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Abstract. The difficulties of measuring bedload transport in gravel bed rivers have given rise to the morphological 7 

method wherein sediment transport iscan be inferred from changes in riverbed elevation and estimates of the distance 8 

traveled by sediment, its path length. Because current methods for estimating path length are time and labor intensive, 9 

we present a method to estimate a characteristic path length from repeat digital elevation models (DEMs of difference 10 

i.e., DoDs). We propose an automated method to extract the spacing between erosional and depositional sites on the 11 

DoD by the application of Variational Mode Decomposition (VMD), a signal processing method, to quantify the 12 

spacing as a proxy for path length. We developed this method using flume experiments where bed topography and 13 

sediment flux were measured and then applied it to published field data with physical path length measured from tracer 14 

measurements for validation.. Our path length estimates had an error lower than 30% when compared to the measured 15 

mode of the tracer distances in the field and generated sediment transport estimates were not significantly different than 16 

the measured sediment flux at lower discharges in the lab. However, we observed an underestimation of sediment flux 17 

at the higher discharges in the flume study. We explore explanations for the underestimation andWe interpret this as a 18 

limit of the method in confined settings, where sediment transport becomes decoupled from morphological changes. We 19 

also explore how the time between survey acquisitions, the morphological active width relative to the channel width, 20 

and DoD thresholding techniques affect the proposed method and the potential issues they pose to the morphological 21 

method in general.  22 

1 Introduction  23 

In gravel bed rivers sediment transport fundamentally controls morphological processes but is notoriously difficult to 24 

measure due to its spatial and temporal heterogeneity (Hoey, 1992; McLean and Church, 1999) measurement uncertainty 25 

(Vericat et al., 2006), and the logistical challenges of field measurements. The morphological approach is a method to 26 

estimate bedload transport based on observed changes in morphology coupled with an estimate of how far sediment 27 

travels, the path length (Ashmore and Church, 1998), or a known flux at one boundary (Grams et al., 2013). With the 28 

increasing availability of high-resolution topography, it is now easier to quantify the volume of mobilized sediment 29 

needed for the morphological method from the comparison of repeat topographic surveys known as digital elevation 30 

models (DEMs) whereby the older survey is subtracted from the newer survey to obtain a DEM of difference (DoD). 31 

However, the estimation of path length remains a challenge. 32 

Implementation of the path length-based approach requires an estimation of typical particle travel distances for the reach 33 

in question. Historically, these distances have been estimated using tracers, either electronically tagged or painted clasts.  34 

Unfortunately, tracer studies are time and labor intensive, requiring multiple site visits and intensive recovery campaigns 35 

which often have low recovery rates, especially for painted clasts (Hassan and Bradley, 2017; Brenna et al., 2019). 36 

Furthermore, tracer studies are often applicable only to exposed bars, ignoring a large portion of in-channel transport, and 37 
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can be sensitive to the seeding location (Liébault et al., 2012).  To overcome these limitations, several methods have been 38 

proposed to estimate path length based on the connection to morphology.   39 

Given that morphological units are the cumulative result of the displacement of sediment particles, it follows that the two 40 

would be related. Neill (1971) proposed that path length in meandering rivers should be equal to the distance from an 41 

erosional site (eroding bank) to the next depositional site (point bar) downstream. Many others have observed similar 42 

relationships based on the spacing of erosional and depositional sites and channel morphology (Beechie, 2001; Hundey 43 

and Ashmore, 2009; Kasprak et al., 2015; Pyrce and Ashmore, 2003b, a; Vázquez-Tarrío et al., 2019). A synthesis of 44 

tracer studies demonstrated that at formative discharges, particle path length distributions often exhibit primary or 45 

secondary modes corresponding to the location of bars, where deposition occurs (Pyrce and Ashmore, 2003a). Further, 46 

depositional areas (typically bars), have demonstrated a higher probability of ‘trapping’ particles than erosional 47 

morphological units (McDowell and Hassan, 2020; McDowell et al., 2021).  Finally, experimental research has confirmed 48 

the preferential deposition of particles specifically at bar heads and margins even in channels with more complex 49 

morphology, for example, in braided rivers (Kasprak et al., 2015) but it is reasonable to assume that in multithreaded 50 

channels, multiple path lengths might exist at different flow stages in primary and secondary channels.  51 

Given the observations linking path length to morphology, we hypothesize that path length can be 52 

inferred from changes in morphology at near event scale comparisons. If during a flood, sediment is 53 

mobilized from an area of erosion to an area of deposition as represented on the DoD, the distance 54 

between the two should correspond to a typical path length. Following this hypothesis, this work 55 

has the following objectives: i) to propose an efficient and semiautomatic method to quantify the 56 

distance between sites of erosion and deposition from the DoD; ii) to use these estimates of path 57 

length to explore the feasibility and accuracy of sediment transport flux estimations, using direct 58 

measurements at the laboratory scale; iii) to compare these estimates to measured path lengths 59 

obtained from tracer data in the field; iv) and finally to evaluate the potential sources of error when 60 

estimating sediment flux from changes in morphology. 61 

2 Methods  62 

To meet our objectives, we use flume experiments at varying discharges with direct measurement of output 63 
sediment flux and sets of repeat DEMs from which DoDs are created and used to identify patterns of erosion and 64 
deposition. 1 Introduction  65 

In gravel bed rivers sediment transport fundamentally controls morphological processes but is notoriously difficult to 66 

measure due to its spatial and temporal heterogeneity (Hoey, 1992; McLean and Church, 1999) measurement uncertainty 67 

(Vericat et al., 2006), and the logistical challenges of field measurements. We then develop a semiautomated method to 68 

extract these distances between erosion and deposition and compare our estimates to measured sediment flux. Finally, we 69 

test this method using published field data with tracer measurements as validation of the path length estimates. 70 

2.1 The morphological method  71 

 72 
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The morphological method isThe morphological approach is a method to estimate bedload transport based on observed 73 

changes in morphology. There have been many implementations of the morphological method since its inception and it 74 

has been reviewed extensively (Ashmore and Church, 1998; Brewer and Passmore, 2002; Church, 2006; Vericat et al., 75 

2017). With the increased availability of hydrologic data and modeling capabilities the morphological method has also 76 

been applied in two dimensions (x,y) by coupling a 2D hydraulic model to account for sediment routing (Lane et al., 77 

1995; Antoniazza et al., 2019; Bakker et al., 2019). These 2D applications shed light on the functional links between 78 

topographic changes and spatial distribution of bedload transport. Antoniazza et al., (2019) quantified the errors in 79 

estimating sediment transport with a 1D approach where 2D cross-stream sediment fluxes are neglected which may be 80 

especially useful in multithreaded channels. They also explored how DEM accuracy and the frequency of acquisitions 81 

affect the estimates of sediment fluxes derived by the morphological method. These contributions confirm the 82 

applicability of the morphological method to estimate sediment transport, however, they require intensive field campaigns 83 

and an accurate accounting of upstream water and sediment supplies, often not available in real case studies. In this paper 84 

the desire is to explore novel approaches to apply the morphological method using topographic data alone, as hydraulic 85 

and sediment supply data are not available in many applications and management situations.  86 

 87 

The morphological method can be formalized based on the sediment continuity equation.: 88 

                                                       (𝑄𝑏𝑖𝑛
− 𝑄𝑏𝑜𝑢𝑡

)∆𝑡 = (1 − 𝑝)∆𝑉 ,                                                                                 (1) 89 

Where where 𝑄𝑏𝑖𝑛
 and  𝑄𝑏𝑜𝑢𝑡

 are the volumetric sediment flux in and out of the reach respectively, ∆𝑡 is the time 90 

between surveys, 𝑝 is the sediment porosity, and ∆𝑉 is the change in volume. The sediment continuity equation can be 91 

solved in several ways, onebut in addition to ∆𝑉measured from the DoDs, it requires that either the incoming flux 𝑄𝑏𝑖𝑛
 92 

or the outgoing flux 𝑄𝑏𝑜𝑢𝑡
  be defined. In most cases, neither of these fluxes are known, as they are the exact parameters 93 

that need to be estimated when applying the morphological method. This conundrum has been estimatedaddressed by 94 

setting a zero-flux boundary, such as a dam or gravel sand transition (McLean and Church, 1999), by segmenting the 95 

reach such that a zero-flux boundary is set between a section of net deposition to one of net erosion (Vericat et al., 96 

2017) or by measuring flux either into or out of the reach (Grams et al., 2013).(Vericat et al., 2017; Calle et al., 2020) or 97 

by measuring flux either into or out of the reach (Grams et al., 2013; Antoniazza et al., 2019).  98 

 Alternatively, Eq. (1) can be modified so that active layer depth, 𝑑𝑠 and width 𝑤𝑠 ,and the virtual velocity, 𝑣𝑏 isare 99 

used. : 100 

                                                                 𝑄𝑏  =  𝑣𝑏 =
𝐿

𝑇
                                      101 

 𝑑𝑠  𝑤𝑠 (1 −  𝑝)𝜌𝑠                                                                       (2) 102 

                                                                                                                                                             103 

Where 𝑣𝑏  is equal to  𝐿/𝑇  , 𝐿 being the distance the particles travel and 𝑇 the time over which the particles are traveling 104 

(Church, 2006). The virtual velocity approach has been successfully applied using tracer gravels to estimate the path 105 

length parameter 𝐿 in a variety of morphological settings (Liébault et al., 2012; Mao et al., 2017; Brenna et al., 2019, 106 

2020; Brenna and Surian, 2023). Unfortunately, tracer studies are time and labor intensive, requiring multiple site visits 107 

and intensive recovery campaigns which often have low recovery rates, especially for painted clasts (Hassan and Bradley, 108 
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2017; Brenna et al., 2019). Furthermore, tracer studies are often applicable only to exposed bars, ignoring a large portion 109 

of in-channel transport, and can be sensitive to the seeding location (Liébault et al., 2012). To overcome these limitations, 110 

several methods have been proposed to estimate path length based on the connection to morphology.   111 

The term path length describes the distance traveled by a particle from entrainment to deposition during a transport event 112 

and is punctuated by shorter bursts of movement termed step lengths (Einstein, 1937). Individual particles do not all 113 

entrain, travel, and deposit together in unison but rather form a distribution of path lengths potentially dependent on grain 114 

size, flow strength and duration, and channel morphology. The relative strength of these physical controls on path length 115 

has been explored with varied results. Some studies have found relationships between path length and flow metrics such 116 

as stream power (Hassan et al., 1992; Schneider et al., 2014; Vázquez-Tarrío and Batalla, 2019; Vázquez-Tarrío et al., 117 

