent 204 

and its applications have been used in a wide variety of settings including voice recognition (Sigmund, 2003; Upadhyay 205 

and Pachori, 2015), medical applications (Boudraa et al., 2005; Liu et al., 2008), and even time series analysis of 206 

climate data (Barnhart and Eichinger, 2011). There are many approaches to de-noising including Fast Fourier transform, 207 

empirical mode decomposition (EMD), and wavelet analysis. Each of these methods come with inherent strengths and 208 

weaknesses, for example wavelet analysis requires that a mother wavelet be selected a priori and may influence the 209 

results (Boudraa et al., 2005). We chose to use variational mode decomposition (VMD) due to its robustness with 210 

respect to sampling and noise and the ability to handle signals that exhibit non-linearity and non-stationarity 211 

(Dragomiretskiy and Zosso, 2014; Huang et al., 2016; Ma et al., 2017). VMD decomposes the signal into a set of 212 

intrinsic mode functions (IMFs) each with a different central frequency (Dragomiretskiy and Zosso, 2014; Ma et al., 213 

2017) (Fig. 2c). In this case of our static ‘signal’ the frequency is more accurately described as the wavelength. It is 214 

beyond the scope of this paper to describe the mathematics of VMD in detail, therefore, for a complete explanation see 215 

(Dragomiretskiy and Zosso, 2014; Huang et al., 2016; Ma et al., 2017; Upadhyay and Pachori, 2015).  216 

Once the original net vector of erosion and deposition is decomposed into the various IMFs, we need to select the IMF 217 

or IMFs that most accurately represent the periodicity of the original data and therefore our characteristic path length. 218 

Ma et al. (2017) proposed a method to select the most relevant IMF, and therefore periodicity of the signal, by 219 

computing the probability density function (PDF) using kernel density smoothing for each of the five IMFs and of the 220 

original data vector (Fig. 2d), then to calculate the Hausdorff distance (HD), a metric of geometric similarity, between 221 

each IMF’s PDF and the PDF of the original data and select the IMF most geometrically similar to the original data (Ma 222 

et al., 2017) (hereafter VMD-HD method). In most cases, the longer wavelength IMFs most closely resemble the 223 

original signal whereas the IMFs with shorter wavelengths are more likely associated with noise (Boudraa et al., 2005). 224 

The computed wavelength is converted to a meaningful physical quantity by multiplying by the bin spacing in meters. 225 

Because we are interested in the distance from peak to trough, we divide the period by two to obtain the path length 226 

proxy (Neill, 1971; Ashmore and Church, 1998). Although this method allows for the selection of one IMF to 227 

presumably represent the periodicity of the data, we record path lengths calculated from the other IMFs to evaluate the 228 

range of estimates generated by the decomposition and determine if the VMD-HD method is appropriate for 229 

determining a characteristic path length and the relative importance of other IMFs. All calculations were performed in 230 

MatLabR2020b using the built in VMD function and the Hausdorff distance function (Danziger, 2023). 231 

One important consideration when using VMD to decompose a signal is that is the user must define the number of IMFs 232 

beforehand. The number of IMFs is important as under binning, choosing too few IMFs, may mean that critical IMFs 233 

are missed, whereas over binning, can cause duplication of components (Wu et al., 2020). In signal processing, there are 234 

sophisticated methods for determining the number of IMFs, for a summary see (Wu et al., 2020). However, for our 235 

purposes and simplicity’s sake, we performed a brief sensitivity analysis based on the property of convergence often 236 

used in the signal processing methods (Wu et al., 2020; Huang et al., 2016; Ma et al., 2017). The default setting in the 237 

MatLab function is 5 IMFs, we used 3, 5, 8, 15, and 25 IMFs to calculate path length and assessed how it changed for 238 

the maximum IMF (Fig. A2). We found that using more IMFs generally increased the number of high frequency 239 

components rather than the lower frequency IMFs (Fig. A3). Because these higher frequencies are generally associated 240 
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with noise and in our case are physically too small to likely represent meaningful path lengths (on the order of 241 

millimeters) we decided more than 5 IMFs did not contribute physically meaningful information in that the IMFs with 242 

longer wavelengths did not change drastically. We also determined that 3 IMFs were too few as it was clear that the 243 

longer wavelengths were missing (Fig. A3). Therefore, we chose to use the default 5 IMFs as this provided a 244 

manageable number of components while effectively separating the lower frequencies. This is a convenient starting 245 

point for assessing the VMD method as a tool to extract the periodicity as a proxy for characteristic path length but is by 246 

no means the only option. We encourage further exploration of the IMF parameter in future applications and as the 247 

method is refined. 248 

3 Flume and field data 249 

The method was tested using data from a set of flume runs performed in the Hydraulic Laboratory of the University of 250 

Trento, where DEMs were generated for fixed time intervals and varying discharges, and direct measurements of the 251 

bedload flux were also collected. To test the efficacy of the method in the field, we selected a published dataset of 252 

measured path lengths with corresponding DoDs for the San Juan River in British Columbia Canada (McQueen et al., 253 

2021). Although McQueen et al. deployed tracers in four separate periods, there was only one deployment (2018-2019) 254 

with corresponding DEMs (McQueen et al., 2021). DoDs and corresponding tracer data were available for three 255 

separate sites (bar 6, bar 7, and bar 15) for the 2018-2019 period. Detailed information on their collection and 256 

processing can be found in McQueen et al., 2021.  257 

3.1 Flume experiments  258 

The Trento laboratory experiments were carried out in a 0.6 m wide and 24 m long flume, filled with nearly uniform 1 259 

mm diameter sand. The flume slope was set to 0.01 m/m. Topographic surveys were performed over the final 14 m of 260 

the flume, to limit the upstream inflow effects, using a laser gauge, mounted on a movable deck. The longitudinal and 261 

crosswise spacings were 0.05 m and 0.005 m, respectively. Four sets of nine runs were performed, with the flow 262 

discharge set to 0.7, 1, 1.5, and 2 l/s, which correspond to a range of different planform morphologies (Table 1). 263 

Sediment input at the upstream end of the flume was constant in each run, with a flux equal to the average measured at 264 

the downstream end, as computed in a preliminary set of experiments. Therefore, the overall average bed elevation of 265 

the runs was in equilibrium, with no net erosion or deposition. The runs were performed following the same procedure, 266 

involving three phases of different lengths, based on the transport condition of each discharge. These durations were 267 

estimated referring to the time scale for morphological evolution computed from the sediment balance mass equation 268 