2019) but a considerable scatter in the data has reinvigorated the debate over the role of morphology as a primary control 118 

of path length (Hassan and Bradley, 2017; Vázquez-Tarrío and Batalla, 2019; Vázquez-Tarrío et al., 2019).  119 

The connection between morphology and path length has long been discussed. Neill (1971) proposed that path length in 120 

meandering rivers should be equal to the distance from an erosional site (eroding bank) to the next depositional site (point 121 

bar) downstream. Many others have observed similar relationships based on the spacing of erosional and depositional 122 

sites and channel morphology (Beechie, 2001; Pyrce and Ashmore, 2003a, b; Hundey and Ashmore, 2009; Kasprak et 123 

al., 2015; Vázquez-Tarrío et al., 2019). Further, depositional areas (typically bars), have demonstrated a higher probability 124 

of ‘trapping’ particles than erosional morphological units (McDowell and Hassan, 2020; McDowell et al., 2021). Finally, 125 

experimental research has confirmed the preferential deposition of particles specifically at bar heads and margins even in 126 

channels with more complex morphology, for example, in braided rivers (Kasprak et al., 2015) but it is reasonable to 127 

assume that in multithreaded channels, multiple path lengths might exist at different flow stages in primary and secondary 128 

channels.  129 

Where 𝐿 is the distance the particles travel and 𝑇 is the time over which the particles are traveling. Vericat et al. (2017) 130 

proposed an equation to use the path length with the volume of erosion derived directly from the DoD  131 

𝑄𝑏 =  (𝑣𝑏  ∑ 𝑉𝑒 (The path length used for the virtual velocity approach is generally taken as the mean travel distance 132 

(Wilcock, 1997; Vericat et al., 2017; Mao et al., 2017; Brenna et al., 2019). However, it is unclear if the mean path length 133 

as measured by tracers is the best representation of a ‘characteristic’ path length to estimate bedload transport. To obtain 134 

an estimate of reach scale sediment transport we consider the distance travelled by the bedload involved in building 135 

geomorphic units as representative a characteristic path length. This may not necessarily be the average, as evidenced by 136 

the wide variety of path length distributions it is often the case that many or even most (the mode) of path lengths are 137 

very short, thus skewing the average depending on the distribution. For example, Pyrce and Ashmore published synthesis 138 

of tracer studies and demonstrated that at formative discharges, particle path length distributions often exhibit primary or 139 

secondary modes corresponding to the location of bars, where deposition occurs (Pyrce and Ashmore, 2003a). Further, 140 

flume experiments showed that the majority of particles eroded from an upstream scour pool were deposited at the point 141 

bar apex and corresponded to peaks in bi or multimodal path length distributions (Pyrce and Ashmore, 2005). Therefore, 142 

the characteristic path length, i.e., the most representative and sound value to be used in sediment transport estimations, 143 

might be better described by these primary or secondary modes in channels with bar morphology at channel forming 144 

flows.  145 
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If a characteristic path length can be inferred from changes in morphology as previously discussed, advances in 146 

topographic survey techniques to acquire detailed digital elevation models (DEMs) and facilitate change detection, 147 

provide an opportunity to streamline the estimation of sediment transport. The high-resolution topography (HRT) 148 

revolution (Vericat et al., 2017) has provided an abundance of high quality surveys and an increased frequency of 149 

change detection based on the differencing of DEMs to create digital elevation models of difference (DoDs) 150 

(Brasington et al., 2000; Lane et al., 2003). Vericat et al. (2017) proposed an equation to use the path length with the 151 

volume of erosion derived directly from the DoD  152 

𝑄𝑏 =  (𝑣𝑏  ∑ 𝑉𝑒 (1 − 𝑝)𝜌𝑠 )/𝐿𝑐  ,                                                                  (3) 153 

Wherewhere ∑ 𝑉𝑒  is the total volume of erosion from the DoD and 𝐿𝑐  is the length of the analyzed DEM by which the 154 

volume of erosion is normalized (Vericat et al., 2017). To use this method, Lc must be long enough for average path 155 

lengths (L) to occur and 𝑇 must be short enough to prevent repeated erosion and deposition, known as compensation 156 

(Lindsay and Ashmore, 2002).  157 

Redolfi (2014) attempted to estimate the path length parameter directly from the DoD using the length of individual 158 

erosional patches as a proxy for the length of the erosion-deposition sequence. This approach avoids the need to couple 159 

each erosional area to a downstream depositional area, which can be difficult to automate in multi-thread rivers. While 160 

this method scales well with flow metrics and provides reasonable estimates (Redolfi, 2014; Vericat et al., 2017), the 161 

hypothesis that the length of erosional areas is equivalent to the erosion-deposition distance has not been tested in 162 

different morphologies, and it is not clear how the survey resolution may affect the estimates by fragmenting the 163 

erosional areas into smaller parts. Recently, Calle et al. (2020) used a method of river segmentation to visualize the 164 

pattern of erosion and deposition and infer sediment connectivity as well as to estimate potential travel distances. They 165 

defined boundaries between river segments and classified them into types based on their net erosional or depositional 166 

characteristics. Focusing on the “type 1 depositional boundary” wherein the upstream section is erosional and the 167 

immediate downstream boundary is depositional and depending on the volumes of deposition and erosion in these 168 

segments they were able to estimate minimum or maximum transport distances (Calle et al., 2020). This approach 169 

provides greater insight into the spatial connectivity of the river corridor and is useful to understand reach scale 170 

processes. However, depending on the river, and the sections surveyed, the number of type 1 boundaries may limit the 171 

applicability of the method in defining a characteristic path length and crucial information may be missed where the 172 

pattern of erosion and deposition is not clear, or the periodicity spans multiple sections. For example, where there are 173 

back-to-back patches of erosion or deposition or the overall pattern is separated by small areas of mixed boundaries.  174 

Given the observations linking path length to morphology and building on the aforementioned methods, we seek to 175 

expand on the idea that characteristic path length can be inferred from changes in morphology at near transport event 176 

scale comparisons. If during a flood, sediment is mobilized from an area of erosion to an area of deposition as 177 

represented on the DoD, the distance between the two should correspond to a characteristic path length. Following these 178 

assumptions this work has the following objectives: i) to propose an objective and semiautomatic method to quantify a 179 

characteristic path length as represented by the periodic nature of erosion and deposition from the DoD using flume 180 

data; ii) to compare these estimates of a characteristic path length to measured path length distributions obtained from 181 

tracer data in the field; iii) and finally to evaluate the conditions in which a characteristic path length is appropriate to 182 

estimate sediment transport.  183 
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2 Methods  185 

To meet our objectives, we use flume experiments at varying discharges with direct measurement of output sediment flux 186 

and sets of repeat DEMs from which DoDs are created and used to identify patterns of erosion and deposition. 2.We then 187 

develop a semiautomated method to extract these distances between erosion and deposition as a proxy for the 188 

characteristic path length and then compare our estimates of sediment flux calculated using the characteristic path length 189 

to measured sediment flux. Finally, we compare the characteristic path length estimates from a published case study to 190 

the physical path length distributions as measured by tracers in the field to see how the characteristic path length 191 

corresponds to path length distributions.  192 

 193 

2.1 Path length  194 

 195 

The crux of our hypothesis is that sediment moves from an area of net erosion to an area of net deposition during the 196 

time period between DEM acquisitions and that this represents a characteristic path length. The most obvious method to 197 

quantify this distance between erosional and depositional sites on the DoD is to measure the spacing manually using a 198 

GIS program however, this requires many subjective evaluations. Firstly, we must decide where on the patches of 199 

erosion and deposition to begin and end the measurements. Because patches of erosion and deposition are not 200 

symmetrical or of equal size, the distance between the two depends on which area of the patch we choose to begin and 201 

end the measurements (Fig. 1). For consistency, we choose the center of the patch (Fig. 1c). Next, we must determine 202 

which patch of erosion matches with which patch of deposition which is not always obvious, especially when multiple 203 

channels are present, and again requires subjective evaluation. Here we used our knowledge of morphological processes 204 

to make a best estimate. For example, a patch of erosion on an outside bend likely corresponds to the deposition of the 205 

next point bar downstream. Although this method is capable of producing estimates of path length, to overcome the 206 

subjectivity and time required to manually measure the distances we developed a method to extract the spacing that is 207 

objective and semiautomated. 208 
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 209 

A key assumption inherent in our objectives is that sediment moves from an area of net erosion to an area of net 210 

deposition during the time period between DEM acquisitions and that this represents a characteristic path length. 211 

Ferguson and Ashworth (1992) proposed a similar method of matching specific erosional and depositional patches 212 

albeit without the assistance of a DoD. This method was then implemented in the Sunwapta River, Canada (Goff and 213 

Ashmore, 1994) although the authors note the difficulty in finding perfectly matching patches and conclude that 214 

erosional and depositional processes are likely more dispersed. Here we will implement this “manual method” as a 215 

means of comparison for the automated method presented later. The most obvious method to quantify this distance 216 

between erosional and depositional sites on the DoD is to measure the spacing manually using a GIS program however, 217 

this requires many subjective evaluations. Firstly, we must decide where on the patches of erosion and deposition to 218 

begin and end the measurements. Because patches of erosion and deposition are not symmetrical or of equal size, the 219 

distance between the two depends on which area of the patch we choose to begin and end the measurements. For 220 

consistency, we choose the center of the patch (Fig. 1) after Ashmore and Church (1998). Next, we must determine 221 

which patch of erosion matches with which patch of deposition which is not always obvious, and as noted previously, 222 

likely does not accurately represent the nature of bedload transport (Goff and Ashmore, 1994). Here we perform this 223 

method solely for comparative purposes and therefore used our knowledge of morphological processes to make a best 224 

estimate. For example, a patch of erosion on an outside bend likely corresponds to the deposition of the next point bar 225 

downstream (Fig. 1). Although this method is capable of producing crude estimates of path length to overcome the 226 

aforementioned biases (Ferguson and Ashworth, 1992; Goff and Ashmore, 1994; Ashmore and Church, 1998) we 227 

propose a method to estimate a characteristic path length without relying on the matching of erosion and deposition but 228 

rather to use the periodic nature of these processes. Additionally, we seek to create a method that is both objective and 229 

semiautomated. 230 
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 231 

Figure 1: Manual method to measure spacing of erosional patches (red) and depositional patches (blue) on a 232 
DoD. (a) Beginning of patch to beginning of next patch (b) end to end (c) center to center.   233 