(Garcia Lugo et al., 2015), which can be expressed as:  269 

𝑇_𝑒𝑥 =
𝐷𝑊2

𝑄𝑏
,                                                                                  (4) 270 

where D is the average flow depth and W is the flow width. Table 1 provides the values of 𝑇_𝑒𝑥 for each flume 271 

experiment. 272 

Table 1: Initial conditions for each dataset including the type of validation data.  273 
 

Flume 1 Flume 2 Flume 3 Flume 4 San Juan 

Bar 6 

San Juan 

Bar 7 

San Juan 

Bar 15 

Peak discharge 

(m3/s) 

0.0007 0.001 0.0015 0.002 942 942 942 

Slope (m/m) 0.01 0.01 0.01 0.01 0.0038 0.0031 0.0009 

Width (m) 0.6 0.6 0.6 0.6 150 150 130 
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D₅₀ (m) 0.001 0.001 0.001 0.001 0.05 0.056 0.042 

Time scale T_ex 

(min) (eq.4) 

94 50 38 30 - - - 

Time between 

surveys (min) 

47  25  19  15 ~1 year ~1 year ~1 year  

ω* Dimensionless 

stream power  

0.15 0.22 0.33 0.43 0.76 0.61 0.31 

Validation Data  Sediment 

Flux 

Sediment 

Flux 

Sediment 

Flux 

Sediment 

Flux 

RFID 

tracers 

RFID 

tracers 

RFID 

tracers  

Planform Wandering Wandering Wandering 

transitional 

Alternate 

bar 

Wandering Wandering Wandering 

 274 

First, an initial phase of about 12 times this time scale 𝑇_𝑒𝑥 with constant flow was run, to ensure the formation of a 275 

near-equilibrium morphological condition, starting from a flat sand bed scraped to the prescribed slope. This was 276 

followed by a long run, at constant discharge, lasting 19 times the time scale 𝑇_𝑒𝑥, aimed at measuring the output 277 

sediment flux. This was continuously monitored at the channel outlet, through a permeable basket placed on four load 278 

cells. Sediment flux was measured every minute. After a bed topography survey, the third phase was a sequence of nine 279 

shorter runs, lasting 0.5 times the time scale 𝑇_𝑒𝑥, each followed by a bed topography survey, which produced nine 280 

corresponding DoDs. The duration of these nine runs (and therefore the time interval between surveys) was decided to 281 

have easily measurable changes of the bed morphology, without having significant compensation processes.  282 

The DoDs were created by subtracting two consecutive DEMs, then underwent a three-step filtering process to highlight 283 

the relevant erosion and deposition patterns, removing most of the noise associated with the surface roughness and 284 

measurement accuracy. First, the DoDs were filtered considering a uniform detection threshold equal to 2 mm (2 times 285 

the D50), meaning that erosion or deposition values lower than this threshold are set to zero. Thereafter, a spatial average 286 

was performed as a moving average on three values along the transversal direction where the DoD discretization is the 287 

finest. Lastly, a despeckling algorithm removed all isolated cells, both considering single cells that show erosion or 288 

deposition, as well as single cells that show no change. This last step was implemented to keep the detection threshold 289 

as low as possible while removing unphysically small areas. Additionally, we calculated the morphological active width 290 

by determining the percentage of the DoD that showed morphological activity (i.e., was not zero after filtering). 291 

3.2 San Juan River data  292 

To compare the characteristic path length to measured path length distributions in the field, we used data from the San 293 

Juan River, located on Vancouver Island, British Columbia with a drainage area of approximately 730 km2 and a mainly 294 

rainfall driven hydrology (McQueen et al., 2021). The reach of interest in this study was alluvial in nature with a 295 

wandering morphology and a substrate composed of gravel, cobble, and sand (McQueen et al., 2021). The time in 296 

between acquisitions is one year, in which it is estimated there were five flood events able to generate sediment 297 

transport using a threshold of 500 m3 s−1, which was visually estimated by the authors to be equivalent to the bankfull 298 

discharge (McQueen et al., 2021). DEMs were generated by LiDAR acquisitions and have a spatial resolution of 10 cm 299 

and a vertical root mean square error lower than 10 cm. Topographic changes between survey dates were then 300 

calculated by processing the LiDAR DEMs using the Geomorphic Change Detection (GCD) software (Wheaton et al., 301 

2010). More information on how they were obtained and processed including the spatially variable thresholding 302 

techniques can be found in McQueen et al. (2021). The LiDAR-derived DoDs were used to interpret patterns of tracer 303 

displacement and burial depths and to provide information on the morphological development of the bars during the 304 

study period. However, they do not provide complete reach-scale sediment budgets due to the lack of in-channel 305 
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topographic data and stage differences during each LiDAR survey affecting the relative portion of the river bed that was 306 

exposed. The submerged area represented 22% of the DoD for bar 6, 42% for bar 7, and 36% for bar 15. Nevertheless, 307 

we believe the exposed part of the channel, the bars, and associated patches of erosion and deposition (see Fig. 9b) are 308 

sufficient to be used with our proposed method to estimate path lengths and be compared with field measured path 309 

lengths from the tracer data as a first application to field data. This is because we are not calculating sediment flux for 310 

the San Juan River and are only interested in comparing our estimates of the characteristic path length to the measured 311 

tracer distributions. As far as the pattern of erosion and deposition and how that may be disrupted, we recognize that 312 

believe that because the submerged area is small relative to the DoD the pattern should notcould change by including 313 

the underwater areas, however drastically. Further, by looking at figures 15 and 16 from McQueen et al. (2021) we can 314 

see that the tracers were largely recovered from the exposed bar surfaces in the 2018-2019 deployment. This gives us 315 

confidence that the deposition we are measuring corresponds largely to the deposition associated with the tracers. 316 

Although this is not an ideal situation, we believe the benefits outweigh the limitations considering the difficulty of 317 

finding high quality RFID tracer data and corresponding DoDs. The San Juan River DoDs were downloaded directly 318 

from the Scholars Portal Dataverse (https://doi.org/10.5683/SP2/UQGZCG). The DoDs were segmented using similar 319 

principles to Calle et al. (2020) in a similarly sized river, therefore the bin size was conservatively set at 10 m.  320 