 234 

2.32 Semiautomated extraction of path length  235 

 236 

To visualize and then quantify the spacingperiodic nature of erosionalerosion and depositional sites ondeposition from 237 

the DoD we simplify the spatial heterogeneity of the DoD into a vector of the net change in elevation in a streamwise 238 

direction (Fig. 2a). Because natural rivers are rarely straight, for field case studies, we must enforce a linear downstream 239 

directionality essentially straightening the bends in the river. This is achieved by segmenting the DoD into a series of 240 

equally sized “bins” using the segmentation tool of the Fluvial Corridor Toolbox (Roux et al., 2015) (Fig. 2a). We then 241 

sum the values in each bin to obtain a vector of the net change in elevation in a streamwise direction (Fig. 2b). In the 242 

flume studies, where there is no sinuosity, we simply sum each column of the DoD matrix.The bin size can affect the 243 

pattern of erosion and deposition in that by selecting too large of bins we may miss important erosional or depositional 244 

areas when they are summed in the same bin. Similar methods that require river segmentation have proposed using the 245 

reach averaged width for the length of the bins (McDowell et al., 2021) or half of the width of the reach (McDowell and 246 

Hassan, 2020) although these studies had different objectives. Calle et al. (2020) applied a segmentation method with a 247 

similar goal of identifying corresponding zones of erosion and deposition and set the bin sized based an assessment of 248 

the river dimensions as well as the minimum transfer distance of interest. Therefore, depending on the river, the user 249 

may select differently sized bins. Once the river is segmented, we then sum the values in each bin to obtain a vector of 250 

the net change in elevation in a downstream direction (Fig. 2b). In the flume studies, where there is no sinuosity, we 251 

simply sum each cross section of the DoD matrix. Oftentimes a reach is aggrading or incising and therefore the net 252 

vector will have an increasing or decreasing trend (Fig. 2b). Because we are interested in the spacing between areas of 253 

erosion and deposition rather than the overall trend, we remove it by subtracting a best-fit linear trend from the net 254 

vector (Fig. 2b). Because we simplify the heterogeneity of erosion and deposition into a net vector of elevation change, 255 

we risk compensating erosion and deposition within the same cross section, therefore we also create a vector of just 256 

erosion and one of just deposition as well as the net allowing for a visual comparison of the relative contribution of 257 

erosion and deposition to the net as well as the periodicity of the individual processes (Fig. A1). We can see that there 258 

appears to be a periodicity as the net vector oscillates forming peaks and troughs and although this periodicity seems 259 

apparent, quantifying the distance is not straightforward. 260 
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  262 

Figure 2: VMD- HD method (a) Segmentation of the DoD. (example orthophoto and DoD from the Tagliamento 263 
River, Italy). (b) Plot of the net original and detrended vector. (c) Variational mode decomposition (VMD) with 5 264 
intrinsic mode functions (IMFs). (d) Probability density function (PDF) of each IMF and the original net vector.   265 

From Fig.2b, it is clear that One approach could be to count the pattern of erosionzero crossings and deposition 266 

exhibitsthen use that distance as the proxy for path length. However, we risk measuring low magnitude spikes that cross 267 
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zero that may not necessarily represent the overall periodicity or large oscillations that don’t cross the zero line. A 268 

smoothing filter may be used to remove these low magnitude oscillations but there is also variation and “noise”.we risk 269 

losing potentially relevant information. To see the pattern more clearly and quantify the periodicitysolve this problem, 270 

we turn to the fieldrealm of signal processing where the problem of de-noisingpractice of “denoising” and extracting 271 

information from oscillations is ubiquitous. 272 

Signal processing is a field that deals regularly with extracting information and patterns that are not visually apparent 273 

and its applications have been used in a wide variety of settings including voice recognition (Sigmund, 2003; Upadhyay 274 

and Pachori, 2015), medical applications (Boudraa et al., 2005; Liu et al., 2008), and even time series analysis of 275 

climate data (Barnhart and Eichinger, 2011). There are many approaches to de-noising including Fast Fourier transform, 276 

empirical mode decomposition (EMD), and wavelet analysis. Each of these methods come with inherent strengths and 277 

weaknesses, for example wavelet analysis requires that a mother wavelet be selected a priori and may influence the 278 

results (Boudraa et al., 2005). We chose to use variational mode decomposition (VMD) due to its robustness with 279 

respect to sampling and noise and the ability to handle signals that exhibit non-linearity and non-stationarity 280 

(Dragomiretskiy and Zosso, 2014; Huang et al., 2016; Ma et al., 2017). VMD decomposes the signal into a set of 281 

intrinsic mode functions (IMFs) each with a different central frequency (Dragomiretskiy and Zosso, 2014; Ma et al., 282 

2017) (Fig. 2c).  n this case of our static ‘signal’ the frequency is more accurately described as the wavelength.  t is 283 

beyond the scope of this paper to describe the mathematics of VMD in detail, therefore, for a complete explanation see 284 

(Dragomiretskiy and Zosso, 2014; Huang et al., 2016; Ma et al., 2017; Upadhyay and Pachori, 2015).  285 

Once the original net vector of erosion and deposition is decomposed into the various IMFs, we need to select the IMF 286 

or IMFs that most accurately represent the periodicity of the original data. and therefore our characteristic path length. 287 

Ma et al. (2017) proposed a method to select the most relevant IMF, and therefore periodicity of the signal, by 288 

computing the probability density function (PDF) using kernel density smoothing for each of the five IMFs and of the 289 

original data vector (Fig. 2d), then to calculate the Hausdorff distance (HD), a metric of geometric similarity, between 290 

each  MF’s  DF and the  DF of the original data and select the  MF most geometrically similar to the original data (Ma 291 

et al., 2017) (hereafter VMD-HD method). In most cases, the longer wavelength IMFs most closely resemble the 292 

original signal whereas the IMFs with shorter wavelengths are more likely associated with noise (Boudraa et al., 2005). 293 

The computed wavelength is converted to a meaningful physical quantity by multiplying by the bin spacing in meters. 294 

Because we are interested in the distance from peak to trough, we divide the period by two to obtain the path length 295 

proxy (Neill, 1971; Ashmore and Church, 1998). Although this method allows for the selection of one IMF to 296 

presumably represent the periodicity of the data, we record path lengths calculated from the other IMFs to evaluate the 297 

range of estimates generated by the decomposition and determine if the VMD-HD method is appropriate for 298 

determining a characteristic path length and the relative importance of other IMFs. All calculations were performed in 299 

MatLabR2020b. using the built in VMD function and the Hausdorff distance function (Danziger, 2023). 300 

One important consideration when using VMD to decompose a signal is that is the user must define the number of IMFs 301 

beforehand. The number of IMFs is important as under binning, choosing too few IMFs, may mean that critical IMFs 302 

are missed, whereas over binning, can cause duplication of components (Wu et al., 2020). In signal processing, there are 303 

sophisticated methods for determining the number of IMFs, for a summary see (Wu et al., 2020). However, for our 304 

purposes and simplicity’s sake, we performed a brief sensitivity analysis based on the property of convergence often 305 

used in the signal processing methods (Wu et al., 2020; Huang et al., 2016; Ma et al., 2017). The default setting in the 306 

MatLab function is 5 IMFs, we used 3, 5, 8, 15, and 25 IMFs to calculate path length and assessed how it changed for 307 
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the maximum IMF (Fig. A2). We found that using more IMFs generally increased the number of high frequency 308 

components rather than the lower frequency IMFs (Fig. A3). Because these higher frequencies are generally associated 309 

with noise and in our case are physically too small to likely represent meaningful path lengths (on the order of 310 

millimeters) we decided more than 5 IMFs did not contribute physically meaningful information in that the IMFs with 311 

longer wavelengths did not change drastically. We also determined that 3 IMFs were too few as it was clear that the 312 

longer wavelengths were missing (Fig. A3). Therefore, we chose to use the default 5 IMFs as this provided a 313 

manageable number of components while effectively separating the lower frequencies. This is a convenient starting 314 

point for assessing the VMD method as a tool to extract the periodicity as a proxy for characteristic path length but is by 315 

no means the only option. We encourage further exploration of the IMF parameter in future applications and as the 316 

method is refined. 317 

3 Flume and field data 318 

The method was tested using data from a set of flume runs performed in the Hydraulic Laboratory of the University of 319 

Trento, where DEMs were generated for fixed time intervals and varying discharges, and direct measurements of the 320 

bedload flux were also collected. To test the efficacy of the method in the field, we selected a published dataset of 321 

measured path lengths with corresponding DoDs for the San Juan River in British Columbia Canada (McQueen et al., 322 

2021). In this case, DoDs and corresponding tracer data were available for three separate bars (bar 6, bar 7, and bar 15) 323 

for the 2018-2019 period.Although McQueen et al. deployed tracers in four separate periods, there was only one 324 

deployment (2018-2019) with corresponding DEMs (McQueen et al., 2021). DoDs and corresponding tracer data were 325 

available for three separate sites (bar 6, bar 7, and bar 15) for the 2018-2019 period. Detailed information on their 326 

collection and processing can be found in McQueen et al., 2021.  327 

3.1 Flume experiments  328 

The Trento laboratory experiments were carried out in a 0.6 m wide and 24 m long flume, filled with sand characterized 329 

by a mediannearly uniform 1 mm diameter (D50) of 1 mmsand. The flume slope was set to 0.01 m/m. Topographic 330 

surveys were performed over the final 14 m of the flume, to limit the upstream inflow effects, using a laser gauge, 331 

mounted on a movable deck. The longitudinal and crosswise spacings were 0.05 m and 0.005 m, respectively. Four sets 332 

of nine runs were performed, with the flow discharge set to 0.7, 1, 1.5, and 2 l/s, which correspond to a range of 333 

different planform morphologies (see Fig. 3).Table 1). Sediment input at the upstream end of the flume was constant in 334 

each run, with a flux equal to the average measured at the downstream end, as computed in a preliminary set of 335 

experiments. Therefore, the overall average bed elevation of the runs was in equilibrium, with no net erosion or 336 

deposition. The runs were performed following the same procedure, involving three phases of different lengths, based 337 

on the transport condition of each discharge. These durations were estimated referring to the time scale for 338 

morphological evolution computed from the sediment balance mass equation (Garcia Lugo et al., 2015), which can be 339 

expressed as:  340 

𝑇_𝑒𝑥 =
𝐷𝑊2

𝑄𝑏
,                                                                                  (4) 341 

where D is the average flow depth and W is the flow width. Table 1 provides the values of 𝑇_𝑒𝑥 for each flume 342 

experiment. 343 

Table 1: Initial conditions for each dataset including the type of validation data.  344 
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Flume 1 Flume 2 Flume 3 Flume 4 San Juan 

Bar 6 

San Juan 

Bar 7 

San Juan 

Bar 15 

Peak discharge 

(m3/s) 

0.0007 0.001 0.0015 0.002 942 942 942 

Slope (m/m) 0.01 0.01 0.01 0.01 0.0038 0.0031 0.0009 

Width (m) 0.6 0.6 0.6 0.6 150 150 130 

D₅₀ (m) 0.001 0.001 0.001 0.001 0.05 0.056 0.042 

Time scale T_ex 

(min) (eq.4) 

94 50 38 30 - - - 

Time between 

surveys (0.5 

T_exmin) 

47  25  19  15 ~1 year ~1 year ~1 year  

ω* Dimensionless 

stream power  

0.15 0.22 0.33 0.43 0.76 0.61 0.31 

Validation Data  Sediment 

Flux 

Sediment 

Flux 

Sediment 

Flux 

Sediment 

Flux 

RFID 

tracers 

RFID 

tracers 

RFID 

tracers  

Planform Wandering Wandering Wandering 

transitional 

Alternate 

bar 

Wandering Wandering Wandering 

 345 

First, an initial phase of about 12 times this time scale 𝑇_𝑒𝑥 with constant flow was run, to ensure the formation of a 346 

near-equilibrium morphological condition, starting from a flat sand bed scraped to the prescribed slope. This was 347 

followed by a long run, at constant discharge, lasting 19 times the time scale 𝑇_𝑒𝑥, aimed at measuring the output 348 

sediment flux. This was continuously monitored at the channel outlet, through a permeable basket placed on four load 349 

cells. Sediment flux was measured every minute. After a bed topography survey, the third phase was a sequence of nine 350 

shorter runs, lasting 0.5 times the time scale 𝑇_𝑒𝑥, each followed by a bed topography survey, which produced nine 351 

corresponding DoDs. The duration of these nine runs (and therefore the time interval between surveys) was decided to 352 

have easily measurable changes of the bed morphology, without having significant compensation processes. The use of 353 

the time scale 𝑇_𝑒𝑥 (and therefore a different absolute time interval between surveys for the four discharges) ensured to 354 

have similar volumes of erosion and deposition in each run. 355 

The DoDs were created by subtracting two consecutive DEMs, then underwent a three-step filtering process to highlight 356 

the relevant erosion and deposition patterns, removing most of the noise associated with the surface roughness and 357 

measurement accuracy. First, the DoDs were filtered considering a uniform detection threshold equal to 2 mm (2 times 358 

the D50), meaning that erosion or deposition values lower than this threshold are set to zero. Thereafter, a spatial average 359 

was performed as a moving average on three values along the transversal direction where the DoD discretization is the 360 

finest. Lastly, a despeckling algorithm removed all isolated cells, both considering single cells that show erosion or 361 

deposition, as well as single cells that show no change. This last step was implemented to keep the detection threshold 362 

as low as possible while removing unphysically small areas.  Additionally, we calculated the morphological active 363 

width by determining the percentage of the DoD that showed morphological activity (i.e., was not zero after filtering). 364 

3.2 San Juan River data  365 

To compare the characteristic path length to measured path length distributions in the field, we used data from the San 366 

Juan River, located on Vancouver Island, British Columbia with a drainage area of approximately 730 km2 and a mainly 367 

rainfall driven hydrology (McQueen et al., 2021). The reach of interest in this study was alluvial in nature with a 368 

wandering morphology and a substrate composed of gravel, cobble, and sand (McQueen et al., 2021).The San Juan 369 

River DoDs were downloaded directly from the Scholars Portal Dataverse (https://doi.org/10.5683/SP2/UQGZCG). The 370 

time in between acquisitions is one year, in which it is estimated there were five flood events able to generate sediment 371 

Formatted Table

https://doi.org/10.5683/SP2/UQGZCG
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transport using a threshold of 500 m  s−1, which was visually estimated by the authors to be equivalent to the bankfull 372 

discharge (McQueen et al., 2021).  DEMs were generated by LIDARLiDAR acquisitions and have a spatial resolution 373 

of 10 cm and a vertical root mean square error lower than 10 cm. Topographic changes between survey dates were then 374 

calculated by processing the LiDAR DEMs using the Geomorphic Change Detection (GCD) software (Wheaton et al., 375 

2010). More information on how they were obtained and processed including the spatially variable thresholding 376 

techniques can be found in McQueen et al., . (2021.). The LiDAR-derived DoDs were used to interpret patterns of 377 

tracer displacement and burial depths and to provide information on the morphological development of the bars during 378 

the study period. However, they do not provide complete reach-scale sediment budgets due to the lack of in-channel 379 

topographic data and stage differences during each LiDAR survey affecting the relative portion of the river bed that was 380 

exposed. Nevertheless, we believe the exposed part of the channel, the bars, and associated patches of erosion and 381 

deposition (see Fig. 9b) are sufficient to be used with our proposed method to estimate path lengths and be compared 382 

with field measured path lengths from the tracer data. This is because we are not calculating sediment flux for the San 383 

Juan River and are only interested in comparing our estimates of the characteristic path length to the measured tracer 384 

distributions. As far as the pattern of erosion and deposition and how that may be disrupted, we believe that because the 385 

submerged area is small relative to the DoD the pattern should not change drastically. Further, by looking at figures 15 386 

and 16 from McQueen et al. (2021) we can see that the tracers were largely recovered from the exposed bar surfaces in 387 

the 2018-2019 deployment. This gives us confidence that the deposition we are measuring corresponds largely to the 388 

deposition associated with the tracers. Although this is not an ideal situation, we believe the benefits outweigh the 389 

limitations considering the difficulty of finding high quality RFID tracer data and corresponding DoDs. The San Juan 390 

River DoDs were downloaded directly from the Scholars Portal Dataverse (https://doi.org/10.5683/SP2/UQGZCG).8b) 391 

are sufficient to be used with our proposed method to estimate path lengths and be compared with field measured path 392 

lengths from the tracer data The DoDs were segmented using similar principles to Calle et al. (2020) in a similarly sized 393 

river, therefore the bin size was conservatively set at 10 m.  394 

3.3 Validation dataand error estimation   395 

 396 

Each study had unique initial conditions including slope, discharge, grain size, channel configurations, and time/flood 397 

events between surveys (Table 1). Because the studies vary with respect to these initial conditions, we calculated the 398 

dimensionless stream power (ω*) after Bertoldi et al., . (2009) to compare them. as:  399 

    𝜔∗ =
𝑄∙𝑆

𝑊√𝑔∆𝐷50
3

 ,                                                                                  (5) 400 

Wherewhere 𝑄 is the peak discharge, 𝑆 is slope, 𝑊 is the average wetted width, Δ is the relative submerged density, 401 

𝐷50 is the median grain size, and 𝑔 is the acceleration due to gravity.  402 

For the flumes, we used estimates of path length generated by the VMD-HD method and those associated with the two 403 

longest wavelengths, IMF 4 and IMF 5 separately to calculate the virtual velocity Eq. (2) and sediment flux Eq. (3) 404 

which we then compared to measured flux data. The measured sediment flux during the initial long run showed high 405 

variability, with phases of high and low sediment flux lasting several tens of minutes. For this reason, we prefer to use 406 

the data from the long runs, from which we estimated an average sediment flux of 0.33 g/s (SD=0.17) for the 0.7 l/s 407 

discharge, 0.78 g/s (SD=0.31) for the 1 l/s discharge, 1.98 g/s (SD=0.65) for the 1.5 l/s discharge, and 3.22 g/s 408 

https://doi.org/10.5683/SP2/UQGZCG
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(SD=0.79) for the 2 l/s discharge (Fig. 3).. We subdivided the second phase into 38 intervals of 0.5 T_ex duration, equal 409 

to the duration as the short runs in phase 3, and computed the variability of the flux over this range. 410 

We used A OVA to compare path length, virtual velocity, and erosion across the four discharges (α=0.0 ) and a  ost-411 

hoc Tukey test to explore significant differences between discharges. To compare the measured sediment flux to the 412 

estimates from the VMD-HD method and the IMF 4 and IMF 5 estimates we used a student’s t-test (α=0.0 ). And 413 

finally, to compare the error of our path length and sediment transport estimates we calculated the symmetrical mean 414 

absolute percent error (SMAPE). relative percent error  in order to compare the sediment flux estimates to that of the 415 

long runs of average sediment flux as: 416 

                                                                          δ=
|𝐸−𝑀|

𝑀
 ,                                                                                  (6) 417 

where 𝐸 is the average of the estimated sediment flux for the 9 runs at a given discharge and 𝑀 is the averaged 418 

measured sediment flux from the long run at the same given discharge. For the San Juan River we compared the VMD-419 

HD estimates of path length and IMFs 4 and 5 qualitatively to the published path length distributions and the locations 420 

of mean, median, and modes. The tracer recovery locations were accessed in spreadsheet form and in keeping with the 421 

analysis of the authors we disregarded any tracers that moved less than 10 m before calculating the path length 422 

distributions.  423 

4 Results 424 

4.1 Flume experiment   425 

To aid in the interpretation of the results, Fig. 3 shows a DoD from each of the dischargeslowest discharge, 0.7 l/s (a) 426 

and the highest discharge, 2 l/s (b) with the IMF 5net vector laid over the top.(continuous line), IMF 4 (dashed line), 427 

and IMF 5 (dotted line) as obtained from the VMD method. Oftentimes the areas of deposition and erosion from the 428 

DoD correspond clearly to the IMF 4 and 5 vectorvectors as with the 0.7 l/s discharge where areas of deposition are 429 

concave and areas of net erosion correspond to convex areas of the vector. (Fig. 3a). At the higher discharges (1.5 l/s 430 

and 2 l/s) the total area of morphological activity increases and patches of erosion and deposition begin to overlap, 431 

creating a more chaotic and difficult to discern pattern (Fig. 33b, A1). We also observed a similar periodicity in the 432 

erosional and depositional vectors and at the 2 l/s discharge the depositional vector appears to show this most clearly 433 

(Fig. A1).  434 
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 435 

 436 

Figure 3:  All four discharges DoDs from the flume experiment DoDs 0.7 l/s discharge (a) and 2 l/s discharge (b) 437 
with arrows showing manually derived distances from erosion to deposition, path length estimates usingthe net 438 
vector of elevation change laid over the VMD-HD method, and thetop. IMF 4 vector (above, dashed line) and 439 
IMF 5 vector. (below, dotted line) 440 