3.3 Validation and error estimation   321 

 322 

Each study had unique initial conditions including slope, discharge, grain size, channel configurations, and time/flood 323 

events between surveys (Table 1). Because the studies vary with respect to these initial conditions, we calculated the 324 

dimensionless stream power (ω*) after Bertoldi et al. (2009) to compare them as:  325 

    𝜔∗ =
𝑄∙𝑆

𝑊√𝑔∆𝐷50
3

 ,                                                                                  (5) 326 

where 𝑄 is the peak discharge, 𝑆 is slope, 𝑊 is the average wetted width, Δ is the relative submerged density, 𝐷50 is the 327 

median grain size, and 𝑔 is the acceleration due to gravity.  328 

For the flumes, we used estimates of path length generated by the VMD-HD method and those associated with the two 329 

longest wavelengths, IMF 4 and IMF 5 separately to calculate the virtual velocity Eq. (2) and sediment flux Eq. (3) 330 

which we then compared to measured flux data. The measured sediment flux during the initial long run showed high 331 

variability, with phases of high and low sediment flux lasting several tens of minutes. For this reason, we prefer to use 332 

the data from the long runs, from which we estimated an average sediment flux of 0.33 g/s (SD=0.17) for the 0.7 l/s 333 

discharge, 0.78 g/s (SD=0.31) for the 1 l/s discharge, 1.98 g/s (SD=0.65) for the 1.5 l/s discharge, and 3.22 g/s 334 

(SD=0.79) for the 2 l/s discharge. We subdivided the second phase into 38 intervals of 0.5 T_ex duration, equal to the 335 

duration as the short runs in phase 3, and computed the variability of the flux over this range. 336 

We used ANOVA to compare path length, virtual velocity, and erosion across the four discharges (α=0.05) and a Post-337 

hoc Tukey test to explore significant differences between discharges. To compare the measured sediment flux to the 338 

estimates from the VMD-HD method and the IMF 4 and IMF 5 estimates we used a student’s t-test (α=0.05). And 339 

finally, to compare the error of our path length and sediment transport estimates we calculated the relative percent error 340 

 in order to compare the sediment flux estimates to that of the long runs of average sediment flux as: 341 

                                                                          δ=
|𝐸−𝑀|

𝑀
 ,                                                                                  (6) 342 

https://doi.org/10.5683/SP2/UQGZCG
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where 𝐸 is the average of the estimated sediment flux for the 9 runs at a given discharge and 𝑀 is the averaged 343 

measured sediment flux from the long run at the same given discharge. For the San Juan River we compared the VMD-344 

HD estimates of path length and IMFs 4 and 5 qualitatively to the published path length distributions and the locations 345 

of mean, median, and modes. The tracer recovery locations were accessed in spreadsheet form and in keeping with the 346 

analysis of the authors we disregarded any tracers that moved less than 10 m before calculating the path length 347 

distributions.  348 

4 Results 349 

4.1 Flume experiment   350 

To aid in the interpretation of the results, Fig. 3 shows a DoD from the lowest discharge, 0.7 l/s (a) and the highest 351 

discharge, 2 l/s (b) with the net vector (continuous line), IMF 4 (dashed line), and IMF 5 (dotted line) as obtained from 352 

the VMD method. Oftentimes the areas of deposition and erosion from the DoD correspond clearly to the IMF 4 and 5 353 

vectors as with the 0.7 l/s discharge where areas of deposition are concave and areas of net erosion correspond to 354 

convex areas of the vector (Fig. 3a). At the higher discharges (1.5 l/s and 2 l/s) the total area of morphological activity 355 

increases and patches of erosion and deposition begin to overlap, creating a more chaotic and difficult to discern pattern 356 

(Fig. 3b, A1). We also observed a similar periodicity in the erosional and depositional vectors and at the 2 l/s discharge 357 

the depositional vector appears to show this most clearly (Fig. A1).  358 

 359 

Figure 3: DoDs from 0.7 l/s discharge (a) and 2 l/s discharge (b) with the net vector of elevation change laid over 360 
the top. IMF 4 vector (above, dashed line) and IMF 5 vector (below, dotted line) 361 

In the flume experiment, the VMD-HD method of choosing the most relevant IMF selected the longest wavelength IMF 362 

5 71% of the time and IMF 4 23% of the time. IMFs 2 and 3 were never selected and IMF 1 was selected only twice. 363 

However, at the higher discharges (1.5 l/s and 2 l/s) IMF 4 was selected more frequently, thereby reducing the average 364 

path length when compared to the lower discharges (Fig. A4). Using the selected IMFs, the VMD-HD method 365 

estimated a similar average path length for all of the discharges (Fig. 4). The averages were, 1.45 m (standard deviation 366 

(SD) = 0.93) for the 0.7 l/s discharge runs, 1.24 m (SD=0.58) for the 1 l/s runs, 1.21 m (SD = 0.58) for the 1.5 l/s runs, 367 

and 1 m (SD = 0.37) for the 2 l/s runs (Fig. 4). The path length estimates derived from IMF 4 were similar for all 368 

discharges, 0.51 m (SD=0.12) for the 0.7 l/s discharge, 0.55 m (SD=0.16) for the 1 l/s discharge, 0.56 m (SD=0.91) at 369 

the 1.5 l/s discharge, and 0.46 m (SD=0.15) at 2 l/s (Fig.4) with no significant differences between the discharges (p > 370 

0.05). The path lengths derived from IMF 5 were also similar between the discharges with no significant differences (p 371 

> 0.05) and were, 1.75 m (SD=0.79) for the 0.7 l/s discharge, 1.55 m (SD=0.24) for the 1 l/s discharge, 1.79 m 372 
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(SD=0.67) for the 1.5 l/s discharge, and 1.37 m (SD=0.39) for the 2 l/s discharge (Fig. 4). The VMD-HD method 373 

matched closely with the manually measured distances and there were no statistically significant differences for any of 374 

the discharges (p-value > 0.05) (Fig. 4) while the IMF 4 and IMF 5 derived path lengths bracket the manually measured 375 

distances and the VMD-HD selected path lengths (Fig. 4).  376 

 377 

Figure 4: Path length estimates from the manual method (gray), IMF 4 (orange), IMF 5 (blue), and the VMD-HD 378 
method (green). Significant differences from the post-hoc Tukey test are denoted by letters a-c. 379 

The estimated path lengths were not significantly different between the discharges (p-value >0.05) and showed no 380 

obvious trend of increasing or decreasing with discharge. However, when used to calculate the virtual velocity (𝑣𝑏) 381 

wherein the path length is divided by the time between surveys (Table 1), we see an increase in the virtual velocity with 382 

discharge (p-value < 0.05) (Fig. 5). Likewise, the average volumes of erosion and deposition calculated from the filtered 383 

DoDs increases significantly with discharge (p-value < 0.001) (Fig. 5).  384 
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 385 

Figure 5: Estimated virtual velocity using the VMD-HD path length estimates, measured volumes of erosion and 386 
deposition for each discharge. Significant differences from the Post hoc Tukey test are denoted by letters a-c. 387 

When used to calculate sediment transport Eq. (3) the VMD-HD method corresponds well to the measured average for 388 

the lower discharges (0.7 l/s and 1 l/s) whereas at the higher discharges (1.5 l/s and 2 l/s) the method significantly 389 

underestimated the measured flux (Fig. 6). For the 0.7 l/s discharge, the VMD-HD method estimated a rate of 0.39 g/s 390 

(SD = 0.25) averaged over the nine runs, which was not significantly different than the measured average of 0.33 g/s 391 

(SD = 0.18) and the relative percent error (δ) was 18%. For the 1 l/s discharge the method estimated 0.81 g/s (SD = 392 

0.38) and was not significantly different than the measured average of 0.78 g/s (SD= 0.30, δ= 4%). At the higher 393 

discharge of 1.5 l/s the average estimated by the VMD-HD method was 1.33 g/s (SD = 0.82) whereas the measured 394 

average was 1.98 g/s (SD = 0.70) (p-value < 0.05, δ=32%). Finally, for the 2 l/s runs the estimated average was 1.41g/s 395 

(SD = 0.48) whereas the measured average was 3.22 g/s (SD = 0.98) (p-value < 0.001, δ= 56%) (Fig. 6).  396 

If we use just the IMF with the longest wavelength (IMF 5) to estimate path length and calculate sediment transport, we 397 

slightly overestimate sediment transport at the 0.7 l/s discharge, 0.48 g/s although not significantly (p > 0.05, δ= 45%) 398 

(Fig. 6). At the 1 l/s discharge IMF 5 significantly overestimates the average flux with an estimate of 1.03 g/s (p < 0.01, 399 

δ= 32%). At the 1.5 l/s discharge the estimated flux of 1.88 g/s using the IMF 5 path lengths was not significantly 400 
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different from the measured flux (p > 0.05, δ= 5%) (Fig. 6). However, using the IMF 5 path lengths still significantly 401 

underestimated sediment flux at the 2 l/s discharge, 1.95 g/s (p < 0.001, δ= 39%) (Fig. 6).  402 

 403 

Figure 6: Measured sediment flux (gray) compared to the estimates calculated using IMF 4 (orange), IMF 5 404 
(blue), and the VMD-HD method (green). Significant differences from the post-hoc Tukey test are denoted by 405 
letters a-c. 406 

Using the second longest wavelength, IMF 4, we underestimate at all of the discharges (Fig. 6). The estimated flux was 407 

0.14 g/s at the 0.7 l/s discharge (δ= 58%), 0.36 g/s at the 1 l/s discharge (δ= 54%), 0.61 g/s at the 1.5 l/s discharge 408 

(δ= 69%), and 0.65 g/s at the 2 l/s discharge (δ= 80%), (all p values < 0.001) (Fig. 6).  409 

4.2 San Juan River  410 

The 2018-2019 year for which we conducted our analyses, was moderate in terms of excess flow energy with 5 flood 411 

events exceeding a discharge of 500 m3 s -1 and a peak discharge of 942 m3 s -1. The path length distributions of bar 7 412 

and bar 15 are positively skewed although there is a secondary mode in the bar 7 distribution corresponding roughly to 413 

the bar tail (Fig. 7) whereas the distribution of bar 6 is bi-modal with the primary mode corresponding to the bar apex 414 

(Fig.7). This is potentially because bar 6 had the most pronounced curvature, perhaps contributing to the clustering of 415 

deposition just before the apex, where a migrating gravel sheet terminated (McQueen et al., 2021). This bar apex 416 

corresponds with the path length from IMF 5 of 217 m which was selected from the VMD-HD method (Fig. 7). IMF 5 417 
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was also selected by the VMD-HD method for bar 7 equaling 324 m, and here we see a correspondence to the small 418 

secondary mode where the authors note there was a clustering of tracers (Fig. 7) (McQueen et al., 2021). Again, IMF 5 419 

with a path length of 323 m was also selected for bar 15 and corresponds closely to the bar apex, although there was not 420 

a clustering of tracer deposition in this deployment as observed in the year with higher discharge (Fig. 7). Additionally, 421 

bar 15 had the highest proportion of sand which is not represented by the tracers, potentially contributing to the 422 

discrepancy between our estimates and the tracers. IMF 4 was always well below the lengths associated with the bar 423 

apexes, and the median and mean tracer distances (Fig. 7). However, the bar apexes and the median and mean tracer 424 

distances were always between IMF 4 and IMF 5 (Fig. 7). The range between IMF 4 and IMF 5 accounted for 62% of 425 

the path length distribution for bar 6, 36% for bar 7, and 45% for bar 15.  426 
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 427 

Figure 7: Tracers-based path length distributions (on the left) and VMD derived IMFs for bars 6,7, and 15 from 428 
the San Juan River dataset. IMF 4 (dashed line), IMF 5 (dotted line), mean tracer distance (red), median tracer 429 
distance (blue), and the bar apex (pink) are shown over the path length distributions.   430 

5 Discussion 431 

We developed a method to estimate the characteristic path length during a given flood using information inherent to the 432 