In the flume experiment, the VMD-HD method of choosing the most relevant IMF selected the longest wavelength IMF 441 

5 7471% of the time and IMF 4 3423% of the time. IMFs 2 and 3 were never selected and IMF 1 was selected only 442 

once.twice. However, at the higher discharges (1.5 l/s and 2 l/s) IMF 4 was selected more frequently, thereby reducing 443 
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the average path length when compared to the lower discharges (Fig. A4). Using the selected IMFs, the VMD-HD 444 

method estimated a similar average path length for all of the discharges (Fig. 4 & 5). The averages were, 1.45 m 445 

(standard deviation (SD) = 0.93) for the 0.7 l/s discharge runs, 1.24 m (SD=0.58) for the 1 l/s runs, 1.21 m (SD = 0.58) 446 

for the 1.5 l/s runs, and 1 m (SD = 0.37) for the 2 l/s runs (Fig. 3). The path length estimates derived from the4). The 447 

path length estimates derived from IMF 4 were similar for all discharges, 0.51 m (SD=0.12) for the 0.7 l/s discharge, 448 

0.55 m (SD=0.16) for the 1 l/s discharge, 0.56 m (SD=0.91) at the 1.5 l/s discharge, and 0.46 m (SD=0.15) at 2 l/s 449 

(Fig.4) with no significant differences between the discharges (p > 0.05). The path lengths derived from IMF 5 were 450 

also similar between the discharges with no significant differences (p > 0.05) and were, 1.75 m (SD=0.79) for the 0.7 l/s 451 

discharge, 1.55 m (SD=0.24) for the 1 l/s discharge, 1.79 m (SD=0.67) for the 1.5 l/s discharge, and 1.37 m (SD=0.39) 452 

for the 2 l/s discharge (Fig. 4). The VMD-HD method matched closely with the manually measured distances and there 453 

were no statistically significant differences for any of the discharges (p-value > 0.05) (Fig. 4). 4) while the IMF 4 and 454 

IMF 5 derived path lengths bracket the manually measured distances and the VMD-HD selected path lengths (Fig. 4).  455 

 456 
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 457 

Figure 4: Path length estimates from the manual method (gray), IMF 4 (orange), IMF 5 (blue), and the VMD-HD 458 
method (dark gray) and the estimates derivedgreen). Significant differences from the manual method (light 459 
gray). The two groups were not statistically significant (p-value > 0.05).post-hoc Tukey test are denoted by letters 460 
a-c. 461 

The estimated path lengths were not significantly different between the discharges (p-value >0.05) (Fig. 5) and showed 462 

no obvious trend of increasing or decreasing with discharge. However, when used to calculate the virtual velocity (𝑣𝑏) 463 

wherein the path length is divided by the time between surveys (Table 1), we see an increase in the virtual velocity with 464 

discharge (p-value < 0.05) (Fig. 5). Likewise, the average volumevolumes of erosion and deposition calculated from the 465 

filtered DoDs increases significantly with discharge (p-value < 0.001) (Fig. 5).  466 
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 468 

Figure 5:  Estimated path length using the VMD-HD method for all discharges in the flume experiment, 469 
calculated virtual velocity using these the VMD-HD path length estimates, and measured volumes of erosion and 470 
deposition for each discharge. Significant differences from the Post hoc Tukey test are denoted by letters a-c. 471 

When used to calculate sediment transport Eq. (3) the VMD-HD method corresponds well to the measured average for 472 

the lower discharges (0.7 l/s and 1 l/s) whereas at the higher discharges (1.5 l/s and 2 l/s) the method significantly 473 

underestimated the measured flux (Fig. 6). For the 0.7 l/s discharge, the VMD-HD method estimated a rate of 0.39 g/s 474 

(SD = 0.25) averaged over the nine runs, which was not significantly different than the measured average of 0.33 g/s 475 

(SD = 0.18) and the SMAPErelative percent error (δ) was 418%. For the 1 l/s discharge the method estimated 0.81 g/s 476 

(SD = 0.38) and was not significantly different than the measured average of 0.78 g/s (SD= 0.30) with a SMAPE of 477 

11%., δ= 4%). At the higher discharge of 1.5 l/s the average estimated by the VMD-HD method was 1.2133 g/s (SD = 478 

0.4782) whereas the measured average was 1.98 g/s (SD = 0.70) (p-value < 0.05) with a SMAPE of 53%., δ=32%). 479 

Finally, for the 2 l/s runs the estimated average was 1.44g41g/s (SD = 0.4648) whereas the measured average was 3.22 480 

g/s (SD = 0.98) (p-value < 0.001), δ= 56%) (Fig. 6) with an SMAPE of 90%.).  481 
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 482 

Figure 6: Estimated sediment flux (dark gray) compared to the measured average (light gray) for each of the 4 483 
discharges from the flume experiment. Significant p values (α<0.05) from a student’s t-test are shown for the 1.5 484 
l/s and the 2 l/s discharges. 485 

If we use just the IMF with the longest wavelength (IMF 5) to estimate path length and calculate sediment transport, we 486 

slightly overestimate sediment transport at the 0.7 l/s discharge, 0.48 g/s although not significantly (p > 0.05, δ= 45%) 487 

(Fig. 6). At the 1 l/s discharge IMF 5 significantly overestimates the average flux with an estimate of 1.03 g/s (p < 0.01, 488 

δ= 32%). At the 1.5 l/s discharge the estimated flux of 1.88 g/s using the IMF 5 path lengths was not significantly 489 

different from the measured flux (p > 0.05, δ= 5%) (Fig. 6). However, using the IMF 5 path lengths still significantly 490 

underestimated sediment flux at the 2 l/s discharge, 1.95 g/s (p < 0.001, δ= 39%) (Fig. 6).  491 
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 492 

Figure 6: Measured sediment flux (gray) compared to the estimates calculated using IMF 4 (orange), IMF 5 493 
(blue), and the VMD-HD method (green). Significant differences from the post-hoc Tukey test are denoted by 494 
letters a-c. 495 

Using the second longest wavelength, IMF 4, we underestimate at all of the discharges (Fig. 6). The estimated flux was 496 

0.14 g/s at the 0.7 l/s discharge (δ= 58%), 0.36 g/s at the 1 l/s discharge (δ= 54%), 0.61 g/s at the 1.5 l/s discharge 497 

(δ= 69%), and 0.65 g/s at the 2 l/s discharge (δ= 80%), (all p values < 0.001) (Fig. 6).  498 

4.2 San Juan River  499 

For the three bars in the San Juan River dataset, the path length calculated from the VMD-HD method for bar 6 was 500 

approximately 217 m whereas the field measured average from tracers was 153 m (SMAPE=35%), and the mode range 501 

was 150-200 m. For bar 7 the method calculated a path length of 324 m whereas the measured average was 255 m 502 

(SMAPE=24%), and the secondary mode range was 280-380 m. Finally, for bar 15 the method calculated a path length 503 

of 323 m whereas the measured average was 221 m (SMAPE=38%), and the secondary mode range was 200-300 (Fig. 504 

7). 505 
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 506 

The 2018-2019 year for which we conducted our analyses, was moderate in terms of excess flow energy with 5 flood 507 

events exceeding a discharge of 500 m3 s -1 and a peak discharge of 942 m3 s -1. The path length distributions of bar 7 508 

and bar 15 are positively skewed although there is a secondary mode in the bar 7 distribution corresponding roughly to 509 

the bar tail (Fig. 7) whereas the distribution of bar 6 is bi-modal with the primary mode corresponding to the bar apex 510 

(Fig.7). This is potentially because bar 6 had the most pronounced curvature, perhaps contributing to the clustering of 511 

deposition just before the apex, where a migrating gravel sheet terminated (McQueen et al., 2021). This bar apex 512 

corresponds with the path length from IMF 5 of 217 m which was selected from the VMD-HD method (Fig. 7). IMF 5 513 

was also selected by the VMD-HD method for bar 7 equaling 324 m, and here we see a correspondence to the small 514 
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secondary mode where the authors note there was a clustering of tracers (Fig. 7) (McQueen et al., 2021). Again, IMF 5 515 

with a path length of 323 m was also selected for bar 15 and corresponds closely to the bar apex, although there was not 516 

a clustering of tracer deposition in this deployment as observed in the year with higher discharge (Fig. 7). Additionally, 517 

bar 15 had the highest proportion of sand which is not represented by the tracers, potentially contributing to the 518 

discrepancy between our estimates and the tracers. IMF 4 was always well below the lengths associated with the bar 519 

apexes, and the median and mean tracer distances (Fig. 7). However, the bar apexes and the median and mean tracer 520 

distances were always between IMF 4 and IMF 5 (Fig. 7). The range between IMF 4 and IMF 5 accounted for 62% of 521 

the path length distribution for bar 6, 36% for bar 7, and 45% for bar 15.  522 
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 523 

Figure 7: Tracers-based path length distributions (on the left) and VMD derived IMFs for bars 6,7, and 15 from 524 
the San Juan River dataset. The VMD-HD method selected IMF 5 for all three bars and is reported on the 525 
histograms on the left for visual comparisonIMF 4 (dashed line), IMF 5 (dotted line), mean tracer distance (red), 526 
median tracer distance (blue), and the bar apex (pink) are shown over the path length distributions.   527 

5 Discussion 528 

We developed a method to estimate the characteristic path length during a given flood using information inherent to the 529 