DoD by applying the principle that at channel-forming flows, the majority of particles move from an area of erosion to 433 

the next area of deposition downstream (Pyrce and Ashmore, 2003a, b). By using the periodic nature of erosion and 434 
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deposition we overcome the subjectivity and time involved in measuring these distances manually while aligning 435 

closely with these manually measured distances (Fig. 4). When evaluating the efficacy of our proposed method it is 436 

important to keep in mind the uncertainty of even direct measurement of sediment transport. The spatial and temporal 437 

frequency required to overcome the noise of measurement uncertainty (i.e., achieve an acceptable signal to noise ratio) 438 

in some cases can require sub-daily monitoring with precise equipment (Grams et al., 2019). The variability of sediment 439 

transport measurements in the flume study ranged from a standard deviation of approximately 30% to over 50% of the 440 

averaged flux (Fig. 6). Given this high variability, our reach scale averages were not significantly different from the 441 

measured averages for the 0.7 l/s and 1 l/s discharges (Fig. 6). Importantly, we observed that the method underestimates 442 

the sediment flux significantly for the two highest discharges in the lab where the bed shows a higher percentage of the 443 

width experiencing topographic change (Fig. 6). The method presented to estimate a characteristic path length using 444 

only remotely sensed data shows promising results under certain conditions and provides insight into conditions where 445 

it is not applicable.  446 

5.1 Path length estimation by VMD-HD method: limitations and perspectives 447 

5.1.1 Flow effects 448 

Previous studies have shown a relationship between path length and hydrologic variables such as discharge, stream 449 

power, and excess shear stress (Hassan et al., 1991; Pyrce and Ashmore, 2003b). A notable result of the flume 450 

experiment is that the estimated path length did not significantly differ between the four discharges (Fig. 5). We 451 

propose two possible explanations for this discrepancy with the literature. First, it is possible that the actual path length 452 

is increasing with discharge as has been observed in previous studies (Hassan et al., 1991; Pyrce and Ashmore, 2003b) 453 

but the method fails to capture it because the VMD-HD method is based on the spacing of erosion and deposition which 454 

does not change for the varying discharges under the flume conditions. It is possible that at higher discharges the 455 

characteristic path length, that we define as the distance from net erosional areas to net depositional areas, is not 456 

appropriate under the higher flow conditions because most particles are moving farther than the next depositional site 457 

downstream. This violates the assumption on which our method is based and is impossible to prove in our experiment 458 

without tracers. We can however look to literature to understand the conditions in which tracers tend to travel more than 459 

one morphological unit ( Liébault et al., 2012; Vázquez-Tarrío et al., 2019) and coupled with future studies, perhaps 460 

determine the conditions under which a characteristic path length is inappropriate to estimate sediment transport. 461 

From the San Juan River data we see that for a year with moderate flow, as characterized by the authors, that very few 462 

tracers traveled further than the first depositional site downstream of their insertion point although it is possible that the 463 

unrecovered tracers escaped the first bar, the recovery rates were high with 75% of tracers recovered for bars 6 and 15, 464 

and 79% recovered for bar 7 (McQueen et al., 2021). However, the moderate flow year for which we had corresponding 465 

tracer and DoD data resulted in two of the three sites with positively skewed distributions, and only bar six showing a 466 

mode near the bar apex, which also corresponded to the IMF 5 path length (Fig. 7). The moderate flow conditions could 467 

explain why our estimates lined up more closely with the bar apex for bar 15, where in the previous high flow year the 468 

majority of tracers were deposited resulting in a symmetrical distribution (Fig. 8 from McQueen et al., 2021). It could 469 

be that our method is strongly influenced by the morphology of the channel such that when flow is insufficient to create 470 

symmetrical or bi modal path length distributions, we overestimate by using the characteristic path length because the 471 

majority of particles are not reaching the next major depositional site downstream (i.e., a positively skewed 472 

distribution). Additionally, when the flow exceeds a yet unidentified threshold, the majority of particles move more than 473 

one depositional site downstream and therefore we underestimate sediment transport by using the characteristic path 474 
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length. We can speculate that this is happening to some extent in the flume experiment. We see that at the lowest 475 

discharge, 0.7 l/s, we slightly overestimate the sediment flux especially using IMF 5 (Fig. 6) and underestimate the flux 476 

at the highest discharge, 2 l/s, where we also see a simplification of channel morphology (Fig. 6, 3). Because we did not 477 

have tracers in the flumes we can not say if the path length distributions were in fact different between the lowest and 478 

highest discharges. Future applications of this method with tracer data both in the flumes and in the field could help to 479 

understand when the characteristic length scale of morphology extracted by the method is an appropriate estimate of 480 

sediment transport and if this corresponds to flow metrics and path length distributions. In the flume studies we tested 481 

the idea that the majority of particles are bypassing the first depositional site simply by doubling the estimated path 482 

length. Assuming that sediment is not trapped in the first depositional area but in the second one and doubling the path 483 

length we more closely estimate the sediment transport at the higher discharges (i.e., estimates are not significantly 484 

different than the measured averages (p>0.05) but overestimate the sediment transport at the 0.7 l/s and 1 l/s discharges 485 

(p<0.05) (Fig. A5).  486 

5.1.2 Confinement 487 

It is possible that due to the confined condition of the flumes, channel width may exert an outsized effect on the average 488 

bedload transport distance as the channel is unable to widen in response to an increase in discharge, therefore causing a 489 

flushing effect. In the flume experiment, we found that the VMD-HD method performed better at the lower discharges 490 

of 0.7 l/s and 1 l/s but significantly underestimated the sediment transport at the 1.5 l/s and 2 l/s discharges (Fig. 6). The 491 

underestimation at higher discharges could be related to the amount of morphological change relative to the sediment 492 

transport. Recently, Booker and Eaton (2022) quantitatively explored the link between sediment transport and 493 

morphology and proposed an index to represent the intuitive notion that as sediment transport increases relative to 494 

morphological change, the processes become decoupled and inferences from one to another become more difficult. 495 

They developed a ‘throughput index’ which is the ratio between sediment flux and morphological change and 496 

represents how much sediment moves through a reach without leaving a topographic signature of equal magnitude. 497 

Therefore, the ratio represents how well the flux is represented morphologically with the ratio approaching 1 when all 498 

of the flux is shown as morphological change and exceeding 1 when there is transport without equivalent morphological 499 

change. In our case the flume experiments were confined, therefore, as discharge increased the channel was not able to 500 

widen and deform laterally potentially causing the sediment to move through the flume without leaving an equivalent 501 

topographic signature. To explore the applicability of the method proposed we calculated the morphological active 502 

width by counting the percentage of pixels in the DoD that showed topographic change after filtering (we applied this 503 

metric only for the flume experiments since the San Juan River DoDs do not include the submerged part of the 504 

channel). The morphological active width increased with discharge as expected and was positively correlated with the 505 

error of our estimates (Fig. 8). This result exposes a limitation of the morphological method in general and our 506 

application specifically, that is, confined channels with high transport relative to morphological change are likely poor 507 

candidates for the morphological method as inferences between changes in morphology and sediment transport become 508 

decoupled. Further applications of this method in the field and in the lab could identify a potential threshold defined by 509 

the throughput index (Booker and Eaton, 2022) or the morphological active width described in this study. The 510 

advantage of using the morphological active width as opposed to the throughput index is that it can be determined from 511 

the DoD without direct sediment transport measurements. 512 
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 513 

Figure 8: Relative percent error between estimated flux using the VMD-HD method and the measured flux in the 514 
flume experiments (y-axis) vs the percentage of the DoD showing morphological change (x-axis). Different 515 
discharges are denoted by shape.   516 

5.1.3 Morphological controls  517 

Previous studies have shown that in gravel bed rivers, macroform spacing is typically 5-7 channel widths (Montgomery 518 

and Buffington, 1997) and therefore half of that spacing, i.e. pool to bar, may be considered a proxy for the 519 

characteristic path length. We compared our estimates of path length to (half) of both 5 and 7 times the channel width in 520 

the flumes and found that the IMF 5 estimates of path length were between the 5 and 7 channel widths for all but the 521 

highest discharge (Fig. A6). Interestingly, the manually measured distances were less than the 5-7 channel widths for all 522 

discharges but approaching 5 channel widths at the 2 l/s discharge (Fig. A6). When used to calculate sediment flux, the 523 

estimates derived from using 5 and 7 channel widths were not significantly different than our VMD-HD estimates at 524 

discharges 0.7-1.5 l/s or the measured flux at all discharges (Fig. A5). Here we are likely seeing a good correspondence 525 

between the characteristic path length, width, and sediment transport, because at formative discharges, morphology is 526 

the primary control on bedload travel distance. Whereas at lower discharges, where the morphology is relatively stable, 527 

discharge may exert a stronger control on path length. Because we do not have tracer data in the flumes for comparison, 528 

we can only rely on the sediment transport measurements for validation but further flume studies with both sediment 529 

flux and tracer data for validation could help resolve this question. The periodicity we extract from the DoDs as an 530 
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estimate of path length corresponds to previous observations of preferential particle deposition at specific 531 

morphological units and relationships to channel morphology (Beechie, 2001; Pyrce and Ashmore, 2003a, b; Kasprak et 532 

al., 2015; McDowell and Hassan, 2020; McDowell et al., 2021). In the San Juan River study, our estimates aligned 533 

closely with the secondary modes in the particle path length distributions (Fig. 7) consistent with observations that at 534 

channel forming flows, particle path lengths tend to be bi or multimodal with secondary modes corresponding to the 535 

location of bars (Pyrce and Ashmore, 2003b). This preliminary result should be further examined with additional field 536 

data in multi-threaded channel types.  537 

We expected that the path length in more complex channels such as braided configurations would be more difficult to 538 

estimate due to the possibility of multiple path lengths active at different flow stages. In this study both the flume 539 

experiment and the field study exhibited a wandering morphology although in the flume experiment, the channel began 540 

to simplify at higher discharges, likely due to the inability of the channel to widen in response to the increase in 541 

discharge. Further, path length estimates did not change significantly between the discharges whereas the erosion 542 

volume increases with discharge, and that, as mentioned previously, potentially contributed to the underestimation of 543 

sediment flux at the higher discharges. Additionally, at the 1.5 l/s, and 2 l/s discharges, the patches of erosion and 544 

deposition began to overlap, therefore, the wavelike pattern from areas of erosion to deposition represented by the IMF 545 

5 vector became flattened (Fig. 3, A1). To disentangle the confounding erosion and deposition from the net vector, we 546 

applied the VMD method to a vector created from erosion and deposition separately. When calculating the path length 547 

using the erosion or deposition vectors, we took half of the resulting path length as we are still interested in the distance 548 

from erosion to deposition rather than erosion to erosion. We found that the path lengths generated from these vectors 549 

were not significantly different than the path lengths generated using the net vector (p > 0.05) (Fig. A6) nor were the 550 

estimates of sediment transport (Fig. A5) This evidence supports the use of the net vector in this case because it appears 551 

that erosion and deposition were similarly distributed. However, in rivers with differing morphology, perhaps braided 552 

systems, we might suspect that erosion will be more localized than deposition which can be dispersed (Goff and 553 

Ashmore, 1994). In these cases, using VMD to decompose the net, erosion, and deposition separately could give further 554 

insight into how deposition and erosion are contributing to the net change. For example, deposition may contribute little 555 

to net vector if the relative magnitude of the oscillations is small compared to erosion which tends to be more 556 

concentrated. In addition to estimating a characteristic path length, this decomposition could give further insight into the 557 

nature of depositional and erosional processes in a reach. We also recognize that perhaps when multiple channels are 558 

present and active, it may be beneficial to segregate the DoD, treating each channel as a separate system and generate 559 

multiple path length estimations and avoid compensating erosion and deposition within the cross section. Further 560 

investigations are needed in the lab and in the field to propose robust methodologies to assess realistic ranges of path 561 

lengths from DoD for varying river patterns. 562 

5.1.4 Using the IMFs 563 

The path length-based method for calculating sediment transport necessitates that a single path length be selected and 564 

this is surely an oversimplification of reality. Encouragingly, the flume experiment shows that by using the VMD-HD 565 

method to select the path length, we are able to reasonably approximate sediment transport at the lower discharges (Fig. 566 

6). However, when applying this method to a real case study, like that of the San Juan River, it is important to consider 567 

if the results make sense given what is known about the channel and the time and magnitude of flood events between 568 

surveys, potentially taking into account both IMF 4 and IMF 5 to generate a range of plausible transport or path lengths. 569 

The VMD-HD method presented here selects one of the five IMFs to be used as an estimate of path length based on the 570 
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geometric similarity, as measured by the Hausdorff distance, of the IMF to the original data vector. However, we 571 

presume that not only does the method occasionally select an erroneous IMF (IMF 1 for example where the path length 572 

is on the order of mm) but it also reasons that in some cases more than one IMF could represent the pattern of erosion 573 

and deposition in the DoD or perhaps a range due to the heterogeneous nature of sediment transport. In the flume 574 

experiment, the VMD-HD method selected the longest wavelength, IMF 5, 74% of the time and IMF 4, 24% of the 575 

time. There were only two instances in which IMF 1 was selected and neither IMF 2 or 3 were ever selected. Likewise, 576 