DoD by applying the principle that at channel-forming flows, the majority of particles move from an area of erosion to 530 
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the next area of deposition downstream (Pyrce and Ashmore, 2003a, b). By using the periodic nature of erosion and 531 

deposition we overcome the subjectivity and time involved in measuring these distances manually while aligning 532 

closely with these manually measured distances (Fig. 4). When evaluating the efficacy of our proposed method it is 533 

important to keep in mind the uncertainty of even direct measurement of sediment transport. The spatial and temporal 534 

frequency required to overcome the noise of measurement uncertainty (i.e., achieve an acceptable signal to noise ratio) 535 

in some cases can require sub-daily monitoring with precise equipment (Grams et al., 2019). The variability of sediment 536 

transport measurements in the flume study ranged from a standard deviation of approximately 30% to over 50% of the 537 

averaged flux (Fig. 6). Given this high variability, our reach scale averages were not significantly different from the 538 

measured averages for the 0.7 l/s and 1 l/s discharges (Fig. 6). We developed a method to estimate the representative 539 

path length during a given flood using information inherent to the DoD by applying the principle that at channel-540 

forming flows, the majority of particles move from an area of erosion to the next area of deposition downstream (Pyrce 541 

and Ashmore, 2003b, a). Therefore, we hypothesized that the distance between net erosional and depositional sites 542 

should provide a reasonable estimate of the path length. Our method overcomes the subjectivity and time involved in 543 

measuring these distances manually while aligning closely with these manually measured distances (Fig. 4). Further, 544 

our estimates have an error lower than 30% when compared to the measured mode of tracer-derived path length 545 

estimates in the field (Fig. 7). When used to calculate sediment flux our estimates are not significantly different than 546 

direct measurements of sediment flux for the lower discharge ranges in the lab (Fig. 6). Importantly, we observed that 547 

the method underestimates the sediment flux significantly for the two highest discharges in the lab where the bed shows 548 

a higher percentage of topographic change (Fig. 6). The method presented to estimate path length using only remotely 549 

sensed data shows promising results under certain conditions and provides insight into conditions where it is not 550 

applicable.  551 

5.1 Path length estimation by VMD-HD method: limitations and perspectives 552 

Importantly, we observed that the method underestimates the sediment flux significantly for the two highest discharges 553 

in the lab where the bed shows a higher percentage of the width experiencing topographic change (Fig. 6). The method 554 

presented to estimate a characteristic path length using only remotely sensed data shows promising results under certain 555 

conditions and provides insight into conditions where it is not applicable.  556 

5.1 Path length estimation by VMD-HD method: limitations and perspectives 557 

5.1.1 Flow effects 558 

Previous studies have shown a relationship between path length and hydrologic variables such as discharge, stream 559 

power, and excess shear stress (Hassan et al., 1991; Pyrce and Ashmore, 2003b). A notable result of the flume 560 

experiment is that the estimated path length did not significantly differ between the four discharges (Fig. 4 & 5). We 561 

propose two possible explanations for this discrepancy with the literature. First, it is possible that the actual path length 562 

is increasing with discharge as has been observed in previous studies (Hassan et al., 1991; Pyrce and Ashmore, 2003b) 563 

but the method fails to capture it because the VMD-HD method is based on the spacing of erosion and deposition which 564 

does not change for the varying discharges under the flume conditions. It is possible that at higher discharges the 565 

characteristic path length, that we define as the distance from net erosional areas to net depositional areas, is not 566 

appropriate under the higher flow conditions because most particles are moving farther than the next depositional site 567 

downstream. This violates the assumption on which our method is based and is impossible to prove in our experiment 568 

without tracers. We can however look to literature to understand the conditions in which tracers tend to travel more than 569 
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one morphological unit ( Liébault et al., 2012; Vázquez-Tarrío et al., 2019) and coupled with future studies, perhaps 570 

determine the conditions under which a characteristic path length is inappropriate to estimate sediment transport. 571 

From the San Juan River data we see that for a year with moderate flow, as characterized by the authors, that very few 572 

tracers traveled further than the first depositional site downstream of their insertion point (McQueen et al., 2021). 573 

However, the moderate flow year for which we had corresponding tracer and DoD data resulted in two of the three sites 574 

with positively skewed distributions, and only bar six showing a mode near the bar apex, which also corresponded to 575 

the IMF 5 path length (Fig. 7). The moderate flow conditions could explain why our estimates lined up more closely 576 

with the bar apex for bar 15, where in the previous high flow year the majority of tracers were deposited resulting in a 577 

symmetrical distribution (Fig. 8 from McQueen et al., 2021). It could be that our method is strongly influenced by the 578 

morphology of the channel such that when flow is insufficient to create symmetrical or bi modal path length 579 

distributions, we overestimate by using the characteristic path length because the majority of particles are not reaching 580 

the next major depositional site downstream (i.e., a positively skewed distribution). Additionally, when the flow 581 

exceeds a yet unidentified threshold, the majority of particles move more than one depositional site downstream and 582 

therefore we underestimate sediment transport by using the characteristic path length. We can speculate that this is 583 

happening to some extent in the flume experiment. We see that at the lowest discharge, 0.7 l/s, we slightly overestimate 584 

the sediment flux especially using IMF 5 (Fig. 6) and underestimate the flux at the highest discharge, 2 l/s, where we 585 

also see a simplification of channel morphology (Fig. 6, 3). Because we did not have tracers in the flumes we can not 586 

say if the path length distributions were in fact different between the lowest and highest discharges. Future applications 587 

of this method with tracer data both in the flumes and in the field could help to understand when the characteristic 588 

length scale of morphology extracted by the method is an appropriate estimate of sediment transport and if this 589 

corresponds to flow metrics and path length distributions. In the flume studies we tested the idea that the majority of 590 

particles are bypassing the first depositional site simply by doubling the estimated path length. Assuming that sediment 591 

is not trapped in the first depositional area but in the second one and doubling the path length we more closely estimate 592 

the sediment transport at the higher discharges (i.e., estimates are not significantly different than the measured averages 593 

(p>0.05) but overestimate the sediment transport at the 0.7 l/s and 1 l/s discharges (p<0.05) (Fig. A5).  594 

5.1.2 Confinement 595 

It is possible that due to the confined condition of the flumes, channel width may exert an outsized effect on the average 596 

bedload transport distance as the channel is unable to widen in response to an increase in discharge, therefore causing a 597 

flushing effect. In the flume experiment, we found that the VMD-HD method performed better at the lower discharges 598 

of 0.7 l/s and 1 l/s but significantly underestimated the sediment transport at the 1.5 l/s and 2 l/s discharges (Fig. 6). The 599 

underestimation at higher discharges could be related to the amount of morphological change relative to the sediment 600 

transport. Recently, Booker and Eaton (2022) quantitatively explored the link between sediment transport and 601 

morphology and proposed an index to represent the intuitive notion that as sediment transport increases relative to 602 

morphological change, the processes become decoupled and inferences from one to another become more difficult. 603 

They developed a ‘throughput index’ which is the ratio between sediment flux and morphological change and 604 

represents how much sediment moves through a reach without leaving a topographic signature of equal magnitude. 605 

Therefore, the ratio represents how well the flux is represented morphologically with the ratio approaching 1 when all 606 

of the flux is shown as morphological change and exceeding 1 when there is transport without equivalent morphological 607 

change. In our case the flume experiments were confined, therefore, as discharge increased the channel was not able to 608 

widen and deform laterally potentially causing the sediment to move through the flume without leaving an equivalent 609 
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topographic signature. To explore the applicability of the method proposed we calculated the morphological active 610 

width by counting the percentage of pixels in the DoD that showed topographic change after filtering (we applied this 611 

metric only for the flume experiments since the San Juan River DoDs do not include the submerged part of the 612 

channel). The morphological active width increased with discharge as expected and was positively correlated with the 613 

error of our estimates (Fig. 8). This result exposes a limitation of the morphological method in general and our 614 

application specifically, that is, confined channels with high transport relative to morphological change are likely poor 615 

candidates for the morphological method as inferences between changes in morphology and sediment transport become 616 

decoupled. Further applications of this method in the field and in the lab could identify a potential threshold defined by 617 

the throughput index (Booker and Eaton, 2022) or the morphological active width described in this study. The 618 

advantage of using the morphological active width as opposed to the throughput index is that it can be determined from 619 

the DoD without direct sediment transport measurements. 620 

 621 

Figure 8: Relative percent error between estimated flux using the VMD-HD method and the measured flux in the 622 
flume experiments (y-axis) vs the percentage of the DoD showing morphological change (x-axis). Different 623 
discharges are denoted by shape.   discharges under the flume conditions. It is possible that at higher discharges the 624 
characteristic path length is not equal to the spacing of erosion and deposition because the particles are moving farther 625 
than the next depositional site downstream. For instance, if we double the estimated path length, hypothesizing a 626 
sediment is not trapped in the first depositional area but in the second one, we more closely estimate the sediment 627 
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transport at the higher discharges (i.e., estimates are not significantly different than the measured averages (p>0.05) but 628 
overestimate the sediment transport at the 0.7 l/s and 1 l/s discharges (p<0.05) (Appendix Fig.  629 

5.1.3 Morphological controls  630 

Previous studies have shown that in gravel bed rivers, macroform spacing is typically 5-7 channel widths (Montgomery 631 

and Buffington, 1997) and therefore half of that spacing, i.e. pool to bar, may be considered a proxy for the 632 

characteristic path length. We compared our estimates of path length to (half) of both 5 and 7 times the channel width in 633 

the flumes and found that the IMF 5 estimates of path length were between the 5 and 7 channel widths for all but the 634 

highest discharge (Fig. A6). Interestingly, the manually measured distances were less than the 5-7 channel widths for all 635 

discharges but approaching 5 channel widths at the 2 l/s discharge (Fig. A6). When used to calculate sediment flux, the 636 

estimates derived from using 5 and 7 channel widths were not significantly different than our VMD-HD estimates at 637 

discharges 0.7-1.5 l/s or the measured flux at all discharges (Fig. A5). Here we are likely seeing a good correspondence 638 

between the characteristic path length, width, and sediment transport, because at formative discharges, morphology is 639 

the primary control on bedload travel distance. Whereas at lower discharges, where the morphology is relatively stable, 640 

discharge may exert a stronger control on path length. Because we do not have tracer data in the flumes for comparison, 641 

we can only rely on the sediment transport measurements for validationA1). A second explanation is that the actual path 642 

length does not change with the increase in discharge because the channel width and morphological unit spacing exert a 643 

stronger control than any hydrologic variable which has also been observed in previous studies (Beechie, 2001; Pyrce 644 

and Ashmore, 2003b; Vázquez-Tarrío et al., 2019). The width may exert an outsized effect in this case because the 645 

flume is laterally confined and unable to widen in response to an increase in discharge.  Because we do not have tracer 646 

data in the flumes for comparison, we can only rely on the sediment transport measurements for validation which 647 

indicate that we are underestimating the sediment transport at higher discharges, thus supporting the first explanation,  648 

but further flume studies with both sediment flux and tracer data for validation could help resolve this question. The 649 

periodicity we extract from the DoDs as an estimate of path length corresponds to previous observations of preferential 650 

particle deposition at specific morphological units and relationships to channel morphology (Beechie, 2001; Pyrce and 651 