IMF 5 was selected for all three bars in the San Juan River dataset. This result agrees with observations from the signal 577 

processing literature wherein the lower frequency (in our case wavelength) IMFs (4 and 5) are thought to represent the 578 

true signal whereas the higher frequency (shorter wavelength) IMFs are attributed to noise (Boudraa et al., 2005). In our 579 

case we can verify visually that IMF 5 is most likely representative of the characteristic path length by tracing the path 580 

from erosional site to depositional site within the DoD using the manual method (Fig. 9). Here we see that the longest 581 

IMF captures the spacing between erosional and depositional patches as estimated by other methods (Redolfi, 2014; 582 

Vericat et al., 2017; Calle et al., 2020). This study, as the others, supports the idea that the periodic nature of erosion 583 

and deposition can be used to estimate sediment transport and helps to clarify the conditions where this approach is 584 

valid. Moreover, this study provides an objective and repeatable method to estimate the characteristic path length.  585 

 586 
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Figure 9: DoD with arrows showing possible path lengths between areas of erosion (red) to deposition (blue) 587 
corresponding to both IMF 4 and IMF 5. The VMD breakdown including all IMFs and the corresponding path 588 
lengths are shown for an experimental run from the 1.5 l discharge (a) and bar 15 from the San Juan River (b). 589 

Different IMFs also allow us to explore multiple periodicities, such as shorter path lengths in the DoDs that may 590 

correspond to IMF 4 (Fig. 9). The method we present here to select one of the IMFs to represent the periodicity is 591 

convenient for assigning a characteristic path length to be used in sediment transport calculations. However, it is unclear 592 

if the range of IMFs may be used to estimate aspects of the path length distribution. As a first step, we see that in the 593 

San Juan River the path lengths associated with IMF 4 and IMF 5 bracket the mean, median, and key depositional areas 594 

associated with the path length distribution (Fig. 7). With future studies it may be possible to set a range of plausible 595 

transport based on IMFs 4 and 5.  596 

5.2 DoD related uncertainties  597 

Any application of the morphological method using DoDs is sensitive to the error thresholding method used due to the 598 

way in which different thresholding techniques influence both the volumes of erosion and deposition as well as their 599 

spatial patterning (Brasington et al., 2003; Wheaton, 2008; Wheaton et al., 2010; Vericat et al., 2017). Because our 600 

method relies on the spacing between areas of erosion and deposition which is related to the size of the patches as well 601 

as which patches are detected, we considered that thresholding techniques could greatly affect the estimates of path 602 

length. We tested this hypothesis by applying the method to both the raw and filtered DoDs for the Trento flume 603 

experiment and found that while the volumes of erosion and deposition were lower after thresholding as expected 604 

(p<0.001), the path length estimates were not significantly different (p>0.05) (Table A1). While the thresholding here 605 

did not affect the path length estimates, we might imagine a scenario in which an entire area of erosion or deposition is 606 

removed through aggressive thresholding techniques, thereby potentially affecting the path length estimates and 607 

therefore caution that appropriate thresholding is important for the application of this method and the morphological 608 

method in general. It is also important to consider the spatial resolution (i.e. raster cell size) of the DoD when applying 609 

this method. Similarly to thresholding or selecting a bin size, the spatial resolution of the DoD could cause information 610 

to be lost if the cell size is large enough to aggregate erosion and deposition within the same cell (see for instance the 611 

comparison made in Antoniazza et al., 2019). We see less of a risk in using smaller cell sizes as the method already 612 

calls for aggregation in the binning process and in theory VMD should be able to separate the small scale fluctuations as 613 

short wavelength IMFs. However, this is an open question and should be evaluated by the user on a case by case basis.  614 

The time between surveys is of equal importance to the path length in the estimation of virtual velocity and in the field 615 

can be highly uncertain due to poor availability of hydrologic data and/or the uncertainty of estimating the onset of 616 

transport based on a critical shear stress. Further, as time between surveys increases, so too does the probability of 617 

compensating erosion and deposition which can affect both the volumes of erosion and deposition and the topographic 618 

signatures (Lindsay and Ashmore, 2002; Vericat et al., 2017) necessary for VMD-HD method. We tested how the time 619 

between surveys might affect both the volumes of erosion and deposition and our path length estimates by differencing 620 

DEMs not every time step but between two, three, and four timesteps, each time step being one of the nine runs in the 621 

lab of phase 3 (see method). Not surprisingly the volume of erosion and deposition increased significantly with 622 

increasing time between surveys with the largest increase between the 1st timestep and 2nd timestep (Fig. 10). The path 623 

length estimates did not increase significantly for any of the discharges (Fig. 10c) indicating that the path length 624 

estimate is stable, likely because, as already noted, the spacing of erosion and deposition is related to the position of 625 

erosional and depositional features which do not change much in the flume. When both of these parameters are used in 626 

the sediment transport calculations and normalized by the increased time between surveys, we found no statistically 627 
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significant difference between the estimates (Fig. 10d). However, though not statistically significant, there is an 628 

apparent decreasing trend in the sediment flux with the increased time between surveys, especially for the 2 l/s 629 

discharge that may indicate compensation (Fig. 10d). Despite the apparent trend at the highest discharge this is a 630 

promising result in that even by increasing the time interval by a factor of 4 we are still able to estimate sediment 631 

transport reasonably at the lower discharges. In the field there are often multiple flood events of differing magnitude in 632 

the year between surveys as was the case with the San Juan River study (McQueen et al., 2021). Although there were 633 

five flood events of differing magnitudes between the San Juan River surveys, we were still able to estimate path 634 

lengths corresponding to potentially significant features of the path length distributions (Fig. 7).  635 

 636 

Figure 10: (a) Erosion measured from the flume experiments for each discharge and each timestep (b) deposition 637 
(c) path length estimates using VMD-HD method (d) sediment flux estimated using VMD-HD method and 638 
measured. Significant post-hoc Tukey results are denoted by letters a-d (α=0.05). 639 