Ashmore, 2003a, b; Kasprak et al., 2015; McDowell and Hassan, 2020; McDowell et al., 2021). In the San Juan River 652 

study, our estimates aligned closely with the secondary modes in the particle path length distributions (Fig. 7) consistent 653 

with observations that at channel forming flows, particle path lengths tend to be bi or multimodal with secondary modes 654 

corresponding to the location of bars (Pyrce and Ashmore, 2003b). This preliminary result should be further examined 655 

with additional field data in multi-threaded channel types.  656 

We expected that the path length in more complex channels such as braided configurations would be more difficult to 657 

estimate due to the possibility of multiple path lengths active at different flow stages. In this study both the flume 658 

experiment and the field study exhibited a wandering morphology although in the flume experiment, the channel began 659 

to simplify at higher discharges, likely due to the inability of the channel to widen in response to the increase in 660 

discharge. Further, path length estimates did not change significantly between the discharges whereas the erosion 661 

volume increases with discharge, and that, as mentioned previously, potentially contributed to the underestimation of 662 

sediment flux at the higher discharges. Additionally, at the 1.5 l/s, and 2 l/s discharges, the patches of erosion and 663 

deposition began to overlap, therefore, the wavelike pattern from areas of erosion to deposition represented by the IMF 664 

5 vector became flattened (Fig. 3, A1). To disentangle the confounding erosion and deposition from the net vector, we 665 

applied the VMD method to a vector created from erosion and deposition separately. When calculating the path length 666 

using the erosion or deposition vectors, we took half of the resulting path length as we are still interested in the distance 667 
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from erosion to deposition rather than erosion to erosion. We found that the path lengths generated from these vectors 668 

were not significantly different than the path lengths generated using the net vector (p > 0.05) (Fig. A6) nor were the 669 

estimates of sediment transport (Fig. A5) This evidence supports the use of the net vector in this case because it appears 670 

that erosion and deposition were similarly distributed. However, in rivers with differing morphology, perhaps braided 671 

systems, we might suspect that erosion will be more localized than deposition which can be dispersed (Goff and 672 

Ashmore, 1994). In these cases, using VMD to decompose the net, erosion, and deposition separately could give further 673 

insight into how deposition and erosion are contributing to the net change. For example, deposition may contribute little 674 

to net vector if the relative magnitude of the oscillations is small compared to erosion which tends to be more 675 

concentrated. In addition to estimating a characteristic path length, this decomposition could give further insight into the 676 

nature of depositional and erosional processes in a reach. We also recognize that perhaps when multiple channels are 677 

present and active, it may be beneficial to segregate the DoD, treating each channel as a separate system and generate 678 

multiple path length estimations and avoid compensating erosion and deposition within the cross section. Further 679 

investigations are needed in the lab and in the field to propose robust methodologies to assess realistic ranges of path 680 

lengths from DoD for varying river patterns. 681 

5.1.4 Using the IMFs 682 

The path length-based method for calculating sediment transport necessitates that a single path length be selected and 683 

this is surely an oversimplification of reality. Encouragingly, the flume experiment shows that by using the VMD-HD 684 

method to select the path length, we are able to reasonably approximate sediment transport at the lower discharges (Fig.  685 

The VMD-HD method presented here selects one of the five IMFs to be used as an estimate of path length based on the 686 

geometric similarity, as measured by the Hausdorff distance, of the IMF to the original data vector. However, we 687 

presume that not only does the method occasionally select an erroneous IMF (IMF 1 for example) but it also reasons 688 

that in some cases more than one IMF could represent the pattern of erosion and deposition in the DoD and thereby the 689 

characteristic path length. In the flume experiment, the VMD-HD method selected the longest wavelength, IMF 5, 74% 690 

of the time and IMF 4, 24% of the time. There was only one instance in which IMF 1 was selected and neither IMF 2 or 691 

3 were ever selected. Likewise, IMF 5 was selected for all three bars in the San Juan River dataset. This result agrees 692 

with observations from the signal processing literature wherein the lower frequency (in our case wavelength) IMFs (4 693 

and 5) are thought to represent the true signal whereas the higher frequency (shorter wavelength) IMFs are attributed to 694 

noise (Boudraa et al., 2005). In our case we can verify visually that IMF 5 is most likely representative of the path 695 

length by tracing the path from erosional site to depositional site within the DoD using the manual method (Fig. 3 & 8).  696 
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 697 

6). However, when applying this method to a real case study, like that of the San Juan River, it is important to consider 698 

if the results make sense given what is known about the channel and the time and magnitude of flood events between 699 

surveys, potentially taking into account both IMF 4 and IMF 5 to generate a range of plausible transport or path lengths. 700 

The VMD-HD method presented here selects one of the five IMFs to be used as an estimate of path length based on the 701 

geometric similarity, as measured by the Hausdorff distance, of the IMF to the original data vector. However, we 702 

presume that not only does the method occasionally select an erroneous IMF (IMF 1 for example where the path length 703 

is on the order of mm) but it also reasons that in some cases more than one IMF could represent the pattern of erosion 704 

and deposition in the DoD or perhaps a range due to the heterogeneous nature of sediment transport. In the flume 705 

experiment, the VMD-HD method selected the longest wavelength, IMF 5, 74% of the time and IMF 4, 24% of the 706 

time. There were only two instances in which IMF 1 was selected and neither IMF 2 or 3 were ever selected. Likewise, 707 

IMF 5 was selected for all three bars in the San Juan River dataset. This result agrees with observations from the signal 708 

processing literature wherein the lower frequency (in our case wavelength) IMFs (4 and 5) are thought to represent the 709 

true signal whereas the higher frequency (shorter wavelength) IMFs are attributed to noise (Boudraa et al., 2005). In our 710 

case we can verify visually that IMF 5 is most likely representative of the characteristic path length by tracing the path 711 

from erosional site to depositional site within the DoD using the manual method (Fig. 9). Here we see that the longest 712 
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IMF captures the spacing between erosional and depositional patches as estimated by other methods (Redolfi, 2014; 713 

Vericat et al., 2017; Calle et al., 2020). This study, as the others, supports the idea that the periodic nature of erosion 714 

and deposition can be used to estimate sediment transport and helps to clarify the conditions where this approach is 715 

valid. Moreover, this study provides an objective and repeatable method to estimate the characteristic path length.  716 

 717 

Figure 89: DoD with arrows showing possible path lengths between areas of erosion (red) to deposition (blue) 718 
corresponding to both IMF 4 and IMF 5. The VMD breakdown including all IMFs and the corresponding path 719 
lengths are shown for an experimental run from the 1.5 l discharge (a) and bar 15 from the San Juan River (b). 720 

WeDifferent IMFs also seeallow us to explore multiple periodicities, such as shorter path lengths in the DoDs that may 721 

correspond to IMF 4 (Fig. 89). The method we present here to select one of the IMFs to represent the periodicity is 722 

convenient for assigning a characteristic path length to be used in sediment transport calculations. However, we 723 

recognize that in reality there is not one path length but rather a distribution. However, it is unclear if the range of IMFs 724 

may be used to estimate aspects of the path length distribution. As a first step, we see that in the San Juan River the path 725 

lengths associated with IMF 4 and IMF 5 bracket the mean, median, and key depositional areas associated with the path 726 

length distribution (Fig. 7). With future studies it may be possible to set a range of plausible transport based on IMFs 4 727 

and 5. The path length-based method for calculating sediment transport necessitates that a single path length be selected 728 
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and this is surely an oversimplification of reality. Encouragingly, the flume experiment shows that by using the VMD-729 

HD method to select the path length, we are able to reasonably approximate sediment transport at the lower discharges 730 

(Fig. 6) even with an occasional erroneous result (i.e., IMF 1). However, when applying this method to a real case 731 

study, like that of the San Juan River, it is important to consider if the results make sense given what is known about the 732 

channel and the time and magnitude of flood events between surveys, potentially taking into account both IMF 4 and 733 

IMF 5 to generate a range of plausible transport. 734 

The periodicity we extract from the DoDs as an estimate of path length corresponds to previous observations of 735 

preferential particle deposition at specific morphological units and relationships to channel morphology (Beechie, 2001; 736 

Kasprak et al., 2015; Pyrce and Ashmore, 2003b). In the San Juan River study, our estimates aligned closely with the 737 

secondary modes in the particle path length distributions (Fig. 7) consistent with observations that at channel forming 738 

flows, particle path lengths tend to be bi or multimodal with secondary modes corresponding to the location of bars 739 

(Pyrce and Ashmore, 2003b). This preliminary result should be further examined with additional field data in multiple 740 

channel types.  741 

We expected that the path length in more complex channels such as braided configurations would be more difficult to 742 

estimate due to the possibility of multiple path lengths active at different flow stages. In this study both the flume 743 

experiment and the field study exhibited a wandering morphology although in the flume experiment, the channel began 744 

to simplify at higher discharges. This is likely due to the inability of the channel to widen in response to the increase in 745 

discharge. Further, path length estimates did not change significantly between the discharges whereas the erosion 746 

volume increases with discharge, and that, as mentioned previously, potentially contributed to the underestimation of 747 

sediment flux at the higher discharges. Additionally, at the 1.5 l/s, and 2 l/s discharges, the patches of erosion and 748 

deposition began to overlap, therefore, the wavelike pattern from areas of erosion to deposition represented by the IMF 749 

5 vector became flattened (Fig. 3).  Further, when multiple channels are present and active, it may be beneficial to 750 

segregate the DoD, treating each channel as a separate system and generate multiple path length estimations. Further 751 

investigations are needed in the lab and in the field to propose robust methodologies to assess realistic ranges of path 752 

lengths from DoD for varying river patterns. 753 

5.2 DoD related uncertainties  754 

Any application of the morphological method using DoDs is sensitive to the error thresholding method used due to the 755 

way in which different thresholding techniques influence both the volumes of erosion and deposition as well as their 756 

spatial patterning (Brasington et al., 2003; Wheaton, 2008; Wheaton et al., 2010; Vericat et al., 2017). Because our 757 

method relies on the spacing between areas of erosion and deposition which is related to the size of the patches as well 758 

as which patches are detected, we considered that thresholding techniques could greatly affect the estimates of path 759 

length. We tested this hypothesis by applying the method to both the raw and filtered DoDs for the Trento flume 760 

experiment and found that while the volumes of erosion and deposition were lower after thresholding as expected 761 

(p<0.001), the path length estimates were not significantly different (p>0.05) (Appendix Table A1). While the 762 

thresholding here did not affect the path length estimates, we might imagine a scenario in which an entire area of 763 

erosion or deposition is removed through aggressive thresholding techniques, thereby potentially affecting the path 764 

length estimates and therefore caution that appropriate thresholding is important for the application of this method and 765 

the morphological method in general. It is also important to consider the spatial resolution (i.e. raster cell size) of the 766 