6 Conclusion 640 
Given the observed connections between morphology and path length at channel forming flows, we proposed that the 641 

periodic nature of the pattern of erosion and deposition can be a proxy for a characteristic path length in gravel bed 642 

rivers. We applied tools from signal processing to quantify this periodicity and found that by the longest wavelengths 643 

from the decomposition, IMF 4 and IMF 5 may represent meaningful bedload transport processes and IMF 5 in 644 

particular may represent the characteristic path length. We found that the path length estimates generated by IMFs 4 and 645 

5 bracket a significant portion of measured path length distributions in the field and correspond to important 646 

morphological units. In the flume experiment we found that IMF 4 and 5 path lengths also bracket the manually 647 

measured distances between erosional and depositional patches and when extended to calculate sediment flux our 648 

estimates were not significantly different from the measured average at low discharges. Importantly we found an 649 
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insensitivity of the method to increasing discharge and propose that perhaps limits arise where discharge increases in 650 

confined settings, such as in the flume, and sediment transport becomes decoupled from morphological changes. Our 651 

method provides a new view of the periodic nature of erosion and deposition in sediment transport and a novel way to 652 

extract sediment transport information using only DoDs.  653 

 654 

  655 

Appendix A 656 
 657 

 658 

Figure A1.  DoDs from the 2 l/s discharge. a) Vector of deposition, erosion, and the net. b) Raw depositional vector and 659 
the decomposition of IMF 4 and IMF 5 from that depositional vector. c) Net vector and the decomposition of IMF 4 and 660 
IMF 5 from that net vector. d) Raw erosional vector and the decomposition of IMF 4 and IMF 5 from that erosional 661 
vector.  662 

 663 
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 664 

Figure A2. Path length estimates using a maximum of 3,5,8, or 15 IMFs.  665 

 666 

Figure A3. Path length estimates from VMD for 1.5 l/s discharge. Sensitivity of maximum number of IMFs.  667 

 668 
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 669 

Figure A4. Number of times each IMF was selected by the VMD-HD method for each discharge. 670 

  671 
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Figure A5. Sediment transport calculated using the single path length estimate from the VMD-HD method (b) and 672 
doubling the path length estimate (a). Estimated flux is red and measured flux is blue. Significant p values are shown.  673 

 674 

 675 

Figure A6. Sediment transport (g/s) calculated using channel dimensions, IMFs 4 and 5 for net, erosion, and deposition 676 
vectors. Compared to the measured flux for each discharge. Post hoc Tukey results denoted by letters a-f.   677 

 678 

Figure A7. Path length estimates from the channel dimensions, IMFs 4 and 5 for net, erosion, and deposition vectors 679 
compared to manually measured distances for each discharge. Post hoc Tukey results denoted by letters a-f.   680 

Table A1. Results from filtered vs raw DoDs from the flume experiments.  681 

Discharge Path 

length raw 

(m) 

Path 

length 

filtered 

(m) 

Qb 

estimated 

raw(g/s) 

Qb 

estimated 

filtered 

(g/s) 

Erosion 

raw (m3)  

Deposition 

raw(m3) 

Erosion 

filtered 

(m3) 

Deposition 

filtered 

(m3) 
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0.7 1.77 1.31 0.69 0.30 0.01 0.01 0.01 0.01 

0.7 0.80 0.75 0.29 0.14 0.01 0.01 0.00 0.00 

0.7 3.05 3.06 1.20 0.71 0.01 0.01 0.01 0.01 

0.7 2.54 2.40 0.97 0.51 0.01 0.01 0.01 0.01 

0.7 2.30 0.05 1.01 0.01 0.01 0.01 0.01 0.01 

0.7 0.87 1.09 0.35 0.23 0.01 0.01 0.01 0.01 

0.7 1.57 1.61 0.70 0.43 0.01 0.01 0.01 0.01 

0.7 1.24 1.35 0.56 0.37 0.01 0.01 0.01 0.01 

1 1.25 1.41 1.04 0.89 0.01 0.01 0.01 0.01 

1 1.37 0.48 1.28 0.31 0.01 0.01 0.01 0.01 

1 1.25 1.47 1.10 1.02 0.01 0.01 0.01 0.01 

1 1.23 1.80 1.18 1.00 0.01 0.01 0.01 0.01 

1 1.48 1.59 1.46 0.84 0.01 0.01 0.01 0.01 

1 1.83 1.53 1.57 0.77 0.01 0.01 0.01 0.01 

1 1.54 1.52 1.27 0.75 0.01 0.01 0.01 0.01 

1 1.51 1.29 1.21 0.69 0.01 0.01 0.01 0.01 

1.5 1.12 0.68 1.82 0.53 0.01 0.01 0.01 0.01 

1.5 1.63 0.84 2.30 0.86 0.01 0.01 0.01 0.01 

1.5 1.50 0.64 2.74 0.65 0.02 0.01 0.01 0.01 

1.5 0.50 0.61 0.82 0.67 0.01 0.01 0.01 0.01 

1.5 0.85 0.49 1.41 0.54 0.01 0.01 0.01 0.01 

1.5 0.51 1.60 0.76 2.01 0.01 0.01 0.01 0.01 

1.5 1.67 1.71 2.28 2.21 0.01 0.01 0.01 0.01 

1.5 1.50 2.16 2.54 2.20 0.01 0.01 0.01 0.01 

1.5 1.13 2.12 1.73 2.34 0.01 0.01 0.01 0.01 

2 1.41 1.40 2.53 1.86 0.01 0.01 0.01 0.01 

2 0.91 0.92 1.58 1.19 0.01 0.01 0.01 0.01 

2 1.26 1.36 2.05 1.58 0.01 0.01 0.01 0.01 

2 1.13 1.26 1.67 1.27 0.01 0.01 0.01 0.01 

2 0.06 1.45 0.09 1.61 0.01 0.01 0.01 0.01 

2 0.46 0.46 0.78 0.56 0.01 0.01 0.01 0.01 

2 1.32 0.83 2.04 1.18 0.01 0.01 0.01 0.01 

2 0.71 0.66 1.30 0.74 0.01 0.01 0.01 0.01 

Summary  
        

Discharge Erosion Deposition Path 

Length  

Qb 
    

0.7 p<0.001** p<0.001** p>0.05 p<0.05* 
    

1 p<0.001** p<0.001** p>0.05 p<0.05* 
    

1.5 p<0.001** p<0.001** p>0.05 p<0.05* 
    

2 p<0.001** p<0.001** p>0.05 p>0.05 
    

         

*p-values from student's t test between raw and filtered data 
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