DoD when applying this method. Similarly to thresholding or selecting a bin size, the spatial resolution of the DoD 767 

could cause information to be lost if the cell size is large enough to aggregate erosion and deposition within the same 768 
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cell (see for instance the comparison made in Antoniazza et al., 2019). We see less of a risk in using smaller cell sizes 769 

as the method already calls for aggregation in the binning process and in theory VMD should be able to separate the 770 

small scale fluctuations as short wavelength IMFs. However, this is an open question and should be evaluated by the 771 

user on a case by case basis.  772 

The time between surveys is of equal importance to the path length in the estimation of virtual velocity Eq. (2) and in 773 

the field can be highly uncertain due to poor availability of hydrologic data and/or the uncertainty of estimating the 774 

onset of transport based on a critical shear stress. Further, as time between surveys increases, so too does the probability 775 

of compensating erosion and deposition which can affect both the volumes of erosion and deposition and the 776 

topographic signatures (Lindsay and Ashmore, 2002; Vericat et al., 2017) necessary for VMD-HD method. We tested 777 

how the time between surveys might affect both the volumes of erosion and deposition and our path length estimates by 778 

differencing DEMs not every time step but between two, three, and four timesteps, each time step being one of the nine 779 

runs in the lab of phase 3 (see method). Not surprisingly the volume of erosion and deposition increased significantly 780 

with increasing time between surveys with the largest increase between the 1st timestep and 2nd timestep (Fig. 9). 10). 781 

The path length estimates did not increase significantly for any of the discharges (Fig. 9c10c) indicating that the path 782 

length estimate is stable, likely because, as already noted, the spacing of erosion and deposition is related to the position 783 

of erosional and depositional features which do not change much in a confined experiment.the flume. When both of 784 

these parameters are used in the sediment transport calculations and normalized by the increased time between surveys, 785 

we found no statistically significant difference between the estimates (Fig. 9d10d). However, though not statistically 786 

significant, there is an apparent decreasing trend in the sediment flux with the increased time between surveys, 787 

especially for the 2 l/s discharge that may indicate compensation (Fig. 9d10d). Despite the apparent trend at the highest 788 

discharge this is a promising result in that even by increasing the time interval by a factor of 4 we are still able to 789 

estimate sediment transport reasonably at the lower discharges. In the field there are often multiple flood events of 790 

differing magnitude in the year between surveys as was the case with the San Juan River study (McQueen et al., 2021). 791 

Although there were five flood events of differing magnitudes between the San Juan River surveys, we were still able to 792 

estimate path lengths corresponding to potentially significant features of the RFID tracer data with an error of less than 793 

30%path length distributions (Fig. 7).  794 
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Figure 910: (a) Erosion measured from the flume experiments for each discharge and each timestep (b) 797 
deposition (c) path length estimates using VMD-HD method (d) sediment flux estimated using VMD-HD method 798 
and measured. Significant post-hoc Tukey results are denoted by letters a-d (α=0.05). 799 

5.3 Applicability of the method  800 

When evaluating the efficacy of our proposed method it is important to keep in mind the uncertainty of even direct 801 

measurement of sediment transport. The spatial and temporal frequency required to overcome the noise of measurement 802 

uncertainty (i.e., achieve an acceptable signal to noise ratio) in some cases can require sub-daily monitoring with 803 

precise equipment (Grams et al., 2019). The variability of sediment transport measurements in the flume study ranged 804 

from a standard deviation of approximately 30% to over 50% of the averaged flux (Fig. 3).  Given this high variability, 805 

our reach scale averages were not significantly different from the measured averages for the 0.7 l/s and 1 l/s discharges 806 

(Fig. 6). Further, our method produced path length estimates which correspond to the distance between erosional and 807 

depositional sites on the DoD in both the flumes and field (Fig. 7).  808 

In the flume experiment, we found that the VMD-HD method performed better at the lower discharges of 0.7 l/s and 1 809 

l/s but significantly underestimated the sediment transport at the 1.5 l/s and 2 l/s discharges (Fig. 6). In Sect. 5.1 we 810 

discussed that this underestimation is likely due to our limitations in the deriving realistic path lengths from DoDs. The 811 

underestimation at higher discharges could be related to the amount of morphological change relative to the sediment 812 

transport. Recently, Booker and Eaton (2022) quantitatively explored the link between sediment transport and 813 

morphology and proposed an index to represent the intuitive notion that as sediment transport increases relative to 814 

morphological change, the processes become decoupled and inferences from one to another become more difficult. 815 

They developed a ‘throughput index’ which is the ratio between sediment flux and morphological change and 816 

represents how much sediment moves through a reach without leaving a topographic signature of equal magnitude. 817 

Therefore, the ratio represents how well the flux is represented morphologically with the ratio approaching 1 when all 818 

of the flux is shown as morphological change and exceeding 1 when there is transport without equivalent morphological 819 

change. In our case the flume experiments were confined, therefore, as discharge increased the channel was not able to 820 

widen and deform laterally potentially causing the sediment to move through the flume without leaving an equivalent 821 

topographic signature. To explore the applicability of the method proposed we calculated the morphological active 822 

width by counting the percentage of pixels in the DoD that showed topographic change after filtering (we applied this 823 

metric only for the flume experiments since the San Jose DoDs do not include the submerged part of the channel). The 824 

morphological active width increased with discharge as expected and was positively correlated with the error of our 825 

estimates (Fig. 10). We found a strong exponential relationship between the percent of the flume that was active and the 826 

error of our estimates (R2 =0.98, p<0.01) (Fig. 10). This result exposes a limitation of the morphological method in 827 

general and our application specifically, that is, confined channels with high transport relative to morphological change 828 

are likely poor candidates for the morphological method as inferences between changes in morphology and sediment 829 

transport become decoupled. Further applications of this method in the field and in the lab could identify a potential 830 

threshold defined by the throughput index (Booker and Eaton, 2022) or the morphological active width described in this 831 

study. The advantage of using the morphological active width as opposed to the throughput index is that it can be 832 

determined from the DoD without direct sediment transport measurements. 833 
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 834 

Figure 10: Symmetrical mean absolute percent error (SMAPE) between estimated and measured flux in the 835 
flume experiments vs the percentage of the DoD showing morphological change. Different discharges are 836 
denoted by shape.  Filled shapes are where the sediment transport was significantly underestimated (α=0.05). R2 837 
and p value from exponential regression is shown. 838 

6 Conclusion 839 
The feasibility of estimating sediment flux using the morphological method has increased dramatically with the advent 840 

of high-resolution topography but has thus far been limited by the high labor demand of acquiring estimates of path 841 

length or the uncertainty of defining zero or known flux boundary. Given the observed connections between 842 

morphology and path length at channel forming flows, we hypothesizedproposed that the periodic nature of the pattern 843 

of erosion and deposition can be a proxy for particlea characteristic path length in gravel bed rivers. We applied tools 844 

from signal processing to quantify this periodicity and found that our method provides estimates path length within 30% 845 

of measured tracer databy the longest wavelengths from the decomposition, IMF 4 and corresponds to the spacing of 846 

erosion and deposition visible on the DoD. Further, our method provides estimates of IMF 5 may represent meaningful 847 

bedload transport processes and IMF 5 in particular may represent the characteristic path length. We found that the path 848 

length estimates generated by IMFs 4 and 5 bracket a significant portion of measured path length coherent with channel 849 

morphology and previous observations of preferential particle deposition at given channel distributions in the field and 850 

correspond to important morphological units, specifically bar heads and margins. When. In the flume experiment we 851 

found that IMF 4 and 5 path lengths also bracket the manually measured distances between erosional and depositional 852 

patches and when extended to calculate sediment flux our estimates were not significantly different from the measured 853 

average at low discharges. Importantly we found thatan insensitivity of the method to increasing discharge and propose 854 

that perhaps limits arise where discharge increases in confined channelssettings, such as in the flume, and sediment 855 



38 

 

 

transport becomes decoupled from morphological changes. Our method provides a reasonable estimation of path length 856 

based solely on remotely sensed data and new view of the periodic nature of erosion and deposition in sediment 857 

transport and a novel methodway to estimateextract sediment fluxes associated with specific channel morphological 858 

processes through DoD interpretation.transport information using only DoDs.  859 

 860 

  861 

Appendix A 862 
 863 

 864 

Figure A1.  DoDs from the 2 l/s discharge. a) Vector of deposition, erosion, and the net. b) Raw depositional vector and 865 
the decomposition of IMF 4 and IMF 5 from that depositional vector. c) Net vector and the decomposition of IMF 4 and 866 
IMF 5 from that net vector. d) Raw erosional vector and the decomposition of IMF 4 and IMF 5 from that erosional 867 
vector.  868 

 869 
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 870 

Figure A2. Path length estimates using a maximum of 3,5,8, or 15 IMFs.  871 

 872 

Figure A3. Path length estimates from VMD for 1.5 l/s discharge. Sensitivity of maximum number of IMFs.  873 

 874 
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 875 

Figure A4. Number of times each IMF was selected by the VMD-HD method for each discharge. 876 

  877 
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Figure A5. Sediment transport calculated using the single path length estimate from the VMD-HD method (b) and 878 
doubling the path length estimate (a). Estimated flux is red and measured flux is blue. Significant p values are shown.  879 

 880 

 881 

Figure A6. Sediment transport (g/s) calculated using channel dimensions, IMFs 4 and 5 for net, erosion, and deposition 882 
vectors. Compared to the measured flux for each discharge. Post hoc Tukey results denoted by letters a-f.   883 

 884 

Figure A7. Path length estimates from the channel dimensions, IMFs 4 and 5 for net, erosion, and deposition vectors 885 
compared to manually measured distances for each discharge. Post hoc Tukey results denoted by letters a-f.   886 

Table 1AA1. Results from filtered vs raw DoDs from the flume experiments.  887 
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2 0.71 0.66 1.30 0.74 0.01 0.01 0.01 0.01 
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ry  

        

 

Dischar

ge 
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Length  

Qb 
    

 

0.7 p<0.001** p<0.001** p>0.05 p<0.05* 
    

 

1 p<0.001** p<0.001** p>0.05 p<0.05* 
    

 

21.5 p<0.001** p<0.001** p>0.05 p><0.05* 
    

 

2 p<0.001** p<0.001** p>0.05 p>0.05 
    

          

*p-values from student's t test between raw and filtered data 
   

 

 888 
Figure 1A. Sediment transport calculated using the single path length estimate from the VMD-HD method (b) and 889 
doubling the path length estimate (a). Estimated flux is red and measured flux is blue. Significant p values are shown.  890 
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